]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
vhost-vsock: convert VMSTATE_VIRTIO_DEVICE
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
5b6dd868 21#endif
7b31bbc2 22#include "qemu/osdep.h"
d19893da 23
2054396a 24
5b6dd868 25#include "qemu-common.h"
af5ad107 26#define NO_CPU_IO_DEFS
d3eead2e 27#include "cpu.h"
6db8b538 28#include "trace.h"
76cad711 29#include "disas/disas.h"
63c91552 30#include "exec/exec-all.h"
57fec1fe 31#include "tcg.h"
5b6dd868
BS
32#if defined(CONFIG_USER_ONLY)
33#include "qemu.h"
34#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35#include <sys/param.h>
36#if __FreeBSD_version >= 700104
37#define HAVE_KINFO_GETVMMAP
38#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
39#include <sys/proc.h>
40#include <machine/profile.h>
41#define _KERNEL
42#include <sys/user.h>
43#undef _KERNEL
44#undef sigqueue
45#include <libutil.h>
46#endif
47#endif
0bc3cd62
PB
48#else
49#include "exec/address-spaces.h"
5b6dd868
BS
50#endif
51
022c62cb 52#include "exec/cputlb.h"
e1b89321 53#include "exec/tb-hash.h"
5b6dd868 54#include "translate-all.h"
510a647f 55#include "qemu/bitmap.h"
0aa09897 56#include "qemu/timer.h"
508127e2 57#include "exec/log.h"
5b6dd868
BS
58
59//#define DEBUG_TB_INVALIDATE
60//#define DEBUG_FLUSH
61/* make various TB consistency checks */
62//#define DEBUG_TB_CHECK
63
64#if !defined(CONFIG_USER_ONLY)
65/* TB consistency checks only implemented for usermode emulation. */
66#undef DEBUG_TB_CHECK
67#endif
68
69#define SMC_BITMAP_USE_THRESHOLD 10
70
5b6dd868
BS
71typedef struct PageDesc {
72 /* list of TBs intersecting this ram page */
73 TranslationBlock *first_tb;
6fad459c 74#ifdef CONFIG_SOFTMMU
5b6dd868
BS
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
510a647f 78 unsigned long *code_bitmap;
6fad459c 79#else
5b6dd868
BS
80 unsigned long flags;
81#endif
82} PageDesc;
83
84/* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86#if !defined(CONFIG_USER_ONLY)
87#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89#else
90# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91#endif
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94#endif
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define V_L2_BITS 10
98#define V_L2_SIZE (1 << V_L2_BITS)
99
5b6dd868
BS
100/* The bits remaining after N lower levels of page tables. */
101#define V_L1_BITS_REM \
03f49957 102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
103
104#if V_L1_BITS_REM < 4
03f49957 105#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
106#else
107#define V_L1_BITS V_L1_BITS_REM
108#endif
109
110#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
5b6dd868 114uintptr_t qemu_host_page_size;
0c2d70c4 115intptr_t qemu_host_page_mask;
5b6dd868 116
d1142fb8 117/* The bottom level has pointers to PageDesc */
5b6dd868
BS
118static void *l1_map[V_L1_SIZE];
119
57fec1fe
FB
120/* code generation context */
121TCGContext tcg_ctx;
d19893da 122
677ef623
FK
123/* translation block context */
124#ifdef CONFIG_USER_ONLY
125__thread int have_tb_lock;
126#endif
127
128void tb_lock(void)
129{
130#ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134#endif
135}
136
137void tb_unlock(void)
138{
139#ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143#endif
144}
145
146void tb_lock_reset(void)
147{
148#ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153#endif
154}
155
a8a826a3 156static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 157
57fec1fe
FB
158void cpu_gen_init(void)
159{
160 tcg_context_init(&tcg_ctx);
57fec1fe
FB
161}
162
fca8a500
RH
163/* Encode VAL as a signed leb128 sequence at P.
164 Return P incremented past the encoded value. */
165static uint8_t *encode_sleb128(uint8_t *p, target_long val)
166{
167 int more, byte;
168
169 do {
170 byte = val & 0x7f;
171 val >>= 7;
172 more = !((val == 0 && (byte & 0x40) == 0)
173 || (val == -1 && (byte & 0x40) != 0));
174 if (more) {
175 byte |= 0x80;
176 }
177 *p++ = byte;
178 } while (more);
179
180 return p;
181}
182
183/* Decode a signed leb128 sequence at *PP; increment *PP past the
184 decoded value. Return the decoded value. */
185static target_long decode_sleb128(uint8_t **pp)
186{
187 uint8_t *p = *pp;
188 target_long val = 0;
189 int byte, shift = 0;
190
191 do {
192 byte = *p++;
193 val |= (target_ulong)(byte & 0x7f) << shift;
194 shift += 7;
195 } while (byte & 0x80);
196 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
197 val |= -(target_ulong)1 << shift;
198 }
199
200 *pp = p;
201 return val;
202}
203
204/* Encode the data collected about the instructions while compiling TB.
205 Place the data at BLOCK, and return the number of bytes consumed.
206
207 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
208 which come from the target's insn_start data, followed by a uintptr_t
209 which comes from the host pc of the end of the code implementing the insn.
210
211 Each line of the table is encoded as sleb128 deltas from the previous
212 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
213 That is, the first column is seeded with the guest pc, the last column
214 with the host pc, and the middle columns with zeros. */
215
216static int encode_search(TranslationBlock *tb, uint8_t *block)
217{
b125f9dc 218 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
219 uint8_t *p = block;
220 int i, j, n;
221
222 tb->tc_search = block;
223
224 for (i = 0, n = tb->icount; i < n; ++i) {
225 target_ulong prev;
226
227 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
228 if (i == 0) {
229 prev = (j == 0 ? tb->pc : 0);
230 } else {
231 prev = tcg_ctx.gen_insn_data[i - 1][j];
232 }
233 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
234 }
235 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
236 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
237
238 /* Test for (pending) buffer overflow. The assumption is that any
239 one row beginning below the high water mark cannot overrun
240 the buffer completely. Thus we can test for overflow after
241 encoding a row without having to check during encoding. */
242 if (unlikely(p > highwater)) {
243 return -1;
244 }
fca8a500
RH
245 }
246
247 return p - block;
248}
249
fec88f64 250/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 251static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 252 uintptr_t searched_pc)
d19893da 253{
fca8a500
RH
254 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
255 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 256 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
257 uint8_t *p = tb->tc_search;
258 int i, j, num_insns = tb->icount;
57fec1fe 259#ifdef CONFIG_PROFILER
fca8a500 260 int64_t ti = profile_getclock();
57fec1fe
FB
261#endif
262
01ecaf43
RH
263 searched_pc -= GETPC_ADJ;
264
fca8a500
RH
265 if (searched_pc < host_pc) {
266 return -1;
267 }
d19893da 268
fca8a500
RH
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
3b46e624 281
fca8a500 282 found:
bd79255d 283 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 284 assert(use_icount);
2e70f6ef 285 /* Reset the cycle counter to the start of the block. */
fca8a500 286 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 287 /* Clear the IO flag. */
99df7dce 288 cpu->can_do_io = 0;
2e70f6ef 289 }
fca8a500
RH
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
57fec1fe
FB
292
293#ifdef CONFIG_PROFILER
fca8a500
RH
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
57fec1fe 296#endif
d19893da
FB
297 return 0;
298}
5b6dd868 299
3f38f309 300bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
301{
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
74f10515 306 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
309 tb_phys_invalidate(tb, -1);
310 tb_free(tb);
311 }
a8a826a3
BS
312 return true;
313 }
314 return false;
315}
316
47c16ed5 317void page_size_init(void)
5b6dd868
BS
318{
319 /* NOTE: we can always suppose that qemu_host_page_size >=
320 TARGET_PAGE_SIZE */
5b6dd868 321 qemu_real_host_page_size = getpagesize();
0c2d70c4 322 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
323 if (qemu_host_page_size == 0) {
324 qemu_host_page_size = qemu_real_host_page_size;
325 }
326 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
327 qemu_host_page_size = TARGET_PAGE_SIZE;
328 }
0c2d70c4 329 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 330}
5b6dd868 331
47c16ed5
AK
332static void page_init(void)
333{
334 page_size_init();
5b6dd868
BS
335#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
336 {
337#ifdef HAVE_KINFO_GETVMMAP
338 struct kinfo_vmentry *freep;
339 int i, cnt;
340
341 freep = kinfo_getvmmap(getpid(), &cnt);
342 if (freep) {
343 mmap_lock();
344 for (i = 0; i < cnt; i++) {
345 unsigned long startaddr, endaddr;
346
347 startaddr = freep[i].kve_start;
348 endaddr = freep[i].kve_end;
349 if (h2g_valid(startaddr)) {
350 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
351
352 if (h2g_valid(endaddr)) {
353 endaddr = h2g(endaddr);
354 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
355 } else {
356#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
357 endaddr = ~0ul;
358 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
359#endif
360 }
361 }
362 }
363 free(freep);
364 mmap_unlock();
365 }
366#else
367 FILE *f;
368
369 last_brk = (unsigned long)sbrk(0);
370
371 f = fopen("/compat/linux/proc/self/maps", "r");
372 if (f) {
373 mmap_lock();
374
375 do {
376 unsigned long startaddr, endaddr;
377 int n;
378
379 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
380
381 if (n == 2 && h2g_valid(startaddr)) {
382 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
383
384 if (h2g_valid(endaddr)) {
385 endaddr = h2g(endaddr);
386 } else {
387 endaddr = ~0ul;
388 }
389 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
390 }
391 } while (!feof(f));
392
393 fclose(f);
394 mmap_unlock();
395 }
396#endif
397 }
398#endif
399}
400
75692087
PB
401/* If alloc=1:
402 * Called with mmap_lock held for user-mode emulation.
