]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
lsi: do not exit QEMU if reading invalid register
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
5b6dd868 21#endif
7b31bbc2 22#include "qemu/osdep.h"
d19893da 23
2054396a 24
5b6dd868 25#include "qemu-common.h"
af5ad107 26#define NO_CPU_IO_DEFS
d3eead2e 27#include "cpu.h"
6db8b538 28#include "trace.h"
76cad711 29#include "disas/disas.h"
63c91552 30#include "exec/exec-all.h"
57fec1fe 31#include "tcg.h"
5b6dd868
BS
32#if defined(CONFIG_USER_ONLY)
33#include "qemu.h"
34#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35#include <sys/param.h>
36#if __FreeBSD_version >= 700104
37#define HAVE_KINFO_GETVMMAP
38#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
39#include <sys/proc.h>
40#include <machine/profile.h>
41#define _KERNEL
42#include <sys/user.h>
43#undef _KERNEL
44#undef sigqueue
45#include <libutil.h>
46#endif
47#endif
0bc3cd62
PB
48#else
49#include "exec/address-spaces.h"
5b6dd868
BS
50#endif
51
022c62cb 52#include "exec/cputlb.h"
e1b89321 53#include "exec/tb-hash.h"
5b6dd868 54#include "translate-all.h"
510a647f 55#include "qemu/bitmap.h"
0aa09897 56#include "qemu/timer.h"
508127e2 57#include "exec/log.h"
5b6dd868
BS
58
59//#define DEBUG_TB_INVALIDATE
60//#define DEBUG_FLUSH
61/* make various TB consistency checks */
62//#define DEBUG_TB_CHECK
63
64#if !defined(CONFIG_USER_ONLY)
65/* TB consistency checks only implemented for usermode emulation. */
66#undef DEBUG_TB_CHECK
67#endif
68
69#define SMC_BITMAP_USE_THRESHOLD 10
70
5b6dd868
BS
71typedef struct PageDesc {
72 /* list of TBs intersecting this ram page */
73 TranslationBlock *first_tb;
6fad459c 74#ifdef CONFIG_SOFTMMU
5b6dd868
BS
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
510a647f 78 unsigned long *code_bitmap;
6fad459c 79#else
5b6dd868
BS
80 unsigned long flags;
81#endif
82} PageDesc;
83
84/* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86#if !defined(CONFIG_USER_ONLY)
87#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89#else
90# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91#endif
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94#endif
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define V_L2_BITS 10
98#define V_L2_SIZE (1 << V_L2_BITS)
99
5b6dd868
BS
100/* The bits remaining after N lower levels of page tables. */
101#define V_L1_BITS_REM \
03f49957 102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
103
104#if V_L1_BITS_REM < 4
03f49957 105#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
106#else
107#define V_L1_BITS V_L1_BITS_REM
108#endif
109
110#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
5b6dd868 114uintptr_t qemu_host_page_size;
0c2d70c4 115intptr_t qemu_host_page_mask;
5b6dd868 116
d1142fb8 117/* The bottom level has pointers to PageDesc */
5b6dd868
BS
118static void *l1_map[V_L1_SIZE];
119
57fec1fe
FB
120/* code generation context */
121TCGContext tcg_ctx;
d19893da 122
677ef623
FK
123/* translation block context */
124#ifdef CONFIG_USER_ONLY
125__thread int have_tb_lock;
126#endif
127
128void tb_lock(void)
129{
130#ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134#endif
135}
136
137void tb_unlock(void)
138{
139#ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143#endif
144}
145
146void tb_lock_reset(void)
147{
148#ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153#endif
154}
155
a8a826a3 156static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 157
57fec1fe
FB
158void cpu_gen_init(void)
159{
160 tcg_context_init(&tcg_ctx);
57fec1fe
FB
161}
162
fca8a500
RH
163/* Encode VAL as a signed leb128 sequence at P.
164 Return P incremented past the encoded value. */
165static uint8_t *encode_sleb128(uint8_t *p, target_long val)
166{
167 int more, byte;
168
169 do {
170 byte = val & 0x7f;
171 val >>= 7;
172 more = !((val == 0 && (byte & 0x40) == 0)
173 || (val == -1 && (byte & 0x40) != 0));
174 if (more) {
175 byte |= 0x80;
176 }
177 *p++ = byte;
178 } while (more);
179
180 return p;
181}
182
183/* Decode a signed leb128 sequence at *PP; increment *PP past the
184 decoded value. Return the decoded value. */
185static target_long decode_sleb128(uint8_t **pp)
186{
187 uint8_t *p = *pp;
188 target_long val = 0;
189 int byte, shift = 0;
190
191 do {
192 byte = *p++;
193 val |= (target_ulong)(byte & 0x7f) << shift;
194 shift += 7;
195 } while (byte & 0x80);
196 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
197 val |= -(target_ulong)1 << shift;
198 }
199
200 *pp = p;
201 return val;
202}
203
204/* Encode the data collected about the instructions while compiling TB.
205 Place the data at BLOCK, and return the number of bytes consumed.
206
207 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
208 which come from the target's insn_start data, followed by a uintptr_t
209 which comes from the host pc of the end of the code implementing the insn.
210
211 Each line of the table is encoded as sleb128 deltas from the previous
212 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
213 That is, the first column is seeded with the guest pc, the last column
214 with the host pc, and the middle columns with zeros. */
215
216static int encode_search(TranslationBlock *tb, uint8_t *block)
217{
b125f9dc 218 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
219 uint8_t *p = block;
220 int i, j, n;
221
222 tb->tc_search = block;
223
224 for (i = 0, n = tb->icount; i < n; ++i) {
225 target_ulong prev;
226
227 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
228 if (i == 0) {
229 prev = (j == 0 ? tb->pc : 0);
230 } else {
231 prev = tcg_ctx.gen_insn_data[i - 1][j];
232 }
233 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
234 }
235 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
236 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
237
238 /* Test for (pending) buffer overflow. The assumption is that any
239 one row beginning below the high water mark cannot overrun
240 the buffer completely. Thus we can test for overflow after
241 encoding a row without having to check during encoding. */
242 if (unlikely(p > highwater)) {
243 return -1;
244 }
fca8a500
RH
245 }
246
247 return p - block;
248}
249
fec88f64 250/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 251static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 252 uintptr_t searched_pc)
d19893da 253{
fca8a500
RH
254 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
255 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 256 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
257 uint8_t *p = tb->tc_search;
258 int i, j, num_insns = tb->icount;
57fec1fe 259#ifdef CONFIG_PROFILER
fca8a500 260 int64_t ti = profile_getclock();
57fec1fe
FB
261#endif
262
fca8a500
RH
263 if (searched_pc < host_pc) {
264 return -1;
265 }
d19893da 266
fca8a500
RH
267 /* Reconstruct the stored insn data while looking for the point at
268 which the end of the insn exceeds the searched_pc. */
269 for (i = 0; i < num_insns; ++i) {
270 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
271 data[j] += decode_sleb128(&p);
272 }
273 host_pc += decode_sleb128(&p);
274 if (host_pc > searched_pc) {
275 goto found;
276 }
277 }
278 return -1;
3b46e624 279
fca8a500 280 found:
bd79255d 281 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 282 assert(use_icount);
2e70f6ef 283 /* Reset the cycle counter to the start of the block. */
fca8a500 284 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 285 /* Clear the IO flag. */
99df7dce 286 cpu->can_do_io = 0;
2e70f6ef 287 }
fca8a500
RH
288 cpu->icount_decr.u16.low -= i;
289 restore_state_to_opc(env, tb, data);
57fec1fe
FB
290
291#ifdef CONFIG_PROFILER
fca8a500
RH
292 tcg_ctx.restore_time += profile_getclock() - ti;
293 tcg_ctx.restore_count++;
57fec1fe 294#endif
d19893da
FB
295 return 0;
296}
5b6dd868 297
3f38f309 298bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
299{
300 TranslationBlock *tb;
301
302 tb = tb_find_pc(retaddr);
303 if (tb) {
74f10515 304 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
307 tb_phys_invalidate(tb, -1);
308 tb_free(tb);
309 }
a8a826a3
BS
310 return true;
311 }
312 return false;
313}
314
47c16ed5 315void page_size_init(void)
5b6dd868
BS
316{
317 /* NOTE: we can always suppose that qemu_host_page_size >=
318 TARGET_PAGE_SIZE */
5b6dd868 319 qemu_real_host_page_size = getpagesize();
0c2d70c4 320 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
321 if (qemu_host_page_size == 0) {
322 qemu_host_page_size = qemu_real_host_page_size;
323 }
324 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
325 qemu_host_page_size = TARGET_PAGE_SIZE;
326 }
0c2d70c4 327 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 328}
5b6dd868 329
47c16ed5
AK
330static void page_init(void)
331{
332 page_size_init();
5b6dd868
BS
333#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
334 {
335#ifdef HAVE_KINFO_GETVMMAP
336 struct kinfo_vmentry *freep;
337 int i, cnt;
338
339 freep = kinfo_getvmmap(getpid(), &cnt);
340 if (freep) {
