]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
vhost-net: save & restore vring enable state
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
5b6dd868
BS
22#include <sys/mman.h>
23#endif
7b31bbc2 24#include "qemu/osdep.h"
d19893da 25
2054396a 26
5b6dd868 27#include "qemu-common.h"
af5ad107 28#define NO_CPU_IO_DEFS
d3eead2e 29#include "cpu.h"
6db8b538 30#include "trace.h"
76cad711 31#include "disas/disas.h"
63c91552 32#include "exec/exec-all.h"
57fec1fe 33#include "tcg.h"
5b6dd868
BS
34#if defined(CONFIG_USER_ONLY)
35#include "qemu.h"
36#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
37#include <sys/param.h>
38#if __FreeBSD_version >= 700104
39#define HAVE_KINFO_GETVMMAP
40#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
41#include <sys/proc.h>
42#include <machine/profile.h>
43#define _KERNEL
44#include <sys/user.h>
45#undef _KERNEL
46#undef sigqueue
47#include <libutil.h>
48#endif
49#endif
0bc3cd62
PB
50#else
51#include "exec/address-spaces.h"
5b6dd868
BS
52#endif
53
022c62cb 54#include "exec/cputlb.h"
e1b89321 55#include "exec/tb-hash.h"
5b6dd868 56#include "translate-all.h"
510a647f 57#include "qemu/bitmap.h"
0aa09897 58#include "qemu/timer.h"
508127e2 59#include "exec/log.h"
5b6dd868
BS
60
61//#define DEBUG_TB_INVALIDATE
62//#define DEBUG_FLUSH
63/* make various TB consistency checks */
64//#define DEBUG_TB_CHECK
65
66#if !defined(CONFIG_USER_ONLY)
67/* TB consistency checks only implemented for usermode emulation. */
68#undef DEBUG_TB_CHECK
69#endif
70
71#define SMC_BITMAP_USE_THRESHOLD 10
72
5b6dd868
BS
73typedef struct PageDesc {
74 /* list of TBs intersecting this ram page */
75 TranslationBlock *first_tb;
6fad459c 76#ifdef CONFIG_SOFTMMU
5b6dd868
BS
77 /* in order to optimize self modifying code, we count the number
78 of lookups we do to a given page to use a bitmap */
79 unsigned int code_write_count;
510a647f 80 unsigned long *code_bitmap;
6fad459c 81#else
5b6dd868
BS
82 unsigned long flags;
83#endif
84} PageDesc;
85
86/* In system mode we want L1_MAP to be based on ram offsets,
87 while in user mode we want it to be based on virtual addresses. */
88#if !defined(CONFIG_USER_ONLY)
89#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
90# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
91#else
92# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
93#endif
94#else
95# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
96#endif
97
03f49957
PB
98/* Size of the L2 (and L3, etc) page tables. */
99#define V_L2_BITS 10
100#define V_L2_SIZE (1 << V_L2_BITS)
101
5b6dd868
BS
102/* The bits remaining after N lower levels of page tables. */
103#define V_L1_BITS_REM \
03f49957 104 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
105
106#if V_L1_BITS_REM < 4
03f49957 107#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
108#else
109#define V_L1_BITS V_L1_BITS_REM
110#endif
111
112#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
113
114#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
115
5b6dd868 116uintptr_t qemu_host_page_size;
0c2d70c4 117intptr_t qemu_host_page_mask;
5b6dd868 118
d1142fb8 119/* The bottom level has pointers to PageDesc */
5b6dd868
BS
120static void *l1_map[V_L1_SIZE];
121
57fec1fe
FB
122/* code generation context */
123TCGContext tcg_ctx;
d19893da 124
677ef623
FK
125/* translation block context */
126#ifdef CONFIG_USER_ONLY
127__thread int have_tb_lock;
128#endif
129
130void tb_lock(void)
131{
132#ifdef CONFIG_USER_ONLY
133 assert(!have_tb_lock);
134 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
135 have_tb_lock++;
136#endif
137}
138
139void tb_unlock(void)
140{
141#ifdef CONFIG_USER_ONLY
142 assert(have_tb_lock);
143 have_tb_lock--;
144 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
145#endif
146}
147
148void tb_lock_reset(void)
149{
150#ifdef CONFIG_USER_ONLY
151 if (have_tb_lock) {
152 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
153 have_tb_lock = 0;
154 }
155#endif
156}
157
a8a826a3 158static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 159
57fec1fe
FB
160void cpu_gen_init(void)
161{
162 tcg_context_init(&tcg_ctx);
57fec1fe
FB
163}
164
fca8a500
RH
165/* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167static uint8_t *encode_sleb128(uint8_t *p, target_long val)
168{
169 int more, byte;
170
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
178 }
179 *p++ = byte;
180 } while (more);
181
182 return p;
183}
184
185/* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187static target_long decode_sleb128(uint8_t **pp)
188{
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
192
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
200 }
201
202 *pp = p;
203 return val;
204}
205
206/* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
208
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
212
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
217
218static int encode_search(TranslationBlock *tb, uint8_t *block)
219{
b125f9dc 220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
221 uint8_t *p = block;
222 int i, j, n;
223
224 tb->tc_search = block;
225
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
228
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
234 }
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
236 }
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
239
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
246 }
fca8a500
RH
247 }
248
249 return p - block;
250}
251
fec88f64 252/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 253static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 254 uintptr_t searched_pc)
d19893da 255{
fca8a500
RH
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 258 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
57fec1fe 261#ifdef CONFIG_PROFILER
fca8a500 262 int64_t ti = profile_getclock();
57fec1fe
FB
263#endif
264
fca8a500
RH
265 if (searched_pc < host_pc) {
266 return -1;
267 }
d19893da 268
fca8a500
RH
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
3b46e624 281
fca8a500 282 found:
bd79255d 283 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 284 assert(use_icount);
2e70f6ef 285 /* Reset the cycle counter to the start of the block. */
fca8a500 286 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 287 /* Clear the IO flag. */
99df7dce 288 cpu->can_do_io = 0;
2e70f6ef 289 }
fca8a500
RH
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
57fec1fe
FB
292
293#ifdef CONFIG_PROFILER
fca8a500
RH
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
57fec1fe 296#endif
d19893da
FB
297 return 0;
298}
5b6dd868 299
3f38f309 300bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
301{
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
74f10515 306 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
309 tb_phys_invalidate(tb, -1);
310 tb_free(tb);
311 }
a8a826a3
BS
312 return true;
313 }
314 return false;
315}
316
47c16ed5 317void page_size_init(void)
5b6dd868
BS
318{
319 /* NOTE: we can always suppose that qemu_host_page_size >=
320 TARGET_PAGE_SIZE */
5b6dd868 321 qemu_real_host_page_size = getpagesize();
0c2d70c4 322 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
323 if (qemu_host_page_size == 0) {
324 qemu_host_page_size = qemu_real_host_page_size;
325 }
326 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
327 qemu_host_page_size = TARGET_PAGE_SIZE;
328 }
0c2d70c4 329 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 330}
5b6dd868 331
47c16ed5
AK
332static void page_init(void)
333{
334 page_size_init();
5b6dd868
BS
335#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
336 {
337#ifdef HAVE_KINFO_GETVMMAP
338 struct kinfo_vmentry *freep;
339 int i, cnt;
340
341 freep = kinfo_getvmmap(getpid(), &cnt);
342 if (freep) {
343 mmap_lock();
344 for (i = 0; i < cnt; i++) {
345 unsigned long startaddr, endaddr;
346
347 startaddr = freep[i].kve_start;
348 endaddr = freep[i].kve_end;
349 if (h2g_valid(startaddr)) {
350 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
351
352 if (h2g_valid(endaddr)) {
353 endaddr = h2g(endaddr);
354 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
355 } else {
356#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
357 endaddr = ~0ul;
358 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
359#endif
360 }
361 }
362 }
363 free(freep);
364 mmap_unlock();
365 }
366#else
367 FILE *f;
368
369 last_brk = (unsigned long)sbrk(0);
370
371 f = fopen("/compat/linux/proc/self/maps", "r");
372 if (f) {
373 mmap_lock();
374
375 do {
376 unsigned long startaddr, endaddr;
377 int n;
378
379 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
380
381 if (n == 2 && h2g_valid(startaddr)) {
382 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
383
384 if (h2g_valid(endaddr)) {
385 endaddr = h2g(endaddr);
386 } else {
387 endaddr = ~0ul;
388 }
389 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
390 }
391 } while (!feof(f));
392
393 fclose(f);
394 mmap_unlock();
395 }
396#endif
397 }
398#endif
399}
400
75692087
PB
401/* If alloc=1:
402 * Called with mmap_lock held for user-mode emulation.
