]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
qga: drop unused sockaddr in accept(2) call
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
5b6dd868 21#endif
7b31bbc2 22#include "qemu/osdep.h"
d19893da 23
2054396a 24
5b6dd868 25#include "qemu-common.h"
af5ad107 26#define NO_CPU_IO_DEFS
d3eead2e 27#include "cpu.h"
6db8b538 28#include "trace.h"
76cad711 29#include "disas/disas.h"
63c91552 30#include "exec/exec-all.h"
57fec1fe 31#include "tcg.h"
5b6dd868
BS
32#if defined(CONFIG_USER_ONLY)
33#include "qemu.h"
301e40ed 34#include "exec/exec-all.h"
5b6dd868
BS
35#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36#include <sys/param.h>
37#if __FreeBSD_version >= 700104
38#define HAVE_KINFO_GETVMMAP
39#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
40#include <sys/proc.h>
41#include <machine/profile.h>
42#define _KERNEL
43#include <sys/user.h>
44#undef _KERNEL
45#undef sigqueue
46#include <libutil.h>
47#endif
48#endif
0bc3cd62
PB
49#else
50#include "exec/address-spaces.h"
5b6dd868
BS
51#endif
52
022c62cb 53#include "exec/cputlb.h"
e1b89321 54#include "exec/tb-hash.h"
5b6dd868 55#include "translate-all.h"
510a647f 56#include "qemu/bitmap.h"
0aa09897 57#include "qemu/timer.h"
508127e2 58#include "exec/log.h"
5b6dd868 59
955939a2
AB
60/* #define DEBUG_TB_INVALIDATE */
61/* #define DEBUG_TB_FLUSH */
301e40ed 62/* #define DEBUG_LOCKING */
5b6dd868 63/* make various TB consistency checks */
955939a2 64/* #define DEBUG_TB_CHECK */
5b6dd868
BS
65
66#if !defined(CONFIG_USER_ONLY)
67/* TB consistency checks only implemented for usermode emulation. */
68#undef DEBUG_TB_CHECK
69#endif
70
301e40ed
AB
71/* Access to the various translations structures need to be serialised via locks
72 * for consistency. This is automatic for SoftMMU based system
73 * emulation due to its single threaded nature. In user-mode emulation
74 * access to the memory related structures are protected with the
75 * mmap_lock.
76 */
77#ifdef DEBUG_LOCKING
78#define DEBUG_MEM_LOCKS 1
79#else
80#define DEBUG_MEM_LOCKS 0
81#endif
82
83#ifdef CONFIG_SOFTMMU
84#define assert_memory_lock() do { /* nothing */ } while (0)
85#else
86#define assert_memory_lock() do { \
87 if (DEBUG_MEM_LOCKS) { \
88 g_assert(have_mmap_lock()); \
89 } \
90 } while (0)
91#endif
92
5b6dd868
BS
93#define SMC_BITMAP_USE_THRESHOLD 10
94
5b6dd868
BS
95typedef struct PageDesc {
96 /* list of TBs intersecting this ram page */
97 TranslationBlock *first_tb;
6fad459c 98#ifdef CONFIG_SOFTMMU
5b6dd868
BS
99 /* in order to optimize self modifying code, we count the number
100 of lookups we do to a given page to use a bitmap */
101 unsigned int code_write_count;
510a647f 102 unsigned long *code_bitmap;
6fad459c 103#else
5b6dd868
BS
104 unsigned long flags;
105#endif
106} PageDesc;
107
108/* In system mode we want L1_MAP to be based on ram offsets,
109 while in user mode we want it to be based on virtual addresses. */
110#if !defined(CONFIG_USER_ONLY)
111#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
112# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
113#else
114# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
115#endif
116#else
117# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
118#endif
119
03f49957
PB
120/* Size of the L2 (and L3, etc) page tables. */
121#define V_L2_BITS 10
122#define V_L2_SIZE (1 << V_L2_BITS)
123
5b6dd868 124uintptr_t qemu_host_page_size;
0c2d70c4 125intptr_t qemu_host_page_mask;
5b6dd868 126
66ec9f49
VK
127/*
128 * L1 Mapping properties
129 */
130static int v_l1_size;
131static int v_l1_shift;
132static int v_l2_levels;
133
134/* The bottom level has pointers to PageDesc, and is indexed by
135 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
136 */
137#define V_L1_MIN_BITS 4
138#define V_L1_MAX_BITS (V_L2_BITS + 3)
139#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
140
141static void *l1_map[V_L1_MAX_SIZE];
5b6dd868 142
57fec1fe
FB
143/* code generation context */
144TCGContext tcg_ctx;
fdbc2b57 145bool parallel_cpus;
d19893da 146
677ef623
FK
147/* translation block context */
148#ifdef CONFIG_USER_ONLY
149__thread int have_tb_lock;
150#endif
151
66ec9f49
VK
152static void page_table_config_init(void)
153{
154 uint32_t v_l1_bits;
155
156 assert(TARGET_PAGE_BITS);
157 /* The bits remaining after N lower levels of page tables. */
158 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
159 if (v_l1_bits < V_L1_MIN_BITS) {
160 v_l1_bits += V_L2_BITS;
161 }
162
163 v_l1_size = 1 << v_l1_bits;
164 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
165 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
166
167 assert(v_l1_bits <= V_L1_MAX_BITS);
168 assert(v_l1_shift % V_L2_BITS == 0);
169 assert(v_l2_levels >= 0);
170}
171
677ef623
FK
172void tb_lock(void)
173{
174#ifdef CONFIG_USER_ONLY
175 assert(!have_tb_lock);
176 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
177 have_tb_lock++;
178#endif
179}
180
181void tb_unlock(void)
182{
183#ifdef CONFIG_USER_ONLY
184 assert(have_tb_lock);
185 have_tb_lock--;
186 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
187#endif
188}
189
190void tb_lock_reset(void)
191{
192#ifdef CONFIG_USER_ONLY
193 if (have_tb_lock) {
194 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
195 have_tb_lock = 0;
196 }
197#endif
198}
199
301e40ed
AB
200#ifdef DEBUG_LOCKING
201#define DEBUG_TB_LOCKS 1
202#else
203#define DEBUG_TB_LOCKS 0
204#endif
205
206#ifdef CONFIG_SOFTMMU
207#define assert_tb_lock() do { /* nothing */ } while (0)
208#else
209#define assert_tb_lock() do { \
210 if (DEBUG_TB_LOCKS) { \
211 g_assert(have_tb_lock); \
212 } \
213 } while (0)
214#endif
215
216
a8a826a3 217static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 218
57fec1fe
FB
219void cpu_gen_init(void)
220{
221 tcg_context_init(&tcg_ctx);
57fec1fe
FB
222}
223
fca8a500
RH
224/* Encode VAL as a signed leb128 sequence at P.
225 Return P incremented past the encoded value. */
226static uint8_t *encode_sleb128(uint8_t *p, target_long val)
227{
228 int more, byte;
229
230 do {
231 byte = val & 0x7f;
232 val >>= 7;
233 more = !((val == 0 && (byte & 0x40) == 0)
234 || (val == -1 && (byte & 0x40) != 0));
235 if (more) {
236 byte |= 0x80;
237 }
238 *p++ = byte;
239 } while (more);
240
241 return p;
242}
243
244/* Decode a signed leb128 sequence at *PP; increment *PP past the
245 decoded value. Return the decoded value. */
246static target_long decode_sleb128(uint8_t **pp)
247{
248 uint8_t *p = *pp;
249 target_long val = 0;
250 int byte, shift = 0;
251
252 do {
253 byte = *p++;
254 val |= (target_ulong)(byte & 0x7f) << shift;
255 shift += 7;
256 } while (byte & 0x80);
257 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
258 val |= -(target_ulong)1 << shift;
259 }
260
261 *pp = p;
262 return val;
263}
264
265/* Encode the data collected about the instructions while compiling TB.
266 Place the data at BLOCK, and return the number of bytes consumed.
267
268 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
269 which come from the target's insn_start data, followed by a uintptr_t
270 which comes from the host pc of the end of the code implementing the insn.
271
272 Each line of the table is encoded as sleb128 deltas from the previous
273 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
274 That is, the first column is seeded with the guest pc, the last column
275 with the host pc, and the middle columns with zeros. */
276
277static int encode_search(TranslationBlock *tb, uint8_t *block)
278{
b125f9dc 279 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
280 uint8_t *p = block;
281 int i, j, n;
282
283 tb->tc_search = block;
284
285 for (i = 0, n = tb->icount; i < n; ++i) {
286 target_ulong prev;
287
288 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
289 if (i == 0) {
290 prev = (j == 0 ? tb->pc : 0);
291 } else {
292 prev = tcg_ctx.gen_insn_data[i - 1][j];
293 }
294 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
295 }
296 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
297 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
298
299 /* Test for (pending) buffer overflow. The assumption is that any
300 one row beginning below the high water mark cannot overrun
301 the buffer completely. Thus we can test for overflow after
302 encoding a row without having to check during encoding. */
303 if (unlikely(p > highwater)) {
304 return -1;
305 }
fca8a500
RH
306 }
307
308 return p - block;
309}
310
7d7500d9
PB
311/* The cpu state corresponding to 'searched_pc' is restored.