403 */
5b6dd868
BS
404static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
405{
406 PageDesc *pd;
407 void **lp;
408 int i;
409
5b6dd868
BS
410 /* Level 1. Always allocated. */
411 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
412
413 /* Level 2..N-1. */
03f49957 414 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 415 void **p = atomic_rcu_read(lp);
5b6dd868
BS
416
417 if (p == NULL) {
418 if (!alloc) {
419 return NULL;
420 }
e3a0abfd 421 p = g_new0(void *, V_L2_SIZE);
6940fab8 422 atomic_rcu_set(lp, p);
5b6dd868
BS
423 }
424
03f49957 425 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
426 }
427
6940fab8 428 pd = atomic_rcu_read(lp);
5b6dd868
BS
429 if (pd == NULL) {
430 if (!alloc) {
431 return NULL;
432 }
e3a0abfd 433 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 434 atomic_rcu_set(lp, pd);
5b6dd868
BS
435 }
436
03f49957 437 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
438}
439
440static inline PageDesc *page_find(tb_page_addr_t index)
441{
442 return page_find_alloc(index, 0);
443}
444
5b6dd868
BS
445#if defined(CONFIG_USER_ONLY)
446/* Currently it is not recommended to allocate big chunks of data in
447 user mode. It will change when a dedicated libc will be used. */
448/* ??? 64-bit hosts ought to have no problem mmaping data outside the
449 region in which the guest needs to run. Revisit this. */
450#define USE_STATIC_CODE_GEN_BUFFER
451#endif
452
5b6dd868
BS
453/* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
456
457/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460#if defined(__x86_64__)
461# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462#elif defined(__sparc__)
463# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
464#elif defined(__powerpc64__)
465# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
466#elif defined(__powerpc__)
467# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
468#elif defined(__aarch64__)
469# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
470#elif defined(__arm__)
471# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
472#elif defined(__s390x__)
473 /* We have a +- 4GB range on the branches; leave some slop. */
474# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
475#elif defined(__mips__)
476 /* We have a 256MB branch region, but leave room to make sure the
477 main executable is also within that region. */
478# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
479#else
480# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
481#endif
482
483#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
484
485#define DEFAULT_CODE_GEN_BUFFER_SIZE \
486 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
487 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
488
489static inline size_t size_code_gen_buffer(size_t tb_size)
490{
491 /* Size the buffer. */
492 if (tb_size == 0) {
493#ifdef USE_STATIC_CODE_GEN_BUFFER
494 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
495#else
496 /* ??? Needs adjustments. */
497 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
498 static buffer, we could size this on RESERVED_VA, on the text
499 segment size of the executable, or continue to use the default. */
500 tb_size = (unsigned long)(ram_size / 4);
501#endif
502 }
503 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
504 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
505 }
506 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
507 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
508 }
5b6dd868
BS
509 return tb_size;
510}
511
483c76e1
RH
512#ifdef __mips__
513/* In order to use J and JAL within the code_gen_buffer, we require
514 that the buffer not cross a 256MB boundary. */
515static inline bool cross_256mb(void *addr, size_t size)
516{
7ba6a512 517 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
518}
519
520/* We weren't able to allocate a buffer without crossing that boundary,
521 so make do with the larger portion of the buffer that doesn't cross.
522 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
523static inline void *split_cross_256mb(void *buf1, size_t size1)
524{
7ba6a512 525 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
526 size_t size2 = buf1 + size1 - buf2;
527
528 size1 = buf2 - buf1;
529 if (size1 < size2) {
530 size1 = size2;
531 buf1 = buf2;
532 }
533
534 tcg_ctx.code_gen_buffer_size = size1;
535 return buf1;
536}
537#endif
538
5b6dd868
BS
539#ifdef USE_STATIC_CODE_GEN_BUFFER
540static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
541 __attribute__((aligned(CODE_GEN_ALIGN)));
542
f293709c
RH
543# ifdef _WIN32
544static inline void do_protect(void *addr, long size, int prot)
545{
546 DWORD old_protect;
547 VirtualProtect(addr, size, prot, &old_protect);
548}
549
550static inline void map_exec(void *addr, long size)
551{
552 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
553}
554
555static inline void map_none(void *addr, long size)
556{
557 do_protect(addr, size, PAGE_NOACCESS);
558}
559# else
560static inline void do_protect(void *addr, long size, int prot)
561{
562 uintptr_t start, end;
563
564 start = (uintptr_t)addr;
565 start &= qemu_real_host_page_mask;
566
567 end = (uintptr_t)addr + size;
568 end = ROUND_UP(end, qemu_real_host_page_size);
569
570 mprotect((void *)start, end - start, prot);
571}
572
573static inline void map_exec(void *addr, long size)
574{
575 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
576}
577
578static inline void map_none(void *addr, long size)
579{
580 do_protect(addr, size, PROT_NONE);
581}
582# endif /* WIN32 */
583
5b6dd868
BS
584static inline void *alloc_code_gen_buffer(void)
585{
483c76e1 586 void *buf = static_code_gen_buffer;
f293709c
RH
587 size_t full_size, size;
588
589 /* The size of the buffer, rounded down to end on a page boundary. */
590 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
591 & qemu_real_host_page_mask) - (uintptr_t)buf;
592
593 /* Reserve a guard page. */
594 size = full_size - qemu_real_host_page_size;
595
596 /* Honor a command-line option limiting the size of the buffer. */
597 if (size > tcg_ctx.code_gen_buffer_size) {
598 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
599 & qemu_real_host_page_mask) - (uintptr_t)buf;
600 }
601 tcg_ctx.code_gen_buffer_size = size;
602
483c76e1 603#ifdef __mips__
f293709c
RH
604 if (cross_256mb(buf, size)) {
605 buf = split_cross_256mb(buf, size);
606 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
607 }
608#endif
f293709c
RH
609
610 map_exec(buf, size);
611 map_none(buf + size, qemu_real_host_page_size);
612 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
613
483c76e1 614 return buf;
5b6dd868 615}
f293709c
RH
616#elif defined(_WIN32)
617static inline void *alloc_code_gen_buffer(void)
618{
619 size_t size = tcg_ctx.code_gen_buffer_size;
620 void *buf1, *buf2;
621
622 /* Perform the allocation in two steps, so that the guard page
623 is reserved but uncommitted. */
624 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
625 MEM_RESERVE, PAGE_NOACCESS);
626 if (buf1 != NULL) {
627 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
628 assert(buf1 == buf2);
629 }
630
631 return buf1;
632}
633#else
5b6dd868
BS
634static inline void *alloc_code_gen_buffer(void)
635{
636 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
637 uintptr_t start = 0;
f293709c 638 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
639 void *buf;
640
641 /* Constrain the position of the buffer based on the host cpu.
