]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
help: dd missing newline
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
e1b89321 61#include "exec/tb-hash.h"
5b6dd868 62#include "translate-all.h"
510a647f 63#include "qemu/bitmap.h"
0aa09897 64#include "qemu/timer.h"
5b6dd868
BS
65
66//#define DEBUG_TB_INVALIDATE
67//#define DEBUG_FLUSH
68/* make various TB consistency checks */
69//#define DEBUG_TB_CHECK
70
71#if !defined(CONFIG_USER_ONLY)
72/* TB consistency checks only implemented for usermode emulation. */
73#undef DEBUG_TB_CHECK
74#endif
75
76#define SMC_BITMAP_USE_THRESHOLD 10
77
5b6dd868
BS
78typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
510a647f 84 unsigned long *code_bitmap;
5b6dd868
BS
85#if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87#endif
88} PageDesc;
89
90/* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92#if !defined(CONFIG_USER_ONLY)
93#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97#endif
98#else
99# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100#endif
101
03f49957
PB
102/* Size of the L2 (and L3, etc) page tables. */
103#define V_L2_BITS 10
104#define V_L2_SIZE (1 << V_L2_BITS)
105
5b6dd868
BS
106/* The bits remaining after N lower levels of page tables. */
107#define V_L1_BITS_REM \
03f49957 108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
109
110#if V_L1_BITS_REM < 4
03f49957 111#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
112#else
113#define V_L1_BITS V_L1_BITS_REM
114#endif
115
116#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
120uintptr_t qemu_real_host_page_size;
4e51361d 121uintptr_t qemu_real_host_page_mask;
5b6dd868
BS
122uintptr_t qemu_host_page_size;
123uintptr_t qemu_host_page_mask;
124
125/* This is a multi-level map on the virtual address space.
126 The bottom level has pointers to PageDesc. */
127static void *l1_map[V_L1_SIZE];
128
57fec1fe
FB
129/* code generation context */
130TCGContext tcg_ctx;
d19893da 131
5b6dd868
BS
132static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
133 tb_page_addr_t phys_page2);
a8a826a3 134static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 135
57fec1fe
FB
136void cpu_gen_init(void)
137{
138 tcg_context_init(&tcg_ctx);
57fec1fe
FB
139}
140
d19893da 141/* return non zero if the very first instruction is invalid so that
5fafdf24 142 the virtual CPU can trigger an exception.
d19893da
FB
143
144 '*gen_code_size_ptr' contains the size of the generated code (host
145 code).
146*/
9349b4f9 147int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 148{
57fec1fe 149 TCGContext *s = &tcg_ctx;
1813e175 150 tcg_insn_unit *gen_code_buf;
d19893da 151 int gen_code_size;
57fec1fe
FB
152#ifdef CONFIG_PROFILER
153 int64_t ti;
154#endif
155
156#ifdef CONFIG_PROFILER
b67d9a52
FB
157 s->tb_count1++; /* includes aborted translations because of
158 exceptions */
57fec1fe
FB
159 ti = profile_getclock();
160#endif
161 tcg_func_start(s);
d19893da 162
2cfc5f17
TS
163 gen_intermediate_code(env, tb);
164
6db8b538
AB
165 trace_translate_block(tb, tb->pc, tb->tc_ptr);
166
ec6338ba 167 /* generate machine code */
57fec1fe 168 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
169 tb->tb_next_offset[0] = 0xffff;
170 tb->tb_next_offset[1] = 0xffff;
57fec1fe 171 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 172#ifdef USE_DIRECT_JUMP
57fec1fe
FB
173 s->tb_jmp_offset = tb->tb_jmp_offset;
174 s->tb_next = NULL;
d19893da 175#else
57fec1fe
FB
176 s->tb_jmp_offset = NULL;
177 s->tb_next = tb->tb_next;
d19893da 178#endif
57fec1fe
FB
179
180#ifdef CONFIG_PROFILER
b67d9a52
FB
181 s->tb_count++;
182 s->interm_time += profile_getclock() - ti;
183 s->code_time -= profile_getclock();
57fec1fe 184#endif
54604f74 185 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 186 *gen_code_size_ptr = gen_code_size;
57fec1fe 187#ifdef CONFIG_PROFILER
b67d9a52
FB
188 s->code_time += profile_getclock();
189 s->code_in_len += tb->size;
190 s->code_out_len += gen_code_size;
57fec1fe
FB
191#endif
192
d19893da 193#ifdef DEBUG_DISAS
8fec2b8c 194 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
195 qemu_log("OUT: [size=%d]\n", gen_code_size);
196 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 197 qemu_log("\n");
31b1a7b4 198 qemu_log_flush();
d19893da
FB
199 }
200#endif
201 return 0;
202}
203
5fafdf24 204/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 205 */
74f10515 206static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 207 uintptr_t searched_pc)
d19893da 208{
74f10515 209 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
210 TCGContext *s = &tcg_ctx;
211 int j;
6375e09e 212 uintptr_t tc_ptr;
57fec1fe
FB
213#ifdef CONFIG_PROFILER
214 int64_t ti;
215#endif
216
217#ifdef CONFIG_PROFILER
218 ti = profile_getclock();
219#endif
220 tcg_func_start(s);
d19893da 221
2cfc5f17 222 gen_intermediate_code_pc(env, tb);
3b46e624 223
bd79255d 224 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 225 assert(use_icount);
2e70f6ef 226 /* Reset the cycle counter to the start of the block. */
28ecfd7a 227 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 228 /* Clear the IO flag. */
99df7dce 229 cpu->can_do_io = 0;
2e70f6ef
PB
230 }
231
d19893da 232 /* find opc index corresponding to search_pc */
6375e09e 233 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
234 if (searched_pc < tc_ptr)
235 return -1;
57fec1fe
FB
236
237 s->tb_next_offset = tb->tb_next_offset;
238#ifdef USE_DIRECT_JUMP
239 s->tb_jmp_offset = tb->tb_jmp_offset;
240 s->tb_next = NULL;
241#else
242 s->tb_jmp_offset = NULL;
243 s->tb_next = tb->tb_next;
244#endif
1813e175
RH
245 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
246 searched_pc - tc_ptr);
57fec1fe
FB
247 if (j < 0)
248 return -1;
d19893da 249 /* now find start of instruction before */
ab1103de 250 while (s->gen_opc_instr_start[j] == 0) {
d19893da 251 j--;
ab1103de 252 }
28ecfd7a 253 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 254
e87b7cb0 255 restore_state_to_opc(env, tb, j);
57fec1fe
FB
256
257#ifdef CONFIG_PROFILER
b67d9a52
FB
258 s->restore_time += profile_getclock() - ti;
259 s->restore_count++;
57fec1fe 260#endif
d19893da
FB
261 return 0;
262}
5b6dd868 263
3f38f309 264bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
265{
266 TranslationBlock *tb;
267
268 tb = tb_find_pc(retaddr);
269 if (tb) {
74f10515 270 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
271 if (tb->cflags & CF_NOCACHE) {
272 /* one-shot translation, invalidate it immediately */
273 cpu->current_tb = NULL;
274 tb_phys_invalidate(tb, -1);
275 tb_free(tb);
276 }
a8a826a3
BS
277 return true;
278 }
279 return false;
280}
281
5b6dd868 282#ifdef _WIN32
2d8ac5eb 283static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