403 */
5b6dd868
BS
404static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
405{
406 PageDesc *pd;
407 void **lp;
408 int i;
409
5b6dd868
BS
410 /* Level 1. Always allocated. */
411 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
412
413 /* Level 2..N-1. */
03f49957 414 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 415 void **p = atomic_rcu_read(lp);
5b6dd868
BS
416
417 if (p == NULL) {
418 if (!alloc) {
419 return NULL;
420 }
e3a0abfd 421 p = g_new0(void *, V_L2_SIZE);
6940fab8 422 atomic_rcu_set(lp, p);
5b6dd868
BS
423 }
424
03f49957 425 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
426 }
427
6940fab8 428 pd = atomic_rcu_read(lp);
5b6dd868
BS
429 if (pd == NULL) {
430 if (!alloc) {
431 return NULL;
432 }
e3a0abfd 433 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 434 atomic_rcu_set(lp, pd);
5b6dd868
BS
435 }
436
03f49957 437 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
438}
439
440static inline PageDesc *page_find(tb_page_addr_t index)
441{
442 return page_find_alloc(index, 0);
443}
444
5b6dd868
BS
445#if defined(CONFIG_USER_ONLY)
446/* Currently it is not recommended to allocate big chunks of data in
447 user mode. It will change when a dedicated libc will be used. */
448/* ??? 64-bit hosts ought to have no problem mmaping data outside the
449 region in which the guest needs to run. Revisit this. */
450#define USE_STATIC_CODE_GEN_BUFFER
451#endif
452
5b6dd868
BS
453/* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
456
457/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460#if defined(__x86_64__)
461# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462#elif defined(__sparc__)
463# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
464#elif defined(__powerpc64__)
465# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
466#elif defined(__powerpc__)
467# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
468#elif defined(__aarch64__)
469# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
470#elif defined(__arm__)
471# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
472#elif defined(__s390x__)
473 /* We have a +- 4GB range on the branches; leave some slop. */
474# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
475#elif defined(__mips__)
476 /* We have a 256MB branch region, but leave room to make sure the
477 main executable is also within that region. */
478# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
479#else
480# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
481#endif
482
483#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
484
485#define DEFAULT_CODE_GEN_BUFFER_SIZE \
486 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
487 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
488
489static inline size_t size_code_gen_buffer(size_t tb_size)
490{
491 /* Size the buffer. */
492 if (tb_size == 0) {
493#ifdef USE_STATIC_CODE_GEN_BUFFER
494 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
495#else
496 /* ??? Needs adjustments. */
497 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
498 static buffer, we could size this on RESERVED_VA, on the text
499 segment size of the executable, or continue to use the default. */
500 tb_size = (unsigned long)(ram_size / 4);
501#endif
502 }
503 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
504 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
505 }
506 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
507 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
508 }
5b6dd868
BS
509 return tb_size;
510}
511
483c76e1
RH
512#ifdef __mips__
513/* In order to use J and JAL within the code_gen_buffer, we require
514 that the buffer not cross a 256MB boundary. */
515static inline bool cross_256mb(void *addr, size_t size)
516{
7ba6a512 517 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
518}
519
520/* We weren't able to allocate a buffer without crossing that boundary,
521 so make do with the larger portion of the buffer that doesn't cross.
522 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
523static inline void *split_cross_256mb(void *buf1, size_t size1)
524{
7ba6a512 525 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
526 size_t size2 = buf1 + size1 - buf2;
527
528 size1 = buf2 - buf1;
529 if (size1 < size2) {
530 size1 = size2;
531 buf1 = buf2;
532 }
533
534 tcg_ctx.code_gen_buffer_size = size1;
535 return buf1;
536}
537#endif
538
5b6dd868
BS
539#ifdef USE_STATIC_CODE_GEN_BUFFER
540static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
541 __attribute__((aligned(CODE_GEN_ALIGN)));
542
f293709c
RH
543# ifdef _WIN32
544static inline void do_protect(void *addr, long size, int prot)
545{
546 DWORD old_protect;
547 VirtualProtect(addr, size, prot, &old_protect);
548}
549
550static inline void map_exec(void *addr, long size)
551{
552 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
553}
554
555static inline void map_none(void *addr, long size)
556{
557 do_protect(addr, size, PAGE_NOACCESS);
558}
559# else
560static inline void do_protect(void *addr, long size, int prot)
561{
562 uintptr_t start, end;
563
564 start = (uintptr_t)addr;
565 start &= qemu_real_host_page_mask;
566
567 end = (uintptr_t)addr + size;
568 end = ROUND_UP(end, qemu_real_host_page_size);
569
570 mprotect((void *)start, end - start, prot);
571}
572
573static inline void map_exec(void *addr, long size)
574{
575 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
576}
577
578static inline void map_none(void *addr, long size)
579{
580 do_protect(addr, size, PROT_NONE);
581}
582# endif /* WIN32 */
583
5b6dd868
BS
584static inline void *alloc_code_gen_buffer(void)
585{
483c76e1 586 void *buf = static_code_gen_buffer;
f293709c
RH
587 size_t full_size, size;
588
589 /* The size of the buffer, rounded down to end on a page boundary. */
590 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
591 & qemu_real_host_page_mask) - (uintptr_t)buf;
592
593 /* Reserve a guard page. */
594 size = full_size - qemu_real_host_page_size;
595
596 /* Honor a command-line option limiting the size of the buffer. */
597 if (size > tcg_ctx.code_gen_buffer_size) {
598 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
599 & qemu_real_host_page_mask) - (uintptr_t)buf;
600 }
601 tcg_ctx.code_gen_buffer_size = size;
602
483c76e1 603#ifdef __mips__
f293709c
RH
604 if (cross_256mb(buf, size)) {
605 buf = split_cross_256mb(buf, size);
606 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
607 }
608#endif
f293709c
RH
609
610 map_exec(buf, size);
611 map_none(buf + size, qemu_real_host_page_size);
612 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
613
483c76e1 614 return buf;
5b6dd868 615}
f293709c
RH
616#elif defined(_WIN32)
617static inline void *alloc_code_gen_buffer(void)
618{
619 size_t size = tcg_ctx.code_gen_buffer_size;
620 void *buf1, *buf2;
621
622 /* Perform the allocation in two steps, so that the guard page
623 is reserved but uncommitted. */
624 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
625 MEM_RESERVE, PAGE_NOACCESS);
626 if (buf1 != NULL) {
627 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
628 assert(buf1 == buf2);
629 }
630
631 return buf1;
632}
633#else
5b6dd868
BS
634static inline void *alloc_code_gen_buffer(void)
635{
636 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
637 uintptr_t start = 0;
f293709c 638 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
639 void *buf;
640
641 /* Constrain the position of the buffer based on the host cpu.