312 * Called with tb_lock held.
313 */
74f10515 314static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 315 uintptr_t searched_pc)
d19893da 316{
fca8a500
RH
317 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
318 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 319 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
320 uint8_t *p = tb->tc_search;
321 int i, j, num_insns = tb->icount;
57fec1fe 322#ifdef CONFIG_PROFILER
fca8a500 323 int64_t ti = profile_getclock();
57fec1fe
FB
324#endif
325
01ecaf43
RH
326 searched_pc -= GETPC_ADJ;
327
fca8a500
RH
328 if (searched_pc < host_pc) {
329 return -1;
330 }
d19893da 331
fca8a500
RH
332 /* Reconstruct the stored insn data while looking for the point at
333 which the end of the insn exceeds the searched_pc. */
334 for (i = 0; i < num_insns; ++i) {
335 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
336 data[j] += decode_sleb128(&p);
337 }
338 host_pc += decode_sleb128(&p);
339 if (host_pc > searched_pc) {
340 goto found;
341 }
342 }
343 return -1;
3b46e624 344
fca8a500 345 found:
bd79255d 346 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 347 assert(use_icount);
2e70f6ef 348 /* Reset the cycle counter to the start of the block. */
fca8a500 349 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 350 /* Clear the IO flag. */
99df7dce 351 cpu->can_do_io = 0;
2e70f6ef 352 }
fca8a500
RH
353 cpu->icount_decr.u16.low -= i;
354 restore_state_to_opc(env, tb, data);
57fec1fe
FB
355
356#ifdef CONFIG_PROFILER
fca8a500
RH
357 tcg_ctx.restore_time += profile_getclock() - ti;
358 tcg_ctx.restore_count++;
57fec1fe 359#endif
d19893da
FB
360 return 0;
361}
5b6dd868 362
3f38f309 363bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
364{
365 TranslationBlock *tb;
a5e99826 366 bool r = false;
a8a826a3 367
a5e99826 368 tb_lock();
a8a826a3
BS
369 tb = tb_find_pc(retaddr);
370 if (tb) {
74f10515 371 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
372 if (tb->cflags & CF_NOCACHE) {
373 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
374 tb_phys_invalidate(tb, -1);
375 tb_free(tb);
376 }
a5e99826 377 r = true;
a8a826a3 378 }
a5e99826
FK
379 tb_unlock();
380
381 return r;
a8a826a3
BS
382}
383
47c16ed5 384void page_size_init(void)
5b6dd868
BS
385{
386 /* NOTE: we can always suppose that qemu_host_page_size >=
387 TARGET_PAGE_SIZE */
5b6dd868 388 qemu_real_host_page_size = getpagesize();
0c2d70c4 389 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
390 if (qemu_host_page_size == 0) {
391 qemu_host_page_size = qemu_real_host_page_size;
392 }
393 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
394 qemu_host_page_size = TARGET_PAGE_SIZE;
395 }
0c2d70c4 396 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 397}
5b6dd868 398
47c16ed5
AK
399static void page_init(void)
400{
401 page_size_init();
66ec9f49
VK
402 page_table_config_init();
403
5b6dd868
BS
404#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
405 {
406#ifdef HAVE_KINFO_GETVMMAP
407 struct kinfo_vmentry *freep;
408 int i, cnt;
409
410 freep = kinfo_getvmmap(getpid(), &cnt);
411 if (freep) {
412 mmap_lock();
413 for (i = 0; i < cnt; i++) {
414 unsigned long startaddr, endaddr;
415
416 startaddr = freep[i].kve_start;
417 endaddr = freep[i].kve_end;
418 if (h2g_valid(startaddr)) {
419 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
420
421 if (h2g_valid(endaddr)) {
422 endaddr = h2g(endaddr);
423 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
424 } else {
425#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
426 endaddr = ~0ul;
427 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
428#endif
429 }
430 }
431 }
432 free(freep);
433 mmap_unlock();
434 }
435#else
436 FILE *f;
437
438 last_brk = (unsigned long)sbrk(0);
439
440 f = fopen("/compat/linux/proc/self/maps", "r");
441 if (f) {
442 mmap_lock();
443
444 do {
445 unsigned long startaddr, endaddr;
446 int n;
447
448 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
449
450 if (n == 2 && h2g_valid(startaddr)) {
451 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
452
453 if (h2g_valid(endaddr)) {
454 endaddr = h2g(endaddr);
455 } else {
456 endaddr = ~0ul;
457 }
458 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
459 }
460 } while (!feof(f));
461
462 fclose(f);
463 mmap_unlock();
464 }
465#endif
466 }
467#endif
468}
469
75692087 470/* If alloc=1:
7d7500d9 471 * Called with tb_lock held for system emulation.
75692087
PB
472 * Called with mmap_lock held for user-mode emulation.
473 */
5b6dd868
BS
474static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
475{
476 PageDesc *pd;
477 void **lp;
478 int i;
479
e505a063
AB
480 if (alloc) {
481 assert_memory_lock();
482 }
483
5b6dd868 484 /* Level 1. Always allocated. */
66ec9f49 485 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
5b6dd868
BS
486
487 /* Level 2..N-1. */
66ec9f49 488 for (i = v_l2_levels; i > 0; i--) {
6940fab8 489 void **p = atomic_rcu_read(lp);
5b6dd868
BS
490
491 if (p == NULL) {
492 if (!alloc) {
493 return NULL;
494 }
e3a0abfd 495 p = g_new0(void *, V_L2_SIZE);
6940fab8 496 atomic_rcu_set(lp, p);
5b6dd868
BS
497 }
498
03f49957 499 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
500 }
501
6940fab8 502 pd = atomic_rcu_read(lp);
5b6dd868
BS
503 if (pd == NULL) {
504 if (!alloc) {
505 return NULL;
506 }
e3a0abfd 507 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 508 atomic_rcu_set(lp, pd);
5b6dd868
BS
509 }
510
03f49957 511 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
512}
513
514static inline PageDesc *page_find(tb_page_addr_t index)
515{
516 return page_find_alloc(index, 0);
517}
518
5b6dd868
BS
519#if defined(CONFIG_USER_ONLY)
520/* Currently it is not recommended to allocate big chunks of data in
521 user mode. It will change when a dedicated libc will be used. */
522/* ??? 64-bit hosts ought to have no problem mmaping data outside the
523 region in which the guest needs to run. Revisit this. */
524#define USE_STATIC_CODE_GEN_BUFFER
525#endif
526
5b6dd868
BS
527/* Minimum size of the code gen buffer. This number is randomly chosen,
528 but not so small that we can't have a fair number of TB's live. */
529#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
530
531/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
532 indicated, this is constrained by the range of direct branches on the
533 host cpu, as used by the TCG implementation of goto_tb. */
534#if defined(__x86_64__)
535# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
536#elif defined(__sparc__)
537# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
538#elif defined(__powerpc64__)
539# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
540#elif defined(__powerpc__)
541# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
542#elif defined(__aarch64__)
543# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
544#elif defined(__arm__)
545# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
546#elif defined(__s390x__)
547 /* We have a +- 4GB range on the branches; leave some slop. */
548# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
549#elif defined(__mips__)
550 /* We have a 256MB branch region, but leave room to make sure the
551 main executable is also within that region. */
552# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
553#else
554# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
555#endif
556
557#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
558
559#define DEFAULT_CODE_GEN_BUFFER_SIZE \
560 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
561 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
562
563static inline size_t size_code_gen_buffer(size_t tb_size)
564{
565 /* Size the buffer. */
566 if (tb_size == 0) {
567#ifdef USE_STATIC_CODE_GEN_BUFFER
568 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
569#else
570 /* ??? Needs adjustments. */
571 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
572 static buffer, we could size this on RESERVED_VA, on the text
573 segment size of the executable, or continue to use the default. */
574 tb_size = (unsigned long)(ram_size / 4);
575#endif
576 }
577 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
578 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
579 }
580 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
581 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
582 }
5b6dd868
BS
583 return tb_size;
584}
585
483c76e1
RH
586#ifdef __mips__
587/* In order to use J and JAL within the code_gen_buffer, we require
588 that the buffer not cross a 256MB boundary. */
589static inline bool cross_256mb(void *addr, size_t size)
590{
7ba6a512 591 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
592}
593
594/* We weren't able to allocate a buffer without crossing that boundary,
595 so make do with the larger portion of the buffer that doesn't cross.