642 Note that these addresses are chosen in concert with the
643 addresses assigned in the relevant linker script file. */
644# if defined(__PIE__) || defined(__PIC__)
645 /* Don't bother setting a preferred location if we're building
646 a position-independent executable. We're more likely to get
647 an address near the main executable if we let the kernel
648 choose the address. */
649# elif defined(__x86_64__) && defined(MAP_32BIT)
650 /* Force the memory down into low memory with the executable.
651 Leave the choice of exact location with the kernel. */
652 flags |= MAP_32BIT;
653 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
654 if (size > 800u * 1024 * 1024) {
655 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
656 }
657# elif defined(__sparc__)
658 start = 0x40000000ul;
659# elif defined(__s390x__)
660 start = 0x90000000ul;
479eb121 661# elif defined(__mips__)
f293709c 662# if _MIPS_SIM == _ABI64
479eb121
RH
663 start = 0x128000000ul;
664# else
665 start = 0x08000000ul;
666# endif
5b6dd868
BS
667# endif
668
f293709c
RH
669 buf = mmap((void *)start, size + qemu_real_host_page_size,
670 PROT_NONE, flags, -1, 0);
483c76e1
RH
671 if (buf == MAP_FAILED) {
672 return NULL;
673 }
674
675#ifdef __mips__
f293709c 676 if (cross_256mb(buf, size)) {
5d831be2 677 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 678 that 256mb crossing. This time don't specify an address. */
f293709c
RH
679 size_t size2;
680 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
681 PROT_NONE, flags, -1, 0);
682 switch (buf2 != MAP_FAILED) {
683 case 1:
684 if (!cross_256mb(buf2, size)) {
483c76e1 685 /* Success! Use the new buffer. */
8bdf4997 686 munmap(buf, size + qemu_real_host_page_size);
f293709c 687 break;
483c76e1
RH
688 }
689 /* Failure. Work with what we had. */
8bdf4997 690 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
691 /* fallthru */
692 default:
693 /* Split the original buffer. Free the smaller half. */
694 buf2 = split_cross_256mb(buf, size);
695 size2 = tcg_ctx.code_gen_buffer_size;
696 if (buf == buf2) {
697 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
698 } else {
699 munmap(buf, size - size2);
700 }
701 size = size2;
702 break;
483c76e1 703 }
f293709c 704 buf = buf2;
483c76e1
RH
705 }
706#endif
707
f293709c
RH
708 /* Make the final buffer accessible. The guard page at the end
709 will remain inaccessible with PROT_NONE. */
710 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 711
f293709c
RH
712 /* Request large pages for the buffer. */
713 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 714
5b6dd868
BS
715 return buf;
716}
f293709c 717#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
718
719static inline void code_gen_alloc(size_t tb_size)
720{
0b0d3320
EV
721 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
722 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
723 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
724 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
725 exit(1);
726 }
727
8163b749
RH
728 /* Estimate a good size for the number of TBs we can support. We
729 still haven't deducted the prologue from the buffer size here,
730 but that's minimal and won't affect the estimate much. */
731 tcg_ctx.code_gen_max_blocks
732 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
733 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
734
677ef623 735 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
736}
737
909eaac9
EC
738static void tb_htable_init(void)
739{
740 unsigned int mode = QHT_MODE_AUTO_RESIZE;
741
742 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
743}
744
5b6dd868
BS
745/* Must be called before using the QEMU cpus. 'tb_size' is the size
746 (in bytes) allocated to the translation buffer. Zero means default
747 size. */
748void tcg_exec_init(unsigned long tb_size)
749{
750 cpu_gen_init();
5b6dd868 751 page_init();
909eaac9 752 tb_htable_init();
f293709c 753 code_gen_alloc(tb_size);
4cbea598 754#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
755 /* There's no guest base to take into account, so go ahead and
756 initialize the prologue now. */
757 tcg_prologue_init(&tcg_ctx);
758#endif
759}
760
761bool tcg_enabled(void)
762{
0b0d3320 763 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
764}
765
766/* Allocate a new translation block. Flush the translation buffer if
767 too many translation blocks or too much generated code. */
768static TranslationBlock *tb_alloc(target_ulong pc)
769{
770 TranslationBlock *tb;
771
b125f9dc 772 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
773 return NULL;
774 }
5e5f07e0 775 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
776 tb->pc = pc;
777 tb->cflags = 0;
6d21e420 778 tb->invalid = false;
5b6dd868
BS
779 return tb;
780}
781
782void tb_free(TranslationBlock *tb)
783{
784 /* In practice this is mostly used for single use temporary TB
785 Ignore the hard cases and just back up if this TB happens to
786 be the last one generated. */
5e5f07e0
EV
787 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
788 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 789 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 790 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
791 }
792}
793
794static inline void invalidate_page_bitmap(PageDesc *p)
795{
6fad459c 796#ifdef CONFIG_SOFTMMU
012aef07
MA
797 g_free(p->code_bitmap);
798 p->code_bitmap = NULL;
5b6dd868 799 p->code_write_count = 0;
6fad459c 800#endif
5b6dd868
BS
801}
802
803/* Set to NULL all the 'first_tb' fields in all PageDescs. */
804static void page_flush_tb_1(int level, void **lp)
805{
806 int i;
807
808 if (*lp == NULL) {
809 return;
810 }
811 if (level == 0) {
812 PageDesc *pd = *lp;
813
03f49957 814 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
815 pd[i].first_tb = NULL;
816 invalidate_page_bitmap(pd + i);
817 }
818 } else {
819 void **pp = *lp;
820
03f49957 821 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
822 page_flush_tb_1(level - 1, pp + i);
823 }
824 }
825}
826
827static void page_flush_tb(void)
828{
829 int i;
830
831 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 832 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
833 }
834}
835
836/* flush all the translation blocks */
3359baad 837static void do_tb_flush(CPUState *cpu, void *data)
5b6dd868 838{
3359baad
SF
839 unsigned tb_flush_req = (unsigned) (uintptr_t) data;
840
841 tb_lock();
842
843 /* If it's already been done on request of another CPU,
844 * just retry.
