]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
cpu-exec: add a new CF_USE_ICOUNT cflag
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
5b6dd868 61#include "translate-all.h"
0aa09897 62#include "qemu/timer.h"
5b6dd868
BS
63
64//#define DEBUG_TB_INVALIDATE
65//#define DEBUG_FLUSH
66/* make various TB consistency checks */
67//#define DEBUG_TB_CHECK
68
69#if !defined(CONFIG_USER_ONLY)
70/* TB consistency checks only implemented for usermode emulation. */
71#undef DEBUG_TB_CHECK
72#endif
73
74#define SMC_BITMAP_USE_THRESHOLD 10
75
5b6dd868
BS
76typedef struct PageDesc {
77 /* list of TBs intersecting this ram page */
78 TranslationBlock *first_tb;
79 /* in order to optimize self modifying code, we count the number
80 of lookups we do to a given page to use a bitmap */
81 unsigned int code_write_count;
82 uint8_t *code_bitmap;
83#if defined(CONFIG_USER_ONLY)
84 unsigned long flags;
85#endif
86} PageDesc;
87
88/* In system mode we want L1_MAP to be based on ram offsets,
89 while in user mode we want it to be based on virtual addresses. */
90#if !defined(CONFIG_USER_ONLY)
91#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
92# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
93#else
94# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
95#endif
96#else
97# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
98#endif
99
03f49957
PB
100/* Size of the L2 (and L3, etc) page tables. */
101#define V_L2_BITS 10
102#define V_L2_SIZE (1 << V_L2_BITS)
103
5b6dd868
BS
104/* The bits remaining after N lower levels of page tables. */
105#define V_L1_BITS_REM \
03f49957 106 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
107
108#if V_L1_BITS_REM < 4
03f49957 109#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
110#else
111#define V_L1_BITS V_L1_BITS_REM
112#endif
113
114#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
115
116#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
117
118uintptr_t qemu_real_host_page_size;
119uintptr_t qemu_host_page_size;
120uintptr_t qemu_host_page_mask;
121
122/* This is a multi-level map on the virtual address space.
123 The bottom level has pointers to PageDesc. */
124static void *l1_map[V_L1_SIZE];
125
57fec1fe
FB
126/* code generation context */
127TCGContext tcg_ctx;
d19893da 128
5b6dd868
BS
129static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
130 tb_page_addr_t phys_page2);
a8a826a3 131static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 132
57fec1fe
FB
133void cpu_gen_init(void)
134{
135 tcg_context_init(&tcg_ctx);
57fec1fe
FB
136}
137
d19893da 138/* return non zero if the very first instruction is invalid so that
5fafdf24 139 the virtual CPU can trigger an exception.
d19893da
FB
140
141 '*gen_code_size_ptr' contains the size of the generated code (host
142 code).
143*/
9349b4f9 144int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 145{
57fec1fe 146 TCGContext *s = &tcg_ctx;
1813e175 147 tcg_insn_unit *gen_code_buf;
d19893da 148 int gen_code_size;
57fec1fe
FB
149#ifdef CONFIG_PROFILER
150 int64_t ti;
151#endif
152
153#ifdef CONFIG_PROFILER
b67d9a52
FB
154 s->tb_count1++; /* includes aborted translations because of
155 exceptions */
57fec1fe
FB
156 ti = profile_getclock();
157#endif
158 tcg_func_start(s);
d19893da 159
2cfc5f17
TS
160 gen_intermediate_code(env, tb);
161
6db8b538
AB
162 trace_translate_block(tb, tb->pc, tb->tc_ptr);
163
ec6338ba 164 /* generate machine code */
57fec1fe 165 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
166 tb->tb_next_offset[0] = 0xffff;
167 tb->tb_next_offset[1] = 0xffff;
57fec1fe 168 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 169#ifdef USE_DIRECT_JUMP
57fec1fe
FB
170 s->tb_jmp_offset = tb->tb_jmp_offset;
171 s->tb_next = NULL;
d19893da 172#else
57fec1fe
FB
173 s->tb_jmp_offset = NULL;
174 s->tb_next = tb->tb_next;
d19893da 175#endif
57fec1fe
FB
176
177#ifdef CONFIG_PROFILER
b67d9a52
FB
178 s->tb_count++;
179 s->interm_time += profile_getclock() - ti;
180 s->code_time -= profile_getclock();
57fec1fe 181#endif
54604f74 182 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 183 *gen_code_size_ptr = gen_code_size;
57fec1fe 184#ifdef CONFIG_PROFILER
b67d9a52
FB
185 s->code_time += profile_getclock();
186 s->code_in_len += tb->size;
187 s->code_out_len += gen_code_size;
57fec1fe
FB
188#endif
189
d19893da 190#ifdef DEBUG_DISAS
8fec2b8c 191 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
192 qemu_log("OUT: [size=%d]\n", gen_code_size);
193 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 194 qemu_log("\n");
31b1a7b4 195 qemu_log_flush();
d19893da
FB
196 }
197#endif
198 return 0;
199}
200
5fafdf24 201/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 202 */
74f10515 203static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 204 uintptr_t searched_pc)
d19893da 205{
74f10515 206 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
207 TCGContext *s = &tcg_ctx;
208 int j;
6375e09e 209 uintptr_t tc_ptr;
57fec1fe
FB
210#ifdef CONFIG_PROFILER
211 int64_t ti;
212#endif
213
214#ifdef CONFIG_PROFILER
215 ti = profile_getclock();
216#endif