596 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
597static inline void *split_cross_256mb(void *buf1, size_t size1)
598{
7ba6a512 599 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
600 size_t size2 = buf1 + size1 - buf2;
601
602 size1 = buf2 - buf1;
603 if (size1 < size2) {
604 size1 = size2;
605 buf1 = buf2;
606 }
607
608 tcg_ctx.code_gen_buffer_size = size1;
609 return buf1;
610}
611#endif
612
5b6dd868
BS
613#ifdef USE_STATIC_CODE_GEN_BUFFER
614static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
615 __attribute__((aligned(CODE_GEN_ALIGN)));
616
f293709c
RH
617# ifdef _WIN32
618static inline void do_protect(void *addr, long size, int prot)
619{
620 DWORD old_protect;
621 VirtualProtect(addr, size, prot, &old_protect);
622}
623
624static inline void map_exec(void *addr, long size)
625{
626 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
627}
628
629static inline void map_none(void *addr, long size)
630{
631 do_protect(addr, size, PAGE_NOACCESS);
632}
633# else
634static inline void do_protect(void *addr, long size, int prot)
635{
636 uintptr_t start, end;
637
638 start = (uintptr_t)addr;
639 start &= qemu_real_host_page_mask;
640
641 end = (uintptr_t)addr + size;
642 end = ROUND_UP(end, qemu_real_host_page_size);
643
644 mprotect((void *)start, end - start, prot);
645}
646
647static inline void map_exec(void *addr, long size)
648{
649 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
650}
651
652static inline void map_none(void *addr, long size)
653{
654 do_protect(addr, size, PROT_NONE);
655}
656# endif /* WIN32 */
657
5b6dd868
BS
658static inline void *alloc_code_gen_buffer(void)
659{
483c76e1 660 void *buf = static_code_gen_buffer;
f293709c
RH
661 size_t full_size, size;
662
663 /* The size of the buffer, rounded down to end on a page boundary. */
664 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
665 & qemu_real_host_page_mask) - (uintptr_t)buf;
666
667 /* Reserve a guard page. */
668 size = full_size - qemu_real_host_page_size;
669
670 /* Honor a command-line option limiting the size of the buffer. */
671 if (size > tcg_ctx.code_gen_buffer_size) {
672 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
673 & qemu_real_host_page_mask) - (uintptr_t)buf;
674 }
675 tcg_ctx.code_gen_buffer_size = size;
676
483c76e1 677#ifdef __mips__
f293709c
RH
678 if (cross_256mb(buf, size)) {
679 buf = split_cross_256mb(buf, size);
680 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
681 }
682#endif
f293709c
RH
683
684 map_exec(buf, size);
685 map_none(buf + size, qemu_real_host_page_size);
686 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
687
483c76e1 688 return buf;
5b6dd868 689}
f293709c
RH
690#elif defined(_WIN32)
691static inline void *alloc_code_gen_buffer(void)
692{
693 size_t size = tcg_ctx.code_gen_buffer_size;
694 void *buf1, *buf2;
695
696 /* Perform the allocation in two steps, so that the guard page
697 is reserved but uncommitted. */
698 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
699 MEM_RESERVE, PAGE_NOACCESS);
700 if (buf1 != NULL) {
701 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
702 assert(buf1 == buf2);
703 }
704
705 return buf1;
706}
707#else
5b6dd868
BS
708static inline void *alloc_code_gen_buffer(void)
709{
710 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
711 uintptr_t start = 0;
f293709c 712 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
713 void *buf;
714
715 /* Constrain the position of the buffer based on the host cpu.
716 Note that these addresses are chosen in concert with the
717 addresses assigned in the relevant linker script file. */
718# if defined(__PIE__) || defined(__PIC__)
719 /* Don't bother setting a preferred location if we're building
720 a position-independent executable. We're more likely to get
721 an address near the main executable if we let the kernel
722 choose the address. */
723# elif defined(__x86_64__) && defined(MAP_32BIT)
724 /* Force the memory down into low memory with the executable.
725 Leave the choice of exact location with the kernel. */
726 flags |= MAP_32BIT;
727 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
728 if (size > 800u * 1024 * 1024) {
729 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
730 }
731# elif defined(__sparc__)
732 start = 0x40000000ul;
733# elif defined(__s390x__)
734 start = 0x90000000ul;
479eb121 735# elif defined(__mips__)
f293709c 736# if _MIPS_SIM == _ABI64
479eb121
RH
737 start = 0x128000000ul;
738# else
739 start = 0x08000000ul;
740# endif
5b6dd868
BS
741# endif
742
f293709c
RH
743 buf = mmap((void *)start, size + qemu_real_host_page_size,
744 PROT_NONE, flags, -1, 0);
483c76e1
RH
745 if (buf == MAP_FAILED) {
746 return NULL;
747 }
748
749#ifdef __mips__
f293709c 750 if (cross_256mb(buf, size)) {
5d831be2 751 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 752 that 256mb crossing. This time don't specify an address. */
f293709c
RH
753 size_t size2;
754 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
755 PROT_NONE, flags, -1, 0);
756 switch (buf2 != MAP_FAILED) {
757 case 1:
758 if (!cross_256mb(buf2, size)) {
483c76e1 759 /* Success! Use the new buffer. */
8bdf4997 760 munmap(buf, size + qemu_real_host_page_size);
f293709c 761 break;
483c76e1
RH
762 }
763 /* Failure. Work with what we had. */
8bdf4997 764 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
765 /* fallthru */
766 default:
767 /* Split the original buffer. Free the smaller half. */
768 buf2 = split_cross_256mb(buf, size);
769 size2 = tcg_ctx.code_gen_buffer_size;
770 if (buf == buf2) {
771 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
772 } else {
773 munmap(buf, size - size2);
774 }
775 size = size2;
776 break;
483c76e1 777 }
f293709c 778 buf = buf2;
483c76e1
RH
779 }
780#endif
781
f293709c
RH
782 /* Make the final buffer accessible. The guard page at the end
783 will remain inaccessible with PROT_NONE. */
784 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 785
f293709c
RH
786 /* Request large pages for the buffer. */
787 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 788
5b6dd868
BS
789 return buf;
790}
f293709c 791#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
792
793static inline void code_gen_alloc(size_t tb_size)
794{
0b0d3320
EV
795 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
796 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
797 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
798 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
799 exit(1);
800 }
801
8163b749
RH
802 /* Estimate a good size for the number of TBs we can support. We
803 still haven't deducted the prologue from the buffer size here,
804 but that's minimal and won't affect the estimate much. */
805 tcg_ctx.code_gen_max_blocks
806 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
807 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
808
677ef623 809 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
810}
811
909eaac9
EC
812static void tb_htable_init(void)
813{
814 unsigned int mode = QHT_MODE_AUTO_RESIZE;
815
816 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
817}
818
5b6dd868
BS
819/* Must be called before using the QEMU cpus. 'tb_size' is the size
820 (in bytes) allocated to the translation buffer. Zero means default
821 size. */
822void tcg_exec_init(unsigned long tb_size)
823{
824 cpu_gen_init();
5b6dd868 825 page_init();
909eaac9 826 tb_htable_init();
f293709c 827 code_gen_alloc(tb_size);
4cbea598 828#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
829 /* There's no guest base to take into account, so go ahead and
830 initialize the prologue now. */
831 tcg_prologue_init(&tcg_ctx);
832#endif
833}
834
835bool tcg_enabled(void)
836{
0b0d3320 837 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
838}
839
7d7500d9
PB
840/*
841 * Allocate a new translation block. Flush the translation buffer if
842 * too many translation blocks or too much generated code.
843 *
844 * Called with tb_lock held.
845 */
5b6dd868
BS
846static TranslationBlock *tb_alloc(target_ulong pc)
847{
848 TranslationBlock *tb;
849
e505a063
AB
850 assert_tb_lock();
851
b125f9dc 852 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
853 return NULL;
854 }
5e5f07e0 855 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
856 tb->pc = pc;
857 tb->cflags = 0;
6d21e420 858 tb->invalid = false;
5b6dd868
BS
859 return tb;
860}
861
7d7500d9 862/* Called with tb_lock held. */
5b6dd868
BS
863void tb_free(TranslationBlock *tb)
864{
e505a063
AB
865 assert_tb_lock();
866
5b6dd868
BS
867 /* In practice this is mostly used for single use temporary TB
868 Ignore the hard cases and just back up if this TB happens to
869 be the last one generated. */
5e5f07e0
EV
870 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
871 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 872 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 873 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
874 }
875}
876
877static inline void invalidate_page_bitmap(PageDesc *p)
878{
6fad459c 879#ifdef CONFIG_SOFTMMU
012aef07
MA
880 g_free(p->code_bitmap);
881 p->code_bitmap = NULL;
5b6dd868 882 p->code_write_count = 0;
6fad459c 883#endif
5b6dd868
BS
884}
885
886/* Set to NULL all the 'first_tb' fields in all PageDescs. */
887static void page_flush_tb_1(int level, void **lp)
888{
889 int i;
890
891 if (*lp == NULL) {
892 return;
893 }
894 if (level == 0) {
895 PageDesc *pd = *lp;
896
03f49957 897 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
898 pd[i].first_tb = NULL;
899 invalidate_page_bitmap(pd + i);
900 }
901 } else {
902 void **pp = *lp;
903
03f49957 904 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
905 page_flush_tb_1(level - 1, pp + i);
906 }
907 }
908}
909
910static void page_flush_tb(void)
911{
66ec9f49 912 int i, l1_sz = v_l1_size;
5b6dd868 913
66ec9f49
VK
914 for (i = 0; i < l1_sz; i++) {
915 page_flush_tb_1(v_l2_levels, l1_map + i);
5b6dd868
BS
916 }
917}
918
919/* flush all the translation blocks */
14e6fe12 920static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
5b6dd868 921{
3359baad
SF
922 tb_lock();
923
14e6fe12 924 /* If it is already been done on request of another CPU,
3359baad
SF
925 * just retry.