642 Note that these addresses are chosen in concert with the
643 addresses assigned in the relevant linker script file. */
644# if defined(__PIE__) || defined(__PIC__)
645 /* Don't bother setting a preferred location if we're building
646 a position-independent executable. We're more likely to get
647 an address near the main executable if we let the kernel
648 choose the address. */
649# elif defined(__x86_64__) && defined(MAP_32BIT)
650 /* Force the memory down into low memory with the executable.
651 Leave the choice of exact location with the kernel. */
652 flags |= MAP_32BIT;
653 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
654 if (size > 800u * 1024 * 1024) {
655 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
656 }
657# elif defined(__sparc__)
658 start = 0x40000000ul;
659# elif defined(__s390x__)
660 start = 0x90000000ul;
479eb121 661# elif defined(__mips__)
f293709c 662# if _MIPS_SIM == _ABI64
479eb121
RH
663 start = 0x128000000ul;
664# else
665 start = 0x08000000ul;
666# endif
5b6dd868
BS
667# endif
668
f293709c
RH
669 buf = mmap((void *)start, size + qemu_real_host_page_size,
670 PROT_NONE, flags, -1, 0);
483c76e1
RH
671 if (buf == MAP_FAILED) {
672 return NULL;
673 }
674
675#ifdef __mips__
f293709c 676 if (cross_256mb(buf, size)) {
5d831be2 677 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 678 that 256mb crossing. This time don't specify an address. */
f293709c
RH
679 size_t size2;
680 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
681 PROT_NONE, flags, -1, 0);
682 switch (buf2 != MAP_FAILED) {
683 case 1:
684 if (!cross_256mb(buf2, size)) {
483c76e1 685 /* Success! Use the new buffer. */
8bdf4997 686 munmap(buf, size + qemu_real_host_page_size);
f293709c 687 break;
483c76e1
RH
688 }
689 /* Failure. Work with what we had. */
8bdf4997 690 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
691 /* fallthru */
692 default:
693 /* Split the original buffer. Free the smaller half. */
694 buf2 = split_cross_256mb(buf, size);
695 size2 = tcg_ctx.code_gen_buffer_size;
696 if (buf == buf2) {
697 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
698 } else {
699 munmap(buf, size - size2);
700 }
701 size = size2;
702 break;
483c76e1 703 }
f293709c 704 buf = buf2;
483c76e1
RH
705 }
706#endif
707
f293709c
RH
708 /* Make the final buffer accessible. The guard page at the end
709 will remain inaccessible with PROT_NONE. */
710 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 711
f293709c
RH
712 /* Request large pages for the buffer. */
713 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 714
5b6dd868
BS
715 return buf;
716}
f293709c 717#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
718
719static inline void code_gen_alloc(size_t tb_size)
720{
0b0d3320
EV
721 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
722 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
723 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
724 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
725 exit(1);
726 }
727
8163b749
RH
728 /* Estimate a good size for the number of TBs we can support. We
729 still haven't deducted the prologue from the buffer size here,
730 but that's minimal and won't affect the estimate much. */
731 tcg_ctx.code_gen_max_blocks
732 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
733 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
734
677ef623 735 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
736}
737
909eaac9
EC
738static void tb_htable_init(void)
739{
740 unsigned int mode = QHT_MODE_AUTO_RESIZE;
741
742 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
743}
744
5b6dd868
BS
745/* Must be called before using the QEMU cpus. 'tb_size' is the size
746 (in bytes) allocated to the translation buffer. Zero means default
747 size. */
748void tcg_exec_init(unsigned long tb_size)
749{
750 cpu_gen_init();
5b6dd868 751 page_init();
909eaac9 752 tb_htable_init();
f293709c 753 code_gen_alloc(tb_size);
4cbea598 754#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
755 /* There's no guest base to take into account, so go ahead and
756 initialize the prologue now. */
757 tcg_prologue_init(&tcg_ctx);
758#endif
759}
760
761bool tcg_enabled(void)
762{
0b0d3320 763 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
764}
765
766/* Allocate a new translation block. Flush the translation buffer if
767 too many translation blocks or too much generated code. */
768static TranslationBlock *tb_alloc(target_ulong pc)
769{
770 TranslationBlock *tb;
771
b125f9dc 772 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
773 return NULL;
774 }
5e5f07e0 775 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
776 tb->pc = pc;
777 tb->cflags = 0;
778 return tb;
779}
780
781void tb_free(TranslationBlock *tb)
782{
783 /* In practice this is mostly used for single use temporary TB
784 Ignore the hard cases and just back up if this TB happens to
785 be the last one generated. */
5e5f07e0
EV
786 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
787 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 788 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 789 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
790 }
791}
792
793static inline void invalidate_page_bitmap(PageDesc *p)
794{
6fad459c 795#ifdef CONFIG_SOFTMMU
012aef07
MA
796 g_free(p->code_bitmap);
797 p->code_bitmap = NULL;
5b6dd868 798 p->code_write_count = 0;
6fad459c 799#endif
5b6dd868
BS
800}
801
802/* Set to NULL all the 'first_tb' fields in all PageDescs. */
803static void page_flush_tb_1(int level, void **lp)
804{
805 int i;
806
807 if (*lp == NULL) {
808 return;
809 }
810 if (level == 0) {
811 PageDesc *pd = *lp;
812
03f49957 813 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
814 pd[i].first_tb = NULL;
815 invalidate_page_bitmap(pd + i);
816 }
817 } else {
818 void **pp = *lp;
819
03f49957 820 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
821 page_flush_tb_1(level - 1, pp + i);
822 }
823 }
824}
825
826static void page_flush_tb(void)
827{
828 int i;
829
830 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 831 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
832 }
833}
834
835/* flush all the translation blocks */
836/* XXX: tb_flush is currently not thread safe */
bbd77c18 837void tb_flush(CPUState *cpu)
5b6dd868 838{
5b6dd868
BS
839#if defined(DEBUG_FLUSH)
840 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 841 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 842 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 843 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 844 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 845#endif
0b0d3320
EV
846 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
847 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 848 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 849 }
5e5f07e0 850 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 851
bdc44640 852 CPU_FOREACH(cpu) {
8cd70437 853 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
6f789be5 854 cpu->tb_flushed = true;
5b6dd868
BS
855 }
856
909eaac9 857 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
5b6dd868
BS
858 page_flush_tb();
859
0b0d3320 860 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
861 /* XXX: flush processor icache at this point if cache flush is
862 expensive */
5e5f07e0 863 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
864}
865
866#ifdef DEBUG_TB_CHECK
867
909eaac9
EC
868static void
869do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
5b6dd868 870{
909eaac9
EC
871 TranslationBlock *tb = p;