217 tcg_func_start(s);
d19893da 218
2cfc5f17 219 gen_intermediate_code_pc(env, tb);
3b46e624 220
2e70f6ef
PB
221 if (use_icount) {
222 /* Reset the cycle counter to the start of the block. */
28ecfd7a 223 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 224 /* Clear the IO flag. */
99df7dce 225 cpu->can_do_io = 0;
2e70f6ef
PB
226 }
227
d19893da 228 /* find opc index corresponding to search_pc */
6375e09e 229 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
230 if (searched_pc < tc_ptr)
231 return -1;
57fec1fe
FB
232
233 s->tb_next_offset = tb->tb_next_offset;
234#ifdef USE_DIRECT_JUMP
235 s->tb_jmp_offset = tb->tb_jmp_offset;
236 s->tb_next = NULL;
237#else
238 s->tb_jmp_offset = NULL;
239 s->tb_next = tb->tb_next;
240#endif
1813e175
RH
241 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
242 searched_pc - tc_ptr);
57fec1fe
FB
243 if (j < 0)
244 return -1;
d19893da 245 /* now find start of instruction before */
ab1103de 246 while (s->gen_opc_instr_start[j] == 0) {
d19893da 247 j--;
ab1103de 248 }
28ecfd7a 249 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 250
e87b7cb0 251 restore_state_to_opc(env, tb, j);
57fec1fe
FB
252
253#ifdef CONFIG_PROFILER
b67d9a52
FB
254 s->restore_time += profile_getclock() - ti;
255 s->restore_count++;
57fec1fe 256#endif
d19893da
FB
257 return 0;
258}
5b6dd868 259
3f38f309 260bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
261{
262 TranslationBlock *tb;
263
264 tb = tb_find_pc(retaddr);
265 if (tb) {
74f10515 266 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
267 if (tb->cflags & CF_NOCACHE) {
268 /* one-shot translation, invalidate it immediately */
269 cpu->current_tb = NULL;
270 tb_phys_invalidate(tb, -1);
271 tb_free(tb);
272 }
a8a826a3
BS
273 return true;
274 }
275 return false;
276}
277
5b6dd868
BS
278#ifdef _WIN32
279static inline void map_exec(void *addr, long size)
280{
281 DWORD old_protect;
282 VirtualProtect(addr, size,
283 PAGE_EXECUTE_READWRITE, &old_protect);
284}
285#else
286static inline void map_exec(void *addr, long size)
287{
288 unsigned long start, end, page_size;
289
290 page_size = getpagesize();
291 start = (unsigned long)addr;
292 start &= ~(page_size - 1);
293
294 end = (unsigned long)addr + size;
295 end += page_size - 1;
296 end &= ~(page_size - 1);
297
298 mprotect((void *)start, end - start,
299 PROT_READ | PROT_WRITE | PROT_EXEC);
300}
301#endif
302
47c16ed5 303void page_size_init(void)
5b6dd868
BS
304{
305 /* NOTE: we can always suppose that qemu_host_page_size >=
306 TARGET_PAGE_SIZE */
5b6dd868 307 qemu_real_host_page_size = getpagesize();
5b6dd868
BS
308 if (qemu_host_page_size == 0) {
309 qemu_host_page_size = qemu_real_host_page_size;
310 }
311 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
312 qemu_host_page_size = TARGET_PAGE_SIZE;
313 }
314 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 315}
5b6dd868 316
47c16ed5
AK
317static void page_init(void)
318{
319 page_size_init();
5b6dd868
BS
320#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
321 {
322#ifdef HAVE_KINFO_GETVMMAP
323 struct kinfo_vmentry *freep;
324 int i, cnt;
325
326 freep = kinfo_getvmmap(getpid(), &cnt);
327 if (freep) {
328 mmap_lock();
329 for (i = 0; i < cnt; i++) {
330 unsigned long startaddr, endaddr;
331
332 startaddr = freep[i].kve_start;
333 endaddr = freep[i].kve_end;
334 if (h2g_valid(startaddr)) {
335 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
336
337 if (h2g_valid(endaddr)) {
338 endaddr = h2g(endaddr);
339 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
340 } else {
341#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
342 endaddr = ~0ul;
343 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
344#endif
345 }
346 }
347 }
348 free(freep);
349 mmap_unlock();
350 }
351#else
352 FILE *f;
353
354 last_brk = (unsigned long)sbrk(0);
355
356 f = fopen("/compat/linux/proc/self/maps", "r");
357 if (f) {
358 mmap_lock();
359
360 do {
361 unsigned long startaddr, endaddr;
362 int n;
363
364 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
365
366 if (n == 2 && h2g_valid(startaddr)) {
367 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
368
369 if (h2g_valid(endaddr)) {
370 endaddr = h2g(endaddr);
371 } else {
372 endaddr = ~0ul;
373 }
374 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
375 }
376 } while (!feof(f));
377
378 fclose(f);
379 mmap_unlock();
380 }
381#endif
382 }
383#endif
384}
385
386static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
387{
388 PageDesc *pd;
389 void **lp;
390 int i;
391
392#if defined(CONFIG_USER_ONLY)
393 /* We can't use g_malloc because it may recurse into a locked mutex. */
394# define ALLOC(P, SIZE) \
395 do { \
396 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
397 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
398 } while (0)
399#else
400# define ALLOC(P, SIZE) \
401 do { P = g_malloc0(SIZE); } while (0)
402#endif
403
404 /* Level 1. Always allocated. */
405 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
406
407 /* Level 2..N-1. */
03f49957 408 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
409 void **p = *lp;