845 */
846 if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
847 goto done;
135a972b 848 }
3359baad 849
5b6dd868
BS
850#if defined(DEBUG_FLUSH)
851 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 852 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 853 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 854 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 855 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 856#endif
0b0d3320
EV
857 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
858 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 859 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 860 }
5b6dd868 861
bdc44640 862 CPU_FOREACH(cpu) {
89a16b1e
SF
863 int i;
864
865 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
866 atomic_set(&cpu->tb_jmp_cache[i], NULL);
867 }
5b6dd868
BS
868 }
869
118b0730 870 tcg_ctx.tb_ctx.nb_tbs = 0;
909eaac9 871 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
5b6dd868
BS
872 page_flush_tb();
873
0b0d3320 874 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
875 /* XXX: flush processor icache at this point if cache flush is
876 expensive */
3359baad
SF
877 atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
878 tcg_ctx.tb_ctx.tb_flush_count + 1);
879
880done:
881 tb_unlock();
882}
883
884void tb_flush(CPUState *cpu)
885{
886 if (tcg_enabled()) {
887 uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
888 async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
889 }
5b6dd868
BS
890}
891
892#ifdef DEBUG_TB_CHECK
893
909eaac9
EC
894static void
895do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
5b6dd868 896{
909eaac9
EC
897 TranslationBlock *tb = p;
898 target_ulong addr = *(target_ulong *)userp;
899
900 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
901 printf("ERROR invalidate: address=" TARGET_FMT_lx
902 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
903 }
904}
5b6dd868 905
909eaac9
EC
906static void tb_invalidate_check(target_ulong address)
907{
5b6dd868 908 address &= TARGET_PAGE_MASK;
909eaac9
EC
909 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
910}
911
912static void
913do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
914{
915 TranslationBlock *tb = p;
916 int flags1, flags2;
917
918 flags1 = page_get_flags(tb->pc);
919 flags2 = page_get_flags(tb->pc + tb->size - 1);
920 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
921 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
922 (long)tb->pc, tb->size, flags1, flags2);
5b6dd868
BS
923 }
924}
925
926/* verify that all the pages have correct rights for code */
927static void tb_page_check(void)
928{
909eaac9 929 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
5b6dd868
BS
930}
931
932#endif
933
5b6dd868
BS
934static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
935{
936 TranslationBlock *tb1;
937 unsigned int n1;
938
939 for (;;) {
940 tb1 = *ptb;
941 n1 = (uintptr_t)tb1 & 3;
942 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
943 if (tb1 == tb) {
944 *ptb = tb1->page_next[n1];
945 break;
946 }
947 ptb = &tb1->page_next[n1];
948 }
949}
950
13362678
SF
951/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
952static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 953{
c37e6d7e
SF
954 TranslationBlock *tb1;
955 uintptr_t *ptb, ntb;
5b6dd868
BS
956 unsigned int n1;
957
f309101c 958 ptb = &tb->jmp_list_next[n];
c37e6d7e 959 if (*ptb) {
5b6dd868
BS
960 /* find tb(n) in circular list */
961 for (;;) {
c37e6d7e
SF
962 ntb = *ptb;
963 n1 = ntb & 3;
964 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
965 if (n1 == n && tb1 == tb) {
966 break;
967 }
968 if (n1 == 2) {
f309101c 969 ptb = &tb1->jmp_list_first;
5b6dd868 970 } else {
f309101c 971 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
972 }
973 }
974 /* now we can suppress tb(n) from the list */
f309101c 975 *ptb = tb->jmp_list_next[n];
5b6dd868 976
c37e6d7e 977 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
978 }
979}
980
981/* reset the jump entry 'n' of a TB so that it is not chained to
982 another TB */
983static inline void tb_reset_jump(TranslationBlock *tb, int n)
984{
f309101c
SF
985 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
986 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
987}
988
89bba496
SF
989/* remove any jumps to the TB */
990static inline void tb_jmp_unlink(TranslationBlock *tb)
991{
f9c5b66f
SF
992 TranslationBlock *tb1;
993 uintptr_t *ptb, ntb;
89bba496
SF
994 unsigned int n1;
995
f9c5b66f 996 ptb = &tb->jmp_list_first;
89bba496 997 for (;;) {
f9c5b66f
SF
998 ntb = *ptb;
999 n1 = ntb & 3;
1000 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
1001 if (n1 == 2) {
1002 break;
1003 }
f9c5b66f
SF
1004 tb_reset_jump(tb1, n1);
1005 *ptb = tb1->jmp_list_next[n1];
1006 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 1007 }
89bba496
SF
1008}
1009
0c884d16 1010/* invalidate one TB */
5b6dd868
BS
1011void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1012{
182735ef 1013 CPUState *cpu;
5b6dd868 1014 PageDesc *p;
42bd3228 1015 uint32_t h;
5b6dd868 1016 tb_page_addr_t phys_pc;
5b6dd868 1017
6d21e420
PB
1018 atomic_set(&tb->invalid, true);
1019
5b6dd868
BS
1020 /* remove the TB from the hash list */
1021 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
42bd3228 1022 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 1023 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
5b6dd868
BS
1024
1025 /* remove the TB from the page list */
1026 if (tb->page_addr[0] != page_addr) {
1027 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1028 tb_page_remove(&p->first_tb, tb);
1029 invalidate_page_bitmap(p);
1030 }
1031 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1032 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1033 tb_page_remove(&p->first_tb, tb);
1034 invalidate_page_bitmap(p);
1035 }
1036
5b6dd868
BS
1037 /* remove the TB from the hash list */
1038 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1039 CPU_FOREACH(cpu) {
89a16b1e
SF
1040 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1041 atomic_set(&cpu->tb_jmp_cache[h], NULL);
5b6dd868
BS
1042 }
1043 }
1044
1045 /* suppress this TB from the two jump lists */
13362678
SF
1046 tb_remove_from_jmp_list(tb, 0);
1047 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1048
1049 /* suppress any remaining jumps to this TB */
89bba496 1050 tb_jmp_unlink(tb);
5b6dd868 1051
5e5f07e0 1052 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1053}
1054
6fad459c 1055#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1056static void build_page_bitmap(PageDesc *p)
1057{
1058 int n, tb_start, tb_end;
1059 TranslationBlock *tb;
1060
510a647f 1061 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1062
1063 tb = p->first_tb;
1064 while (tb != NULL) {
1065 n = (uintptr_t)tb & 3;
1066 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1067 /* NOTE: this is subtle as a TB may span two physical pages */
1068 if (n == 0) {
1069 /* NOTE: tb_end may be after the end of the page, but
1070 it is not a problem */
1071 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1072 tb_end = tb_start + tb->size;
1073 if (tb_end > TARGET_PAGE_SIZE) {
1074 tb_end = TARGET_PAGE_SIZE;
1075 }
1076 } else {
1077 tb_start = 0;
1078 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1079 }
510a647f 1080 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1081 tb = tb->page_next[n];
1082 }
1083}
6fad459c 1084#endif
5b6dd868 1085
e90d96b1
SF
1086/* add the tb in the target page and protect it if necessary
1087 *
1088 * Called with mmap_lock held for user-mode emulation.
1089 */
1090static inline void tb_alloc_page(TranslationBlock *tb,
1091 unsigned int n, tb_page_addr_t page_addr)
1092{
1093 PageDesc *p;
1094#ifndef CONFIG_USER_ONLY
1095 bool page_already_protected;
1096#endif
1097
1098 tb->page_addr[n] = page_addr;
1099 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1100 tb->page_next[n] = p->first_tb;
1101#ifndef CONFIG_USER_ONLY
1102 page_already_protected = p->first_tb != NULL;
1103#endif
1104 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1105 invalidate_page_bitmap(p);
1106
1107#if defined(CONFIG_USER_ONLY)
1108 if (p->flags & PAGE_WRITE) {
1109 target_ulong addr;
1110 PageDesc *p2;
1111 int prot;
1112
1113 /* force the host page as non writable (writes will have a
1114 page fault + mprotect overhead) */
1115 page_addr &= qemu_host_page_mask;
1116 prot = 0;
1117 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1118 addr += TARGET_PAGE_SIZE) {
1119
1120 p2 = page_find(addr >> TARGET_PAGE_BITS);
1121 if (!p2) {
1122 continue;
1123 }
1124 prot |= p2->flags;
1125 p2->flags &= ~PAGE_WRITE;
1126 }
1127 mprotect(g2h(page_addr), qemu_host_page_size,
1128 (prot & PAGE_BITS) & ~PAGE_WRITE);
1129#ifdef DEBUG_TB_INVALIDATE
1130 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1131 page_addr);
1132#endif
1133 }
1134#else
1135 /* if some code is already present, then the pages are already
1136 protected. So we handle the case where only the first TB is
1137 allocated in a physical page */
1138 if (!page_already_protected) {
1139 tlb_protect_code(page_addr);
1140 }
1141#endif
1142}
1143
1144/* add a new TB and link it to the physical page tables. phys_page2 is
1145 * (-1) to indicate that only one page contains the TB.