872 target_ulong addr = *(target_ulong *)userp;
873
874 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
875 printf("ERROR invalidate: address=" TARGET_FMT_lx
876 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
877 }
878}
5b6dd868 879
909eaac9
EC
880static void tb_invalidate_check(target_ulong address)
881{
5b6dd868 882 address &= TARGET_PAGE_MASK;
909eaac9
EC
883 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
884}
885
886static void
887do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
888{
889 TranslationBlock *tb = p;
890 int flags1, flags2;
891
892 flags1 = page_get_flags(tb->pc);
893 flags2 = page_get_flags(tb->pc + tb->size - 1);
894 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
895 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
896 (long)tb->pc, tb->size, flags1, flags2);
5b6dd868
BS
897 }
898}
899
900/* verify that all the pages have correct rights for code */
901static void tb_page_check(void)
902{
909eaac9 903 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
5b6dd868
BS
904}
905
906#endif
907
5b6dd868
BS
908static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
909{
910 TranslationBlock *tb1;
911 unsigned int n1;
912
913 for (;;) {
914 tb1 = *ptb;
915 n1 = (uintptr_t)tb1 & 3;
916 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
917 if (tb1 == tb) {
918 *ptb = tb1->page_next[n1];
919 break;
920 }
921 ptb = &tb1->page_next[n1];
922 }
923}
924
13362678
SF
925/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
926static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 927{
c37e6d7e
SF
928 TranslationBlock *tb1;
929 uintptr_t *ptb, ntb;
5b6dd868
BS
930 unsigned int n1;
931
f309101c 932 ptb = &tb->jmp_list_next[n];
c37e6d7e 933 if (*ptb) {
5b6dd868
BS
934 /* find tb(n) in circular list */
935 for (;;) {
c37e6d7e
SF
936 ntb = *ptb;
937 n1 = ntb & 3;
938 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
939 if (n1 == n && tb1 == tb) {
940 break;
941 }
942 if (n1 == 2) {
f309101c 943 ptb = &tb1->jmp_list_first;
5b6dd868 944 } else {
f309101c 945 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
946 }
947 }
948 /* now we can suppress tb(n) from the list */
f309101c 949 *ptb = tb->jmp_list_next[n];
5b6dd868 950
c37e6d7e 951 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
952 }
953}
954
955/* reset the jump entry 'n' of a TB so that it is not chained to
956 another TB */
957static inline void tb_reset_jump(TranslationBlock *tb, int n)
958{
f309101c
SF
959 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
960 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
961}
962
89bba496
SF
963/* remove any jumps to the TB */
964static inline void tb_jmp_unlink(TranslationBlock *tb)
965{
f9c5b66f
SF
966 TranslationBlock *tb1;
967 uintptr_t *ptb, ntb;
89bba496
SF
968 unsigned int n1;
969
f9c5b66f 970 ptb = &tb->jmp_list_first;
89bba496 971 for (;;) {
f9c5b66f
SF
972 ntb = *ptb;
973 n1 = ntb & 3;
974 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
975 if (n1 == 2) {
976 break;
977 }
f9c5b66f
SF
978 tb_reset_jump(tb1, n1);
979 *ptb = tb1->jmp_list_next[n1];
980 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 981 }
89bba496
SF
982}
983
0c884d16 984/* invalidate one TB */
5b6dd868
BS
985void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
986{
182735ef 987 CPUState *cpu;
5b6dd868 988 PageDesc *p;
42bd3228 989 uint32_t h;
5b6dd868 990 tb_page_addr_t phys_pc;
5b6dd868
BS
991
992 /* remove the TB from the hash list */
993 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
42bd3228 994 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 995 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
5b6dd868
BS
996
997 /* remove the TB from the page list */
998 if (tb->page_addr[0] != page_addr) {
999 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1000 tb_page_remove(&p->first_tb, tb);
1001 invalidate_page_bitmap(p);
1002 }
1003 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1004 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1005 tb_page_remove(&p->first_tb, tb);
1006 invalidate_page_bitmap(p);
1007 }
1008
5b6dd868
BS
1009 /* remove the TB from the hash list */
1010 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1011 CPU_FOREACH(cpu) {
8cd70437
AF
1012 if (cpu->tb_jmp_cache[h] == tb) {
1013 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
1014 }
1015 }
1016
1017 /* suppress this TB from the two jump lists */
13362678
SF
1018 tb_remove_from_jmp_list(tb, 0);
1019 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1020
1021 /* suppress any remaining jumps to this TB */
89bba496 1022 tb_jmp_unlink(tb);
5b6dd868 1023
5e5f07e0 1024 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1025}
1026
6fad459c 1027#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1028static void build_page_bitmap(PageDesc *p)
1029{
1030 int n, tb_start, tb_end;
1031 TranslationBlock *tb;
1032
510a647f 1033 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1034
1035 tb = p->first_tb;
1036 while (tb != NULL) {
1037 n = (uintptr_t)tb & 3;
1038 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1039 /* NOTE: this is subtle as a TB may span two physical pages */
1040 if (n == 0) {
1041 /* NOTE: tb_end may be after the end of the page, but
1042 it is not a problem */
1043 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1044 tb_end = tb_start + tb->size;
1045 if (tb_end > TARGET_PAGE_SIZE) {
1046 tb_end = TARGET_PAGE_SIZE;
1047 }
1048 } else {
1049 tb_start = 0;
1050 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1051 }
510a647f 1052 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1053 tb = tb->page_next[n];
1054 }
1055}
6fad459c 1056#endif
5b6dd868 1057
e90d96b1
SF
1058/* add the tb in the target page and protect it if necessary
1059 *
1060 * Called with mmap_lock held for user-mode emulation.
1061 */
1062static inline void tb_alloc_page(TranslationBlock *tb,
1063 unsigned int n, tb_page_addr_t page_addr)
1064{
1065 PageDesc *p;
1066#ifndef CONFIG_USER_ONLY
1067 bool page_already_protected;
1068#endif
1069
1070 tb->page_addr[n] = page_addr;
1071 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1072 tb->page_next[n] = p->first_tb;
1073#ifndef CONFIG_USER_ONLY
1074 page_already_protected = p->first_tb != NULL;
1075#endif
1076 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1077 invalidate_page_bitmap(p);
1078
1079#if defined(CONFIG_USER_ONLY)
1080 if (p->flags & PAGE_WRITE) {
1081 target_ulong addr;
1082 PageDesc *p2;
1083 int prot;
1084
1085 /* force the host page as non writable (writes will have a
1086 page fault + mprotect overhead) */
1087 page_addr &= qemu_host_page_mask;
1088 prot = 0;
1089 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1090 addr += TARGET_PAGE_SIZE) {
1091
1092 p2 = page_find(addr >> TARGET_PAGE_BITS);
1093 if (!p2) {
1094 continue;
1095 }
1096 prot |= p2->flags;
1097 p2->flags &= ~PAGE_WRITE;
1098 }
1099 mprotect(g2h(page_addr), qemu_host_page_size,
1100 (prot & PAGE_BITS) & ~PAGE_WRITE);
1101#ifdef DEBUG_TB_INVALIDATE
1102 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1103 page_addr);
1104#endif
1105 }
1106#else
1107 /* if some code is already present, then the pages are already
1108 protected. So we handle the case where only the first TB is
1109 allocated in a physical page */
1110 if (!page_already_protected) {
1111 tlb_protect_code(page_addr);
1112 }
1113#endif
1114}
1115
1116/* add a new TB and link it to the physical page tables. phys_page2 is
1117 * (-1) to indicate that only one page contains the TB.
1118 *
1119 * Called with mmap_lock held for user-mode emulation.