926 */
14e6fe12 927 if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
3359baad 928 goto done;
135a972b 929 }
3359baad 930
955939a2 931#if defined(DEBUG_TB_FLUSH)
5b6dd868 932 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 933 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 934 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 935 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 936 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 937#endif
0b0d3320
EV
938 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
939 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 940 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 941 }
5b6dd868 942
bdc44640 943 CPU_FOREACH(cpu) {
89a16b1e
SF
944 int i;
945
946 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
947 atomic_set(&cpu->tb_jmp_cache[i], NULL);
948 }
5b6dd868
BS
949 }
950
118b0730 951 tcg_ctx.tb_ctx.nb_tbs = 0;
909eaac9 952 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
5b6dd868
BS
953 page_flush_tb();
954
0b0d3320 955 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
956 /* XXX: flush processor icache at this point if cache flush is
957 expensive */
3359baad
SF
958 atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
959 tcg_ctx.tb_ctx.tb_flush_count + 1);
960
961done:
962 tb_unlock();
963}
964
965void tb_flush(CPUState *cpu)
966{
967 if (tcg_enabled()) {
14e6fe12
PB
968 unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
969 async_safe_run_on_cpu(cpu, do_tb_flush,
970 RUN_ON_CPU_HOST_INT(tb_flush_count));
3359baad 971 }
5b6dd868
BS
972}
973
974#ifdef DEBUG_TB_CHECK
975
909eaac9
EC
976static void
977do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
5b6dd868 978{
909eaac9
EC
979 TranslationBlock *tb = p;
980 target_ulong addr = *(target_ulong *)userp;
981
982 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
983 printf("ERROR invalidate: address=" TARGET_FMT_lx
984 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
985 }
986}
5b6dd868 987
7d7500d9
PB
988/* verify that all the pages have correct rights for code
989 *
990 * Called with tb_lock held.
991 */
909eaac9
EC
992static void tb_invalidate_check(target_ulong address)
993{
5b6dd868 994 address &= TARGET_PAGE_MASK;
909eaac9
EC
995 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
996}
997
998static void
999do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1000{
1001 TranslationBlock *tb = p;
1002 int flags1, flags2;
1003
1004 flags1 = page_get_flags(tb->pc);
1005 flags2 = page_get_flags(tb->pc + tb->size - 1);
1006 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1007 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1008 (long)tb->pc, tb->size, flags1, flags2);
5b6dd868
BS
1009 }
1010}
1011
1012/* verify that all the pages have correct rights for code */
1013static void tb_page_check(void)
1014{
909eaac9 1015 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
5b6dd868
BS
1016}
1017
1018#endif
1019
5b6dd868
BS
1020static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
1021{
1022 TranslationBlock *tb1;
1023 unsigned int n1;
1024
1025 for (;;) {
1026 tb1 = *ptb;
1027 n1 = (uintptr_t)tb1 & 3;
1028 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1029 if (tb1 == tb) {
1030 *ptb = tb1->page_next[n1];
1031 break;
1032 }
1033 ptb = &tb1->page_next[n1];
1034 }
1035}
1036
13362678
SF
1037/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
1038static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 1039{
c37e6d7e
SF
1040 TranslationBlock *tb1;
1041 uintptr_t *ptb, ntb;
5b6dd868
BS
1042 unsigned int n1;
1043
f309101c 1044 ptb = &tb->jmp_list_next[n];
c37e6d7e 1045 if (*ptb) {
5b6dd868
BS
1046 /* find tb(n) in circular list */
1047 for (;;) {
c37e6d7e
SF
1048 ntb = *ptb;
1049 n1 = ntb & 3;
1050 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
1051 if (n1 == n && tb1 == tb) {
1052 break;
1053 }
1054 if (n1 == 2) {
f309101c 1055 ptb = &tb1->jmp_list_first;
5b6dd868 1056 } else {
f309101c 1057 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
1058 }
1059 }
1060 /* now we can suppress tb(n) from the list */
f309101c 1061 *ptb = tb->jmp_list_next[n];
5b6dd868 1062
c37e6d7e 1063 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
1064 }
1065}
1066
1067/* reset the jump entry 'n' of a TB so that it is not chained to
1068 another TB */
1069static inline void tb_reset_jump(TranslationBlock *tb, int n)
1070{
f309101c
SF
1071 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
1072 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
1073}
1074
89bba496
SF
1075/* remove any jumps to the TB */
1076static inline void tb_jmp_unlink(TranslationBlock *tb)
1077{
f9c5b66f
SF
1078 TranslationBlock *tb1;
1079 uintptr_t *ptb, ntb;
89bba496
SF
1080 unsigned int n1;
1081
f9c5b66f 1082 ptb = &tb->jmp_list_first;
89bba496 1083 for (;;) {
f9c5b66f
SF
1084 ntb = *ptb;
1085 n1 = ntb & 3;
1086 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
1087 if (n1 == 2) {
1088 break;
1089 }
f9c5b66f
SF
1090 tb_reset_jump(tb1, n1);
1091 *ptb = tb1->jmp_list_next[n1];
1092 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 1093 }
89bba496
SF
1094}
1095
7d7500d9
PB
1096/* invalidate one TB
1097 *
1098 * Called with tb_lock held.
1099 */
5b6dd868
BS
1100void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1101{
182735ef 1102 CPUState *cpu;
5b6dd868 1103 PageDesc *p;
42bd3228 1104 uint32_t h;
5b6dd868 1105 tb_page_addr_t phys_pc;
5b6dd868 1106
e505a063
AB
1107 assert_tb_lock();
1108
6d21e420
PB
1109 atomic_set(&tb->invalid, true);
1110
5b6dd868
BS
1111 /* remove the TB from the hash list */
1112 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
42bd3228 1113 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 1114 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
5b6dd868
BS
1115
1116 /* remove the TB from the page list */
1117 if (tb->page_addr[0] != page_addr) {
1118 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1119 tb_page_remove(&p->first_tb, tb);
1120 invalidate_page_bitmap(p);
1121 }
1122 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1123 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1124 tb_page_remove(&p->first_tb, tb);
1125 invalidate_page_bitmap(p);
1126 }
1127
5b6dd868
BS
1128 /* remove the TB from the hash list */
1129 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1130 CPU_FOREACH(cpu) {
89a16b1e
SF
1131 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1132 atomic_set(&cpu->tb_jmp_cache[h], NULL);
5b6dd868
BS
1133 }
1134 }
1135
1136 /* suppress this TB from the two jump lists */
13362678
SF
1137 tb_remove_from_jmp_list(tb, 0);
1138 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1139
1140 /* suppress any remaining jumps to this TB */
89bba496 1141 tb_jmp_unlink(tb);
5b6dd868 1142
5e5f07e0 1143 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1144}
1145
6fad459c 1146#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1147static void build_page_bitmap(PageDesc *p)
1148{
1149 int n, tb_start, tb_end;
1150 TranslationBlock *tb;
1151
510a647f 1152 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1153
1154 tb = p->first_tb;
1155 while (tb != NULL) {
1156 n = (uintptr_t)tb & 3;
1157 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1158 /* NOTE: this is subtle as a TB may span two physical pages */
1159 if (n == 0) {
1160 /* NOTE: tb_end may be after the end of the page, but
1161 it is not a problem */
1162 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1163 tb_end = tb_start + tb->size;
1164 if (tb_end > TARGET_PAGE_SIZE) {
1165 tb_end = TARGET_PAGE_SIZE;
e505a063 1166 }
5b6dd868
BS
1167 } else {
1168 tb_start = 0;
1169 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1170 }
510a647f 1171 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1172 tb = tb->page_next[n];
1173 }
1174}
6fad459c 1175#endif
5b6dd868 1176
e90d96b1
SF
1177/* add the tb in the target page and protect it if necessary
1178 *
1179 * Called with mmap_lock held for user-mode emulation.