284{
285 DWORD old_protect;
286 VirtualProtect(addr, size,
287 PAGE_EXECUTE_READWRITE, &old_protect);
288}
289#else
2d8ac5eb 290static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
291{
292 unsigned long start, end, page_size;
293
294 page_size = getpagesize();
295 start = (unsigned long)addr;
296 start &= ~(page_size - 1);
297
298 end = (unsigned long)addr + size;
299 end += page_size - 1;
300 end &= ~(page_size - 1);
301
302 mprotect((void *)start, end - start,
303 PROT_READ | PROT_WRITE | PROT_EXEC);
304}
305#endif
306
47c16ed5 307void page_size_init(void)
5b6dd868
BS
308{
309 /* NOTE: we can always suppose that qemu_host_page_size >=
310 TARGET_PAGE_SIZE */
5b6dd868 311 qemu_real_host_page_size = getpagesize();
4e51361d 312 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
5b6dd868
BS
313 if (qemu_host_page_size == 0) {
314 qemu_host_page_size = qemu_real_host_page_size;
315 }
316 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
317 qemu_host_page_size = TARGET_PAGE_SIZE;
318 }
319 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 320}
5b6dd868 321
47c16ed5
AK
322static void page_init(void)
323{
324 page_size_init();
5b6dd868
BS
325#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
326 {
327#ifdef HAVE_KINFO_GETVMMAP
328 struct kinfo_vmentry *freep;
329 int i, cnt;
330
331 freep = kinfo_getvmmap(getpid(), &cnt);
332 if (freep) {
333 mmap_lock();
334 for (i = 0; i < cnt; i++) {
335 unsigned long startaddr, endaddr;
336
337 startaddr = freep[i].kve_start;
338 endaddr = freep[i].kve_end;
339 if (h2g_valid(startaddr)) {
340 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
341
342 if (h2g_valid(endaddr)) {
343 endaddr = h2g(endaddr);
344 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
345 } else {
346#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
347 endaddr = ~0ul;
348 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
349#endif
350 }
351 }
352 }
353 free(freep);
354 mmap_unlock();
355 }
356#else
357 FILE *f;
358
359 last_brk = (unsigned long)sbrk(0);
360
361 f = fopen("/compat/linux/proc/self/maps", "r");
362 if (f) {
363 mmap_lock();
364
365 do {
366 unsigned long startaddr, endaddr;
367 int n;
368
369 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
370
371 if (n == 2 && h2g_valid(startaddr)) {
372 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
373
374 if (h2g_valid(endaddr)) {
375 endaddr = h2g(endaddr);
376 } else {
377 endaddr = ~0ul;
378 }
379 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
380 }
381 } while (!feof(f));
382
383 fclose(f);
384 mmap_unlock();
385 }
386#endif
387 }
388#endif
389}
390
391static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
392{
393 PageDesc *pd;
394 void **lp;
395 int i;
396
5b6dd868
BS
397 /* Level 1. Always allocated. */
398 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
399
400 /* Level 2..N-1. */
03f49957 401 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
402 void **p = *lp;
403
404 if (p == NULL) {
405 if (!alloc) {
406 return NULL;
407 }
e3a0abfd 408 p = g_new0(void *, V_L2_SIZE);
5b6dd868
BS
409 *lp = p;
410 }
411
03f49957 412 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
413 }
414
415 pd = *lp;
416 if (pd == NULL) {
417 if (!alloc) {
418 return NULL;
419 }
e3a0abfd 420 pd = g_new0(PageDesc, V_L2_SIZE);
5b6dd868
BS
421 *lp = pd;
422 }
423
03f49957 424 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
425}
426
427static inline PageDesc *page_find(tb_page_addr_t index)
428{
429 return page_find_alloc(index, 0);
430}
431
432#if !defined(CONFIG_USER_ONLY)
433#define mmap_lock() do { } while (0)
434#define mmap_unlock() do { } while (0)
435#endif
436
437#if defined(CONFIG_USER_ONLY)
438/* Currently it is not recommended to allocate big chunks of data in
439 user mode. It will change when a dedicated libc will be used. */
440/* ??? 64-bit hosts ought to have no problem mmaping data outside the
441 region in which the guest needs to run. Revisit this. */
442#define USE_STATIC_CODE_GEN_BUFFER
443#endif
444
445/* ??? Should configure for this, not list operating systems here. */
446#if (defined(__linux__) \
447 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
448 || defined(__DragonFly__) || defined(__OpenBSD__) \
449 || defined(__NetBSD__))
450# define USE_MMAP
451#endif
452
453/* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
456
457/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460#if defined(__x86_64__)
461# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462#elif defined(__sparc__)
463# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
464#elif defined(__aarch64__)
465# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
466#elif defined(__arm__)
467# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
468#elif defined(__s390x__)
469 /* We have a +- 4GB range on the branches; leave some slop. */
470# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
471#elif defined(__mips__)
472 /* We have a 256MB branch region, but leave room to make sure the
473 main executable is also within that region. */
474# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
475#else
476# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
477#endif
478
479#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
480
481#define DEFAULT_CODE_GEN_BUFFER_SIZE \
482 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
483 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
484
485static inline size_t size_code_gen_buffer(size_t tb_size)
486{
487 /* Size the buffer. */
488 if (tb_size == 0) {
489#ifdef USE_STATIC_CODE_GEN_BUFFER
490 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
491#else
492 /* ??? Needs adjustments. */
493 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
494 static buffer, we could size this on RESERVED_VA, on the text
495 segment size of the executable, or continue to use the default. */
496 tb_size = (unsigned long)(ram_size / 4);
497#endif
498 }
499 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
500 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
501 }
502 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
504 }
0b0d3320 505 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
506 return tb_size;
507}
508
483c76e1
RH
509#ifdef __mips__
510/* In order to use J and JAL within the code_gen_buffer, we require
511 that the buffer not cross a 256MB boundary. */
512static inline bool cross_256mb(void *addr, size_t size)
513{
514 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
515}
516
517/* We weren't able to allocate a buffer without crossing that boundary,
518 so make do with the larger portion of the buffer that doesn't cross.