1146 *
1147 * Called with mmap_lock held for user-mode emulation.
1148 */
1149static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1150 tb_page_addr_t phys_page2)
1151{
42bd3228 1152 uint32_t h;
e90d96b1 1153
e90d96b1
SF
1154 /* add in the page list */
1155 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1156 if (phys_page2 != -1) {
1157 tb_alloc_page(tb, 1, phys_page2);
1158 } else {
1159 tb->page_addr[1] = -1;
1160 }
1161
2e1ae44a
AB
1162 /* add in the hash table */
1163 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1164 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1165
e90d96b1
SF
1166#ifdef DEBUG_TB_CHECK
1167 tb_page_check();
1168#endif
1169}
1170
75692087 1171/* Called with mmap_lock held for user mode emulation. */
648f034c 1172TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1173 target_ulong pc, target_ulong cs_base,
89fee74a 1174 uint32_t flags, int cflags)
5b6dd868 1175{
648f034c 1176 CPUArchState *env = cpu->env_ptr;
5b6dd868 1177 TranslationBlock *tb;
5b6dd868
BS
1178 tb_page_addr_t phys_pc, phys_page2;
1179 target_ulong virt_page2;
fec88f64 1180 tcg_insn_unit *gen_code_buf;
fca8a500 1181 int gen_code_size, search_size;
fec88f64
RH
1182#ifdef CONFIG_PROFILER
1183 int64_t ti;
1184#endif
5b6dd868
BS
1185
1186 phys_pc = get_page_addr_code(env, pc);
56c0269a 1187 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1188 cflags |= CF_USE_ICOUNT;
1189 }
b125f9dc 1190
5b6dd868 1191 tb = tb_alloc(pc);
b125f9dc
RH
1192 if (unlikely(!tb)) {
1193 buffer_overflow:
5b6dd868 1194 /* flush must be done */
bbd77c18 1195 tb_flush(cpu);
3359baad
SF
1196 mmap_unlock();
1197 cpu_loop_exit(cpu);
5b6dd868 1198 }
fec88f64
RH
1199
1200 gen_code_buf = tcg_ctx.code_gen_ptr;
1201 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1202 tb->cs_base = cs_base;
1203 tb->flags = flags;
1204 tb->cflags = cflags;
fec88f64
RH
1205
1206#ifdef CONFIG_PROFILER
1207 tcg_ctx.tb_count1++; /* includes aborted translations because of
1208 exceptions */
1209 ti = profile_getclock();
1210#endif
1211
1212 tcg_func_start(&tcg_ctx);
1213
7c255043 1214 tcg_ctx.cpu = ENV_GET_CPU(env);
fec88f64 1215 gen_intermediate_code(env, tb);
7c255043 1216 tcg_ctx.cpu = NULL;
fec88f64
RH
1217
1218 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1219
1220 /* generate machine code */
f309101c
SF
1221 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1222 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1223 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1224#ifdef USE_DIRECT_JUMP
f309101c
SF
1225 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1226 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1227#else
f309101c
SF
1228 tcg_ctx.tb_jmp_insn_offset = NULL;
1229 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1230#endif
1231
1232#ifdef CONFIG_PROFILER
1233 tcg_ctx.tb_count++;
1234 tcg_ctx.interm_time += profile_getclock() - ti;
1235 tcg_ctx.code_time -= profile_getclock();
1236#endif
1237
b125f9dc
RH
1238 /* ??? Overflow could be handled better here. In particular, we
1239 don't need to re-do gen_intermediate_code, nor should we re-do
1240 the tcg optimization currently hidden inside tcg_gen_code. All
1241 that should be required is to flush the TBs, allocate a new TB,
1242 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1243 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1244 if (unlikely(gen_code_size < 0)) {
1245 goto buffer_overflow;
1246 }
fca8a500 1247 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1248 if (unlikely(search_size < 0)) {
1249 goto buffer_overflow;
1250 }
fec88f64
RH
1251
1252#ifdef CONFIG_PROFILER
1253 tcg_ctx.code_time += profile_getclock();
1254 tcg_ctx.code_in_len += tb->size;
1255 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1256 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1257#endif
1258
1259#ifdef DEBUG_DISAS
d977e1c2
AB
1260 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1261 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1262 qemu_log("OUT: [size=%d]\n", gen_code_size);
1263 log_disas(tb->tc_ptr, gen_code_size);
1264 qemu_log("\n");
1265 qemu_log_flush();
1266 }
1267#endif
1268
fca8a500
RH
1269 tcg_ctx.code_gen_ptr = (void *)
1270 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1271 CODE_GEN_ALIGN);
5b6dd868 1272
901bc3de
SF
1273 /* init jump list */
1274 assert(((uintptr_t)tb & 3) == 0);
1275 tb->jmp_list_first = (uintptr_t)tb | 2;
1276 tb->jmp_list_next[0] = (uintptr_t)NULL;
1277 tb->jmp_list_next[1] = (uintptr_t)NULL;
1278
1279 /* init original jump addresses wich has been set during tcg_gen_code() */
1280 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1281 tb_reset_jump(tb, 0);
1282 }
1283 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1284 tb_reset_jump(tb, 1);
1285 }
1286
5b6dd868
BS
1287 /* check next page if needed */
1288 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1289 phys_page2 = -1;
1290 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1291 phys_page2 = get_page_addr_code(env, virt_page2);
1292 }
901bc3de
SF
1293 /* As long as consistency of the TB stuff is provided by tb_lock in user
1294 * mode and is implicit in single-threaded softmmu emulation, no explicit
1295 * memory barrier is required before tb_link_page() makes the TB visible
1296 * through the physical hash table and physical page list.
1297 */
5b6dd868
BS
1298 tb_link_page(tb, phys_pc, phys_page2);
1299 return tb;
1300}
1301
1302/*
1303 * Invalidate all TBs which intersect with the target physical address range
1304 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1305 * 'is_cpu_write_access' should be true if called from a real cpu write
1306 * access: the virtual CPU will exit the current TB if code is modified inside
1307 * this TB.
75692087
PB
1308 *
1309 * Called with mmap_lock held for user-mode emulation
5b6dd868 1310 */
35865339 1311void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1312{
1313 while (start < end) {
35865339 1314 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1315 start &= TARGET_PAGE_MASK;
1316 start += TARGET_PAGE_SIZE;
1317 }
1318}
1319
1320/*
1321 * Invalidate all TBs which intersect with the target physical address range
1322 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1323 * 'is_cpu_write_access' should be true if called from a real cpu write
1324 * access: the virtual CPU will exit the current TB if code is modified inside
1325 * this TB.