341 mmap_lock();
342 for (i = 0; i < cnt; i++) {
343 unsigned long startaddr, endaddr;
344
345 startaddr = freep[i].kve_start;
346 endaddr = freep[i].kve_end;
347 if (h2g_valid(startaddr)) {
348 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
349
350 if (h2g_valid(endaddr)) {
351 endaddr = h2g(endaddr);
352 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
353 } else {
354#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
355 endaddr = ~0ul;
356 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
357#endif
358 }
359 }
360 }
361 free(freep);
362 mmap_unlock();
363 }
364#else
365 FILE *f;
366
367 last_brk = (unsigned long)sbrk(0);
368
369 f = fopen("/compat/linux/proc/self/maps", "r");
370 if (f) {
371 mmap_lock();
372
373 do {
374 unsigned long startaddr, endaddr;
375 int n;
376
377 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
378
379 if (n == 2 && h2g_valid(startaddr)) {
380 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
381
382 if (h2g_valid(endaddr)) {
383 endaddr = h2g(endaddr);
384 } else {
385 endaddr = ~0ul;
386 }
387 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
388 }
389 } while (!feof(f));
390
391 fclose(f);
392 mmap_unlock();
393 }
394#endif
395 }
396#endif
397}
398
75692087
PB
399/* If alloc=1:
400 * Called with mmap_lock held for user-mode emulation.
401 */
5b6dd868
BS
402static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
403{
404 PageDesc *pd;
405 void **lp;
406 int i;
407
5b6dd868
BS
408 /* Level 1. Always allocated. */
409 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
410
411 /* Level 2..N-1. */
03f49957 412 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 413 void **p = atomic_rcu_read(lp);
5b6dd868
BS
414
415 if (p == NULL) {
416 if (!alloc) {
417 return NULL;
418 }
e3a0abfd 419 p = g_new0(void *, V_L2_SIZE);
6940fab8 420 atomic_rcu_set(lp, p);
5b6dd868
BS
421 }
422
03f49957 423 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
424 }
425
6940fab8 426 pd = atomic_rcu_read(lp);
5b6dd868
BS
427 if (pd == NULL) {
428 if (!alloc) {
429 return NULL;
430 }
e3a0abfd 431 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 432 atomic_rcu_set(lp, pd);
5b6dd868
BS
433 }
434
03f49957 435 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
436}
437
438static inline PageDesc *page_find(tb_page_addr_t index)
439{
440 return page_find_alloc(index, 0);
441}
442
5b6dd868
BS
443#if defined(CONFIG_USER_ONLY)
444/* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used. */
446/* ??? 64-bit hosts ought to have no problem mmaping data outside the
447 region in which the guest needs to run. Revisit this. */
448#define USE_STATIC_CODE_GEN_BUFFER
449#endif
450
5b6dd868
BS
451/* Minimum size of the code gen buffer. This number is randomly chosen,
452 but not so small that we can't have a fair number of TB's live. */
453#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
454
455/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
456 indicated, this is constrained by the range of direct branches on the
457 host cpu, as used by the TCG implementation of goto_tb. */
458#if defined(__x86_64__)
459# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
460#elif defined(__sparc__)
461# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
462#elif defined(__powerpc64__)
463# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
464#elif defined(__powerpc__)
465# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
466#elif defined(__aarch64__)
467# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
468#elif defined(__arm__)
469# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
470#elif defined(__s390x__)
471 /* We have a +- 4GB range on the branches; leave some slop. */
472# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
473#elif defined(__mips__)
474 /* We have a 256MB branch region, but leave room to make sure the
475 main executable is also within that region. */
476# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
477#else
478# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
479#endif
480
481#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
482
483#define DEFAULT_CODE_GEN_BUFFER_SIZE \
484 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
485 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
486
487static inline size_t size_code_gen_buffer(size_t tb_size)
488{
489 /* Size the buffer. */
490 if (tb_size == 0) {
491#ifdef USE_STATIC_CODE_GEN_BUFFER
492 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
493#else
494 /* ??? Needs adjustments. */
495 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
496 static buffer, we could size this on RESERVED_VA, on the text
497 segment size of the executable, or continue to use the default. */
498 tb_size = (unsigned long)(ram_size / 4);
499#endif
500 }
501 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
502 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
503 }
504 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
506 }
5b6dd868
BS
507 return tb_size;
508}
509
483c76e1
RH
510#ifdef __mips__
511/* In order to use J and JAL within the code_gen_buffer, we require
512 that the buffer not cross a 256MB boundary. */
513static inline bool cross_256mb(void *addr, size_t size)
514{
7ba6a512 515 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
516}
517
518/* We weren't able to allocate a buffer without crossing that boundary,
519 so make do with the larger portion of the buffer that doesn't cross.
520 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
521static inline void *split_cross_256mb(void *buf1, size_t size1)
522{
7ba6a512 523 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
524 size_t size2 = buf1 + size1 - buf2;
525
526 size1 = buf2 - buf1;
527 if (size1 < size2) {
528 size1 = size2;
529 buf1 = buf2;
530 }
531
532 tcg_ctx.code_gen_buffer_size = size1;
533 return buf1;
534}
535#endif
536
5b6dd868
BS
537#ifdef USE_STATIC_CODE_GEN_BUFFER
538static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
539 __attribute__((aligned(CODE_GEN_ALIGN)));
540
f293709c
RH
541# ifdef _WIN32
542static inline void do_protect(void *addr, long size, int prot)
543{
544 DWORD old_protect;
545 VirtualProtect(addr, size, prot, &old_protect);
546}
547
548static inline void map_exec(void *addr, long size)
549{
550 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
551}
552
553static inline void map_none(void *addr, long size)
554{
555 do_protect(addr, size, PAGE_NOACCESS);
556}
557# else
558static inline void do_protect(void *addr, long size, int prot)
559{
560 uintptr_t start, end;
561
562 start = (uintptr_t)addr;
563 start &= qemu_real_host_page_mask;
564
565 end = (uintptr_t)addr + size;
566 end = ROUND_UP(end, qemu_real_host_page_size);
567
568 mprotect((void *)start, end - start, prot);
569}
570
571static inline void map_exec(void *addr, long size)
572{
573 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
574}
575
576static inline void map_none(void *addr, long size)
577{
578 do_protect(addr, size, PROT_NONE);
579}
580# endif /* WIN32 */
581
5b6dd868
BS
582static inline void *alloc_code_gen_buffer(void)
583{
483c76e1 584 void *buf = static_code_gen_buffer;
f293709c
RH
585 size_t full_size, size;
586
587 /* The size of the buffer, rounded down to end on a page boundary. */
588 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
589 & qemu_real_host_page_mask) - (uintptr_t)buf;
590
591 /* Reserve a guard page. */
592 size = full_size - qemu_real_host_page_size;
593
594 /* Honor a command-line option limiting the size of the buffer. */
595 if (size > tcg_ctx.code_gen_buffer_size) {
596 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
597 & qemu_real_host_page_mask) - (uintptr_t)buf;
598 }
599 tcg_ctx.code_gen_buffer_size = size;
600
483c76e1 601#ifdef __mips__
f293709c
RH
602 if (cross_256mb(buf, size)) {
603 buf = split_cross_256mb(buf, size);
604 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
605 }
606#endif
f293709c
RH
607
608 map_exec(buf, size);
609 map_none(buf + size, qemu_real_host_page_size);
610 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
611
483c76e1 612 return buf;
5b6dd868 613}
f293709c
RH
614#elif defined(_WIN32)
615static inline void *alloc_code_gen_buffer(void)
616{
617 size_t size = tcg_ctx.code_gen_buffer_size;
618 void *buf1, *buf2;
619
620 /* Perform the allocation in two steps, so that the guard page
621 is reserved but uncommitted. */
622 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
623 MEM_RESERVE, PAGE_NOACCESS);
624 if (buf1 != NULL) {
625 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
626 assert(buf1 == buf2);
627 }
628
629 return buf1;
630}
631#else
5b6dd868
BS
632static inline void *alloc_code_gen_buffer(void)
633{
634 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
635 uintptr_t start = 0;
f293709c 636 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
637 void *buf;
638
639 /* Constrain the position of the buffer based on the host cpu.