410
411 if (p == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
03f49957 415 ALLOC(p, sizeof(void *) * V_L2_SIZE);
5b6dd868
BS
416 *lp = p;
417 }
418
03f49957 419 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
420 }
421
422 pd = *lp;
423 if (pd == NULL) {
424 if (!alloc) {
425 return NULL;
426 }
03f49957 427 ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE);
5b6dd868
BS
428 *lp = pd;
429 }
430
431#undef ALLOC
432
03f49957 433 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
434}
435
436static inline PageDesc *page_find(tb_page_addr_t index)
437{
438 return page_find_alloc(index, 0);
439}
440
441#if !defined(CONFIG_USER_ONLY)
442#define mmap_lock() do { } while (0)
443#define mmap_unlock() do { } while (0)
444#endif
445
446#if defined(CONFIG_USER_ONLY)
447/* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449/* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451#define USE_STATIC_CODE_GEN_BUFFER
452#endif
453
454/* ??? Should configure for this, not list operating systems here. */
455#if (defined(__linux__) \
456 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
457 || defined(__DragonFly__) || defined(__OpenBSD__) \
458 || defined(__NetBSD__))
459# define USE_MMAP
460#endif
461
462/* Minimum size of the code gen buffer. This number is randomly chosen,
463 but not so small that we can't have a fair number of TB's live. */
464#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
465
466/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
467 indicated, this is constrained by the range of direct branches on the
468 host cpu, as used by the TCG implementation of goto_tb. */
469#if defined(__x86_64__)
470# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
471#elif defined(__sparc__)
472# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
473#elif defined(__aarch64__)
474# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
475#elif defined(__arm__)
476# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
477#elif defined(__s390x__)
478 /* We have a +- 4GB range on the branches; leave some slop. */
479# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
480#elif defined(__mips__)
481 /* We have a 256MB branch region, but leave room to make sure the
482 main executable is also within that region. */
483# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
484#else
485# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
486#endif
487
488#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
489
490#define DEFAULT_CODE_GEN_BUFFER_SIZE \
491 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
492 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
493
494static inline size_t size_code_gen_buffer(size_t tb_size)
495{
496 /* Size the buffer. */
497 if (tb_size == 0) {
498#ifdef USE_STATIC_CODE_GEN_BUFFER
499 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
500#else
501 /* ??? Needs adjustments. */
502 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
503 static buffer, we could size this on RESERVED_VA, on the text
504 segment size of the executable, or continue to use the default. */
505 tb_size = (unsigned long)(ram_size / 4);
506#endif
507 }
508 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
509 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
510 }
511 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
512 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
513 }
0b0d3320 514 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
515 return tb_size;
516}
517
483c76e1
RH
518#ifdef __mips__
519/* In order to use J and JAL within the code_gen_buffer, we require
520 that the buffer not cross a 256MB boundary. */
521static inline bool cross_256mb(void *addr, size_t size)
522{
523 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
524}
525
526/* We weren't able to allocate a buffer without crossing that boundary,
527 so make do with the larger portion of the buffer that doesn't cross.
528 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
529static inline void *split_cross_256mb(void *buf1, size_t size1)
530{
531 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
532 size_t size2 = buf1 + size1 - buf2;
533
534 size1 = buf2 - buf1;
535 if (size1 < size2) {
536 size1 = size2;
537 buf1 = buf2;
538 }
539
540 tcg_ctx.code_gen_buffer_size = size1;
541 return buf1;
542}
543#endif
544
5b6dd868
BS
545#ifdef USE_STATIC_CODE_GEN_BUFFER
546static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
547 __attribute__((aligned(CODE_GEN_ALIGN)));
548
549static inline void *alloc_code_gen_buffer(void)
550{
483c76e1
RH
551 void *buf = static_code_gen_buffer;
552#ifdef __mips__
553 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
554 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
555 }
556#endif
557 map_exec(buf, tcg_ctx.code_gen_buffer_size);
558 return buf;
5b6dd868
BS
559}
560#elif defined(USE_MMAP)
561static inline void *alloc_code_gen_buffer(void)
562{
563 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
564 uintptr_t start = 0;
565 void *buf;
566
567 /* Constrain the position of the buffer based on the host cpu.