1180 */
1181static inline void tb_alloc_page(TranslationBlock *tb,
1182 unsigned int n, tb_page_addr_t page_addr)
1183{
1184 PageDesc *p;
1185#ifndef CONFIG_USER_ONLY
1186 bool page_already_protected;
1187#endif
1188
e505a063
AB
1189 assert_memory_lock();
1190
e90d96b1
SF
1191 tb->page_addr[n] = page_addr;
1192 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1193 tb->page_next[n] = p->first_tb;
1194#ifndef CONFIG_USER_ONLY
1195 page_already_protected = p->first_tb != NULL;
1196#endif
1197 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1198 invalidate_page_bitmap(p);
1199
1200#if defined(CONFIG_USER_ONLY)
1201 if (p->flags & PAGE_WRITE) {
1202 target_ulong addr;
1203 PageDesc *p2;
1204 int prot;
1205
1206 /* force the host page as non writable (writes will have a
1207 page fault + mprotect overhead) */
1208 page_addr &= qemu_host_page_mask;
1209 prot = 0;
1210 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1211 addr += TARGET_PAGE_SIZE) {
1212
1213 p2 = page_find(addr >> TARGET_PAGE_BITS);
1214 if (!p2) {
1215 continue;
1216 }
1217 prot |= p2->flags;
1218 p2->flags &= ~PAGE_WRITE;
1219 }
1220 mprotect(g2h(page_addr), qemu_host_page_size,
1221 (prot & PAGE_BITS) & ~PAGE_WRITE);
1222#ifdef DEBUG_TB_INVALIDATE
1223 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1224 page_addr);
1225#endif
1226 }
1227#else
1228 /* if some code is already present, then the pages are already
1229 protected. So we handle the case where only the first TB is
1230 allocated in a physical page */
1231 if (!page_already_protected) {
1232 tlb_protect_code(page_addr);
1233 }
1234#endif
1235}
1236
1237/* add a new TB and link it to the physical page tables. phys_page2 is
1238 * (-1) to indicate that only one page contains the TB.
1239 *
1240 * Called with mmap_lock held for user-mode emulation.
1241 */
1242static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1243 tb_page_addr_t phys_page2)
1244{
42bd3228 1245 uint32_t h;
e90d96b1 1246
e505a063
AB
1247 assert_memory_lock();
1248
e90d96b1
SF
1249 /* add in the page list */
1250 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1251 if (phys_page2 != -1) {
1252 tb_alloc_page(tb, 1, phys_page2);
1253 } else {
1254 tb->page_addr[1] = -1;
1255 }
1256
2e1ae44a
AB
1257 /* add in the hash table */
1258 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1259 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1260
e90d96b1
SF
1261#ifdef DEBUG_TB_CHECK
1262 tb_page_check();
1263#endif
1264}
1265
75692087 1266/* Called with mmap_lock held for user mode emulation. */
648f034c 1267TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1268 target_ulong pc, target_ulong cs_base,
89fee74a 1269 uint32_t flags, int cflags)
5b6dd868 1270{
648f034c 1271 CPUArchState *env = cpu->env_ptr;
5b6dd868 1272 TranslationBlock *tb;
5b6dd868
BS
1273 tb_page_addr_t phys_pc, phys_page2;
1274 target_ulong virt_page2;
fec88f64 1275 tcg_insn_unit *gen_code_buf;
fca8a500 1276 int gen_code_size, search_size;
fec88f64
RH
1277#ifdef CONFIG_PROFILER
1278 int64_t ti;
1279#endif
e505a063 1280 assert_memory_lock();
5b6dd868
BS
1281
1282 phys_pc = get_page_addr_code(env, pc);
56c0269a 1283 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1284 cflags |= CF_USE_ICOUNT;
1285 }
b125f9dc 1286
5b6dd868 1287 tb = tb_alloc(pc);
b125f9dc
RH
1288 if (unlikely(!tb)) {
1289 buffer_overflow:
5b6dd868 1290 /* flush must be done */
bbd77c18 1291 tb_flush(cpu);
3359baad
SF
1292 mmap_unlock();
1293 cpu_loop_exit(cpu);
5b6dd868 1294 }
fec88f64
RH
1295
1296 gen_code_buf = tcg_ctx.code_gen_ptr;
1297 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1298 tb->cs_base = cs_base;
1299 tb->flags = flags;
1300 tb->cflags = cflags;
fec88f64
RH
1301
1302#ifdef CONFIG_PROFILER
1303 tcg_ctx.tb_count1++; /* includes aborted translations because of
1304 exceptions */
1305 ti = profile_getclock();
1306#endif
1307
1308 tcg_func_start(&tcg_ctx);
1309
7c255043 1310 tcg_ctx.cpu = ENV_GET_CPU(env);
fec88f64 1311 gen_intermediate_code(env, tb);
7c255043 1312 tcg_ctx.cpu = NULL;
fec88f64
RH
1313
1314 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1315
1316 /* generate machine code */
f309101c
SF
1317 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1318 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1319 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1320#ifdef USE_DIRECT_JUMP
f309101c
SF
1321 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1322 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1323#else
f309101c
SF
1324 tcg_ctx.tb_jmp_insn_offset = NULL;
1325 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1326#endif
1327
1328#ifdef CONFIG_PROFILER
1329 tcg_ctx.tb_count++;
1330 tcg_ctx.interm_time += profile_getclock() - ti;
1331 tcg_ctx.code_time -= profile_getclock();
1332#endif
1333
b125f9dc
RH
1334 /* ??? Overflow could be handled better here. In particular, we
1335 don't need to re-do gen_intermediate_code, nor should we re-do
1336 the tcg optimization currently hidden inside tcg_gen_code. All
1337 that should be required is to flush the TBs, allocate a new TB,
1338 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1339 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1340 if (unlikely(gen_code_size < 0)) {
1341 goto buffer_overflow;
1342 }
fca8a500 1343 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1344 if (unlikely(search_size < 0)) {
1345 goto buffer_overflow;
1346 }
fec88f64
RH
1347
1348#ifdef CONFIG_PROFILER
1349 tcg_ctx.code_time += profile_getclock();
1350 tcg_ctx.code_in_len += tb->size;
1351 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1352 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1353#endif
1354
1355#ifdef DEBUG_DISAS
d977e1c2
AB
1356 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1357 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1358 qemu_log("OUT: [size=%d]\n", gen_code_size);
1359 log_disas(tb->tc_ptr, gen_code_size);
1360 qemu_log("\n");
1361 qemu_log_flush();
1362 }
1363#endif
1364
fca8a500
RH
1365 tcg_ctx.code_gen_ptr = (void *)
1366 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1367 CODE_GEN_ALIGN);
5b6dd868 1368
901bc3de
SF
1369 /* init jump list */
1370 assert(((uintptr_t)tb & 3) == 0);
1371 tb->jmp_list_first = (uintptr_t)tb | 2;
1372 tb->jmp_list_next[0] = (uintptr_t)NULL;
1373 tb->jmp_list_next[1] = (uintptr_t)NULL;
1374
1375 /* init original jump addresses wich has been set during tcg_gen_code() */
1376 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1377 tb_reset_jump(tb, 0);
1378 }
1379 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1380 tb_reset_jump(tb, 1);
1381 }
1382
5b6dd868
BS
1383 /* check next page if needed */
1384 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1385 phys_page2 = -1;
1386 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1387 phys_page2 = get_page_addr_code(env, virt_page2);
1388 }
901bc3de
SF
1389 /* As long as consistency of the TB stuff is provided by tb_lock in user
1390 * mode and is implicit in single-threaded softmmu emulation, no explicit
1391 * memory barrier is required before tb_link_page() makes the TB visible
1392 * through the physical hash table and physical page list.
1393 */
5b6dd868
BS
1394 tb_link_page(tb, phys_pc, phys_page2);
1395 return tb;
1396}
1397
1398/*
1399 * Invalidate all TBs which intersect with the target physical address range
1400 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1401 * 'is_cpu_write_access' should be true if called from a real cpu write
1402 * access: the virtual CPU will exit the current TB if code is modified inside
1403 * this TB.
75692087 1404 *
ba051fb5
AB
1405 * Called with mmap_lock held for user-mode emulation, grabs tb_lock
1406 * Called with tb_lock held for system-mode emulation
5b6dd868 1407 */
ba051fb5 1408static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1409{
1410 while (start < end) {
35865339 1411 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1412 start &= TARGET_PAGE_MASK;
1413 start += TARGET_PAGE_SIZE;
1414 }
1415}
1416
ba051fb5
AB
1417#ifdef CONFIG_SOFTMMU
1418void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1419{
1420 assert_tb_lock();
1421 tb_invalidate_phys_range_1(start, end);
1422}
1423#else
1424void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1425{
1426 assert_memory_lock();
1427 tb_lock();
1428 tb_invalidate_phys_range_1(start, end);
1429 tb_unlock();
1430}
1431#endif
5b6dd868
BS
1432/*
1433 * Invalidate all TBs which intersect with the target physical address range
1434 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1435 * 'is_cpu_write_access' should be true if called from a real cpu write
1436 * access: the virtual CPU will exit the current TB if code is modified inside
1437 * this TB.