640 Note that these addresses are chosen in concert with the
641 addresses assigned in the relevant linker script file. */
642# if defined(__PIE__) || defined(__PIC__)
643 /* Don't bother setting a preferred location if we're building
644 a position-independent executable. We're more likely to get
645 an address near the main executable if we let the kernel
646 choose the address. */
647# elif defined(__x86_64__) && defined(MAP_32BIT)
648 /* Force the memory down into low memory with the executable.
649 Leave the choice of exact location with the kernel. */
650 flags |= MAP_32BIT;
651 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
652 if (size > 800u * 1024 * 1024) {
653 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
654 }
655# elif defined(__sparc__)
656 start = 0x40000000ul;
657# elif defined(__s390x__)
658 start = 0x90000000ul;
479eb121 659# elif defined(__mips__)
f293709c 660# if _MIPS_SIM == _ABI64
479eb121
RH
661 start = 0x128000000ul;
662# else
663 start = 0x08000000ul;
664# endif
5b6dd868
BS
665# endif
666
f293709c
RH
667 buf = mmap((void *)start, size + qemu_real_host_page_size,
668 PROT_NONE, flags, -1, 0);
483c76e1
RH
669 if (buf == MAP_FAILED) {
670 return NULL;
671 }
672
673#ifdef __mips__
f293709c 674 if (cross_256mb(buf, size)) {
5d831be2 675 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 676 that 256mb crossing. This time don't specify an address. */
f293709c
RH
677 size_t size2;
678 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
679 PROT_NONE, flags, -1, 0);
680 switch (buf2 != MAP_FAILED) {
681 case 1:
682 if (!cross_256mb(buf2, size)) {
483c76e1 683 /* Success! Use the new buffer. */
8bdf4997 684 munmap(buf, size + qemu_real_host_page_size);
f293709c 685 break;
483c76e1
RH
686 }
687 /* Failure. Work with what we had. */
8bdf4997 688 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
689 /* fallthru */
690 default:
691 /* Split the original buffer. Free the smaller half. */
692 buf2 = split_cross_256mb(buf, size);
693 size2 = tcg_ctx.code_gen_buffer_size;
694 if (buf == buf2) {
695 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
696 } else {
697 munmap(buf, size - size2);
698 }
699 size = size2;
700 break;
483c76e1 701 }
f293709c 702 buf = buf2;
483c76e1
RH
703 }
704#endif
705
f293709c
RH
706 /* Make the final buffer accessible. The guard page at the end
707 will remain inaccessible with PROT_NONE. */
708 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 709
f293709c
RH
710 /* Request large pages for the buffer. */
711 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 712
5b6dd868
BS
713 return buf;
714}
f293709c 715#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
716
717static inline void code_gen_alloc(size_t tb_size)
718{
0b0d3320
EV
719 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
720 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
721 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
722 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
723 exit(1);
724 }
725
8163b749
RH
726 /* Estimate a good size for the number of TBs we can support. We
727 still haven't deducted the prologue from the buffer size here,
728 but that's minimal and won't affect the estimate much. */
729 tcg_ctx.code_gen_max_blocks
730 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
731 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
732
677ef623 733 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
734}
735
909eaac9
EC
736static void tb_htable_init(void)
737{
738 unsigned int mode = QHT_MODE_AUTO_RESIZE;
739
740 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
741}
742
5b6dd868
BS
743/* Must be called before using the QEMU cpus. 'tb_size' is the size
744 (in bytes) allocated to the translation buffer. Zero means default
745 size. */
746void tcg_exec_init(unsigned long tb_size)
747{
748 cpu_gen_init();
5b6dd868 749 page_init();
909eaac9 750 tb_htable_init();
f293709c 751 code_gen_alloc(tb_size);
4cbea598 752#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
753 /* There's no guest base to take into account, so go ahead and
754 initialize the prologue now. */
755 tcg_prologue_init(&tcg_ctx);
756#endif
757}
758
759bool tcg_enabled(void)
760{
0b0d3320 761 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
762}
763
764/* Allocate a new translation block. Flush the translation buffer if
765 too many translation blocks or too much generated code. */
766static TranslationBlock *tb_alloc(target_ulong pc)
767{
768 TranslationBlock *tb;
769
b125f9dc 770 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
771 return NULL;
772 }
5e5f07e0 773 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
774 tb->pc = pc;
775 tb->cflags = 0;
6d21e420 776 tb->invalid = false;
5b6dd868
BS
777 return tb;
778}
779
780void tb_free(TranslationBlock *tb)
781{
782 /* In practice this is mostly used for single use temporary TB
783 Ignore the hard cases and just back up if this TB happens to
784 be the last one generated. */
5e5f07e0
EV
785 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
786 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 787 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 788 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
789 }
790}
791
792static inline void invalidate_page_bitmap(PageDesc *p)
793{
6fad459c 794#ifdef CONFIG_SOFTMMU
012aef07
MA
795 g_free(p->code_bitmap);
796 p->code_bitmap = NULL;
5b6dd868 797 p->code_write_count = 0;
6fad459c 798#endif
5b6dd868
BS
799}
800
801/* Set to NULL all the 'first_tb' fields in all PageDescs. */
802static void page_flush_tb_1(int level, void **lp)
803{
804 int i;
805
806 if (*lp == NULL) {
807 return;
808 }
809 if (level == 0) {
810 PageDesc *pd = *lp;
811
03f49957 812 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
813 pd[i].first_tb = NULL;
814 invalidate_page_bitmap(pd + i);
815 }
816 } else {
817 void **pp = *lp;
818
03f49957 819 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
820 page_flush_tb_1(level - 1, pp + i);
821 }
822 }
823}
824
825static void page_flush_tb(void)
826{
827 int i;
828
829 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 830 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
831 }
832}
833
834/* flush all the translation blocks */
835/* XXX: tb_flush is currently not thread safe */
bbd77c18 836void tb_flush(CPUState *cpu)
5b6dd868 837{
135a972b
CB
838 if (!tcg_enabled()) {
839 return;
840 }
5b6dd868
BS
841#if defined(DEBUG_FLUSH)
842 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 843 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 844 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 845 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 846 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 847#endif
0b0d3320
EV
848 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
849 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 850 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 851 }
5b6dd868 852
bdc44640 853 CPU_FOREACH(cpu) {
89a16b1e
SF
854 int i;
855
856 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
857 atomic_set(&cpu->tb_jmp_cache[i], NULL);
858 }
118b0730 859 atomic_mb_set(&cpu->tb_flushed, true);
5b6dd868
BS
860 }
861
118b0730 862 tcg_ctx.tb_ctx.nb_tbs = 0;
909eaac9 863 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
5b6dd868
BS
864 page_flush_tb();
865
0b0d3320 866 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
867 /* XXX: flush processor icache at this point if cache flush is
868 expensive */
5e5f07e0 869 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
870}
871
872#ifdef DEBUG_TB_CHECK
873
909eaac9
EC
874static void
875do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