519 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
520static inline void *split_cross_256mb(void *buf1, size_t size1)
521{
522 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
523 size_t size2 = buf1 + size1 - buf2;
524
525 size1 = buf2 - buf1;
526 if (size1 < size2) {
527 size1 = size2;
528 buf1 = buf2;
529 }
530
531 tcg_ctx.code_gen_buffer_size = size1;
532 return buf1;
533}
534#endif
535
5b6dd868
BS
536#ifdef USE_STATIC_CODE_GEN_BUFFER
537static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
538 __attribute__((aligned(CODE_GEN_ALIGN)));
539
540static inline void *alloc_code_gen_buffer(void)
541{
483c76e1
RH
542 void *buf = static_code_gen_buffer;
543#ifdef __mips__
544 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
545 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
546 }
547#endif
548 map_exec(buf, tcg_ctx.code_gen_buffer_size);
549 return buf;
5b6dd868
BS
550}
551#elif defined(USE_MMAP)
552static inline void *alloc_code_gen_buffer(void)
553{
554 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
555 uintptr_t start = 0;
556 void *buf;
557
558 /* Constrain the position of the buffer based on the host cpu.
559 Note that these addresses are chosen in concert with the
560 addresses assigned in the relevant linker script file. */
561# if defined(__PIE__) || defined(__PIC__)
562 /* Don't bother setting a preferred location if we're building
563 a position-independent executable. We're more likely to get
564 an address near the main executable if we let the kernel
565 choose the address. */
566# elif defined(__x86_64__) && defined(MAP_32BIT)
567 /* Force the memory down into low memory with the executable.
568 Leave the choice of exact location with the kernel. */
569 flags |= MAP_32BIT;
570 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
571 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
572 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
573 }
574# elif defined(__sparc__)
575 start = 0x40000000ul;
576# elif defined(__s390x__)
577 start = 0x90000000ul;
479eb121
RH
578# elif defined(__mips__)
579 /* ??? We ought to more explicitly manage layout for softmmu too. */
580# ifdef CONFIG_USER_ONLY
581 start = 0x68000000ul;
582# elif _MIPS_SIM == _ABI64
583 start = 0x128000000ul;
584# else
585 start = 0x08000000ul;
586# endif
5b6dd868
BS
587# endif
588
0b0d3320 589 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868 590 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
483c76e1
RH
591 if (buf == MAP_FAILED) {
592 return NULL;
593 }
594
595#ifdef __mips__
596 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
5d831be2 597 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1
RH
598 that 256mb crossing. This time don't specify an address. */
599 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
600 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
601 flags, -1, 0);
602 if (buf2 != MAP_FAILED) {
603 if (!cross_256mb(buf2, size1)) {
604 /* Success! Use the new buffer. */
605 munmap(buf, size1);
606 return buf2;
607 }
608 /* Failure. Work with what we had. */
609 munmap(buf2, size1);
610 }
611
612 /* Split the original buffer. Free the smaller half. */
613 buf2 = split_cross_256mb(buf, size1);
614 size2 = tcg_ctx.code_gen_buffer_size;
615 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
616 return buf2;
617 }
618#endif
619
620 return buf;
5b6dd868
BS
621}
622#else
623static inline void *alloc_code_gen_buffer(void)
624{
8b98ade3 625 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868 626
483c76e1
RH
627 if (buf == NULL) {
628 return NULL;
629 }
630
631#ifdef __mips__
632 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
633 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
634 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
635 /* Success! Use the new buffer. */
636 free(buf);
637 buf = buf2;
638 } else {
639 /* Failure. Work with what we had. Since this is malloc
640 and not mmap, we can't free the other half. */
641 free(buf2);
642 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
643 }
5b6dd868 644 }
483c76e1
RH
645#endif
646
647 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
648 return buf;
649}
650#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
651
652static inline void code_gen_alloc(size_t tb_size)
653{
0b0d3320
EV
654 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
655 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
656 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
657 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
658 exit(1);
659 }
660
0b0d3320
EV
661 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
662 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
663
664 /* Steal room for the prologue at the end of the buffer. This ensures
665 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
666 from TB's to the prologue are going to be in range. It also means
667 that we don't need to mark (additional) portions of the data segment
668 as executable. */
0b0d3320
EV
669 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
670 tcg_ctx.code_gen_buffer_size - 1024;
671 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 672
0b0d3320 673 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 674 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
675 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
676 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
677 tcg_ctx.tb_ctx.tbs =
678 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
679}
680
681/* Must be called before using the QEMU cpus. 'tb_size' is the size
682 (in bytes) allocated to the translation buffer. Zero means default
683 size. */
684void tcg_exec_init(unsigned long tb_size)
685{
686 cpu_gen_init();
687 code_gen_alloc(tb_size);
0b0d3320
EV
688 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
689 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868 690 page_init();
4cbea598 691#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
692 /* There's no guest base to take into account, so go ahead and
693 initialize the prologue now. */
694 tcg_prologue_init(&tcg_ctx);
695#endif
696}
697
698bool tcg_enabled(void)
699{
0b0d3320 700 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
701}
702
703/* Allocate a new translation block. Flush the translation buffer if
704 too many translation blocks or too much generated code. */
705static TranslationBlock *tb_alloc(target_ulong pc)
706{
707 TranslationBlock *tb;
708
5e5f07e0 709 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
710 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
711 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
712 return NULL;
713 }
5e5f07e0 714 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
715 tb->pc = pc;
716 tb->cflags = 0;
717 return tb;
718}
719
720void tb_free(TranslationBlock *tb)
721{
722 /* In practice this is mostly used for single use temporary TB
723 Ignore the hard cases and just back up if this TB happens to
724 be the last one generated. */
5e5f07e0
EV
725 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
726 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 727 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 728 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
729 }
730}
731
732static inline void invalidate_page_bitmap(PageDesc *p)
733{
012aef07
MA
734 g_free(p->code_bitmap);
735 p->code_bitmap = NULL;
5b6dd868
BS
736 p->code_write_count = 0;
737}
738
739/* Set to NULL all the 'first_tb' fields in all PageDescs. */
740static void page_flush_tb_1(int level, void **lp)
741{
742 int i;
743
744 if (*lp == NULL) {
745 return;
746 }
747 if (level == 0) {
748 PageDesc *pd = *lp;
749
03f49957 750 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
751 pd[i].first_tb = NULL;
752 invalidate_page_bitmap(pd + i);
753 }
754 } else {
755 void **pp = *lp;
756
03f49957 757 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
758 page_flush_tb_1(level - 1, pp + i);
759 }
760 }
761}
762
763static void page_flush_tb(void)
764{
765 int i;
766
767 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 768 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
769 }
770}