568 Note that these addresses are chosen in concert with the
569 addresses assigned in the relevant linker script file. */
570# if defined(__PIE__) || defined(__PIC__)
571 /* Don't bother setting a preferred location if we're building
572 a position-independent executable. We're more likely to get
573 an address near the main executable if we let the kernel
574 choose the address. */
575# elif defined(__x86_64__) && defined(MAP_32BIT)
576 /* Force the memory down into low memory with the executable.
577 Leave the choice of exact location with the kernel. */
578 flags |= MAP_32BIT;
579 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
580 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
581 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
582 }
583# elif defined(__sparc__)
584 start = 0x40000000ul;
585# elif defined(__s390x__)
586 start = 0x90000000ul;
479eb121
RH
587# elif defined(__mips__)
588 /* ??? We ought to more explicitly manage layout for softmmu too. */
589# ifdef CONFIG_USER_ONLY
590 start = 0x68000000ul;
591# elif _MIPS_SIM == _ABI64
592 start = 0x128000000ul;
593# else
594 start = 0x08000000ul;
595# endif
5b6dd868
BS
596# endif
597
0b0d3320 598 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868 599 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
483c76e1
RH
600 if (buf == MAP_FAILED) {
601 return NULL;
602 }
603
604#ifdef __mips__
605 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
5d831be2 606 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1
RH
607 that 256mb crossing. This time don't specify an address. */
608 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
609 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
610 flags, -1, 0);
611 if (buf2 != MAP_FAILED) {
612 if (!cross_256mb(buf2, size1)) {
613 /* Success! Use the new buffer. */
614 munmap(buf, size1);
615 return buf2;
616 }
617 /* Failure. Work with what we had. */
618 munmap(buf2, size1);
619 }
620
621 /* Split the original buffer. Free the smaller half. */
622 buf2 = split_cross_256mb(buf, size1);
623 size2 = tcg_ctx.code_gen_buffer_size;
624 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
625 return buf2;
626 }
627#endif
628
629 return buf;
5b6dd868
BS
630}
631#else
632static inline void *alloc_code_gen_buffer(void)
633{
0b0d3320 634 void *buf = g_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868 635
483c76e1
RH
636 if (buf == NULL) {
637 return NULL;
638 }
639
640#ifdef __mips__
641 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
642 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
643 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
644 /* Success! Use the new buffer. */
645 free(buf);
646 buf = buf2;
647 } else {
648 /* Failure. Work with what we had. Since this is malloc
649 and not mmap, we can't free the other half. */
650 free(buf2);
651 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
652 }
5b6dd868 653 }
483c76e1
RH
654#endif
655
656 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
657 return buf;
658}
659#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
660
661static inline void code_gen_alloc(size_t tb_size)
662{
0b0d3320
EV
663 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
664 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
665 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
666 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
667 exit(1);
668 }
669
0b0d3320
EV
670 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
671 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
672
673 /* Steal room for the prologue at the end of the buffer. This ensures
674 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
675 from TB's to the prologue are going to be in range. It also means
676 that we don't need to mark (additional) portions of the data segment
677 as executable. */
0b0d3320
EV
678 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
679 tcg_ctx.code_gen_buffer_size - 1024;
680 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 681
0b0d3320 682 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 683 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
684 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
685 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
686 tcg_ctx.tb_ctx.tbs =
687 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
688}
689
690/* Must be called before using the QEMU cpus. 'tb_size' is the size
691 (in bytes) allocated to the translation buffer. Zero means default
692 size. */
693void tcg_exec_init(unsigned long tb_size)
694{
695 cpu_gen_init();
696 code_gen_alloc(tb_size);
0b0d3320
EV
697 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
698 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
699 page_init();
700#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
701 /* There's no guest base to take into account, so go ahead and
702 initialize the prologue now. */
703 tcg_prologue_init(&tcg_ctx);
704#endif
705}
706
707bool tcg_enabled(void)
708{
0b0d3320 709 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
710}
711
712/* Allocate a new translation block. Flush the translation buffer if
713 too many translation blocks or too much generated code. */
714static TranslationBlock *tb_alloc(target_ulong pc)
715{
716 TranslationBlock *tb;
717
5e5f07e0 718 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
719 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