75692087
PB
1326 *
1327 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1328 */
1329void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1330 int is_cpu_write_access)
1331{
3213525f 1332 TranslationBlock *tb, *tb_next;
baea4fae 1333#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1334 CPUState *cpu = current_cpu;
4917cf44
AF
1335 CPUArchState *env = NULL;
1336#endif
5b6dd868
BS
1337 tb_page_addr_t tb_start, tb_end;
1338 PageDesc *p;
1339 int n;
1340#ifdef TARGET_HAS_PRECISE_SMC
1341 int current_tb_not_found = is_cpu_write_access;
1342 TranslationBlock *current_tb = NULL;
1343 int current_tb_modified = 0;
1344 target_ulong current_pc = 0;
1345 target_ulong current_cs_base = 0;
89fee74a 1346 uint32_t current_flags = 0;
5b6dd868
BS
1347#endif /* TARGET_HAS_PRECISE_SMC */
1348
1349 p = page_find(start >> TARGET_PAGE_BITS);
1350 if (!p) {
1351 return;
1352 }
baea4fae 1353#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1354 if (cpu != NULL) {
1355 env = cpu->env_ptr;
d77953b9 1356 }
4917cf44 1357#endif
5b6dd868
BS
1358
1359 /* we remove all the TBs in the range [start, end[ */
1360 /* XXX: see if in some cases it could be faster to invalidate all
1361 the code */
1362 tb = p->first_tb;
1363 while (tb != NULL) {
1364 n = (uintptr_t)tb & 3;
1365 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1366 tb_next = tb->page_next[n];
1367 /* NOTE: this is subtle as a TB may span two physical pages */
1368 if (n == 0) {
1369 /* NOTE: tb_end may be after the end of the page, but
1370 it is not a problem */
1371 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1372 tb_end = tb_start + tb->size;
1373 } else {
1374 tb_start = tb->page_addr[1];
1375 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1376 }
1377 if (!(tb_end <= start || tb_start >= end)) {
1378#ifdef TARGET_HAS_PRECISE_SMC
1379 if (current_tb_not_found) {
1380 current_tb_not_found = 0;
1381 current_tb = NULL;
93afeade 1382 if (cpu->mem_io_pc) {
5b6dd868 1383 /* now we have a real cpu fault */
93afeade 1384 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1385 }
1386 }
1387 if (current_tb == tb &&
1388 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1389 /* If we are modifying the current TB, we must stop
1390 its execution. We could be more precise by checking
1391 that the modification is after the current PC, but it
1392 would require a specialized function to partially
1393 restore the CPU state */
1394
1395 current_tb_modified = 1;
74f10515 1396 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1397 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1398 &current_flags);
1399 }
1400#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1401 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1402 }
1403 tb = tb_next;
1404 }
1405#if !defined(CONFIG_USER_ONLY)
1406 /* if no code remaining, no need to continue to use slow writes */
1407 if (!p->first_tb) {
1408 invalidate_page_bitmap(p);
fc377bcf 1409 tlb_unprotect_code(start);
5b6dd868
BS
1410 }
1411#endif
1412#ifdef TARGET_HAS_PRECISE_SMC
1413 if (current_tb_modified) {
1414 /* we generate a block containing just the instruction
1415 modifying the memory. It will ensure that it cannot modify
1416 itself */
648f034c 1417 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
6886b980 1418 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1419 }
1420#endif
1421}
1422
6fad459c 1423#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1424/* len must be <= 8 and start must be a multiple of len */
1425void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1426{
1427 PageDesc *p;
5b6dd868
BS
1428
1429#if 0
1430 if (1) {
1431 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1432 cpu_single_env->mem_io_vaddr, len,
1433 cpu_single_env->eip,
1434 cpu_single_env->eip +
1435 (intptr_t)cpu_single_env->segs[R_CS].base);
1436 }
1437#endif
1438 p = page_find(start >> TARGET_PAGE_BITS);
1439 if (!p) {
1440 return;
1441 }
fc377bcf
PB
1442 if (!p->code_bitmap &&
1443 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1444 /* build code bitmap */
1445 build_page_bitmap(p);
1446 }
5b6dd868 1447 if (p->code_bitmap) {
510a647f
EC
1448 unsigned int nr;
1449 unsigned long b;
1450
1451 nr = start & ~TARGET_PAGE_MASK;
1452 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1453 if (b & ((1 << len) - 1)) {
1454 goto do_invalidate;
1455 }
1456 } else {
1457 do_invalidate:
1458 tb_invalidate_phys_page_range(start, start + len, 1);
1459 }
1460}
6fad459c 1461#else
75809229
PM
1462/* Called with mmap_lock held. If pc is not 0 then it indicates the
1463 * host PC of the faulting store instruction that caused this invalidate.
1464 * Returns true if the caller needs to abort execution of the current
1465 * TB (because it was modified by this store and the guest CPU has
1466 * precise-SMC semantics).
1467 */
1468static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
5b6dd868
BS
1469{
1470 TranslationBlock *tb;
1471 PageDesc *p;
1472 int n;
1473#ifdef TARGET_HAS_PRECISE_SMC
1474 TranslationBlock *current_tb = NULL;
4917cf44
AF
1475 CPUState *cpu = current_cpu;
1476 CPUArchState *env = NULL;
5b6dd868
BS
1477 int current_tb_modified = 0;
1478 target_ulong current_pc = 0;
1479 target_ulong current_cs_base = 0;
89fee74a 1480 uint32_t current_flags = 0;
5b6dd868
BS
1481#endif
1482
1483 addr &= TARGET_PAGE_MASK;
1484 p = page_find(addr >> TARGET_PAGE_BITS);
1485 if (!p) {
75809229 1486 return false;
5b6dd868
BS
1487 }
1488 tb = p->first_tb;
1489#ifdef TARGET_HAS_PRECISE_SMC
1490 if (tb && pc != 0) {
1491 current_tb = tb_find_pc(pc);
1492 }
4917cf44
AF
1493 if (cpu != NULL) {
1494 env = cpu->env_ptr;
d77953b9 1495 }
5b6dd868
BS
1496#endif
1497 while (tb != NULL) {
1498 n = (uintptr_t)tb & 3;
1499 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1500#ifdef TARGET_HAS_PRECISE_SMC
1501 if (current_tb == tb &&
1502 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1503 /* If we are modifying the current TB, we must stop
1504 its execution. We could be more precise by checking
1505 that the modification is after the current PC, but it
1506 would require a specialized function to partially
1507 restore the CPU state */
1508
1509 current_tb_modified = 1;
74f10515 1510 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1511 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1512 &current_flags);
1513 }
1514#endif /* TARGET_HAS_PRECISE_SMC */
1515 tb_phys_invalidate(tb, addr);
1516 tb = tb->page_next[n];
1517 }
1518 p->first_tb = NULL;
1519#ifdef TARGET_HAS_PRECISE_SMC
1520 if (current_tb_modified) {
1521 /* we generate a block containing just the instruction
1522 modifying the memory. It will ensure that it cannot modify
1523 itself */
648f034c 1524 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
75809229 1525 return true;
5b6dd868
BS
1526 }
1527#endif
75809229 1528 return false;
5b6dd868
BS
1529}
1530#endif
1531
5b6dd868
BS
1532/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1533 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1534static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1535{
1536 int m_min, m_max, m;
1537 uintptr_t v;
1538 TranslationBlock *tb;
1539
5e5f07e0 1540 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1541 return NULL;
1542 }
0b0d3320
EV
1543 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1544 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1545 return NULL;
1546 }
1547 /* binary search (cf Knuth) */
1548 m_min = 0;
5e5f07e0 1549 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1550 while (m_min <= m_max) {
1551 m = (m_min + m_max) >> 1;
5e5f07e0 1552 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1553 v = (uintptr_t)tb->tc_ptr;
1554 if (v == tc_ptr) {
1555 return tb;
1556 } else if (tc_ptr < v) {
1557 m_max = m - 1;
1558 } else {
1559 m_min = m + 1;
1560 }
1561 }
5e5f07e0 1562 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1563}
1564
ec53b45b 1565#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1566void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1567{
1568 ram_addr_t ram_addr;
5c8a00ce 1569 MemoryRegion *mr;
149f54b5 1570 hwaddr l = 1;
5b6dd868 1571
41063e1e 1572 rcu_read_lock();
29d8ec7b 1573 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1574 if (!(memory_region_is_ram(mr)
1575 || memory_region_is_romd(mr))) {
41063e1e 1576 rcu_read_unlock();
5b6dd868
BS
1577 return;
1578 }
e4e69794 1579 ram_addr = memory_region_get_ram_addr(mr) + addr;
5b6dd868 1580 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1581 rcu_read_unlock();
5b6dd868 1582}
ec53b45b 1583#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1584
239c51a5 1585void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1586{
1587 TranslationBlock *tb;
1588