771
772/* flush all the translation blocks */
773/* XXX: tb_flush is currently not thread safe */
bbd77c18 774void tb_flush(CPUState *cpu)
5b6dd868 775{
5b6dd868
BS
776#if defined(DEBUG_FLUSH)
777 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 778 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 779 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 780 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 781 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 782#endif
0b0d3320
EV
783 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
784 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 785 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 786 }
5e5f07e0 787 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 788
bdc44640 789 CPU_FOREACH(cpu) {
8cd70437 790 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
791 }
792
eb2535f4 793 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
794 page_flush_tb();
795
0b0d3320 796 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
797 /* XXX: flush processor icache at this point if cache flush is
798 expensive */
5e5f07e0 799 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
800}
801
802#ifdef DEBUG_TB_CHECK
803
804static void tb_invalidate_check(target_ulong address)
805{
806 TranslationBlock *tb;
807 int i;
808
809 address &= TARGET_PAGE_MASK;
810 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 811 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
812 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
813 address >= tb->pc + tb->size)) {
814 printf("ERROR invalidate: address=" TARGET_FMT_lx
815 " PC=%08lx size=%04x\n",
816 address, (long)tb->pc, tb->size);
817 }
818 }
819 }
820}
821
822/* verify that all the pages have correct rights for code */
823static void tb_page_check(void)
824{
825 TranslationBlock *tb;
826 int i, flags1, flags2;
827
828 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
829 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
830 tb = tb->phys_hash_next) {
5b6dd868
BS
831 flags1 = page_get_flags(tb->pc);
832 flags2 = page_get_flags(tb->pc + tb->size - 1);
833 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
834 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
835 (long)tb->pc, tb->size, flags1, flags2);
836 }
837 }
838 }
839}
840
841#endif
842
0c884d16 843static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
844{
845 TranslationBlock *tb1;
846
847 for (;;) {
848 tb1 = *ptb;
849 if (tb1 == tb) {
0c884d16 850 *ptb = tb1->phys_hash_next;
5b6dd868
BS
851 break;
852 }
0c884d16 853 ptb = &tb1->phys_hash_next;
5b6dd868
BS
854 }
855}
856
857static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
858{
859 TranslationBlock *tb1;
860 unsigned int n1;
861
862 for (;;) {
863 tb1 = *ptb;
864 n1 = (uintptr_t)tb1 & 3;
865 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
866 if (tb1 == tb) {
867 *ptb = tb1->page_next[n1];
868 break;
869 }
870 ptb = &tb1->page_next[n1];
871 }
872}
873
874static inline void tb_jmp_remove(TranslationBlock *tb, int n)
875{
876 TranslationBlock *tb1, **ptb;
877 unsigned int n1;
878
879 ptb = &tb->jmp_next[n];
880 tb1 = *ptb;
881 if (tb1) {
882 /* find tb(n) in circular list */
883 for (;;) {
884 tb1 = *ptb;
885 n1 = (uintptr_t)tb1 & 3;
886 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
887 if (n1 == n && tb1 == tb) {
888 break;
889 }
890 if (n1 == 2) {
891 ptb = &tb1->jmp_first;
892 } else {
893 ptb = &tb1->jmp_next[n1];
894 }
895 }
896 /* now we can suppress tb(n) from the list */
897 *ptb = tb->jmp_next[n];
898
899 tb->jmp_next[n] = NULL;
900 }
901}
902
903/* reset the jump entry 'n' of a TB so that it is not chained to
904 another TB */
905static inline void tb_reset_jump(TranslationBlock *tb, int n)
906{
907 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
908}
909
0c884d16 910/* invalidate one TB */
5b6dd868
BS
911void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
912{
182735ef 913 CPUState *cpu;
5b6dd868
BS
914 PageDesc *p;
915 unsigned int h, n1;
916 tb_page_addr_t phys_pc;
917 TranslationBlock *tb1, *tb2;
918
919 /* remove the TB from the hash list */
920 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
921 h = tb_phys_hash_func(phys_pc);
5e5f07e0 922 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
923
924 /* remove the TB from the page list */
925 if (tb->page_addr[0] != page_addr) {
926 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
927 tb_page_remove(&p->first_tb, tb);
928 invalidate_page_bitmap(p);
929 }
930 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
931 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
932 tb_page_remove(&p->first_tb, tb);
933 invalidate_page_bitmap(p);
934 }
935
5e5f07e0 936 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
937
938 /* remove the TB from the hash list */
939 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 940 CPU_FOREACH(cpu) {
8cd70437
AF
941 if (cpu->tb_jmp_cache[h] == tb) {
942 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
943 }
944 }
945
946 /* suppress this TB from the two jump lists */
947 tb_jmp_remove(tb, 0);
948 tb_jmp_remove(tb, 1);
949
950 /* suppress any remaining jumps to this TB */
951 tb1 = tb->jmp_first;
952 for (;;) {
953 n1 = (uintptr_t)tb1 & 3;
954 if (n1 == 2) {
955 break;
956 }
957 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
958 tb2 = tb1->jmp_next[n1];
959 tb_reset_jump(tb1, n1);
960 tb1->jmp_next[n1] = NULL;
961 tb1 = tb2;
962 }
963 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
964
5e5f07e0 965 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
966}
967
5b6dd868
BS
968static void build_page_bitmap(PageDesc *p)
969{
970 int n, tb_start, tb_end;
971 TranslationBlock *tb;
972
510a647f 973 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
974
975 tb = p->first_tb;
976 while (tb != NULL) {
977 n = (uintptr_t)tb & 3;
978 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
979 /* NOTE: this is subtle as a TB may span two physical pages */
980 if (n == 0) {
981 /* NOTE: tb_end may be after the end of the page, but
982 it is not a problem */
983 tb_start = tb->pc & ~TARGET_PAGE_MASK;
984 tb_end = tb_start + tb->size;
985 if (tb_end > TARGET_PAGE_SIZE) {
986 tb_end = TARGET_PAGE_SIZE;
987 }
988 } else {
989 tb_start = 0;
990 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
991 }
510a647f 992 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
993 tb = tb->page_next[n];
994 }
995}
996
648f034c 997TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
998 target_ulong pc, target_ulong cs_base,
999 int flags, int cflags)
1000{
648f034c 1001 CPUArchState *env = cpu->env_ptr;
5b6dd868 1002 TranslationBlock *tb;
5b6dd868
BS
1003 tb_page_addr_t phys_pc, phys_page2;
1004 target_ulong virt_page2;
1005 int code_gen_size;
1006
1007 phys_pc = get_page_addr_code(env, pc);
0266359e
PB
1008 if (use_icount) {
1009 cflags |= CF_USE_ICOUNT;
1010 }
5b6dd868
BS
1011 tb = tb_alloc(pc);
1012 if (!tb) {
1013 /* flush must be done */
bbd77c18 1014 tb_flush(cpu);
5b6dd868
BS
1015 /* cannot fail at this point */
1016 tb = tb_alloc(pc);
1017 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1018 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1019 }
1813e175 1020 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
1021 tb->cs_base = cs_base;
1022 tb->flags = flags;
1023 tb->cflags = cflags;
1024 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
1025 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1026 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
1027
1028 /* check next page if needed */
1029 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1030 phys_page2 = -1;
1031 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1032 phys_page2 = get_page_addr_code(env, virt_page2);
1033 }
1034 tb_link_page(tb, phys_pc, phys_page2);
1035 return tb;
1036}
1037
1038/*
1039 * Invalidate all TBs which intersect with the target physical address range
1040 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1041 * 'is_cpu_write_access' should be true if called from a real cpu write
1042 * access: the virtual CPU will exit the current TB if code is modified inside
1043 * this TB.