1120 */
1121static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1122 tb_page_addr_t phys_page2)
1123{
42bd3228 1124 uint32_t h;
e90d96b1 1125
42bd3228
EC
1126 /* add in the hash table */
1127 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 1128 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
e90d96b1
SF
1129
1130 /* add in the page list */
1131 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1132 if (phys_page2 != -1) {
1133 tb_alloc_page(tb, 1, phys_page2);
1134 } else {
1135 tb->page_addr[1] = -1;
1136 }
1137
e90d96b1
SF
1138#ifdef DEBUG_TB_CHECK
1139 tb_page_check();
1140#endif
1141}
1142
75692087 1143/* Called with mmap_lock held for user mode emulation. */
648f034c 1144TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1145 target_ulong pc, target_ulong cs_base,
89fee74a 1146 uint32_t flags, int cflags)
5b6dd868 1147{
648f034c 1148 CPUArchState *env = cpu->env_ptr;
5b6dd868 1149 TranslationBlock *tb;
5b6dd868
BS
1150 tb_page_addr_t phys_pc, phys_page2;
1151 target_ulong virt_page2;
fec88f64 1152 tcg_insn_unit *gen_code_buf;
fca8a500 1153 int gen_code_size, search_size;
fec88f64
RH
1154#ifdef CONFIG_PROFILER
1155 int64_t ti;
1156#endif
5b6dd868
BS
1157
1158 phys_pc = get_page_addr_code(env, pc);
56c0269a 1159 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1160 cflags |= CF_USE_ICOUNT;
1161 }
b125f9dc 1162
5b6dd868 1163 tb = tb_alloc(pc);
b125f9dc
RH
1164 if (unlikely(!tb)) {
1165 buffer_overflow:
5b6dd868 1166 /* flush must be done */
bbd77c18 1167 tb_flush(cpu);
5b6dd868
BS
1168 /* cannot fail at this point */
1169 tb = tb_alloc(pc);
b125f9dc 1170 assert(tb != NULL);
5b6dd868 1171 }
fec88f64
RH
1172
1173 gen_code_buf = tcg_ctx.code_gen_ptr;
1174 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1175 tb->cs_base = cs_base;
1176 tb->flags = flags;
1177 tb->cflags = cflags;
fec88f64
RH
1178
1179#ifdef CONFIG_PROFILER
1180 tcg_ctx.tb_count1++; /* includes aborted translations because of
1181 exceptions */
1182 ti = profile_getclock();
1183#endif
1184
1185 tcg_func_start(&tcg_ctx);
1186
1187 gen_intermediate_code(env, tb);
1188
1189 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1190
1191 /* generate machine code */
f309101c
SF
1192 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1193 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1194 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1195#ifdef USE_DIRECT_JUMP
f309101c
SF
1196 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1197 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1198#else
f309101c
SF
1199 tcg_ctx.tb_jmp_insn_offset = NULL;
1200 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1201#endif
1202
1203#ifdef CONFIG_PROFILER
1204 tcg_ctx.tb_count++;
1205 tcg_ctx.interm_time += profile_getclock() - ti;
1206 tcg_ctx.code_time -= profile_getclock();
1207#endif
1208
b125f9dc
RH
1209 /* ??? Overflow could be handled better here. In particular, we
1210 don't need to re-do gen_intermediate_code, nor should we re-do
1211 the tcg optimization currently hidden inside tcg_gen_code. All
1212 that should be required is to flush the TBs, allocate a new TB,
1213 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1214 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1215 if (unlikely(gen_code_size < 0)) {
1216 goto buffer_overflow;
1217 }
fca8a500 1218 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1219 if (unlikely(search_size < 0)) {
1220 goto buffer_overflow;
1221 }
fec88f64
RH
1222
1223#ifdef CONFIG_PROFILER
1224 tcg_ctx.code_time += profile_getclock();
1225 tcg_ctx.code_in_len += tb->size;
1226 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1227 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1228#endif
1229
1230#ifdef DEBUG_DISAS
d977e1c2
AB
1231 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1232 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1233 qemu_log("OUT: [size=%d]\n", gen_code_size);
1234 log_disas(tb->tc_ptr, gen_code_size);
1235 qemu_log("\n");
1236 qemu_log_flush();
1237 }
1238#endif
1239
fca8a500
RH
1240 tcg_ctx.code_gen_ptr = (void *)
1241 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1242 CODE_GEN_ALIGN);
5b6dd868 1243
901bc3de
SF
1244 /* init jump list */
1245 assert(((uintptr_t)tb & 3) == 0);
1246 tb->jmp_list_first = (uintptr_t)tb | 2;
1247 tb->jmp_list_next[0] = (uintptr_t)NULL;
1248 tb->jmp_list_next[1] = (uintptr_t)NULL;
1249
1250 /* init original jump addresses wich has been set during tcg_gen_code() */
1251 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1252 tb_reset_jump(tb, 0);
1253 }
1254 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1255 tb_reset_jump(tb, 1);
1256 }
1257
5b6dd868
BS
1258 /* check next page if needed */
1259 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1260 phys_page2 = -1;
1261 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1262 phys_page2 = get_page_addr_code(env, virt_page2);
1263 }
901bc3de
SF
1264 /* As long as consistency of the TB stuff is provided by tb_lock in user
1265 * mode and is implicit in single-threaded softmmu emulation, no explicit
1266 * memory barrier is required before tb_link_page() makes the TB visible
1267 * through the physical hash table and physical page list.
1268 */
5b6dd868
BS
1269 tb_link_page(tb, phys_pc, phys_page2);
1270 return tb;
1271}
1272
1273/*
1274 * Invalidate all TBs which intersect with the target physical address range
1275 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1276 * 'is_cpu_write_access' should be true if called from a real cpu write
1277 * access: the virtual CPU will exit the current TB if code is modified inside
1278 * this TB.
75692087
PB
1279 *
1280 * Called with mmap_lock held for user-mode emulation
5b6dd868 1281 */
35865339 1282void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1283{
1284 while (start < end) {
35865339 1285 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1286 start &= TARGET_PAGE_MASK;
1287 start += TARGET_PAGE_SIZE;
1288 }
1289}
1290
1291/*
1292 * Invalidate all TBs which intersect with the target physical address range
1293 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1294 * 'is_cpu_write_access' should be true if called from a real cpu write
1295 * access: the virtual CPU will exit the current TB if code is modified inside
1296 * this TB.