93afeade 1589 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1590 if (tb) {
1591 /* We can use retranslation to find the PC. */
1592 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1593 tb_phys_invalidate(tb, -1);
1594 } else {
1595 /* The exception probably happened in a helper. The CPU state should
1596 have been saved before calling it. Fetch the PC from there. */
1597 CPUArchState *env = cpu->env_ptr;
1598 target_ulong pc, cs_base;
1599 tb_page_addr_t addr;
89fee74a 1600 uint32_t flags;
8d302e76
AJ
1601
1602 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1603 addr = get_page_addr_code(env, pc);
1604 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1605 }
5b6dd868
BS
1606}
1607
1608#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1609/* in deterministic execution mode, instructions doing device I/Os
1610 must be at the end of the TB */
90b40a69 1611void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1612{
a47dddd7 1613#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1614 CPUArchState *env = cpu->env_ptr;
a47dddd7 1615#endif
5b6dd868
BS
1616 TranslationBlock *tb;
1617 uint32_t n, cflags;
1618 target_ulong pc, cs_base;
89fee74a 1619 uint32_t flags;
5b6dd868
BS
1620
1621 tb = tb_find_pc(retaddr);
1622 if (!tb) {
a47dddd7 1623 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1624 (void *)retaddr);
1625 }
28ecfd7a 1626 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1627 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1628 /* Calculate how many instructions had been executed before the fault
1629 occurred. */
28ecfd7a 1630 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1631 /* Generate a new TB ending on the I/O insn. */
1632 n++;
1633 /* On MIPS and SH, delay slot instructions can only be restarted if
1634 they were already the first instruction in the TB. If this is not
1635 the first instruction in a TB then re-execute the preceding
1636 branch. */
1637#if defined(TARGET_MIPS)
1638 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1639 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1640 cpu->icount_decr.u16.low++;
5b6dd868
BS
1641 env->hflags &= ~MIPS_HFLAG_BMASK;
1642 }
1643#elif defined(TARGET_SH4)
1644 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1645 && n > 1) {
1646 env->pc -= 2;
28ecfd7a 1647 cpu->icount_decr.u16.low++;
5b6dd868
BS
1648 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1649 }
1650#endif
1651 /* This should never happen. */
1652 if (n > CF_COUNT_MASK) {
a47dddd7 1653 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1654 }
1655
1656 cflags = n | CF_LAST_IO;
1657 pc = tb->pc;
1658 cs_base = tb->cs_base;
1659 flags = tb->flags;
1660 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1661 if (tb->cflags & CF_NOCACHE) {
1662 if (tb->orig_tb) {
1663 /* Invalidate original TB if this TB was generated in
1664 * cpu_exec_nocache() */
1665 tb_phys_invalidate(tb->orig_tb, -1);
1666 }
1667 tb_free(tb);
1668 }
5b6dd868
BS
1669 /* FIXME: In theory this could raise an exception. In practice
1670 we have already translated the block once so it's probably ok. */
648f034c 1671 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1672 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1673 the first in the TB) then we end up generating a whole new TB and
1674 repeating the fault, which is horribly inefficient.
1675 Better would be to execute just this insn uncached, or generate a
1676 second new TB. */
6886b980 1677 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1678}
1679
611d4f99 1680void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1681{
1682 unsigned int i;
1683
1684 /* Discard jump cache entries for any tb which might potentially
1685 overlap the flushed page. */
1686 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1687 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1688 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1689
1690 i = tb_jmp_cache_hash_page(addr);
8cd70437 1691 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1692 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1693}
1694
7266ae91
EC
1695static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1696 struct qht_stats hst)
1697{
1698 uint32_t hgram_opts;
1699 size_t hgram_bins;
1700 char *hgram;
1701
1702 if (!hst.head_buckets) {
1703 return;
1704 }
1705 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1706 hst.used_head_buckets, hst.head_buckets,
1707 (double)hst.used_head_buckets / hst.head_buckets * 100);
1708
1709 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1710 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1711 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1712 hgram_opts |= QDIST_PR_NODECIMAL;
1713 }
1714 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1715 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1716 qdist_avg(&hst.occupancy) * 100, hgram);
1717 g_free(hgram);
1718
1719 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1720 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1721 if (hgram_bins > 10) {
1722 hgram_bins = 10;
1723 } else {
1724 hgram_bins = 0;
1725 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1726 }
1727 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1728 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1729 qdist_avg(&hst.chain), hgram);
1730 g_free(hgram);
1731}
1732
5b6dd868
BS
1733void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1734{
1735 int i, target_code_size, max_target_code_size;
1736 int direct_jmp_count, direct_jmp2_count, cross_page;
1737 TranslationBlock *tb;
329844d4 1738 struct qht_stats hst;
5b6dd868
BS
1739
1740 target_code_size = 0;
1741 max_target_code_size = 0;
1742 cross_page = 0;
1743 direct_jmp_count = 0;
1744 direct_jmp2_count = 0;
5e5f07e0
EV
1745 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1746 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1747 target_code_size += tb->size;
1748 if (tb->size > max_target_code_size) {
1749 max_target_code_size = tb->size;
1750 }
1751 if (tb->page_addr[1] != -1) {
1752 cross_page++;
1753 }
f309101c 1754 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1755 direct_jmp_count++;
f309101c 1756 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1757 direct_jmp2_count++;
1758 }
1759 }
1760 }
1761 /* XXX: avoid using doubles ? */
1762 cpu_fprintf(f, "Translation buffer state:\n");
1763 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1764 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1765 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1766 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1767 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1768 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1769 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1770 tcg_ctx.tb_ctx.nb_tbs : 0,
1771 max_target_code_size);
5b6dd868 1772 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1773 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1774 tcg_ctx.code_gen_buffer) /
1775 tcg_ctx.tb_ctx.nb_tbs : 0,
1776 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1777 tcg_ctx.code_gen_buffer) /
1778 target_code_size : 0);
1779 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1780 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1781 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1782 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1783 direct_jmp_count,
5e5f07e0
EV
1784 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1785 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1786 direct_jmp2_count,
5e5f07e0
EV
1787 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1788 tcg_ctx.tb_ctx.nb_tbs : 0);
329844d4
EC
1789
1790 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
7266ae91 1791 print_qht_statistics(f, cpu_fprintf, hst);
329844d4
EC
1792 qht_statistics_destroy(&hst);
1793
5b6dd868 1794 cpu_fprintf(f, "\nStatistics:\n");
3359baad
SF
1795 cpu_fprintf(f, "TB flush count %u\n",
1796 atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
5e5f07e0
EV
1797 cpu_fprintf(f, "TB invalidate count %d\n",
1798 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1799 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1800 tcg_dump_info(f, cpu_fprintf);
1801}
1802
246ae24d
MF
1803void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1804{
1805 tcg_dump_op_count(f, cpu_fprintf);
1806}
1807
5b6dd868
BS
1808#else /* CONFIG_USER_ONLY */
1809
c3affe56 1810void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1811{
259186a7 1812 cpu->interrupt_request |= mask;
378df4b2 1813 cpu->tcg_exit_req = 1;
5b6dd868
BS
1814}
1815
1816/*
1817 * Walks guest process memory "regions" one by one
1818 * and calls callback function 'fn' for each region.