1044 */
35865339 1045void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1046{
1047 while (start < end) {
35865339 1048 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1049 start &= TARGET_PAGE_MASK;
1050 start += TARGET_PAGE_SIZE;
1051 }
1052}
1053
1054/*
1055 * Invalidate all TBs which intersect with the target physical address range
1056 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1057 * 'is_cpu_write_access' should be true if called from a real cpu write
1058 * access: the virtual CPU will exit the current TB if code is modified inside
1059 * this TB.
1060 */
1061void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1062 int is_cpu_write_access)
1063{
1064 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1065 CPUState *cpu = current_cpu;
baea4fae 1066#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1067 CPUArchState *env = NULL;
1068#endif
5b6dd868
BS
1069 tb_page_addr_t tb_start, tb_end;
1070 PageDesc *p;
1071 int n;
1072#ifdef TARGET_HAS_PRECISE_SMC
1073 int current_tb_not_found = is_cpu_write_access;
1074 TranslationBlock *current_tb = NULL;
1075 int current_tb_modified = 0;
1076 target_ulong current_pc = 0;
1077 target_ulong current_cs_base = 0;
1078 int current_flags = 0;
1079#endif /* TARGET_HAS_PRECISE_SMC */
1080
1081 p = page_find(start >> TARGET_PAGE_BITS);
1082 if (!p) {
1083 return;
1084 }
baea4fae 1085#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1086 if (cpu != NULL) {
1087 env = cpu->env_ptr;
d77953b9 1088 }
4917cf44 1089#endif
5b6dd868
BS
1090
1091 /* we remove all the TBs in the range [start, end[ */
1092 /* XXX: see if in some cases it could be faster to invalidate all
1093 the code */
1094 tb = p->first_tb;
1095 while (tb != NULL) {
1096 n = (uintptr_t)tb & 3;
1097 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1098 tb_next = tb->page_next[n];
1099 /* NOTE: this is subtle as a TB may span two physical pages */
1100 if (n == 0) {
1101 /* NOTE: tb_end may be after the end of the page, but
1102 it is not a problem */
1103 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1104 tb_end = tb_start + tb->size;
1105 } else {
1106 tb_start = tb->page_addr[1];
1107 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1108 }
1109 if (!(tb_end <= start || tb_start >= end)) {
1110#ifdef TARGET_HAS_PRECISE_SMC
1111 if (current_tb_not_found) {
1112 current_tb_not_found = 0;
1113 current_tb = NULL;
93afeade 1114 if (cpu->mem_io_pc) {
5b6dd868 1115 /* now we have a real cpu fault */
93afeade 1116 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1117 }
1118 }
1119 if (current_tb == tb &&
1120 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1121 /* If we are modifying the current TB, we must stop
1122 its execution. We could be more precise by checking
1123 that the modification is after the current PC, but it
1124 would require a specialized function to partially
1125 restore the CPU state */
1126
1127 current_tb_modified = 1;
74f10515 1128 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1129 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1130 &current_flags);
1131 }
1132#endif /* TARGET_HAS_PRECISE_SMC */
1133 /* we need to do that to handle the case where a signal
1134 occurs while doing tb_phys_invalidate() */
1135 saved_tb = NULL;
d77953b9
AF
1136 if (cpu != NULL) {
1137 saved_tb = cpu->current_tb;
1138 cpu->current_tb = NULL;
5b6dd868
BS
1139 }
1140 tb_phys_invalidate(tb, -1);
d77953b9
AF
1141 if (cpu != NULL) {
1142 cpu->current_tb = saved_tb;
c3affe56
AF
1143 if (cpu->interrupt_request && cpu->current_tb) {
1144 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1145 }
1146 }
1147 }
1148 tb = tb_next;
1149 }
1150#if !defined(CONFIG_USER_ONLY)
1151 /* if no code remaining, no need to continue to use slow writes */
1152 if (!p->first_tb) {
1153 invalidate_page_bitmap(p);
fc377bcf 1154 tlb_unprotect_code(start);
5b6dd868
BS
1155 }
1156#endif
1157#ifdef TARGET_HAS_PRECISE_SMC
1158 if (current_tb_modified) {
1159 /* we generate a block containing just the instruction
1160 modifying the memory. It will ensure that it cannot modify
1161 itself */
d77953b9 1162 cpu->current_tb = NULL;
648f034c 1163 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1164 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1165 }
1166#endif
1167}
1168
1169/* len must be <= 8 and start must be a multiple of len */
1170void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1171{
1172 PageDesc *p;
5b6dd868
BS
1173
1174#if 0
1175 if (1) {
1176 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1177 cpu_single_env->mem_io_vaddr, len,
1178 cpu_single_env->eip,
1179 cpu_single_env->eip +
1180 (intptr_t)cpu_single_env->segs[R_CS].base);
1181 }
1182#endif
1183 p = page_find(start >> TARGET_PAGE_BITS);
1184 if (!p) {
1185 return;
1186 }
fc377bcf
PB
1187 if (!p->code_bitmap &&
1188 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1189 /* build code bitmap */
1190 build_page_bitmap(p);
1191 }
5b6dd868 1192 if (p->code_bitmap) {
510a647f
EC
1193 unsigned int nr;
1194 unsigned long b;
1195
1196 nr = start & ~TARGET_PAGE_MASK;
1197 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1198 if (b & ((1 << len) - 1)) {
1199 goto do_invalidate;
1200 }
1201 } else {
1202 do_invalidate:
1203 tb_invalidate_phys_page_range(start, start + len, 1);
1204 }
1205}
1206
1207#if !defined(CONFIG_SOFTMMU)
1208static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1209 uintptr_t pc, void *puc,
1210 bool locked)
5b6dd868
BS
1211{
1212 TranslationBlock *tb;
1213 PageDesc *p;
1214 int n;
1215#ifdef TARGET_HAS_PRECISE_SMC
1216 TranslationBlock *current_tb = NULL;
4917cf44
AF
1217 CPUState *cpu = current_cpu;
1218 CPUArchState *env = NULL;
5b6dd868
BS
1219 int current_tb_modified = 0;
1220 target_ulong current_pc = 0;
1221 target_ulong current_cs_base = 0;
1222 int current_flags = 0;
1223#endif
1224
1225 addr &= TARGET_PAGE_MASK;
1226 p = page_find(addr >> TARGET_PAGE_BITS);
1227 if (!p) {
1228 return;
1229 }
1230 tb = p->first_tb;
1231#ifdef TARGET_HAS_PRECISE_SMC
1232 if (tb && pc != 0) {
1233 current_tb = tb_find_pc(pc);
1234 }
4917cf44
AF
1235 if (cpu != NULL) {
1236 env = cpu->env_ptr;
d77953b9 1237 }
5b6dd868
BS
1238#endif
1239 while (tb != NULL) {
1240 n = (uintptr_t)tb & 3;
1241 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1242#ifdef TARGET_HAS_PRECISE_SMC
1243 if (current_tb == tb &&
1244 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1245 /* If we are modifying the current TB, we must stop
1246 its execution. We could be more precise by checking
1247 that the modification is after the current PC, but it
1248 would require a specialized function to partially