5b6dd868 876{
909eaac9
EC
877 TranslationBlock *tb = p;
878 target_ulong addr = *(target_ulong *)userp;
879
880 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
881 printf("ERROR invalidate: address=" TARGET_FMT_lx
882 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
883 }
884}
5b6dd868 885
909eaac9
EC
886static void tb_invalidate_check(target_ulong address)
887{
5b6dd868 888 address &= TARGET_PAGE_MASK;
909eaac9
EC
889 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
890}
891
892static void
893do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
894{
895 TranslationBlock *tb = p;
896 int flags1, flags2;
897
898 flags1 = page_get_flags(tb->pc);
899 flags2 = page_get_flags(tb->pc + tb->size - 1);
900 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
901 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
902 (long)tb->pc, tb->size, flags1, flags2);
5b6dd868
BS
903 }
904}
905
906/* verify that all the pages have correct rights for code */
907static void tb_page_check(void)
908{
909eaac9 909 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
5b6dd868
BS
910}
911
912#endif
913
5b6dd868
BS
914static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
915{
916 TranslationBlock *tb1;
917 unsigned int n1;
918
919 for (;;) {
920 tb1 = *ptb;
921 n1 = (uintptr_t)tb1 & 3;
922 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
923 if (tb1 == tb) {
924 *ptb = tb1->page_next[n1];
925 break;
926 }
927 ptb = &tb1->page_next[n1];
928 }
929}
930
13362678
SF
931/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
932static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 933{
c37e6d7e
SF
934 TranslationBlock *tb1;
935 uintptr_t *ptb, ntb;
5b6dd868
BS
936 unsigned int n1;
937
f309101c 938 ptb = &tb->jmp_list_next[n];
c37e6d7e 939 if (*ptb) {
5b6dd868
BS
940 /* find tb(n) in circular list */
941 for (;;) {
c37e6d7e
SF
942 ntb = *ptb;
943 n1 = ntb & 3;
944 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
945 if (n1 == n && tb1 == tb) {
946 break;
947 }
948 if (n1 == 2) {
f309101c 949 ptb = &tb1->jmp_list_first;
5b6dd868 950 } else {
f309101c 951 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
952 }
953 }
954 /* now we can suppress tb(n) from the list */
f309101c 955 *ptb = tb->jmp_list_next[n];
5b6dd868 956
c37e6d7e 957 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
958 }
959}
960
961/* reset the jump entry 'n' of a TB so that it is not chained to
962 another TB */
963static inline void tb_reset_jump(TranslationBlock *tb, int n)
964{
f309101c
SF
965 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
966 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
967}
968
89bba496
SF
969/* remove any jumps to the TB */
970static inline void tb_jmp_unlink(TranslationBlock *tb)
971{
f9c5b66f
SF
972 TranslationBlock *tb1;
973 uintptr_t *ptb, ntb;
89bba496
SF
974 unsigned int n1;
975
f9c5b66f 976 ptb = &tb->jmp_list_first;
89bba496 977 for (;;) {
f9c5b66f
SF
978 ntb = *ptb;
979 n1 = ntb & 3;
980 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
981 if (n1 == 2) {
982 break;
983 }
f9c5b66f
SF
984 tb_reset_jump(tb1, n1);
985 *ptb = tb1->jmp_list_next[n1];
986 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 987 }
89bba496
SF
988}
989
0c884d16 990/* invalidate one TB */
5b6dd868
BS
991void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
992{
182735ef 993 CPUState *cpu;
5b6dd868 994 PageDesc *p;
42bd3228 995 uint32_t h;
5b6dd868 996 tb_page_addr_t phys_pc;
5b6dd868 997
6d21e420
PB
998 atomic_set(&tb->invalid, true);
999
5b6dd868
BS
1000 /* remove the TB from the hash list */
1001 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
42bd3228 1002 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 1003 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
5b6dd868
BS
1004
1005 /* remove the TB from the page list */
1006 if (tb->page_addr[0] != page_addr) {
1007 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1008 tb_page_remove(&p->first_tb, tb);
1009 invalidate_page_bitmap(p);
1010 }
1011 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1012 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1013 tb_page_remove(&p->first_tb, tb);
1014 invalidate_page_bitmap(p);
1015 }
1016
5b6dd868
BS
1017 /* remove the TB from the hash list */
1018 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1019 CPU_FOREACH(cpu) {
89a16b1e
SF
1020 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1021 atomic_set(&cpu->tb_jmp_cache[h], NULL);
5b6dd868
BS
1022 }
1023 }
1024
1025 /* suppress this TB from the two jump lists */
13362678
SF
1026 tb_remove_from_jmp_list(tb, 0);
1027 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1028
1029 /* suppress any remaining jumps to this TB */
89bba496 1030 tb_jmp_unlink(tb);
5b6dd868 1031
5e5f07e0 1032 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1033}
1034
6fad459c 1035#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1036static void build_page_bitmap(PageDesc *p)
1037{
1038 int n, tb_start, tb_end;
1039 TranslationBlock *tb;
1040
510a647f 1041 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1042
1043 tb = p->first_tb;
1044 while (tb != NULL) {
1045 n = (uintptr_t)tb & 3;
1046 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1047 /* NOTE: this is subtle as a TB may span two physical pages */
1048 if (n == 0) {
1049 /* NOTE: tb_end may be after the end of the page, but
1050 it is not a problem */
1051 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1052 tb_end = tb_start + tb->size;
1053 if (tb_end > TARGET_PAGE_SIZE) {
1054 tb_end = TARGET_PAGE_SIZE;
1055 }
1056 } else {
1057 tb_start = 0;
1058 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1059 }
510a647f 1060 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1061 tb = tb->page_next[n];
1062 }
1063}
6fad459c 1064#endif
5b6dd868 1065
e90d96b1
SF
1066/* add the tb in the target page and protect it if necessary
1067 *
1068 * Called with mmap_lock held for user-mode emulation.
1069 */
1070static inline void tb_alloc_page(TranslationBlock *tb,
1071 unsigned int n, tb_page_addr_t page_addr)
1072{
1073 PageDesc *p;
1074#ifndef CONFIG_USER_ONLY
1075 bool page_already_protected;
1076#endif
1077
1078 tb->page_addr[n] = page_addr;
1079 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1080 tb->page_next[n] = p->first_tb;
1081#ifndef CONFIG_USER_ONLY
1082 page_already_protected = p->first_tb != NULL;
1083#endif
1084 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1085 invalidate_page_bitmap(p);
1086
1087#if defined(CONFIG_USER_ONLY)
1088 if (p->flags & PAGE_WRITE) {
1089 target_ulong addr;
1090 PageDesc *p2;
1091 int prot;
1092
1093 /* force the host page as non writable (writes will have a
1094 page fault + mprotect overhead) */
1095 page_addr &= qemu_host_page_mask;
1096 prot = 0;
1097 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1098 addr += TARGET_PAGE_SIZE) {
1099
1100 p2 = page_find(addr >> TARGET_PAGE_BITS);
1101 if (!p2) {
1102 continue;
1103 }
1104 prot |= p2->flags;
1105 p2->flags &= ~PAGE_WRITE;
1106 }
1107 mprotect(g2h(page_addr), qemu_host_page_size,
1108 (prot & PAGE_BITS) & ~PAGE_WRITE);
1109#ifdef DEBUG_TB_INVALIDATE
1110 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1111 page_addr);
1112#endif
1113 }
1114#else
1115 /* if some code is already present, then the pages are already
1116 protected. So we handle the case where only the first TB is
1117 allocated in a physical page */
1118 if (!page_already_protected) {
1119 tlb_protect_code(page_addr);
1120 }
1121#endif
1122}
1123
1124/* add a new TB and link it to the physical page tables. phys_page2 is
1125 * (-1) to indicate that only one page contains the TB.