1819 */
1820struct walk_memory_regions_data {
1821 walk_memory_regions_fn fn;
1822 void *priv;
1a1c4db9 1823 target_ulong start;
5b6dd868
BS
1824 int prot;
1825};
1826
1827static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1828 target_ulong end, int new_prot)
5b6dd868 1829{
1a1c4db9 1830 if (data->start != -1u) {
5b6dd868
BS
1831 int rc = data->fn(data->priv, data->start, end, data->prot);
1832 if (rc != 0) {
1833 return rc;
1834 }
1835 }
1836
1a1c4db9 1837 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1838 data->prot = new_prot;
1839
1840 return 0;
1841}
1842
1843static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1844 target_ulong base, int level, void **lp)
5b6dd868 1845{
1a1c4db9 1846 target_ulong pa;
5b6dd868
BS
1847 int i, rc;
1848
1849 if (*lp == NULL) {
1850 return walk_memory_regions_end(data, base, 0);
1851 }
1852
1853 if (level == 0) {
1854 PageDesc *pd = *lp;
1855
03f49957 1856 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1857 int prot = pd[i].flags;
1858
1859 pa = base | (i << TARGET_PAGE_BITS);
1860 if (prot != data->prot) {
1861 rc = walk_memory_regions_end(data, pa, prot);
1862 if (rc != 0) {
1863 return rc;
1864 }
1865 }
1866 }
1867 } else {
1868 void **pp = *lp;
1869
03f49957 1870 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1871 pa = base | ((target_ulong)i <<
03f49957 1872 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1873 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1874 if (rc != 0) {
1875 return rc;
1876 }
1877 }
1878 }
1879
1880 return 0;
1881}
1882
1883int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1884{
1885 struct walk_memory_regions_data data;
1886 uintptr_t i;
1887
1888 data.fn = fn;
1889 data.priv = priv;
1a1c4db9 1890 data.start = -1u;
5b6dd868
BS
1891 data.prot = 0;
1892
1893 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1894 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1895 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1896 if (rc != 0) {
1897 return rc;
1898 }
1899 }
1900
1901 return walk_memory_regions_end(&data, 0, 0);
1902}
1903
1a1c4db9
MI
1904static int dump_region(void *priv, target_ulong start,
1905 target_ulong end, unsigned long prot)
5b6dd868
BS
1906{
1907 FILE *f = (FILE *)priv;
1908
1a1c4db9
MI
1909 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1910 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1911 start, end, end - start,
1912 ((prot & PAGE_READ) ? 'r' : '-'),
1913 ((prot & PAGE_WRITE) ? 'w' : '-'),
1914 ((prot & PAGE_EXEC) ? 'x' : '-'));
1915
1916 return 0;
1917}
1918
1919/* dump memory mappings */
1920void page_dump(FILE *f)
1921{
1a1c4db9 1922 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1923 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1924 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1925 walk_memory_regions(f, dump_region);
1926}
1927
1928int page_get_flags(target_ulong address)
1929{
1930 PageDesc *p;
1931
1932 p = page_find(address >> TARGET_PAGE_BITS);
1933 if (!p) {
1934 return 0;
1935 }
1936 return p->flags;
1937}
1938
1939/* Modify the flags of a page and invalidate the code if necessary.
1940 The flag PAGE_WRITE_ORG is positioned automatically depending
1941 on PAGE_WRITE. The mmap_lock should already be held. */
1942void page_set_flags(target_ulong start, target_ulong end, int flags)
1943{
1944 target_ulong addr, len;
1945
1946 /* This function should never be called with addresses outside the
1947 guest address space. If this assert fires, it probably indicates
1948 a missing call to h2g_valid. */
1949#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1950 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1951#endif
1952 assert(start < end);
1953
1954 start = start & TARGET_PAGE_MASK;
1955 end = TARGET_PAGE_ALIGN(end);
1956
1957 if (flags & PAGE_WRITE) {
1958 flags |= PAGE_WRITE_ORG;
1959 }
1960
1961 for (addr = start, len = end - start;
1962 len != 0;
1963 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1964 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1965
1966 /* If the write protection bit is set, then we invalidate
1967 the code inside. */
1968 if (!(p->flags & PAGE_WRITE) &&
1969 (flags & PAGE_WRITE) &&
1970 p->first_tb) {
75809229 1971 tb_invalidate_phys_page(addr, 0);
5b6dd868
BS
1972 }
1973 p->flags = flags;
1974 }
1975}
1976
1977int page_check_range(target_ulong start, target_ulong len, int flags)
1978{
1979 PageDesc *p;
1980 target_ulong end;
1981 target_ulong addr;
1982
1983 /* This function should never be called with addresses outside the
1984 guest address space. If this assert fires, it probably indicates
1985 a missing call to h2g_valid. */
1986#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1987 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1988#endif
1989
1990 if (len == 0) {
1991 return 0;
1992 }
1993 if (start + len - 1 < start) {
1994 /* We've wrapped around. */
1995 return -1;
1996 }
1997
1998 /* must do before we loose bits in the next step */
1999 end = TARGET_PAGE_ALIGN(start + len);
2000 start = start & TARGET_PAGE_MASK;
2001
2002 for (addr = start, len = end - start;
2003 len != 0;
2004 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2005 p = page_find(addr >> TARGET_PAGE_BITS);
2006 if (!p) {
2007 return -1;
2008 }
2009 if (!(p->flags & PAGE_VALID)) {
2010 return -1;
2011 }
2012
2013 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2014 return -1;
2015 }
2016 if (flags & PAGE_WRITE) {
2017 if (!(p->flags & PAGE_WRITE_ORG)) {
2018 return -1;
2019 }
2020 /* unprotect the page if it was put read-only because it
2021 contains translated code */
2022 if (!(p->flags & PAGE_WRITE)) {
f213e72f 2023 if (!page_unprotect(addr, 0)) {
5b6dd868
BS
2024 return -1;
2025 }
2026 }
5b6dd868
BS
2027 }
2028 }
2029 return 0;
2030}
2031
2032/* called from signal handler: invalidate the code and unprotect the
f213e72f
PM
2033 * page. Return 0 if the fault was not handled, 1 if it was handled,
2034 * and 2 if it was handled but the caller must cause the TB to be
2035 * immediately exited. (We can only return 2 if the 'pc' argument is
2036 * non-zero.)
2037 */
2038int page_unprotect(target_ulong address, uintptr_t pc)
5b6dd868
BS
2039{
2040 unsigned int prot;
7399a337 2041 bool current_tb_invalidated;
5b6dd868
BS
2042 PageDesc *p;
2043 target_ulong host_start, host_end, addr;
2044
2045 /* Technically this isn't safe inside a signal handler. However we
2046 know this only ever happens in a synchronous SEGV handler, so in
2047 practice it seems to be ok. */
2048 mmap_lock();
2049
2050 p = page_find(address >> TARGET_PAGE_BITS);
2051 if (!p) {
2052 mmap_unlock();
2053 return 0;
2054 }
2055
2056 /* if the page was really writable, then we change its
2057 protection back to writable */
2058 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2059 host_start = address & qemu_host_page_mask;
2060 host_end = host_start + qemu_host_page_size;
2061
2062 prot = 0;
7399a337 2063 current_tb_invalidated = false;
5b6dd868
BS
2064 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2065 p = page_find(addr >> TARGET_PAGE_BITS);
2066 p->flags |= PAGE_WRITE;
2067 prot |= p->flags;
2068
2069 /* and since the content will be modified, we must invalidate
2070 the corresponding translated code. */
7399a337 2071 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
5b6dd868
BS
2072#ifdef DEBUG_TB_CHECK
2073 tb_invalidate_check(addr);
2074#endif
2075 }
2076 mprotect((void *)g2h(host_start), qemu_host_page_size,
2077 prot & PAGE_BITS);
2078
2079 mmap_unlock();
7399a337
SS
2080 /* If current TB was invalidated return to main loop */
2081 return current_tb_invalidated ? 2 : 1;
5b6dd868
BS
2082 }
2083 mmap_unlock();
2084 return 0;
2085}
2086#endif /* CONFIG_USER_ONLY */