720 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
721 return NULL;
722 }
5e5f07e0 723 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
724 tb->pc = pc;
725 tb->cflags = 0;
726 return tb;
727}
728
729void tb_free(TranslationBlock *tb)
730{
731 /* In practice this is mostly used for single use temporary TB
732 Ignore the hard cases and just back up if this TB happens to
733 be the last one generated. */
5e5f07e0
EV
734 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
735 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 736 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 737 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
738 }
739}
740
741static inline void invalidate_page_bitmap(PageDesc *p)
742{
743 if (p->code_bitmap) {
744 g_free(p->code_bitmap);
745 p->code_bitmap = NULL;
746 }
747 p->code_write_count = 0;
748}
749
750/* Set to NULL all the 'first_tb' fields in all PageDescs. */
751static void page_flush_tb_1(int level, void **lp)
752{
753 int i;
754
755 if (*lp == NULL) {
756 return;
757 }
758 if (level == 0) {
759 PageDesc *pd = *lp;
760
03f49957 761 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
762 pd[i].first_tb = NULL;
763 invalidate_page_bitmap(pd + i);
764 }
765 } else {
766 void **pp = *lp;
767
03f49957 768 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
769 page_flush_tb_1(level - 1, pp + i);
770 }
771 }
772}
773
774static void page_flush_tb(void)
775{
776 int i;
777
778 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 779 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
780 }
781}
782
783/* flush all the translation blocks */
784/* XXX: tb_flush is currently not thread safe */
785void tb_flush(CPUArchState *env1)
786{
a47dddd7 787 CPUState *cpu = ENV_GET_CPU(env1);
5b6dd868
BS
788
789#if defined(DEBUG_FLUSH)
790 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 791 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 792 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 793 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 794 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 795#endif
0b0d3320
EV
796 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
797 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 798 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 799 }
5e5f07e0 800 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 801
bdc44640 802 CPU_FOREACH(cpu) {
8cd70437 803 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
804 }
805
eb2535f4 806 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
807 page_flush_tb();
808
0b0d3320 809 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
810 /* XXX: flush processor icache at this point if cache flush is
811 expensive */
5e5f07e0 812 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
813}
814
815#ifdef DEBUG_TB_CHECK
816
817static void tb_invalidate_check(target_ulong address)
818{
819 TranslationBlock *tb;
820 int i;
821
822 address &= TARGET_PAGE_MASK;
823 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 824 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
825 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
826 address >= tb->pc + tb->size)) {
827 printf("ERROR invalidate: address=" TARGET_FMT_lx
828 " PC=%08lx size=%04x\n",
829 address, (long)tb->pc, tb->size);
830 }
831 }
832 }
833}
834
835/* verify that all the pages have correct rights for code */
836static void tb_page_check(void)
837{
838 TranslationBlock *tb;
839 int i, flags1, flags2;
840
841 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
842 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
843 tb = tb->phys_hash_next) {
5b6dd868
BS
844 flags1 = page_get_flags(tb->pc);
845 flags2 = page_get_flags(tb->pc + tb->size - 1);
846 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
847 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
848 (long)tb->pc, tb->size, flags1, flags2);
849 }
850 }
851 }
852}
853
854#endif
855
0c884d16 856static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
857{
858 TranslationBlock *tb1;
859
860 for (;;) {
861 tb1 = *ptb;
862 if (tb1 == tb) {
0c884d16 863 *ptb = tb1->phys_hash_next;
5b6dd868
BS
864 break;
865 }
0c884d16 866 ptb = &tb1->phys_hash_next;
5b6dd868
BS
867 }
868}
869
870static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
871{
872 TranslationBlock *tb1;
873 unsigned int n1;
874
875 for (;;) {
876 tb1 = *ptb;
877 n1 = (uintptr_t)tb1 & 3;
878 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
879 if (tb1 == tb) {
880 *ptb = tb1->page_next[n1];
881 break;
882 }
883 ptb = &tb1->page_next[n1];
884 }
885}
886
887static inline void tb_jmp_remove(TranslationBlock *tb, int n)
888{
889 TranslationBlock *tb1, **ptb;
890 unsigned int n1;
891
892 ptb = &tb->jmp_next[n];
893 tb1 = *ptb;
894 if (tb1) {
895 /* find tb(n) in circular list */
896 for (;;) {
897 tb1 = *ptb;
898 n1 = (uintptr_t)tb1 & 3;
899 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
900 if (n1 == n && tb1 == tb) {
901 break;
902 }
903 if (n1 == 2) {
904 ptb = &tb1->jmp_first;
905 } else {
906 ptb = &tb1->jmp_next[n1];
907 }
908 }
909 /* now we can suppress tb(n) from the list */
910 *ptb = tb->jmp_next[n];
911
912 tb->jmp_next[n] = NULL;
913 }
914}
915
916/* reset the jump entry 'n' of a TB so that it is not chained to
917 another TB */
918static inline void tb_reset_jump(TranslationBlock *tb, int n)
919{