1126 *
1127 * Called with mmap_lock held for user-mode emulation.
1128 */
1129static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1130 tb_page_addr_t phys_page2)
1131{
42bd3228 1132 uint32_t h;
e90d96b1 1133
e90d96b1
SF
1134 /* add in the page list */
1135 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1136 if (phys_page2 != -1) {
1137 tb_alloc_page(tb, 1, phys_page2);
1138 } else {
1139 tb->page_addr[1] = -1;
1140 }
1141
2e1ae44a
AB
1142 /* add in the hash table */
1143 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1144 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1145
e90d96b1
SF
1146#ifdef DEBUG_TB_CHECK
1147 tb_page_check();
1148#endif
1149}
1150
75692087 1151/* Called with mmap_lock held for user mode emulation. */
648f034c 1152TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1153 target_ulong pc, target_ulong cs_base,
89fee74a 1154 uint32_t flags, int cflags)
5b6dd868 1155{
648f034c 1156 CPUArchState *env = cpu->env_ptr;
5b6dd868 1157 TranslationBlock *tb;
5b6dd868
BS
1158 tb_page_addr_t phys_pc, phys_page2;
1159 target_ulong virt_page2;
fec88f64 1160 tcg_insn_unit *gen_code_buf;
fca8a500 1161 int gen_code_size, search_size;
fec88f64
RH
1162#ifdef CONFIG_PROFILER
1163 int64_t ti;
1164#endif
5b6dd868
BS
1165
1166 phys_pc = get_page_addr_code(env, pc);
56c0269a 1167 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1168 cflags |= CF_USE_ICOUNT;
1169 }
b125f9dc 1170
5b6dd868 1171 tb = tb_alloc(pc);
b125f9dc
RH
1172 if (unlikely(!tb)) {
1173 buffer_overflow:
5b6dd868 1174 /* flush must be done */
bbd77c18 1175 tb_flush(cpu);
5b6dd868
BS
1176 /* cannot fail at this point */
1177 tb = tb_alloc(pc);
b125f9dc 1178 assert(tb != NULL);
5b6dd868 1179 }
fec88f64
RH
1180
1181 gen_code_buf = tcg_ctx.code_gen_ptr;
1182 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1183 tb->cs_base = cs_base;
1184 tb->flags = flags;
1185 tb->cflags = cflags;
fec88f64
RH
1186
1187#ifdef CONFIG_PROFILER
1188 tcg_ctx.tb_count1++; /* includes aborted translations because of
1189 exceptions */
1190 ti = profile_getclock();
1191#endif
1192
1193 tcg_func_start(&tcg_ctx);
1194
7c255043 1195 tcg_ctx.cpu = ENV_GET_CPU(env);
fec88f64 1196 gen_intermediate_code(env, tb);
7c255043 1197 tcg_ctx.cpu = NULL;
fec88f64
RH
1198
1199 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1200
1201 /* generate machine code */
f309101c
SF
1202 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1203 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1204 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1205#ifdef USE_DIRECT_JUMP
f309101c
SF
1206 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1207 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1208#else
f309101c
SF
1209 tcg_ctx.tb_jmp_insn_offset = NULL;
1210 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1211#endif
1212
1213#ifdef CONFIG_PROFILER
1214 tcg_ctx.tb_count++;
1215 tcg_ctx.interm_time += profile_getclock() - ti;
1216 tcg_ctx.code_time -= profile_getclock();
1217#endif
1218
b125f9dc
RH
1219 /* ??? Overflow could be handled better here. In particular, we
1220 don't need to re-do gen_intermediate_code, nor should we re-do
1221 the tcg optimization currently hidden inside tcg_gen_code. All
1222 that should be required is to flush the TBs, allocate a new TB,
1223 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1224 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1225 if (unlikely(gen_code_size < 0)) {
1226 goto buffer_overflow;
1227 }
fca8a500 1228 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1229 if (unlikely(search_size < 0)) {
1230 goto buffer_overflow;
1231 }
fec88f64
RH
1232
1233#ifdef CONFIG_PROFILER
1234 tcg_ctx.code_time += profile_getclock();
1235 tcg_ctx.code_in_len += tb->size;
1236 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1237 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1238#endif
1239
1240#ifdef DEBUG_DISAS
d977e1c2
AB
1241 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1242 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1243 qemu_log("OUT: [size=%d]\n", gen_code_size);
1244 log_disas(tb->tc_ptr, gen_code_size);
1245 qemu_log("\n");
1246 qemu_log_flush();
1247 }
1248#endif
1249
fca8a500
RH
1250 tcg_ctx.code_gen_ptr = (void *)
1251 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1252 CODE_GEN_ALIGN);
5b6dd868 1253
901bc3de
SF
1254 /* init jump list */
1255 assert(((uintptr_t)tb & 3) == 0);
1256 tb->jmp_list_first = (uintptr_t)tb | 2;
1257 tb->jmp_list_next[0] = (uintptr_t)NULL;
1258 tb->jmp_list_next[1] = (uintptr_t)NULL;
1259
1260 /* init original jump addresses wich has been set during tcg_gen_code() */
1261 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1262 tb_reset_jump(tb, 0);
1263 }
1264 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1265 tb_reset_jump(tb, 1);
1266 }
1267
5b6dd868
BS
1268 /* check next page if needed */
1269 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1270 phys_page2 = -1;
1271 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1272 phys_page2 = get_page_addr_code(env, virt_page2);
1273 }
901bc3de
SF
1274 /* As long as consistency of the TB stuff is provided by tb_lock in user
1275 * mode and is implicit in single-threaded softmmu emulation, no explicit
1276 * memory barrier is required before tb_link_page() makes the TB visible
1277 * through the physical hash table and physical page list.
1278 */
5b6dd868
BS
1279 tb_link_page(tb, phys_pc, phys_page2);
1280 return tb;
1281}
1282
1283/*
1284 * Invalidate all TBs which intersect with the target physical address range
1285 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1286 * 'is_cpu_write_access' should be true if called from a real cpu write
1287 * access: the virtual CPU will exit the current TB if code is modified inside
1288 * this TB.
75692087
PB
1289 *
1290 * Called with mmap_lock held for user-mode emulation
5b6dd868 1291 */
35865339 1292void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1293{
1294 while (start < end) {
35865339 1295 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1296 start &= TARGET_PAGE_MASK;
1297 start += TARGET_PAGE_SIZE;
1298 }
1299}
1300
1301/*
1302 * Invalidate all TBs which intersect with the target physical address range
1303 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1304 * 'is_cpu_write_access' should be true if called from a real cpu write
1305 * access: the virtual CPU will exit the current TB if code is modified inside
1306 * this TB.