75692087
PB
1297 *
1298 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1299 */
1300void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1301 int is_cpu_write_access)
1302{
3213525f 1303 TranslationBlock *tb, *tb_next;
baea4fae 1304#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1305 CPUState *cpu = current_cpu;
4917cf44
AF
1306 CPUArchState *env = NULL;
1307#endif
5b6dd868
BS
1308 tb_page_addr_t tb_start, tb_end;
1309 PageDesc *p;
1310 int n;
1311#ifdef TARGET_HAS_PRECISE_SMC
1312 int current_tb_not_found = is_cpu_write_access;
1313 TranslationBlock *current_tb = NULL;
1314 int current_tb_modified = 0;
1315 target_ulong current_pc = 0;
1316 target_ulong current_cs_base = 0;
89fee74a 1317 uint32_t current_flags = 0;
5b6dd868
BS
1318#endif /* TARGET_HAS_PRECISE_SMC */
1319
1320 p = page_find(start >> TARGET_PAGE_BITS);
1321 if (!p) {
1322 return;
1323 }
baea4fae 1324#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1325 if (cpu != NULL) {
1326 env = cpu->env_ptr;
d77953b9 1327 }
4917cf44 1328#endif
5b6dd868
BS
1329
1330 /* we remove all the TBs in the range [start, end[ */
1331 /* XXX: see if in some cases it could be faster to invalidate all
1332 the code */
1333 tb = p->first_tb;
1334 while (tb != NULL) {
1335 n = (uintptr_t)tb & 3;
1336 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1337 tb_next = tb->page_next[n];
1338 /* NOTE: this is subtle as a TB may span two physical pages */
1339 if (n == 0) {
1340 /* NOTE: tb_end may be after the end of the page, but
1341 it is not a problem */
1342 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1343 tb_end = tb_start + tb->size;
1344 } else {
1345 tb_start = tb->page_addr[1];
1346 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1347 }
1348 if (!(tb_end <= start || tb_start >= end)) {
1349#ifdef TARGET_HAS_PRECISE_SMC
1350 if (current_tb_not_found) {
1351 current_tb_not_found = 0;
1352 current_tb = NULL;
93afeade 1353 if (cpu->mem_io_pc) {
5b6dd868 1354 /* now we have a real cpu fault */
93afeade 1355 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1356 }
1357 }
1358 if (current_tb == tb &&
1359 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1360 /* If we are modifying the current TB, we must stop
1361 its execution. We could be more precise by checking
1362 that the modification is after the current PC, but it
1363 would require a specialized function to partially
1364 restore the CPU state */
1365
1366 current_tb_modified = 1;
74f10515 1367 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1368 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1369 &current_flags);
1370 }
1371#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1372 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1373 }
1374 tb = tb_next;
1375 }
1376#if !defined(CONFIG_USER_ONLY)
1377 /* if no code remaining, no need to continue to use slow writes */
1378 if (!p->first_tb) {
1379 invalidate_page_bitmap(p);
fc377bcf 1380 tlb_unprotect_code(start);
5b6dd868
BS
1381 }
1382#endif
1383#ifdef TARGET_HAS_PRECISE_SMC
1384 if (current_tb_modified) {
1385 /* we generate a block containing just the instruction
1386 modifying the memory. It will ensure that it cannot modify
1387 itself */
648f034c 1388 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
6886b980 1389 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1390 }
1391#endif
1392}
1393
6fad459c 1394#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1395/* len must be <= 8 and start must be a multiple of len */
1396void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1397{
1398 PageDesc *p;
5b6dd868
BS
1399
1400#if 0
1401 if (1) {
1402 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1403 cpu_single_env->mem_io_vaddr, len,
1404 cpu_single_env->eip,
1405 cpu_single_env->eip +
1406 (intptr_t)cpu_single_env->segs[R_CS].base);
1407 }
1408#endif
1409 p = page_find(start >> TARGET_PAGE_BITS);
1410 if (!p) {
1411 return;
1412 }
fc377bcf
PB
1413 if (!p->code_bitmap &&
1414 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1415 /* build code bitmap */
1416 build_page_bitmap(p);
1417 }
5b6dd868 1418 if (p->code_bitmap) {
510a647f
EC
1419 unsigned int nr;
1420 unsigned long b;
1421
1422 nr = start & ~TARGET_PAGE_MASK;
1423 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1424 if (b & ((1 << len) - 1)) {
1425 goto do_invalidate;
1426 }
1427 } else {
1428 do_invalidate:
1429 tb_invalidate_phys_page_range(start, start + len, 1);
1430 }
1431}
6fad459c 1432#else
75809229
PM
1433/* Called with mmap_lock held. If pc is not 0 then it indicates the
1434 * host PC of the faulting store instruction that caused this invalidate.
1435 * Returns true if the caller needs to abort execution of the current
1436 * TB (because it was modified by this store and the guest CPU has
1437 * precise-SMC semantics).
1438 */
1439static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
5b6dd868
BS
1440{
1441 TranslationBlock *tb;
1442 PageDesc *p;
1443 int n;
1444#ifdef TARGET_HAS_PRECISE_SMC
1445 TranslationBlock *current_tb = NULL;
4917cf44
AF
1446 CPUState *cpu = current_cpu;
1447 CPUArchState *env = NULL;
5b6dd868
BS
1448 int current_tb_modified = 0;
1449 target_ulong current_pc = 0;
1450 target_ulong current_cs_base = 0;
89fee74a 1451 uint32_t current_flags = 0;
5b6dd868
BS
1452#endif
1453
1454 addr &= TARGET_PAGE_MASK;
1455 p = page_find(addr >> TARGET_PAGE_BITS);
1456 if (!p) {
75809229 1457 return false;
5b6dd868
BS
1458 }
1459 tb = p->first_tb;
1460#ifdef TARGET_HAS_PRECISE_SMC
1461 if (tb && pc != 0) {
1462 current_tb = tb_find_pc(pc);
1463 }
4917cf44
AF
1464 if (cpu != NULL) {
1465 env = cpu->env_ptr;
d77953b9 1466 }
5b6dd868
BS
1467#endif
1468 while (tb != NULL) {
1469 n = (uintptr_t)tb & 3;
1470 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1471#ifdef TARGET_HAS_PRECISE_SMC
1472 if (current_tb == tb &&
1473 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1474 /* If we are modifying the current TB, we must stop
1475 its execution. We could be more precise by checking
1476 that the modification is after the current PC, but it
1477 would require a specialized function to partially
1478 restore the CPU state */
1479
1480 current_tb_modified = 1;
74f10515 1481 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1482 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1483 &current_flags);
1484 }
1485#endif /* TARGET_HAS_PRECISE_SMC */
1486 tb_phys_invalidate(tb, addr);
1487 tb = tb->page_next[n];
1488 }
1489 p->first_tb = NULL;
1490#ifdef TARGET_HAS_PRECISE_SMC
1491 if (current_tb_modified) {
1492 /* we generate a block containing just the instruction
1493 modifying the memory. It will ensure that it cannot modify
1494 itself */
648f034c 1495 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
75809229 1496 return true;
5b6dd868
BS
1497 }
1498#endif
75809229 1499 return false;
5b6dd868
BS
1500}
1501#endif
1502
5b6dd868
BS
1503/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1504 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1505static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1506{
1507 int m_min, m_max, m;
1508 uintptr_t v;
1509 TranslationBlock *tb;
1510
5e5f07e0 1511 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1512 return NULL;
1513 }
0b0d3320
EV
1514 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1515 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1516 return NULL;
1517 }
1518 /* binary search (cf Knuth) */
1519 m_min = 0;
5e5f07e0 1520 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1521 while (m_min <= m_max) {
1522 m = (m_min + m_max) >> 1;
5e5f07e0 1523 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1524 v = (uintptr_t)tb->tc_ptr;
1525 if (v == tc_ptr) {
1526 return tb;
1527 } else if (tc_ptr < v) {
1528 m_max = m - 1;
1529 } else {
1530 m_min = m + 1;
1531 }
1532 }
5e5f07e0 1533 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1534}
1535
ec53b45b 1536#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1537void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1538{
1539 ram_addr_t ram_addr;
5c8a00ce 1540 MemoryRegion *mr;
149f54b5 1541 hwaddr l = 1;
5b6dd868 1542
41063e1e 1543 rcu_read_lock();
29d8ec7b 1544 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1545 if (!(memory_region_is_ram(mr)
1546 || memory_region_is_romd(mr))) {
41063e1e 1547 rcu_read_unlock();
5b6dd868
BS
1548 return;
1549 }
e4e69794 1550 ram_addr = memory_region_get_ram_addr(mr) + addr;
5b6dd868 1551 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1552 rcu_read_unlock();
5b6dd868 1553}