1249 restore the CPU state */
1250
1251 current_tb_modified = 1;
74f10515 1252 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1253 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1254 &current_flags);
1255 }
1256#endif /* TARGET_HAS_PRECISE_SMC */
1257 tb_phys_invalidate(tb, addr);
1258 tb = tb->page_next[n];
1259 }
1260 p->first_tb = NULL;
1261#ifdef TARGET_HAS_PRECISE_SMC
1262 if (current_tb_modified) {
1263 /* we generate a block containing just the instruction
1264 modifying the memory. It will ensure that it cannot modify
1265 itself */
d77953b9 1266 cpu->current_tb = NULL;
648f034c 1267 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1268 if (locked) {
1269 mmap_unlock();
1270 }
0ea8cb88 1271 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1272 }
1273#endif
1274}
1275#endif
1276
1277/* add the tb in the target page and protect it if necessary */
1278static inline void tb_alloc_page(TranslationBlock *tb,
1279 unsigned int n, tb_page_addr_t page_addr)
1280{
1281 PageDesc *p;
1282#ifndef CONFIG_USER_ONLY
1283 bool page_already_protected;
1284#endif
1285
1286 tb->page_addr[n] = page_addr;
1287 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1288 tb->page_next[n] = p->first_tb;
1289#ifndef CONFIG_USER_ONLY
1290 page_already_protected = p->first_tb != NULL;
1291#endif
1292 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1293 invalidate_page_bitmap(p);
1294
5b6dd868
BS
1295#if defined(CONFIG_USER_ONLY)
1296 if (p->flags & PAGE_WRITE) {
1297 target_ulong addr;
1298 PageDesc *p2;
1299 int prot;
1300
1301 /* force the host page as non writable (writes will have a
1302 page fault + mprotect overhead) */
1303 page_addr &= qemu_host_page_mask;
1304 prot = 0;
1305 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1306 addr += TARGET_PAGE_SIZE) {
1307
1308 p2 = page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p2) {
1310 continue;
1311 }
1312 prot |= p2->flags;
1313 p2->flags &= ~PAGE_WRITE;
1314 }
1315 mprotect(g2h(page_addr), qemu_host_page_size,
1316 (prot & PAGE_BITS) & ~PAGE_WRITE);
1317#ifdef DEBUG_TB_INVALIDATE
1318 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1319 page_addr);
1320#endif
1321 }
1322#else
1323 /* if some code is already present, then the pages are already
1324 protected. So we handle the case where only the first TB is
1325 allocated in a physical page */
1326 if (!page_already_protected) {
1327 tlb_protect_code(page_addr);
1328 }
1329#endif
5b6dd868
BS
1330}
1331
1332/* add a new TB and link it to the physical page tables. phys_page2 is
1333 (-1) to indicate that only one page contains the TB. */
1334static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1335 tb_page_addr_t phys_page2)
1336{
1337 unsigned int h;
1338 TranslationBlock **ptb;
1339
1340 /* Grab the mmap lock to stop another thread invalidating this TB
1341 before we are done. */
1342 mmap_lock();
1343 /* add in the physical hash table */
1344 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1345 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1346 tb->phys_hash_next = *ptb;
1347 *ptb = tb;
1348
1349 /* add in the page list */
1350 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1351 if (phys_page2 != -1) {
1352 tb_alloc_page(tb, 1, phys_page2);
1353 } else {
1354 tb->page_addr[1] = -1;
1355 }
1356
1357 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1358 tb->jmp_next[0] = NULL;
1359 tb->jmp_next[1] = NULL;
1360
1361 /* init original jump addresses */
1362 if (tb->tb_next_offset[0] != 0xffff) {
1363 tb_reset_jump(tb, 0);
1364 }
1365 if (tb->tb_next_offset[1] != 0xffff) {
1366 tb_reset_jump(tb, 1);
1367 }
1368
1369#ifdef DEBUG_TB_CHECK
1370 tb_page_check();
1371#endif
1372 mmap_unlock();
1373}
1374
5b6dd868
BS
1375/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1376 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1377static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1378{
1379 int m_min, m_max, m;
1380 uintptr_t v;
1381 TranslationBlock *tb;
1382
5e5f07e0 1383 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1384 return NULL;
1385 }
0b0d3320
EV
1386 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1387 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1388 return NULL;
1389 }
1390 /* binary search (cf Knuth) */
1391 m_min = 0;
5e5f07e0 1392 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1393 while (m_min <= m_max) {
1394 m = (m_min + m_max) >> 1;
5e5f07e0 1395 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1396 v = (uintptr_t)tb->tc_ptr;
1397 if (v == tc_ptr) {
1398 return tb;
1399 } else if (tc_ptr < v) {
1400 m_max = m - 1;
1401 } else {
1402 m_min = m + 1;
1403 }
1404 }
5e5f07e0 1405 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1406}
1407
ec53b45b 1408#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1409void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1410{
1411 ram_addr_t ram_addr;
5c8a00ce 1412 MemoryRegion *mr;
149f54b5 1413 hwaddr l = 1;
5b6dd868 1414
41063e1e 1415 rcu_read_lock();
29d8ec7b 1416 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1417 if (!(memory_region_is_ram(mr)
1418 || memory_region_is_romd(mr))) {
41063e1e 1419 rcu_read_unlock();
5b6dd868
BS
1420 return;
1421 }
5c8a00ce 1422 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1423 + addr;
5b6dd868 1424 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1425 rcu_read_unlock();
5b6dd868 1426}
ec53b45b 1427#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1428
239c51a5 1429void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1430{
1431 TranslationBlock *tb;
1432
93afeade 1433 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1434 if (tb) {
1435 /* We can use retranslation to find the PC. */
1436 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1437 tb_phys_invalidate(tb, -1);
1438 } else {
1439 /* The exception probably happened in a helper. The CPU state should
1440 have been saved before calling it. Fetch the PC from there. */
1441 CPUArchState *env = cpu->env_ptr;
1442 target_ulong pc, cs_base;
1443 tb_page_addr_t addr;
1444 int flags;
1445
1446 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1447 addr = get_page_addr_code(env, pc);
1448 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1449 }
5b6dd868
BS
1450}
1451
1452#ifndef CONFIG_USER_ONLY
1453/* mask must never be zero, except for A20 change call */
c3affe56 1454static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1455{
5b6dd868
BS
1456 int old_mask;
1457
259186a7
AF
1458 old_mask = cpu->interrupt_request;
1459 cpu->interrupt_request |= mask;
5b6dd868
BS
1460
1461 /*
1462 * If called from iothread context, wake the target cpu in
1463 * case its halted.