75692087
PB
1307 *
1308 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1309 */
1310void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1311 int is_cpu_write_access)
1312{
3213525f 1313 TranslationBlock *tb, *tb_next;
baea4fae 1314#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1315 CPUState *cpu = current_cpu;
4917cf44
AF
1316 CPUArchState *env = NULL;
1317#endif
5b6dd868
BS
1318 tb_page_addr_t tb_start, tb_end;
1319 PageDesc *p;
1320 int n;
1321#ifdef TARGET_HAS_PRECISE_SMC
1322 int current_tb_not_found = is_cpu_write_access;
1323 TranslationBlock *current_tb = NULL;
1324 int current_tb_modified = 0;
1325 target_ulong current_pc = 0;
1326 target_ulong current_cs_base = 0;
89fee74a 1327 uint32_t current_flags = 0;
5b6dd868
BS
1328#endif /* TARGET_HAS_PRECISE_SMC */
1329
1330 p = page_find(start >> TARGET_PAGE_BITS);
1331 if (!p) {
1332 return;
1333 }
baea4fae 1334#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1335 if (cpu != NULL) {
1336 env = cpu->env_ptr;
d77953b9 1337 }
4917cf44 1338#endif
5b6dd868
BS
1339
1340 /* we remove all the TBs in the range [start, end[ */
1341 /* XXX: see if in some cases it could be faster to invalidate all
1342 the code */
1343 tb = p->first_tb;
1344 while (tb != NULL) {
1345 n = (uintptr_t)tb & 3;
1346 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1347 tb_next = tb->page_next[n];
1348 /* NOTE: this is subtle as a TB may span two physical pages */
1349 if (n == 0) {
1350 /* NOTE: tb_end may be after the end of the page, but
1351 it is not a problem */
1352 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1353 tb_end = tb_start + tb->size;
1354 } else {
1355 tb_start = tb->page_addr[1];
1356 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1357 }
1358 if (!(tb_end <= start || tb_start >= end)) {
1359#ifdef TARGET_HAS_PRECISE_SMC
1360 if (current_tb_not_found) {
1361 current_tb_not_found = 0;
1362 current_tb = NULL;
93afeade 1363 if (cpu->mem_io_pc) {
5b6dd868 1364 /* now we have a real cpu fault */
93afeade 1365 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1366 }
1367 }
1368 if (current_tb == tb &&
1369 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1370 /* If we are modifying the current TB, we must stop
1371 its execution. We could be more precise by checking
1372 that the modification is after the current PC, but it
1373 would require a specialized function to partially
1374 restore the CPU state */
1375
1376 current_tb_modified = 1;
74f10515 1377 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1378 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1379 &current_flags);
1380 }
1381#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1382 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1383 }
1384 tb = tb_next;
1385 }
1386#if !defined(CONFIG_USER_ONLY)
1387 /* if no code remaining, no need to continue to use slow writes */
1388 if (!p->first_tb) {
1389 invalidate_page_bitmap(p);
fc377bcf 1390 tlb_unprotect_code(start);
5b6dd868
BS
1391 }
1392#endif
1393#ifdef TARGET_HAS_PRECISE_SMC
1394 if (current_tb_modified) {
1395 /* we generate a block containing just the instruction
1396 modifying the memory. It will ensure that it cannot modify
1397 itself */
648f034c 1398 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
6886b980 1399 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1400 }
1401#endif
1402}
1403
6fad459c 1404#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1405/* len must be <= 8 and start must be a multiple of len */
1406void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1407{
1408 PageDesc *p;
5b6dd868
BS
1409
1410#if 0
1411 if (1) {
1412 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1413 cpu_single_env->mem_io_vaddr, len,
1414 cpu_single_env->eip,
1415 cpu_single_env->eip +
1416 (intptr_t)cpu_single_env->segs[R_CS].base);
1417 }
1418#endif
1419 p = page_find(start >> TARGET_PAGE_BITS);
1420 if (!p) {
1421 return;
1422 }
fc377bcf
PB
1423 if (!p->code_bitmap &&
1424 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1425 /* build code bitmap */
1426 build_page_bitmap(p);
1427 }
5b6dd868 1428 if (p->code_bitmap) {
510a647f
EC
1429 unsigned int nr;
1430 unsigned long b;
1431
1432 nr = start & ~TARGET_PAGE_MASK;
1433 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1434 if (b & ((1 << len) - 1)) {
1435 goto do_invalidate;
1436 }
1437 } else {
1438 do_invalidate:
1439 tb_invalidate_phys_page_range(start, start + len, 1);
1440 }
1441}
6fad459c 1442#else
75809229
PM
1443/* Called with mmap_lock held. If pc is not 0 then it indicates the
1444 * host PC of the faulting store instruction that caused this invalidate.
1445 * Returns true if the caller needs to abort execution of the current
1446 * TB (because it was modified by this store and the guest CPU has
1447 * precise-SMC semantics).
1448 */
1449static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
5b6dd868
BS
1450{
1451 TranslationBlock *tb;
1452 PageDesc *p;
1453 int n;
1454#ifdef TARGET_HAS_PRECISE_SMC
1455 TranslationBlock *current_tb = NULL;
4917cf44
AF
1456 CPUState *cpu = current_cpu;
1457 CPUArchState *env = NULL;
5b6dd868
BS
1458 int current_tb_modified = 0;
1459 target_ulong current_pc = 0;
1460 target_ulong current_cs_base = 0;
89fee74a 1461 uint32_t current_flags = 0;
5b6dd868
BS
1462#endif
1463
1464 addr &= TARGET_PAGE_MASK;
1465 p = page_find(addr >> TARGET_PAGE_BITS);
1466 if (!p) {
75809229 1467 return false;
5b6dd868
BS
1468 }
1469 tb = p->first_tb;
1470#ifdef TARGET_HAS_PRECISE_SMC
1471 if (tb && pc != 0) {
1472 current_tb = tb_find_pc(pc);
1473 }
4917cf44
AF
1474 if (cpu != NULL) {
1475 env = cpu->env_ptr;
d77953b9 1476 }
5b6dd868
BS
1477#endif
1478 while (tb != NULL) {
1479 n = (uintptr_t)tb & 3;
1480 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1481#ifdef TARGET_HAS_PRECISE_SMC
1482 if (current_tb == tb &&
1483 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1484 /* If we are modifying the current TB, we must stop
1485 its execution. We could be more precise by checking
1486 that the modification is after the current PC, but it
1487 would require a specialized function to partially
1488 restore the CPU state */
1489
1490 current_tb_modified = 1;
74f10515 1491 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1492 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1493 &current_flags);
1494 }
1495#endif /* TARGET_HAS_PRECISE_SMC */
1496 tb_phys_invalidate(tb, addr);
1497 tb = tb->page_next[n];
1498 }
1499 p->first_tb = NULL;
1500#ifdef TARGET_HAS_PRECISE_SMC
1501 if (current_tb_modified) {
1502 /* we generate a block containing just the instruction
1503 modifying the memory. It will ensure that it cannot modify
1504 itself */
648f034c 1505 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
75809229 1506 return true;
5b6dd868
BS
1507 }
1508#endif
75809229 1509 return false;
5b6dd868
BS
1510}
1511#endif
1512
5b6dd868
BS
1513/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1514 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1515static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1516{
1517 int m_min, m_max, m;
1518 uintptr_t v;
1519 TranslationBlock *tb;
1520
5e5f07e0 1521 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1522 return NULL;
1523 }
0b0d3320
EV
1524 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1525 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1526 return NULL;
1527 }
1528 /* binary search (cf Knuth) */
1529 m_min = 0;
5e5f07e0 1530 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1531 while (m_min <= m_max) {
1532 m = (m_min + m_max) >> 1;
5e5f07e0 1533 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1534 v = (uintptr_t)tb->tc_ptr;
1535 if (v == tc_ptr) {
1536 return tb;
1537 } else if (tc_ptr < v) {
1538 m_max = m - 1;
1539 } else {
1540 m_min = m + 1;
1541 }
1542 }
5e5f07e0 1543 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1544}
1545
ec53b45b 1546#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1547void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1548{
1549 ram_addr_t ram_addr;
5c8a00ce 1550 MemoryRegion *mr;
149f54b5 1551 hwaddr l = 1;
5b6dd868 1552
41063e1e 1553 rcu_read_lock();
29d8ec7b 1554 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1555 if (!(memory_region_is_ram(mr)
1556 || memory_region_is_romd(mr))) {
41063e1e 1557 rcu_read_unlock();
5b6dd868
BS
1558 return;
1559 }
e4e69794 1560 ram_addr = memory_region_get_ram_addr(mr) + addr;
5b6dd868 1561 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1562 rcu_read_unlock();
5b6dd868 1563}
ec53b45b 1564#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1565
239c51a5 1566void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1567{