ec53b45b 1554#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1555
239c51a5 1556void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1557{
1558 TranslationBlock *tb;
1559
93afeade 1560 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1561 if (tb) {
1562 /* We can use retranslation to find the PC. */
1563 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1564 tb_phys_invalidate(tb, -1);
1565 } else {
1566 /* The exception probably happened in a helper. The CPU state should
1567 have been saved before calling it. Fetch the PC from there. */
1568 CPUArchState *env = cpu->env_ptr;
1569 target_ulong pc, cs_base;
1570 tb_page_addr_t addr;
89fee74a 1571 uint32_t flags;
8d302e76
AJ
1572
1573 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1574 addr = get_page_addr_code(env, pc);
1575 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1576 }
5b6dd868
BS
1577}
1578
1579#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1580/* in deterministic execution mode, instructions doing device I/Os
1581 must be at the end of the TB */
90b40a69 1582void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1583{
a47dddd7 1584#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1585 CPUArchState *env = cpu->env_ptr;
a47dddd7 1586#endif
5b6dd868
BS
1587 TranslationBlock *tb;
1588 uint32_t n, cflags;
1589 target_ulong pc, cs_base;
89fee74a 1590 uint32_t flags;
5b6dd868
BS
1591
1592 tb = tb_find_pc(retaddr);
1593 if (!tb) {
a47dddd7 1594 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1595 (void *)retaddr);
1596 }
28ecfd7a 1597 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1598 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1599 /* Calculate how many instructions had been executed before the fault
1600 occurred. */
28ecfd7a 1601 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1602 /* Generate a new TB ending on the I/O insn. */
1603 n++;
1604 /* On MIPS and SH, delay slot instructions can only be restarted if
1605 they were already the first instruction in the TB. If this is not
1606 the first instruction in a TB then re-execute the preceding
1607 branch. */
1608#if defined(TARGET_MIPS)
1609 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1610 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1611 cpu->icount_decr.u16.low++;
5b6dd868
BS
1612 env->hflags &= ~MIPS_HFLAG_BMASK;
1613 }
1614#elif defined(TARGET_SH4)
1615 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1616 && n > 1) {
1617 env->pc -= 2;
28ecfd7a 1618 cpu->icount_decr.u16.low++;
5b6dd868
BS
1619 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1620 }
1621#endif
1622 /* This should never happen. */
1623 if (n > CF_COUNT_MASK) {
a47dddd7 1624 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1625 }
1626
1627 cflags = n | CF_LAST_IO;
1628 pc = tb->pc;
1629 cs_base = tb->cs_base;
1630 flags = tb->flags;
1631 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1632 if (tb->cflags & CF_NOCACHE) {
1633 if (tb->orig_tb) {
1634 /* Invalidate original TB if this TB was generated in
1635 * cpu_exec_nocache() */
1636 tb_phys_invalidate(tb->orig_tb, -1);
1637 }
1638 tb_free(tb);
1639 }
5b6dd868
BS
1640 /* FIXME: In theory this could raise an exception. In practice
1641 we have already translated the block once so it's probably ok. */
648f034c 1642 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1643 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1644 the first in the TB) then we end up generating a whole new TB and
1645 repeating the fault, which is horribly inefficient.
1646 Better would be to execute just this insn uncached, or generate a
1647 second new TB. */
6886b980 1648 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1649}
1650
611d4f99 1651void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1652{
1653 unsigned int i;
1654
1655 /* Discard jump cache entries for any tb which might potentially
1656 overlap the flushed page. */
1657 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1658 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1659 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1660
1661 i = tb_jmp_cache_hash_page(addr);
8cd70437 1662 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1663 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1664}
1665
1666void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1667{
1668 int i, target_code_size, max_target_code_size;
1669 int direct_jmp_count, direct_jmp2_count, cross_page;
1670 TranslationBlock *tb;
329844d4
EC
1671 struct qht_stats hst;
1672 uint32_t hgram_opts;
1673 size_t hgram_bins;
1674 char *hgram;
5b6dd868
BS
1675
1676 target_code_size = 0;
1677 max_target_code_size = 0;
1678 cross_page = 0;
1679 direct_jmp_count = 0;
1680 direct_jmp2_count = 0;
5e5f07e0
EV
1681 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1682 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1683 target_code_size += tb->size;
1684 if (tb->size > max_target_code_size) {
1685 max_target_code_size = tb->size;
1686 }
1687 if (tb->page_addr[1] != -1) {
1688 cross_page++;
1689 }
f309101c 1690 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1691 direct_jmp_count++;
f309101c 1692 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1693 direct_jmp2_count++;
1694 }
1695 }
1696 }
1697 /* XXX: avoid using doubles ? */
1698 cpu_fprintf(f, "Translation buffer state:\n");
1699 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1700 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1701 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1702 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1703 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1704 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1705 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1706 tcg_ctx.tb_ctx.nb_tbs : 0,
1707 max_target_code_size);
5b6dd868 1708 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1709 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1710 tcg_ctx.code_gen_buffer) /
1711 tcg_ctx.tb_ctx.nb_tbs : 0,
1712 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1713 tcg_ctx.code_gen_buffer) /
1714 target_code_size : 0);
1715 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1716 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1717 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1718 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1719 direct_jmp_count,
5e5f07e0
EV
1720 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1721 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1722 direct_jmp2_count,
5e5f07e0
EV
1723 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1724 tcg_ctx.tb_ctx.nb_tbs : 0);
329844d4
EC
1725
1726 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1727
1728 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1729 hst.used_head_buckets, hst.head_buckets,
1730 (double)hst.used_head_buckets / hst.head_buckets * 100);
1731
1732 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1733 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1734 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1735 hgram_opts |= QDIST_PR_NODECIMAL;
1736 }
1737 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1738 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1739 qdist_avg(&hst.occupancy) * 100, hgram);
1740 g_free(hgram);
1741
1742 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1743 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1744 if (hgram_bins > 10) {
1745 hgram_bins = 10;
1746 } else {
1747 hgram_bins = 0;
1748 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1749 }
1750 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1751 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1752 qdist_avg(&hst.chain), hgram);
1753 g_free(hgram);
1754
1755 qht_statistics_destroy(&hst);
1756
5b6dd868 1757 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1758 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1759 cpu_fprintf(f, "TB invalidate count %d\n",
1760 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1761 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1762 tcg_dump_info(f, cpu_fprintf);
1763}
1764
246ae24d
MF
1765void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1766{
1767 tcg_dump_op_count(f, cpu_fprintf);
1768}
1769
5b6dd868
BS
1770#else /* CONFIG_USER_ONLY */
1771
c3affe56 1772void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1773{
259186a7 1774 cpu->interrupt_request |= mask;
378df4b2 1775 cpu->tcg_exit_req = 1;
5b6dd868
BS
1776}
1777
1778/*
1779 * Walks guest process memory "regions" one by one
1780 * and calls callback function 'fn' for each region.