1464 */
1465 if (!qemu_cpu_is_self(cpu)) {
1466 qemu_cpu_kick(cpu);
1467 return;
1468 }
1469
1470 if (use_icount) {
28ecfd7a 1471 cpu->icount_decr.u16.high = 0xffff;
414b15c9 1472 if (!cpu->can_do_io
5b6dd868 1473 && (mask & ~old_mask) != 0) {
a47dddd7 1474 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1475 }
1476 } else {
378df4b2 1477 cpu->tcg_exit_req = 1;
5b6dd868
BS
1478 }
1479}
1480
1481CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1482
1483/* in deterministic execution mode, instructions doing device I/Os
1484 must be at the end of the TB */
90b40a69 1485void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1486{
a47dddd7 1487#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1488 CPUArchState *env = cpu->env_ptr;
a47dddd7 1489#endif
5b6dd868
BS
1490 TranslationBlock *tb;
1491 uint32_t n, cflags;
1492 target_ulong pc, cs_base;
1493 uint64_t flags;
1494
1495 tb = tb_find_pc(retaddr);
1496 if (!tb) {
a47dddd7 1497 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1498 (void *)retaddr);
1499 }
28ecfd7a 1500 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1501 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1502 /* Calculate how many instructions had been executed before the fault
1503 occurred. */
28ecfd7a 1504 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1505 /* Generate a new TB ending on the I/O insn. */
1506 n++;
1507 /* On MIPS and SH, delay slot instructions can only be restarted if
1508 they were already the first instruction in the TB. If this is not
1509 the first instruction in a TB then re-execute the preceding
1510 branch. */
1511#if defined(TARGET_MIPS)
1512 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1513 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1514 cpu->icount_decr.u16.low++;
5b6dd868
BS
1515 env->hflags &= ~MIPS_HFLAG_BMASK;
1516 }
1517#elif defined(TARGET_SH4)
1518 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1519 && n > 1) {
1520 env->pc -= 2;
28ecfd7a 1521 cpu->icount_decr.u16.low++;
5b6dd868
BS
1522 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1523 }
1524#endif
1525 /* This should never happen. */
1526 if (n > CF_COUNT_MASK) {
a47dddd7 1527 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1528 }
1529
1530 cflags = n | CF_LAST_IO;
1531 pc = tb->pc;
1532 cs_base = tb->cs_base;
1533 flags = tb->flags;
1534 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1535 if (tb->cflags & CF_NOCACHE) {
1536 if (tb->orig_tb) {
1537 /* Invalidate original TB if this TB was generated in
1538 * cpu_exec_nocache() */
1539 tb_phys_invalidate(tb->orig_tb, -1);
1540 }
1541 tb_free(tb);
1542 }
5b6dd868
BS
1543 /* FIXME: In theory this could raise an exception. In practice
1544 we have already translated the block once so it's probably ok. */
648f034c 1545 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1546 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1547 the first in the TB) then we end up generating a whole new TB and
1548 repeating the fault, which is horribly inefficient.
1549 Better would be to execute just this insn uncached, or generate a
1550 second new TB. */
0ea8cb88 1551 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1552}
1553
611d4f99 1554void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1555{
1556 unsigned int i;
1557
1558 /* Discard jump cache entries for any tb which might potentially
1559 overlap the flushed page. */
1560 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1561 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1562 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1563
1564 i = tb_jmp_cache_hash_page(addr);
8cd70437 1565 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1566 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1567}
1568
1569void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1570{
1571 int i, target_code_size, max_target_code_size;
1572 int direct_jmp_count, direct_jmp2_count, cross_page;
1573 TranslationBlock *tb;
1574
1575 target_code_size = 0;
1576 max_target_code_size = 0;
1577 cross_page = 0;
1578 direct_jmp_count = 0;
1579 direct_jmp2_count = 0;
5e5f07e0
EV
1580 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1581 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1582 target_code_size += tb->size;
1583 if (tb->size > max_target_code_size) {
1584 max_target_code_size = tb->size;
1585 }
1586 if (tb->page_addr[1] != -1) {
1587 cross_page++;
1588 }
1589 if (tb->tb_next_offset[0] != 0xffff) {
1590 direct_jmp_count++;
1591 if (tb->tb_next_offset[1] != 0xffff) {
1592 direct_jmp2_count++;
1593 }
1594 }
1595 }
1596 /* XXX: avoid using doubles ? */
1597 cpu_fprintf(f, "Translation buffer state:\n");
1598 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1599 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1600 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1601 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1602 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1603 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1604 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1605 tcg_ctx.tb_ctx.nb_tbs : 0,
1606 max_target_code_size);
5b6dd868 1607 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1608 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1609 tcg_ctx.code_gen_buffer) /
1610 tcg_ctx.tb_ctx.nb_tbs : 0,
1611 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1612 tcg_ctx.code_gen_buffer) /
1613 target_code_size : 0);
1614 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1615 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1616 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1617 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1618 direct_jmp_count,
5e5f07e0
EV
1619 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1620 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1621 direct_jmp2_count,
5e5f07e0
EV
1622 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1623 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1624 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1625 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1626 cpu_fprintf(f, "TB invalidate count %d\n",
1627 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1628 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1629 tcg_dump_info(f, cpu_fprintf);
1630}
1631
246ae24d
MF
1632void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1633{
1634 tcg_dump_op_count(f, cpu_fprintf);
1635}
1636
5b6dd868
BS
1637#else /* CONFIG_USER_ONLY */
1638
c3affe56 1639void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1640{
259186a7 1641 cpu->interrupt_request |= mask;
378df4b2 1642 cpu->tcg_exit_req = 1;
5b6dd868
BS
1643}
1644
1645/*
1646 * Walks guest process memory "regions" one by one
1647 * and calls callback function 'fn' for each region.