1568 TranslationBlock *tb;
1569
93afeade 1570 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1571 if (tb) {
1572 /* We can use retranslation to find the PC. */
1573 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1574 tb_phys_invalidate(tb, -1);
1575 } else {
1576 /* The exception probably happened in a helper. The CPU state should
1577 have been saved before calling it. Fetch the PC from there. */
1578 CPUArchState *env = cpu->env_ptr;
1579 target_ulong pc, cs_base;
1580 tb_page_addr_t addr;
89fee74a 1581 uint32_t flags;
8d302e76
AJ
1582
1583 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1584 addr = get_page_addr_code(env, pc);
1585 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1586 }
5b6dd868
BS
1587}
1588
1589#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1590/* in deterministic execution mode, instructions doing device I/Os
1591 must be at the end of the TB */
90b40a69 1592void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1593{
a47dddd7 1594#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1595 CPUArchState *env = cpu->env_ptr;
a47dddd7 1596#endif
5b6dd868
BS
1597 TranslationBlock *tb;
1598 uint32_t n, cflags;
1599 target_ulong pc, cs_base;
89fee74a 1600 uint32_t flags;
5b6dd868
BS
1601
1602 tb = tb_find_pc(retaddr);
1603 if (!tb) {
a47dddd7 1604 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1605 (void *)retaddr);
1606 }
28ecfd7a 1607 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1608 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1609 /* Calculate how many instructions had been executed before the fault
1610 occurred. */
28ecfd7a 1611 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1612 /* Generate a new TB ending on the I/O insn. */
1613 n++;
1614 /* On MIPS and SH, delay slot instructions can only be restarted if
1615 they were already the first instruction in the TB. If this is not
1616 the first instruction in a TB then re-execute the preceding
1617 branch. */
1618#if defined(TARGET_MIPS)
1619 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1620 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1621 cpu->icount_decr.u16.low++;
5b6dd868
BS
1622 env->hflags &= ~MIPS_HFLAG_BMASK;
1623 }
1624#elif defined(TARGET_SH4)
1625 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1626 && n > 1) {
1627 env->pc -= 2;
28ecfd7a 1628 cpu->icount_decr.u16.low++;
5b6dd868
BS
1629 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1630 }
1631#endif
1632 /* This should never happen. */
1633 if (n > CF_COUNT_MASK) {
a47dddd7 1634 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1635 }
1636
1637 cflags = n | CF_LAST_IO;
1638 pc = tb->pc;
1639 cs_base = tb->cs_base;
1640 flags = tb->flags;
1641 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1642 if (tb->cflags & CF_NOCACHE) {
1643 if (tb->orig_tb) {
1644 /* Invalidate original TB if this TB was generated in
1645 * cpu_exec_nocache() */
1646 tb_phys_invalidate(tb->orig_tb, -1);
1647 }
1648 tb_free(tb);
1649 }
5b6dd868
BS
1650 /* FIXME: In theory this could raise an exception. In practice
1651 we have already translated the block once so it's probably ok. */
648f034c 1652 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1653 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1654 the first in the TB) then we end up generating a whole new TB and
1655 repeating the fault, which is horribly inefficient.
1656 Better would be to execute just this insn uncached, or generate a
1657 second new TB. */
6886b980 1658 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1659}
1660
611d4f99 1661void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1662{
1663 unsigned int i;
1664
1665 /* Discard jump cache entries for any tb which might potentially
1666 overlap the flushed page. */
1667 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1668 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1669 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1670
1671 i = tb_jmp_cache_hash_page(addr);
8cd70437 1672 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1673 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1674}
1675
7266ae91
EC
1676static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1677 struct qht_stats hst)
1678{
1679 uint32_t hgram_opts;
1680 size_t hgram_bins;
1681 char *hgram;
1682
1683 if (!hst.head_buckets) {
1684 return;
1685 }
1686 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1687 hst.used_head_buckets, hst.head_buckets,
1688 (double)hst.used_head_buckets / hst.head_buckets * 100);
1689
1690 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1691 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1692 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1693 hgram_opts |= QDIST_PR_NODECIMAL;
1694 }
1695 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1696 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1697 qdist_avg(&hst.occupancy) * 100, hgram);
1698 g_free(hgram);
1699
1700 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1701 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1702 if (hgram_bins > 10) {
1703 hgram_bins = 10;
1704 } else {
1705 hgram_bins = 0;
1706 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1707 }
1708 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1709 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1710 qdist_avg(&hst.chain), hgram);
1711 g_free(hgram);
1712}
1713
5b6dd868
BS
1714void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1715{
1716 int i, target_code_size, max_target_code_size;
1717 int direct_jmp_count, direct_jmp2_count, cross_page;
1718 TranslationBlock *tb;
329844d4 1719 struct qht_stats hst;
5b6dd868
BS
1720
1721 target_code_size = 0;
1722 max_target_code_size = 0;
1723 cross_page = 0;
1724 direct_jmp_count = 0;
1725 direct_jmp2_count = 0;
5e5f07e0
EV
1726 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1727 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1728 target_code_size += tb->size;
1729 if (tb->size > max_target_code_size) {
1730 max_target_code_size = tb->size;
1731 }
1732 if (tb->page_addr[1] != -1) {
1733 cross_page++;
1734 }
f309101c 1735 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1736 direct_jmp_count++;
f309101c 1737 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1738 direct_jmp2_count++;
1739 }
1740 }
1741 }
1742 /* XXX: avoid using doubles ? */
1743 cpu_fprintf(f, "Translation buffer state:\n");
1744 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1745 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1746 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1747 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1748 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1749 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1750 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1751 tcg_ctx.tb_ctx.nb_tbs : 0,
1752 max_target_code_size);
5b6dd868 1753 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1754 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1755 tcg_ctx.code_gen_buffer) /
1756 tcg_ctx.tb_ctx.nb_tbs : 0,
1757 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1758 tcg_ctx.code_gen_buffer) /
1759 target_code_size : 0);
1760 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1761 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1762 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1763 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1764 direct_jmp_count,
5e5f07e0
EV
1765 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1766 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1767 direct_jmp2_count,
5e5f07e0
EV
1768 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1769 tcg_ctx.tb_ctx.nb_tbs : 0);
329844d4
EC
1770
1771 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
7266ae91 1772 print_qht_statistics(f, cpu_fprintf, hst);
329844d4
EC
1773 qht_statistics_destroy(&hst);
1774
5b6dd868 1775 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1776 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1777 cpu_fprintf(f, "TB invalidate count %d\n",
1778 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1779 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1780 tcg_dump_info(f, cpu_fprintf);
1781}
1782
246ae24d
MF
1783void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1784{
1785 tcg_dump_op_count(f, cpu_fprintf);
1786}
1787
5b6dd868
BS
1788#else /* CONFIG_USER_ONLY */
1789
c3affe56 1790void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1791{
259186a7 1792 cpu->interrupt_request |= mask;
378df4b2 1793 cpu->tcg_exit_req = 1;
5b6dd868
BS
1794}
1795
1796/*
1797 * Walks guest process memory "regions" one by one
1798 * and calls callback function 'fn' for each region.