75692087 1438 *
ba051fb5
AB
1439 * Called with tb_lock/mmap_lock held for user-mode emulation
1440 * Called with tb_lock held for system-mode emulation
5b6dd868
BS
1441 */
1442void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1443 int is_cpu_write_access)
1444{
3213525f 1445 TranslationBlock *tb, *tb_next;
baea4fae 1446#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1447 CPUState *cpu = current_cpu;
4917cf44
AF
1448 CPUArchState *env = NULL;
1449#endif
5b6dd868
BS
1450 tb_page_addr_t tb_start, tb_end;
1451 PageDesc *p;
1452 int n;
1453#ifdef TARGET_HAS_PRECISE_SMC
1454 int current_tb_not_found = is_cpu_write_access;
1455 TranslationBlock *current_tb = NULL;
1456 int current_tb_modified = 0;
1457 target_ulong current_pc = 0;
1458 target_ulong current_cs_base = 0;
89fee74a 1459 uint32_t current_flags = 0;
5b6dd868
BS
1460#endif /* TARGET_HAS_PRECISE_SMC */
1461
e505a063 1462 assert_memory_lock();
ba051fb5 1463 assert_tb_lock();
e505a063 1464
5b6dd868
BS
1465 p = page_find(start >> TARGET_PAGE_BITS);
1466 if (!p) {
1467 return;
1468 }
baea4fae 1469#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1470 if (cpu != NULL) {
1471 env = cpu->env_ptr;
d77953b9 1472 }
4917cf44 1473#endif
5b6dd868
BS
1474
1475 /* we remove all the TBs in the range [start, end[ */
1476 /* XXX: see if in some cases it could be faster to invalidate all
1477 the code */
1478 tb = p->first_tb;
1479 while (tb != NULL) {
1480 n = (uintptr_t)tb & 3;
1481 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1482 tb_next = tb->page_next[n];
1483 /* NOTE: this is subtle as a TB may span two physical pages */
1484 if (n == 0) {
1485 /* NOTE: tb_end may be after the end of the page, but
1486 it is not a problem */
1487 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1488 tb_end = tb_start + tb->size;
1489 } else {
1490 tb_start = tb->page_addr[1];
1491 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1492 }
1493 if (!(tb_end <= start || tb_start >= end)) {
1494#ifdef TARGET_HAS_PRECISE_SMC
1495 if (current_tb_not_found) {
1496 current_tb_not_found = 0;
1497 current_tb = NULL;
93afeade 1498 if (cpu->mem_io_pc) {
5b6dd868 1499 /* now we have a real cpu fault */
93afeade 1500 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1501 }
1502 }
1503 if (current_tb == tb &&
1504 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1505 /* If we are modifying the current TB, we must stop
1506 its execution. We could be more precise by checking
1507 that the modification is after the current PC, but it
1508 would require a specialized function to partially
1509 restore the CPU state */
1510
1511 current_tb_modified = 1;
74f10515 1512 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1513 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1514 &current_flags);
1515 }
1516#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1517 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1518 }
1519 tb = tb_next;
1520 }
1521#if !defined(CONFIG_USER_ONLY)
1522 /* if no code remaining, no need to continue to use slow writes */
1523 if (!p->first_tb) {
1524 invalidate_page_bitmap(p);
fc377bcf 1525 tlb_unprotect_code(start);
5b6dd868
BS
1526 }
1527#endif
1528#ifdef TARGET_HAS_PRECISE_SMC
1529 if (current_tb_modified) {
1530 /* we generate a block containing just the instruction
1531 modifying the memory. It will ensure that it cannot modify
1532 itself */
648f034c 1533 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
6886b980 1534 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1535 }
1536#endif
1537}
1538
6fad459c 1539#ifdef CONFIG_SOFTMMU
ba051fb5
AB
1540/* len must be <= 8 and start must be a multiple of len.
1541 * Called via softmmu_template.h when code areas are written to with
1542 * tb_lock held.
1543 */
5b6dd868
BS
1544void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1545{
1546 PageDesc *p;
5b6dd868
BS
1547
1548#if 0
1549 if (1) {
1550 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1551 cpu_single_env->mem_io_vaddr, len,
1552 cpu_single_env->eip,
1553 cpu_single_env->eip +
1554 (intptr_t)cpu_single_env->segs[R_CS].base);
1555 }
1556#endif
ba051fb5
AB
1557 assert_memory_lock();
1558
5b6dd868
BS
1559 p = page_find(start >> TARGET_PAGE_BITS);
1560 if (!p) {
1561 return;
1562 }
fc377bcf
PB
1563 if (!p->code_bitmap &&
1564 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
7d7500d9
PB
1565 /* build code bitmap. FIXME: writes should be protected by
1566 * tb_lock, reads by tb_lock or RCU.
1567 */
fc377bcf
PB
1568 build_page_bitmap(p);
1569 }
5b6dd868 1570 if (p->code_bitmap) {
510a647f
EC
1571 unsigned int nr;
1572 unsigned long b;
1573
1574 nr = start & ~TARGET_PAGE_MASK;
1575 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1576 if (b & ((1 << len) - 1)) {
1577 goto do_invalidate;
1578 }
1579 } else {
1580 do_invalidate:
1581 tb_invalidate_phys_page_range(start, start + len, 1);
1582 }
1583}
6fad459c 1584#else
75809229
PM
1585/* Called with mmap_lock held. If pc is not 0 then it indicates the
1586 * host PC of the faulting store instruction that caused this invalidate.
1587 * Returns true if the caller needs to abort execution of the current
1588 * TB (because it was modified by this store and the guest CPU has
1589 * precise-SMC semantics).
1590 */
1591static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
5b6dd868
BS
1592{
1593 TranslationBlock *tb;
1594 PageDesc *p;
1595 int n;
1596#ifdef TARGET_HAS_PRECISE_SMC
1597 TranslationBlock *current_tb = NULL;
4917cf44
AF
1598 CPUState *cpu = current_cpu;
1599 CPUArchState *env = NULL;
5b6dd868
BS
1600 int current_tb_modified = 0;
1601 target_ulong current_pc = 0;
1602 target_ulong current_cs_base = 0;
89fee74a 1603 uint32_t current_flags = 0;
5b6dd868
BS
1604#endif
1605
ba051fb5
AB
1606 assert_memory_lock();
1607
5b6dd868
BS
1608 addr &= TARGET_PAGE_MASK;
1609 p = page_find(addr >> TARGET_PAGE_BITS);
1610 if (!p) {
75809229 1611 return false;
5b6dd868 1612 }
a5e99826
FK
1613
1614 tb_lock();
5b6dd868
BS
1615 tb = p->first_tb;
1616#ifdef TARGET_HAS_PRECISE_SMC
1617 if (tb && pc != 0) {
1618 current_tb = tb_find_pc(pc);
1619 }
4917cf44
AF
1620 if (cpu != NULL) {
1621 env = cpu->env_ptr;
d77953b9 1622 }
5b6dd868
BS
1623#endif
1624 while (tb != NULL) {
1625 n = (uintptr_t)tb & 3;
1626 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1627#ifdef TARGET_HAS_PRECISE_SMC
1628 if (current_tb == tb &&
1629 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1630 /* If we are modifying the current TB, we must stop
1631 its execution. We could be more precise by checking
1632 that the modification is after the current PC, but it
1633 would require a specialized function to partially
1634 restore the CPU state */
1635
1636 current_tb_modified = 1;
74f10515 1637 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1638 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1639 &current_flags);
1640 }
1641#endif /* TARGET_HAS_PRECISE_SMC */
1642 tb_phys_invalidate(tb, addr);
1643 tb = tb->page_next[n];
1644 }
1645 p->first_tb = NULL;
1646#ifdef TARGET_HAS_PRECISE_SMC
1647 if (current_tb_modified) {
1648 /* we generate a block containing just the instruction
1649 modifying the memory. It will ensure that it cannot modify
1650 itself */
648f034c 1651 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
a5e99826
FK
1652 /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
1653 * back into the cpu_exec loop. */
75809229 1654 return true;
5b6dd868
BS
1655 }
1656#endif
a5e99826
FK
1657 tb_unlock();
1658
75809229 1659 return false;
5b6dd868
BS
1660}
1661#endif
1662
5b6dd868
BS
1663/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1664 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1665static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1666{
1667 int m_min, m_max, m;
1668 uintptr_t v;
1669 TranslationBlock *tb;
1670
5e5f07e0 1671 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1672 return NULL;
1673 }
0b0d3320
EV
1674 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1675 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1676 return NULL;
1677 }
1678 /* binary search (cf Knuth) */
1679 m_min = 0;
5e5f07e0 1680 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1681 while (m_min <= m_max) {
1682 m = (m_min + m_max) >> 1;
5e5f07e0 1683 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1684 v = (uintptr_t)tb->tc_ptr;
1685 if (v == tc_ptr) {
1686 return tb;
1687 } else if (tc_ptr < v) {
1688 m_max = m - 1;
1689 } else {
1690 m_min = m + 1;
1691 }
1692 }
5e5f07e0 1693 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1694}
1695
ec53b45b 1696#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1697void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1698{
1699 ram_addr_t ram_addr;
5c8a00ce 1700 MemoryRegion *mr;
149f54b5 1701 hwaddr l = 1;
5b6dd868 1702
41063e1e 1703 rcu_read_lock();
29d8ec7b 1704 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1705 if (!(memory_region_is_ram(mr)
1706 || memory_region_is_romd(mr))) {
41063e1e 1707 rcu_read_unlock();
5b6dd868
BS
1708 return;
1709 }
e4e69794 1710 ram_addr = memory_region_get_ram_addr(mr) + addr;
ba051fb5 1711 tb_lock();
5b6dd868 1712 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
ba051fb5 1713 tb_unlock();