920 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
921}
922
0c884d16 923/* invalidate one TB */
5b6dd868
BS
924void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
925{
182735ef 926 CPUState *cpu;
5b6dd868
BS
927 PageDesc *p;
928 unsigned int h, n1;
929 tb_page_addr_t phys_pc;
930 TranslationBlock *tb1, *tb2;
931
932 /* remove the TB from the hash list */
933 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
934 h = tb_phys_hash_func(phys_pc);
5e5f07e0 935 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
936
937 /* remove the TB from the page list */
938 if (tb->page_addr[0] != page_addr) {
939 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
944 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
945 tb_page_remove(&p->first_tb, tb);
946 invalidate_page_bitmap(p);
947 }
948
5e5f07e0 949 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
950
951 /* remove the TB from the hash list */
952 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 953 CPU_FOREACH(cpu) {
8cd70437
AF
954 if (cpu->tb_jmp_cache[h] == tb) {
955 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
956 }
957 }
958
959 /* suppress this TB from the two jump lists */
960 tb_jmp_remove(tb, 0);
961 tb_jmp_remove(tb, 1);
962
963 /* suppress any remaining jumps to this TB */
964 tb1 = tb->jmp_first;
965 for (;;) {
966 n1 = (uintptr_t)tb1 & 3;
967 if (n1 == 2) {
968 break;
969 }
970 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
971 tb2 = tb1->jmp_next[n1];
972 tb_reset_jump(tb1, n1);
973 tb1->jmp_next[n1] = NULL;
974 tb1 = tb2;
975 }
976 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
977
5e5f07e0 978 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
979}
980
981static inline void set_bits(uint8_t *tab, int start, int len)
982{
983 int end, mask, end1;
984
985 end = start + len;
986 tab += start >> 3;
987 mask = 0xff << (start & 7);
988 if ((start & ~7) == (end & ~7)) {
989 if (start < end) {
990 mask &= ~(0xff << (end & 7));
991 *tab |= mask;
992 }
993 } else {
994 *tab++ |= mask;
995 start = (start + 8) & ~7;
996 end1 = end & ~7;
997 while (start < end1) {
998 *tab++ = 0xff;
999 start += 8;
1000 }
1001 if (start < end) {
1002 mask = ~(0xff << (end & 7));
1003 *tab |= mask;
1004 }
1005 }
1006}
1007
1008static void build_page_bitmap(PageDesc *p)
1009{
1010 int n, tb_start, tb_end;
1011 TranslationBlock *tb;
1012
1013 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1014
1015 tb = p->first_tb;
1016 while (tb != NULL) {
1017 n = (uintptr_t)tb & 3;
1018 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1019 /* NOTE: this is subtle as a TB may span two physical pages */
1020 if (n == 0) {
1021 /* NOTE: tb_end may be after the end of the page, but
1022 it is not a problem */
1023 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1024 tb_end = tb_start + tb->size;
1025 if (tb_end > TARGET_PAGE_SIZE) {
1026 tb_end = TARGET_PAGE_SIZE;
1027 }
1028 } else {
1029 tb_start = 0;
1030 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1031 }
1032 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1033 tb = tb->page_next[n];
1034 }
1035}
1036
648f034c 1037TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
1038 target_ulong pc, target_ulong cs_base,
1039 int flags, int cflags)
1040{
648f034c 1041 CPUArchState *env = cpu->env_ptr;
5b6dd868 1042 TranslationBlock *tb;
5b6dd868
BS
1043 tb_page_addr_t phys_pc, phys_page2;
1044 target_ulong virt_page2;
1045 int code_gen_size;
1046
1047 phys_pc = get_page_addr_code(env, pc);
0266359e
PB
1048 if (use_icount) {
1049 cflags |= CF_USE_ICOUNT;
1050 }
5b6dd868
BS
1051 tb = tb_alloc(pc);
1052 if (!tb) {
1053 /* flush must be done */
1054 tb_flush(env);
1055 /* cannot fail at this point */
1056 tb = tb_alloc(pc);
1057 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1058 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1059 }
1813e175 1060 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
1061 tb->cs_base = cs_base;
1062 tb->flags = flags;
1063 tb->cflags = cflags;
1064 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
1065 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1066 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
1067
1068 /* check next page if needed */
1069 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1070 phys_page2 = -1;
1071 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1072 phys_page2 = get_page_addr_code(env, virt_page2);
1073 }
1074 tb_link_page(tb, phys_pc, phys_page2);
1075 return tb;
1076}
1077
1078/*
1079 * Invalidate all TBs which intersect with the target physical address range
1080 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1081 * 'is_cpu_write_access' should be true if called from a real cpu write
1082 * access: the virtual CPU will exit the current TB if code is modified inside
1083 * this TB.
1084 */
1085void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1086 int is_cpu_write_access)
1087{
1088 while (start < end) {
1089 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1090 start &= TARGET_PAGE_MASK;
1091 start += TARGET_PAGE_SIZE;
1092 }
1093}
1094
1095/*
1096 * Invalidate all TBs which intersect with the target physical address range
1097 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1098 * 'is_cpu_write_access' should be true if called from a real cpu write
1099 * access: the virtual CPU will exit the current TB if code is modified inside
1100 * this TB.