1799 */
1800struct walk_memory_regions_data {
1801 walk_memory_regions_fn fn;
1802 void *priv;
1a1c4db9 1803 target_ulong start;
5b6dd868
BS
1804 int prot;
1805};
1806
1807static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1808 target_ulong end, int new_prot)
5b6dd868 1809{
1a1c4db9 1810 if (data->start != -1u) {
5b6dd868
BS
1811 int rc = data->fn(data->priv, data->start, end, data->prot);
1812 if (rc != 0) {
1813 return rc;
1814 }
1815 }
1816
1a1c4db9 1817 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1818 data->prot = new_prot;
1819
1820 return 0;
1821}
1822
1823static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1824 target_ulong base, int level, void **lp)
5b6dd868 1825{
1a1c4db9 1826 target_ulong pa;
5b6dd868
BS
1827 int i, rc;
1828
1829 if (*lp == NULL) {
1830 return walk_memory_regions_end(data, base, 0);
1831 }
1832
1833 if (level == 0) {
1834 PageDesc *pd = *lp;
1835
03f49957 1836 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1837 int prot = pd[i].flags;
1838
1839 pa = base | (i << TARGET_PAGE_BITS);
1840 if (prot != data->prot) {
1841 rc = walk_memory_regions_end(data, pa, prot);
1842 if (rc != 0) {
1843 return rc;
1844 }
1845 }
1846 }
1847 } else {
1848 void **pp = *lp;
1849
03f49957 1850 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1851 pa = base | ((target_ulong)i <<
03f49957 1852 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1853 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1854 if (rc != 0) {
1855 return rc;
1856 }
1857 }
1858 }
1859
1860 return 0;
1861}
1862
1863int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1864{
1865 struct walk_memory_regions_data data;
1866 uintptr_t i;
1867
1868 data.fn = fn;
1869 data.priv = priv;
1a1c4db9 1870 data.start = -1u;
5b6dd868
BS
1871 data.prot = 0;
1872
1873 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1874 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1875 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1876 if (rc != 0) {
1877 return rc;
1878 }
1879 }
1880
1881 return walk_memory_regions_end(&data, 0, 0);
1882}
1883
1a1c4db9
MI
1884static int dump_region(void *priv, target_ulong start,
1885 target_ulong end, unsigned long prot)
5b6dd868
BS
1886{
1887 FILE *f = (FILE *)priv;
1888
1a1c4db9
MI
1889 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1890 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1891 start, end, end - start,
1892 ((prot & PAGE_READ) ? 'r' : '-'),
1893 ((prot & PAGE_WRITE) ? 'w' : '-'),
1894 ((prot & PAGE_EXEC) ? 'x' : '-'));
1895
1896 return 0;
1897}
1898
1899/* dump memory mappings */
1900void page_dump(FILE *f)
1901{
1a1c4db9 1902 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1903 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1904 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1905 walk_memory_regions(f, dump_region);
1906}
1907
1908int page_get_flags(target_ulong address)
1909{
1910 PageDesc *p;
1911
1912 p = page_find(address >> TARGET_PAGE_BITS);
1913 if (!p) {
1914 return 0;
1915 }
1916 return p->flags;
1917}
1918
1919/* Modify the flags of a page and invalidate the code if necessary.
1920 The flag PAGE_WRITE_ORG is positioned automatically depending
1921 on PAGE_WRITE. The mmap_lock should already be held. */
1922void page_set_flags(target_ulong start, target_ulong end, int flags)
1923{
1924 target_ulong addr, len;
1925
1926 /* This function should never be called with addresses outside the
1927 guest address space. If this assert fires, it probably indicates
1928 a missing call to h2g_valid. */
1929#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1930 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1931#endif
1932 assert(start < end);
1933
1934 start = start & TARGET_PAGE_MASK;
1935 end = TARGET_PAGE_ALIGN(end);
1936
1937 if (flags & PAGE_WRITE) {
1938 flags |= PAGE_WRITE_ORG;
1939 }
1940
1941 for (addr = start, len = end - start;
1942 len != 0;
1943 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1944 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1945
1946 /* If the write protection bit is set, then we invalidate
1947 the code inside. */
1948 if (!(p->flags & PAGE_WRITE) &&
1949 (flags & PAGE_WRITE) &&
1950 p->first_tb) {
75809229 1951 tb_invalidate_phys_page(addr, 0);
5b6dd868
BS
1952 }
1953 p->flags = flags;
1954 }
1955}
1956
1957int page_check_range(target_ulong start, target_ulong len, int flags)
1958{
1959 PageDesc *p;
1960 target_ulong end;
1961 target_ulong addr;
1962
1963 /* This function should never be called with addresses outside the
1964 guest address space. If this assert fires, it probably indicates
1965 a missing call to h2g_valid. */
1966#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1967 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1968#endif
1969
1970 if (len == 0) {
1971 return 0;
1972 }
1973 if (start + len - 1 < start) {
1974 /* We've wrapped around. */
1975 return -1;
1976 }
1977
1978 /* must do before we loose bits in the next step */
1979 end = TARGET_PAGE_ALIGN(start + len);
1980 start = start & TARGET_PAGE_MASK;
1981
1982 for (addr = start, len = end - start;
1983 len != 0;
1984 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1985 p = page_find(addr >> TARGET_PAGE_BITS);
1986 if (!p) {
1987 return -1;
1988 }
1989 if (!(p->flags & PAGE_VALID)) {
1990 return -1;
1991 }
1992
1993 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1994 return -1;
1995 }
1996 if (flags & PAGE_WRITE) {
1997 if (!(p->flags & PAGE_WRITE_ORG)) {
1998 return -1;
1999 }
2000 /* unprotect the page if it was put read-only because it
2001 contains translated code */
2002 if (!(p->flags & PAGE_WRITE)) {
f213e72f 2003 if (!page_unprotect(addr, 0)) {
5b6dd868
BS
2004 return -1;
2005 }
2006 }
5b6dd868
BS
2007 }
2008 }
2009 return 0;
2010}
2011
2012/* called from signal handler: invalidate the code and unprotect the
f213e72f
PM
2013 * page. Return 0 if the fault was not handled, 1 if it was handled,
2014 * and 2 if it was handled but the caller must cause the TB to be
2015 * immediately exited. (We can only return 2 if the 'pc' argument is
2016 * non-zero.)
2017 */
2018int page_unprotect(target_ulong address, uintptr_t pc)
5b6dd868
BS
2019{
2020 unsigned int prot;
7399a337 2021 bool current_tb_invalidated;
5b6dd868
BS
2022 PageDesc *p;
2023 target_ulong host_start, host_end, addr;
2024
2025 /* Technically this isn't safe inside a signal handler. However we
2026 know this only ever happens in a synchronous SEGV handler, so in
2027 practice it seems to be ok. */
2028 mmap_lock();
2029
2030 p = page_find(address >> TARGET_PAGE_BITS);
2031 if (!p) {
2032 mmap_unlock();
2033 return 0;
2034 }
2035
2036 /* if the page was really writable, then we change its
2037 protection back to writable */
2038 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2039 host_start = address & qemu_host_page_mask;
2040 host_end = host_start + qemu_host_page_size;
2041
2042 prot = 0;
7399a337 2043 current_tb_invalidated = false;
5b6dd868
BS
2044 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2045 p = page_find(addr >> TARGET_PAGE_BITS);
2046 p->flags |= PAGE_WRITE;
2047 prot |= p->flags;
2048
2049 /* and since the content will be modified, we must invalidate
2050 the corresponding translated code. */
7399a337 2051 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
5b6dd868
BS
2052#ifdef DEBUG_TB_CHECK
2053 tb_invalidate_check(addr);
2054#endif
2055 }
2056 mprotect((void *)g2h(host_start), qemu_host_page_size,
2057 prot & PAGE_BITS);
2058
2059 mmap_unlock();
7399a337
SS
2060 /* If current TB was invalidated return to main loop */
2061 return current_tb_invalidated ? 2 : 1;
5b6dd868
BS
2062 }
2063 mmap_unlock();
2064 return 0;
2065}
2066#endif /* CONFIG_USER_ONLY */