1781 */
1782struct walk_memory_regions_data {
1783 walk_memory_regions_fn fn;
1784 void *priv;
1a1c4db9 1785 target_ulong start;
5b6dd868
BS
1786 int prot;
1787};
1788
1789static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1790 target_ulong end, int new_prot)
5b6dd868 1791{
1a1c4db9 1792 if (data->start != -1u) {
5b6dd868
BS
1793 int rc = data->fn(data->priv, data->start, end, data->prot);
1794 if (rc != 0) {
1795 return rc;
1796 }
1797 }
1798
1a1c4db9 1799 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1800 data->prot = new_prot;
1801
1802 return 0;
1803}
1804
1805static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1806 target_ulong base, int level, void **lp)
5b6dd868 1807{
1a1c4db9 1808 target_ulong pa;
5b6dd868
BS
1809 int i, rc;
1810
1811 if (*lp == NULL) {
1812 return walk_memory_regions_end(data, base, 0);
1813 }
1814
1815 if (level == 0) {
1816 PageDesc *pd = *lp;
1817
03f49957 1818 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1819 int prot = pd[i].flags;
1820
1821 pa = base | (i << TARGET_PAGE_BITS);
1822 if (prot != data->prot) {
1823 rc = walk_memory_regions_end(data, pa, prot);
1824 if (rc != 0) {
1825 return rc;
1826 }
1827 }
1828 }
1829 } else {
1830 void **pp = *lp;
1831
03f49957 1832 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1833 pa = base | ((target_ulong)i <<
03f49957 1834 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1835 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1836 if (rc != 0) {
1837 return rc;
1838 }
1839 }
1840 }
1841
1842 return 0;
1843}
1844
1845int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1846{
1847 struct walk_memory_regions_data data;
1848 uintptr_t i;
1849
1850 data.fn = fn;
1851 data.priv = priv;
1a1c4db9 1852 data.start = -1u;
5b6dd868
BS
1853 data.prot = 0;
1854
1855 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1856 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1857 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1858 if (rc != 0) {
1859 return rc;
1860 }
1861 }
1862
1863 return walk_memory_regions_end(&data, 0, 0);
1864}
1865
1a1c4db9
MI
1866static int dump_region(void *priv, target_ulong start,
1867 target_ulong end, unsigned long prot)
5b6dd868
BS
1868{
1869 FILE *f = (FILE *)priv;
1870
1a1c4db9
MI
1871 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1872 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1873 start, end, end - start,
1874 ((prot & PAGE_READ) ? 'r' : '-'),
1875 ((prot & PAGE_WRITE) ? 'w' : '-'),
1876 ((prot & PAGE_EXEC) ? 'x' : '-'));
1877
1878 return 0;
1879}
1880
1881/* dump memory mappings */
1882void page_dump(FILE *f)
1883{
1a1c4db9 1884 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1885 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1886 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1887 walk_memory_regions(f, dump_region);
1888}
1889
1890int page_get_flags(target_ulong address)
1891{
1892 PageDesc *p;
1893
1894 p = page_find(address >> TARGET_PAGE_BITS);
1895 if (!p) {
1896 return 0;
1897 }
1898 return p->flags;
1899}
1900
1901/* Modify the flags of a page and invalidate the code if necessary.
1902 The flag PAGE_WRITE_ORG is positioned automatically depending
1903 on PAGE_WRITE. The mmap_lock should already be held. */
1904void page_set_flags(target_ulong start, target_ulong end, int flags)
1905{
1906 target_ulong addr, len;
1907
1908 /* This function should never be called with addresses outside the
1909 guest address space. If this assert fires, it probably indicates
1910 a missing call to h2g_valid. */
1911#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1912 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1913#endif
1914 assert(start < end);
1915
1916 start = start & TARGET_PAGE_MASK;
1917 end = TARGET_PAGE_ALIGN(end);
1918
1919 if (flags & PAGE_WRITE) {
1920 flags |= PAGE_WRITE_ORG;
1921 }
1922
1923 for (addr = start, len = end - start;
1924 len != 0;
1925 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1926 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1927
1928 /* If the write protection bit is set, then we invalidate
1929 the code inside. */
1930 if (!(p->flags & PAGE_WRITE) &&
1931 (flags & PAGE_WRITE) &&
1932 p->first_tb) {
75809229 1933 tb_invalidate_phys_page(addr, 0);
5b6dd868
BS
1934 }
1935 p->flags = flags;
1936 }
1937}
1938
1939int page_check_range(target_ulong start, target_ulong len, int flags)
1940{
1941 PageDesc *p;
1942 target_ulong end;
1943 target_ulong addr;
1944
1945 /* This function should never be called with addresses outside the
1946 guest address space. If this assert fires, it probably indicates
1947 a missing call to h2g_valid. */
1948#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1949 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1950#endif
1951
1952 if (len == 0) {
1953 return 0;
1954 }
1955 if (start + len - 1 < start) {
1956 /* We've wrapped around. */
1957 return -1;
1958 }
1959
1960 /* must do before we loose bits in the next step */
1961 end = TARGET_PAGE_ALIGN(start + len);
1962 start = start & TARGET_PAGE_MASK;
1963
1964 for (addr = start, len = end - start;
1965 len != 0;
1966 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1967 p = page_find(addr >> TARGET_PAGE_BITS);
1968 if (!p) {
1969 return -1;
1970 }
1971 if (!(p->flags & PAGE_VALID)) {
1972 return -1;
1973 }
1974
1975 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1976 return -1;
1977 }
1978 if (flags & PAGE_WRITE) {
1979 if (!(p->flags & PAGE_WRITE_ORG)) {
1980 return -1;
1981 }
1982 /* unprotect the page if it was put read-only because it
1983 contains translated code */
1984 if (!(p->flags & PAGE_WRITE)) {
f213e72f 1985 if (!page_unprotect(addr, 0)) {
5b6dd868
BS
1986 return -1;
1987 }
1988 }
5b6dd868
BS
1989 }
1990 }
1991 return 0;
1992}
1993
1994/* called from signal handler: invalidate the code and unprotect the
f213e72f
PM
1995 * page. Return 0 if the fault was not handled, 1 if it was handled,
1996 * and 2 if it was handled but the caller must cause the TB to be
1997 * immediately exited. (We can only return 2 if the 'pc' argument is
1998 * non-zero.)
1999 */
2000int page_unprotect(target_ulong address, uintptr_t pc)
5b6dd868
BS
2001{
2002 unsigned int prot;
2003 PageDesc *p;
2004 target_ulong host_start, host_end, addr;
2005
2006 /* Technically this isn't safe inside a signal handler. However we
2007 know this only ever happens in a synchronous SEGV handler, so in
2008 practice it seems to be ok. */
2009 mmap_lock();
2010
2011 p = page_find(address >> TARGET_PAGE_BITS);
2012 if (!p) {
2013 mmap_unlock();
2014 return 0;
2015 }
2016
2017 /* if the page was really writable, then we change its
2018 protection back to writable */
2019 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2020 host_start = address & qemu_host_page_mask;
2021 host_end = host_start + qemu_host_page_size;
2022
2023 prot = 0;
2024 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2025 p = page_find(addr >> TARGET_PAGE_BITS);
2026 p->flags |= PAGE_WRITE;
2027 prot |= p->flags;
2028
2029 /* and since the content will be modified, we must invalidate
2030 the corresponding translated code. */
75809229
PM
2031 if (tb_invalidate_phys_page(addr, pc)) {
2032 mmap_unlock();
f213e72f 2033 return 2;
75809229 2034 }
5b6dd868
BS
2035#ifdef DEBUG_TB_CHECK
2036 tb_invalidate_check(addr);
2037#endif
2038 }
2039 mprotect((void *)g2h(host_start), qemu_host_page_size,
2040 prot & PAGE_BITS);
2041
2042 mmap_unlock();
2043 return 1;
2044 }
2045 mmap_unlock();
2046 return 0;
2047}
2048#endif /* CONFIG_USER_ONLY */