1101 */
1102void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1103 int is_cpu_write_access)
1104{
1105 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1106 CPUState *cpu = current_cpu;
baea4fae 1107#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1108 CPUArchState *env = NULL;
1109#endif
5b6dd868
BS
1110 tb_page_addr_t tb_start, tb_end;
1111 PageDesc *p;
1112 int n;
1113#ifdef TARGET_HAS_PRECISE_SMC
1114 int current_tb_not_found = is_cpu_write_access;
1115 TranslationBlock *current_tb = NULL;
1116 int current_tb_modified = 0;
1117 target_ulong current_pc = 0;
1118 target_ulong current_cs_base = 0;
1119 int current_flags = 0;
1120#endif /* TARGET_HAS_PRECISE_SMC */
1121
1122 p = page_find(start >> TARGET_PAGE_BITS);
1123 if (!p) {
1124 return;
1125 }
1126 if (!p->code_bitmap &&
1127 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1128 is_cpu_write_access) {
1129 /* build code bitmap */
1130 build_page_bitmap(p);
1131 }
baea4fae 1132#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1133 if (cpu != NULL) {
1134 env = cpu->env_ptr;
d77953b9 1135 }
4917cf44 1136#endif
5b6dd868
BS
1137
1138 /* we remove all the TBs in the range [start, end[ */
1139 /* XXX: see if in some cases it could be faster to invalidate all
1140 the code */
1141 tb = p->first_tb;
1142 while (tb != NULL) {
1143 n = (uintptr_t)tb & 3;
1144 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1145 tb_next = tb->page_next[n];
1146 /* NOTE: this is subtle as a TB may span two physical pages */
1147 if (n == 0) {
1148 /* NOTE: tb_end may be after the end of the page, but
1149 it is not a problem */
1150 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1151 tb_end = tb_start + tb->size;
1152 } else {
1153 tb_start = tb->page_addr[1];
1154 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1155 }
1156 if (!(tb_end <= start || tb_start >= end)) {
1157#ifdef TARGET_HAS_PRECISE_SMC
1158 if (current_tb_not_found) {
1159 current_tb_not_found = 0;
1160 current_tb = NULL;
93afeade 1161 if (cpu->mem_io_pc) {
5b6dd868 1162 /* now we have a real cpu fault */
93afeade 1163 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1164 }
1165 }
1166 if (current_tb == tb &&
1167 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1168 /* If we are modifying the current TB, we must stop
1169 its execution. We could be more precise by checking
1170 that the modification is after the current PC, but it
1171 would require a specialized function to partially
1172 restore the CPU state */
1173
1174 current_tb_modified = 1;
74f10515 1175 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1176 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1177 &current_flags);
1178 }
1179#endif /* TARGET_HAS_PRECISE_SMC */
1180 /* we need to do that to handle the case where a signal
1181 occurs while doing tb_phys_invalidate() */
1182 saved_tb = NULL;
d77953b9
AF
1183 if (cpu != NULL) {
1184 saved_tb = cpu->current_tb;
1185 cpu->current_tb = NULL;
5b6dd868
BS
1186 }
1187 tb_phys_invalidate(tb, -1);
d77953b9
AF
1188 if (cpu != NULL) {
1189 cpu->current_tb = saved_tb;
c3affe56
AF
1190 if (cpu->interrupt_request && cpu->current_tb) {
1191 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1192 }
1193 }
1194 }
1195 tb = tb_next;
1196 }
1197#if !defined(CONFIG_USER_ONLY)
1198 /* if no code remaining, no need to continue to use slow writes */
1199 if (!p->first_tb) {
1200 invalidate_page_bitmap(p);
1201 if (is_cpu_write_access) {
baea4fae 1202 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
5b6dd868
BS
1203 }
1204 }
1205#endif
1206#ifdef TARGET_HAS_PRECISE_SMC
1207 if (current_tb_modified) {
1208 /* we generate a block containing just the instruction
1209 modifying the memory. It will ensure that it cannot modify
1210 itself */
d77953b9 1211 cpu->current_tb = NULL;
648f034c 1212 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1213 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1214 }
1215#endif
1216}
1217
1218/* len must be <= 8 and start must be a multiple of len */
1219void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1220{
1221 PageDesc *p;
1222 int offset, b;
1223
1224#if 0
1225 if (1) {
1226 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1227 cpu_single_env->mem_io_vaddr, len,
1228 cpu_single_env->eip,
1229 cpu_single_env->eip +
1230 (intptr_t)cpu_single_env->segs[R_CS].base);
1231 }
1232#endif
1233 p = page_find(start >> TARGET_PAGE_BITS);
1234 if (!p) {
1235 return;
1236 }
1237 if (p->code_bitmap) {
1238 offset = start & ~TARGET_PAGE_MASK;
1239 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1240 if (b & ((1 << len) - 1)) {
1241 goto do_invalidate;
1242 }
1243 } else {
1244 do_invalidate:
1245 tb_invalidate_phys_page_range(start, start + len, 1);
1246 }
1247}
1248
1249#if !defined(CONFIG_SOFTMMU)
1250static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1251 uintptr_t pc, void *puc,
1252 bool locked)
5b6dd868
BS
1253{
1254 TranslationBlock *tb;
1255 PageDesc *p;
1256 int n;
1257#ifdef TARGET_HAS_PRECISE_SMC
1258 TranslationBlock *current_tb = NULL;
4917cf44
AF
1259 CPUState *cpu = current_cpu;
1260 CPUArchState *env = NULL;
5b6dd868
BS
1261 int current_tb_modified = 0;
1262 target_ulong current_pc = 0;
1263 target_ulong current_cs_base = 0;
1264 int current_flags = 0;