41063e1e 1714 rcu_read_unlock();
5b6dd868 1715}
ec53b45b 1716#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1717
7d7500d9 1718/* Called with tb_lock held. */
239c51a5 1719void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1720{
1721 TranslationBlock *tb;
1722
93afeade 1723 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1724 if (tb) {
1725 /* We can use retranslation to find the PC. */
1726 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1727 tb_phys_invalidate(tb, -1);
1728 } else {
1729 /* The exception probably happened in a helper. The CPU state should
1730 have been saved before calling it. Fetch the PC from there. */
1731 CPUArchState *env = cpu->env_ptr;
1732 target_ulong pc, cs_base;
1733 tb_page_addr_t addr;
89fee74a 1734 uint32_t flags;
8d302e76
AJ
1735
1736 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1737 addr = get_page_addr_code(env, pc);
1738 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1739 }
5b6dd868
BS
1740}
1741
1742#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1743/* in deterministic execution mode, instructions doing device I/Os
1744 must be at the end of the TB */
90b40a69 1745void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1746{
a47dddd7 1747#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1748 CPUArchState *env = cpu->env_ptr;
a47dddd7 1749#endif
5b6dd868
BS
1750 TranslationBlock *tb;
1751 uint32_t n, cflags;
1752 target_ulong pc, cs_base;
89fee74a 1753 uint32_t flags;
5b6dd868 1754
a5e99826 1755 tb_lock();
5b6dd868
BS
1756 tb = tb_find_pc(retaddr);
1757 if (!tb) {
a47dddd7 1758 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1759 (void *)retaddr);
1760 }
28ecfd7a 1761 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1762 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1763 /* Calculate how many instructions had been executed before the fault
1764 occurred. */
28ecfd7a 1765 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1766 /* Generate a new TB ending on the I/O insn. */
1767 n++;
1768 /* On MIPS and SH, delay slot instructions can only be restarted if
1769 they were already the first instruction in the TB. If this is not
1770 the first instruction in a TB then re-execute the preceding
1771 branch. */
1772#if defined(TARGET_MIPS)
1773 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1774 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1775 cpu->icount_decr.u16.low++;
5b6dd868
BS
1776 env->hflags &= ~MIPS_HFLAG_BMASK;
1777 }
1778#elif defined(TARGET_SH4)
1779 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1780 && n > 1) {
1781 env->pc -= 2;
28ecfd7a 1782 cpu->icount_decr.u16.low++;
5b6dd868
BS
1783 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1784 }
1785#endif
1786 /* This should never happen. */
1787 if (n > CF_COUNT_MASK) {
a47dddd7 1788 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1789 }
1790
1791 cflags = n | CF_LAST_IO;
1792 pc = tb->pc;
1793 cs_base = tb->cs_base;
1794 flags = tb->flags;
1795 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1796 if (tb->cflags & CF_NOCACHE) {
1797 if (tb->orig_tb) {
1798 /* Invalidate original TB if this TB was generated in
1799 * cpu_exec_nocache() */
1800 tb_phys_invalidate(tb->orig_tb, -1);
1801 }
1802 tb_free(tb);
1803 }
5b6dd868
BS
1804 /* FIXME: In theory this could raise an exception. In practice
1805 we have already translated the block once so it's probably ok. */
648f034c 1806 tb_gen_code(cpu, pc, cs_base, flags, cflags);
a5e99826 1807
5b6dd868 1808 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
a5e99826
FK
1809 * the first in the TB) then we end up generating a whole new TB and
1810 * repeating the fault, which is horribly inefficient.
1811 * Better would be to execute just this insn uncached, or generate a
1812 * second new TB.
1813 *
1814 * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
1815 * tb_lock gets reset.
1816 */
6886b980 1817 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1818}
1819
611d4f99 1820void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1821{
1822 unsigned int i;
1823
1824 /* Discard jump cache entries for any tb which might potentially
1825 overlap the flushed page. */
1826 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1827 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1828 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1829
1830 i = tb_jmp_cache_hash_page(addr);
8cd70437 1831 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1832 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1833}
1834
7266ae91
EC
1835static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1836 struct qht_stats hst)
1837{
1838 uint32_t hgram_opts;
1839 size_t hgram_bins;
1840 char *hgram;
1841
1842 if (!hst.head_buckets) {
1843 return;
1844 }
1845 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1846 hst.used_head_buckets, hst.head_buckets,
1847 (double)hst.used_head_buckets / hst.head_buckets * 100);
1848
1849 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1850 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1851 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1852 hgram_opts |= QDIST_PR_NODECIMAL;
1853 }
1854 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1855 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1856 qdist_avg(&hst.occupancy) * 100, hgram);
1857 g_free(hgram);
1858
1859 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1860 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1861 if (hgram_bins > 10) {
1862 hgram_bins = 10;
1863 } else {
1864 hgram_bins = 0;
1865 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1866 }
1867 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1868 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1869 qdist_avg(&hst.chain), hgram);
1870 g_free(hgram);
1871}
1872
5b6dd868
BS
1873void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1874{
1875 int i, target_code_size, max_target_code_size;
1876 int direct_jmp_count, direct_jmp2_count, cross_page;
1877 TranslationBlock *tb;
329844d4 1878 struct qht_stats hst;
5b6dd868 1879
a5e99826
FK
1880 tb_lock();
1881
5b6dd868
BS
1882 target_code_size = 0;
1883 max_target_code_size = 0;
1884 cross_page = 0;
1885 direct_jmp_count = 0;
1886 direct_jmp2_count = 0;
5e5f07e0
EV
1887 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1888 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1889 target_code_size += tb->size;
1890 if (tb->size > max_target_code_size) {
1891 max_target_code_size = tb->size;
1892 }
1893 if (tb->page_addr[1] != -1) {
1894 cross_page++;
1895 }
f309101c 1896 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1897 direct_jmp_count++;
f309101c 1898 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1899 direct_jmp2_count++;
1900 }
1901 }
1902 }
1903 /* XXX: avoid using doubles ? */
1904 cpu_fprintf(f, "Translation buffer state:\n");
1905 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1906 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1907 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1908 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1909 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1910 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1911 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1912 tcg_ctx.tb_ctx.nb_tbs : 0,
1913 max_target_code_size);
5b6dd868 1914 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1915 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1916 tcg_ctx.code_gen_buffer) /
1917 tcg_ctx.tb_ctx.nb_tbs : 0,
1918 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1919 tcg_ctx.code_gen_buffer) /
1920 target_code_size : 0);
1921 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1922 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1923 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1924 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1925 direct_jmp_count,
5e5f07e0
EV
1926 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1927 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1928 direct_jmp2_count,
5e5f07e0
EV
1929 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1930 tcg_ctx.tb_ctx.nb_tbs : 0);
329844d4
EC
1931
1932 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
7266ae91 1933 print_qht_statistics(f, cpu_fprintf, hst);
329844d4
EC
1934 qht_statistics_destroy(&hst);
1935
5b6dd868 1936 cpu_fprintf(f, "\nStatistics:\n");
3359baad
SF
1937 cpu_fprintf(f, "TB flush count %u\n",
1938 atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
5e5f07e0
EV
1939 cpu_fprintf(f, "TB invalidate count %d\n",
1940 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1941 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1942 tcg_dump_info(f, cpu_fprintf);
a5e99826
FK
1943
1944 tb_unlock();
5b6dd868
BS
1945}
1946
246ae24d
MF
1947void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1948{
1949 tcg_dump_op_count(f, cpu_fprintf);
1950}
1951
5b6dd868
BS
1952#else /* CONFIG_USER_ONLY */
1953
c3affe56 1954void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1955{
259186a7 1956 cpu->interrupt_request |= mask;
378df4b2 1957 cpu->tcg_exit_req = 1;
5b6dd868
BS
1958}
1959
1960/*
1961 * Walks guest process memory "regions" one by one
1962 * and calls callback function 'fn' for each region.