1648 */
1649struct walk_memory_regions_data {
1650 walk_memory_regions_fn fn;
1651 void *priv;
1a1c4db9 1652 target_ulong start;
5b6dd868
BS
1653 int prot;
1654};
1655
1656static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1657 target_ulong end, int new_prot)
5b6dd868 1658{
1a1c4db9 1659 if (data->start != -1u) {
5b6dd868
BS
1660 int rc = data->fn(data->priv, data->start, end, data->prot);
1661 if (rc != 0) {
1662 return rc;
1663 }
1664 }
1665
1a1c4db9 1666 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1667 data->prot = new_prot;
1668
1669 return 0;
1670}
1671
1672static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1673 target_ulong base, int level, void **lp)
5b6dd868 1674{
1a1c4db9 1675 target_ulong pa;
5b6dd868
BS
1676 int i, rc;
1677
1678 if (*lp == NULL) {
1679 return walk_memory_regions_end(data, base, 0);
1680 }
1681
1682 if (level == 0) {
1683 PageDesc *pd = *lp;
1684
03f49957 1685 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1686 int prot = pd[i].flags;
1687
1688 pa = base | (i << TARGET_PAGE_BITS);
1689 if (prot != data->prot) {
1690 rc = walk_memory_regions_end(data, pa, prot);
1691 if (rc != 0) {
1692 return rc;
1693 }
1694 }
1695 }
1696 } else {
1697 void **pp = *lp;
1698
03f49957 1699 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1700 pa = base | ((target_ulong)i <<
03f49957 1701 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1702 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1703 if (rc != 0) {
1704 return rc;
1705 }
1706 }
1707 }
1708
1709 return 0;
1710}
1711
1712int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1713{
1714 struct walk_memory_regions_data data;
1715 uintptr_t i;
1716
1717 data.fn = fn;
1718 data.priv = priv;
1a1c4db9 1719 data.start = -1u;
5b6dd868
BS
1720 data.prot = 0;
1721
1722 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1723 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1724 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1725 if (rc != 0) {
1726 return rc;
1727 }
1728 }
1729
1730 return walk_memory_regions_end(&data, 0, 0);
1731}
1732
1a1c4db9
MI
1733static int dump_region(void *priv, target_ulong start,
1734 target_ulong end, unsigned long prot)
5b6dd868
BS
1735{
1736 FILE *f = (FILE *)priv;
1737
1a1c4db9
MI
1738 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1739 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1740 start, end, end - start,
1741 ((prot & PAGE_READ) ? 'r' : '-'),
1742 ((prot & PAGE_WRITE) ? 'w' : '-'),
1743 ((prot & PAGE_EXEC) ? 'x' : '-'));
1744
1745 return 0;
1746}
1747
1748/* dump memory mappings */
1749void page_dump(FILE *f)
1750{
1a1c4db9 1751 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1752 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1753 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1754 walk_memory_regions(f, dump_region);
1755}
1756
1757int page_get_flags(target_ulong address)
1758{
1759 PageDesc *p;
1760
1761 p = page_find(address >> TARGET_PAGE_BITS);
1762 if (!p) {
1763 return 0;
1764 }
1765 return p->flags;
1766}
1767
1768/* Modify the flags of a page and invalidate the code if necessary.
1769 The flag PAGE_WRITE_ORG is positioned automatically depending
1770 on PAGE_WRITE. The mmap_lock should already be held. */
1771void page_set_flags(target_ulong start, target_ulong end, int flags)
1772{
1773 target_ulong addr, len;
1774
1775 /* This function should never be called with addresses outside the
1776 guest address space. If this assert fires, it probably indicates
1777 a missing call to h2g_valid. */
1778#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1779 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1780#endif
1781 assert(start < end);
1782
1783 start = start & TARGET_PAGE_MASK;
1784 end = TARGET_PAGE_ALIGN(end);
1785
1786 if (flags & PAGE_WRITE) {
1787 flags |= PAGE_WRITE_ORG;
1788 }
1789
1790 for (addr = start, len = end - start;
1791 len != 0;
1792 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1793 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1794
1795 /* If the write protection bit is set, then we invalidate
1796 the code inside. */
1797 if (!(p->flags & PAGE_WRITE) &&
1798 (flags & PAGE_WRITE) &&
1799 p->first_tb) {
d02532f0 1800 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1801 }
1802 p->flags = flags;
1803 }
1804}
1805
1806int page_check_range(target_ulong start, target_ulong len, int flags)
1807{
1808 PageDesc *p;
1809 target_ulong end;
1810 target_ulong addr;
1811
1812 /* This function should never be called with addresses outside the
1813 guest address space. If this assert fires, it probably indicates
1814 a missing call to h2g_valid. */
1815#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1816 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1817#endif
1818
1819 if (len == 0) {
1820 return 0;
1821 }
1822 if (start + len - 1 < start) {
1823 /* We've wrapped around. */
1824 return -1;
1825 }
1826
1827 /* must do before we loose bits in the next step */
1828 end = TARGET_PAGE_ALIGN(start + len);
1829 start = start & TARGET_PAGE_MASK;
1830
1831 for (addr = start, len = end - start;
1832 len != 0;
1833 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1834 p = page_find(addr >> TARGET_PAGE_BITS);
1835 if (!p) {
1836 return -1;
1837 }
1838 if (!(p->flags & PAGE_VALID)) {
1839 return -1;
1840 }
1841
1842 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1843 return -1;
1844 }
1845 if (flags & PAGE_WRITE) {
1846 if (!(p->flags & PAGE_WRITE_ORG)) {
1847 return -1;
1848 }
1849 /* unprotect the page if it was put read-only because it
1850 contains translated code */
1851 if (!(p->flags & PAGE_WRITE)) {
1852 if (!page_unprotect(addr, 0, NULL)) {
1853 return -1;
1854 }
1855 }
5b6dd868
BS
1856 }
1857 }
1858 return 0;
1859}
1860
1861/* called from signal handler: invalidate the code and unprotect the
1862 page. Return TRUE if the fault was successfully handled. */
1863int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1864{
1865 unsigned int prot;
1866 PageDesc *p;
1867 target_ulong host_start, host_end, addr;
1868
1869 /* Technically this isn't safe inside a signal handler. However we
1870 know this only ever happens in a synchronous SEGV handler, so in
1871 practice it seems to be ok. */
1872 mmap_lock();
1873
1874 p = page_find(address >> TARGET_PAGE_BITS);
1875 if (!p) {
1876 mmap_unlock();
1877 return 0;
1878 }
1879
1880 /* if the page was really writable, then we change its
1881 protection back to writable */
1882 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1883 host_start = address & qemu_host_page_mask;
1884 host_end = host_start + qemu_host_page_size;
1885
1886 prot = 0;
1887 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1888 p = page_find(addr >> TARGET_PAGE_BITS);
1889 p->flags |= PAGE_WRITE;
1890 prot |= p->flags;
1891
1892 /* and since the content will be modified, we must invalidate
1893 the corresponding translated code. */
d02532f0 1894 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1895#ifdef DEBUG_TB_CHECK
1896 tb_invalidate_check(addr);
1897#endif
1898 }
1899 mprotect((void *)g2h(host_start), qemu_host_page_size,
1900 prot & PAGE_BITS);
1901
1902 mmap_unlock();
1903 return 1;
1904 }
1905 mmap_unlock();
1906 return 0;
1907}
1908#endif /* CONFIG_USER_ONLY */