1963 */
1964struct walk_memory_regions_data {
1965 walk_memory_regions_fn fn;
1966 void *priv;
1a1c4db9 1967 target_ulong start;
5b6dd868
BS
1968 int prot;
1969};
1970
1971static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1972 target_ulong end, int new_prot)
5b6dd868 1973{
1a1c4db9 1974 if (data->start != -1u) {
5b6dd868
BS
1975 int rc = data->fn(data->priv, data->start, end, data->prot);
1976 if (rc != 0) {
1977 return rc;
1978 }
1979 }
1980
1a1c4db9 1981 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1982 data->prot = new_prot;
1983
1984 return 0;
1985}
1986
1987static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1988 target_ulong base, int level, void **lp)
5b6dd868 1989{
1a1c4db9 1990 target_ulong pa;
5b6dd868
BS
1991 int i, rc;
1992
1993 if (*lp == NULL) {
1994 return walk_memory_regions_end(data, base, 0);
1995 }
1996
1997 if (level == 0) {
1998 PageDesc *pd = *lp;
1999
03f49957 2000 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
2001 int prot = pd[i].flags;
2002
2003 pa = base | (i << TARGET_PAGE_BITS);
2004 if (prot != data->prot) {
2005 rc = walk_memory_regions_end(data, pa, prot);
2006 if (rc != 0) {
2007 return rc;
2008 }
2009 }
2010 }
2011 } else {
2012 void **pp = *lp;
2013
03f49957 2014 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 2015 pa = base | ((target_ulong)i <<
03f49957 2016 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
2017 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2018 if (rc != 0) {
2019 return rc;
2020 }
2021 }
2022 }
2023
2024 return 0;
2025}
2026
2027int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2028{
2029 struct walk_memory_regions_data data;
66ec9f49 2030 uintptr_t i, l1_sz = v_l1_size;
5b6dd868
BS
2031
2032 data.fn = fn;
2033 data.priv = priv;
1a1c4db9 2034 data.start = -1u;
5b6dd868
BS
2035 data.prot = 0;
2036
66ec9f49
VK
2037 for (i = 0; i < l1_sz; i++) {
2038 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2039 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
5b6dd868
BS
2040 if (rc != 0) {
2041 return rc;
2042 }
2043 }
2044
2045 return walk_memory_regions_end(&data, 0, 0);
2046}
2047
1a1c4db9
MI
2048static int dump_region(void *priv, target_ulong start,
2049 target_ulong end, unsigned long prot)
5b6dd868
BS
2050{
2051 FILE *f = (FILE *)priv;
2052
1a1c4db9
MI
2053 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2054 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
2055 start, end, end - start,
2056 ((prot & PAGE_READ) ? 'r' : '-'),
2057 ((prot & PAGE_WRITE) ? 'w' : '-'),
2058 ((prot & PAGE_EXEC) ? 'x' : '-'));
2059
2060 return 0;
2061}
2062
2063/* dump memory mappings */
2064void page_dump(FILE *f)
2065{
1a1c4db9 2066 const int length = sizeof(target_ulong) * 2;
227b8175
SW
2067 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2068 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
2069 walk_memory_regions(f, dump_region);
2070}
2071
2072int page_get_flags(target_ulong address)
2073{
2074 PageDesc *p;
2075
2076 p = page_find(address >> TARGET_PAGE_BITS);
2077 if (!p) {
2078 return 0;
2079 }
2080 return p->flags;
2081}
2082
2083/* Modify the flags of a page and invalidate the code if necessary.
2084 The flag PAGE_WRITE_ORG is positioned automatically depending
2085 on PAGE_WRITE. The mmap_lock should already be held. */
2086void page_set_flags(target_ulong start, target_ulong end, int flags)
2087{
2088 target_ulong addr, len;
2089
2090 /* This function should never be called with addresses outside the
2091 guest address space. If this assert fires, it probably indicates
2092 a missing call to h2g_valid. */
2093#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 2094 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
2095#endif
2096 assert(start < end);
e505a063 2097 assert_memory_lock();
5b6dd868
BS
2098
2099 start = start & TARGET_PAGE_MASK;
2100 end = TARGET_PAGE_ALIGN(end);
2101
2102 if (flags & PAGE_WRITE) {
2103 flags |= PAGE_WRITE_ORG;
2104 }
2105
2106 for (addr = start, len = end - start;
2107 len != 0;
2108 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2109 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2110
2111 /* If the write protection bit is set, then we invalidate
2112 the code inside. */
2113 if (!(p->flags & PAGE_WRITE) &&
2114 (flags & PAGE_WRITE) &&
2115 p->first_tb) {
75809229 2116 tb_invalidate_phys_page(addr, 0);
5b6dd868
BS
2117 }
2118 p->flags = flags;
2119 }
2120}
2121
2122int page_check_range(target_ulong start, target_ulong len, int flags)
2123{
2124 PageDesc *p;
2125 target_ulong end;
2126 target_ulong addr;
2127
2128 /* This function should never be called with addresses outside the
2129 guest address space. If this assert fires, it probably indicates
2130 a missing call to h2g_valid. */
2131#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 2132 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
2133#endif
2134
2135 if (len == 0) {
2136 return 0;
2137 }
2138 if (start + len - 1 < start) {
2139 /* We've wrapped around. */
2140 return -1;
2141 }
2142
2143 /* must do before we loose bits in the next step */
2144 end = TARGET_PAGE_ALIGN(start + len);
2145 start = start & TARGET_PAGE_MASK;
2146
2147 for (addr = start, len = end - start;
2148 len != 0;
2149 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2150 p = page_find(addr >> TARGET_PAGE_BITS);
2151 if (!p) {
2152 return -1;
2153 }
2154 if (!(p->flags & PAGE_VALID)) {
2155 return -1;
2156 }
2157
2158 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2159 return -1;
2160 }
2161 if (flags & PAGE_WRITE) {
2162 if (!(p->flags & PAGE_WRITE_ORG)) {
2163 return -1;
2164 }
2165 /* unprotect the page if it was put read-only because it
2166 contains translated code */
2167 if (!(p->flags & PAGE_WRITE)) {
f213e72f 2168 if (!page_unprotect(addr, 0)) {
5b6dd868
BS
2169 return -1;
2170 }
2171 }
5b6dd868
BS
2172 }
2173 }
2174 return 0;
2175}
2176
2177/* called from signal handler: invalidate the code and unprotect the
f213e72f
PM
2178 * page. Return 0 if the fault was not handled, 1 if it was handled,
2179 * and 2 if it was handled but the caller must cause the TB to be
2180 * immediately exited. (We can only return 2 if the 'pc' argument is
2181 * non-zero.)
2182 */
2183int page_unprotect(target_ulong address, uintptr_t pc)
5b6dd868
BS
2184{
2185 unsigned int prot;
7399a337 2186 bool current_tb_invalidated;
5b6dd868
BS
2187 PageDesc *p;
2188 target_ulong host_start, host_end, addr;
2189
2190 /* Technically this isn't safe inside a signal handler. However we
2191 know this only ever happens in a synchronous SEGV handler, so in
2192 practice it seems to be ok. */
2193 mmap_lock();
2194
2195 p = page_find(address >> TARGET_PAGE_BITS);
2196 if (!p) {
2197 mmap_unlock();
2198 return 0;
2199 }
2200
2201 /* if the page was really writable, then we change its
2202 protection back to writable */
2203 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2204 host_start = address & qemu_host_page_mask;
2205 host_end = host_start + qemu_host_page_size;
2206
2207 prot = 0;
7399a337 2208 current_tb_invalidated = false;
5b6dd868
BS
2209 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2210 p = page_find(addr >> TARGET_PAGE_BITS);
2211 p->flags |= PAGE_WRITE;
2212 prot |= p->flags;
2213
2214 /* and since the content will be modified, we must invalidate
2215 the corresponding translated code. */
7399a337 2216 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
5b6dd868
BS
2217#ifdef DEBUG_TB_CHECK
2218 tb_invalidate_check(addr);
2219#endif
2220 }
2221 mprotect((void *)g2h(host_start), qemu_host_page_size,
2222 prot & PAGE_BITS);
2223
2224 mmap_unlock();
7399a337
SS
2225 /* If current TB was invalidated return to main loop */
2226 return current_tb_invalidated ? 2 : 1;
5b6dd868
BS
2227 }
2228 mmap_unlock();
2229 return 0;
2230}
2231#endif /* CONFIG_USER_ONLY */