1265#endif
1266
1267 addr &= TARGET_PAGE_MASK;
1268 p = page_find(addr >> TARGET_PAGE_BITS);
1269 if (!p) {
1270 return;
1271 }
1272 tb = p->first_tb;
1273#ifdef TARGET_HAS_PRECISE_SMC
1274 if (tb && pc != 0) {
1275 current_tb = tb_find_pc(pc);
1276 }
4917cf44
AF
1277 if (cpu != NULL) {
1278 env = cpu->env_ptr;
d77953b9 1279 }
5b6dd868
BS
1280#endif
1281 while (tb != NULL) {
1282 n = (uintptr_t)tb & 3;
1283 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1284#ifdef TARGET_HAS_PRECISE_SMC
1285 if (current_tb == tb &&
1286 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1287 /* If we are modifying the current TB, we must stop
1288 its execution. We could be more precise by checking
1289 that the modification is after the current PC, but it
1290 would require a specialized function to partially
1291 restore the CPU state */
1292
1293 current_tb_modified = 1;
74f10515 1294 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1295 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1296 &current_flags);
1297 }
1298#endif /* TARGET_HAS_PRECISE_SMC */
1299 tb_phys_invalidate(tb, addr);
1300 tb = tb->page_next[n];
1301 }
1302 p->first_tb = NULL;
1303#ifdef TARGET_HAS_PRECISE_SMC
1304 if (current_tb_modified) {
1305 /* we generate a block containing just the instruction
1306 modifying the memory. It will ensure that it cannot modify
1307 itself */
d77953b9 1308 cpu->current_tb = NULL;
648f034c 1309 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1310 if (locked) {
1311 mmap_unlock();
1312 }
0ea8cb88 1313 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1314 }
1315#endif
1316}
1317#endif
1318
1319/* add the tb in the target page and protect it if necessary */
1320static inline void tb_alloc_page(TranslationBlock *tb,
1321 unsigned int n, tb_page_addr_t page_addr)
1322{
1323 PageDesc *p;
1324#ifndef CONFIG_USER_ONLY
1325 bool page_already_protected;
1326#endif
1327
1328 tb->page_addr[n] = page_addr;
1329 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1330 tb->page_next[n] = p->first_tb;
1331#ifndef CONFIG_USER_ONLY
1332 page_already_protected = p->first_tb != NULL;
1333#endif
1334 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1335 invalidate_page_bitmap(p);
1336
1337#if defined(TARGET_HAS_SMC) || 1
1338
1339#if defined(CONFIG_USER_ONLY)
1340 if (p->flags & PAGE_WRITE) {
1341 target_ulong addr;
1342 PageDesc *p2;
1343 int prot;
1344
1345 /* force the host page as non writable (writes will have a
1346 page fault + mprotect overhead) */
1347 page_addr &= qemu_host_page_mask;
1348 prot = 0;
1349 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1350 addr += TARGET_PAGE_SIZE) {
1351
1352 p2 = page_find(addr >> TARGET_PAGE_BITS);
1353 if (!p2) {
1354 continue;
1355 }
1356 prot |= p2->flags;
1357 p2->flags &= ~PAGE_WRITE;
1358 }
1359 mprotect(g2h(page_addr), qemu_host_page_size,
1360 (prot & PAGE_BITS) & ~PAGE_WRITE);
1361#ifdef DEBUG_TB_INVALIDATE
1362 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1363 page_addr);
1364#endif
1365 }
1366#else
1367 /* if some code is already present, then the pages are already
1368 protected. So we handle the case where only the first TB is
1369 allocated in a physical page */
1370 if (!page_already_protected) {
1371 tlb_protect_code(page_addr);
1372 }
1373#endif
1374
1375#endif /* TARGET_HAS_SMC */
1376}
1377
1378/* add a new TB and link it to the physical page tables. phys_page2 is
1379 (-1) to indicate that only one page contains the TB. */
1380static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1381 tb_page_addr_t phys_page2)
1382{
1383 unsigned int h;
1384 TranslationBlock **ptb;
1385
1386 /* Grab the mmap lock to stop another thread invalidating this TB
1387 before we are done. */
1388 mmap_lock();
1389 /* add in the physical hash table */
1390 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1391 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1392 tb->phys_hash_next = *ptb;
1393 *ptb = tb;
1394
1395 /* add in the page list */
1396 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1397 if (phys_page2 != -1) {
1398 tb_alloc_page(tb, 1, phys_page2);
1399 } else {
1400 tb->page_addr[1] = -1;
1401 }
1402
1403 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1404 tb->jmp_next[0] = NULL;
1405 tb->jmp_next[1] = NULL;
1406
1407 /* init original jump addresses */
1408 if (tb->tb_next_offset[0] != 0xffff) {
1409 tb_reset_jump(tb, 0);
1410 }
1411 if (tb->tb_next_offset[1] != 0xffff) {
1412 tb_reset_jump(tb, 1);
1413 }
1414
1415#ifdef DEBUG_TB_CHECK
1416 tb_page_check();
1417#endif
1418 mmap_unlock();
1419}
1420
5b6dd868
BS
1421/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1422 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1423static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1424{
1425 int m_min, m_max, m;
1426 uintptr_t v;
1427 TranslationBlock *tb;
1428
5e5f07e0 1429 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1430 return NULL;
1431 }
0b0d3320
EV
1432 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1433 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1434 return NULL;
1435 }
1436 /* binary search (cf Knuth) */
1437 m_min = 0;
5e5f07e0 1438 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1439 while (m_min <= m_max) {
1440 m = (m_min + m_max) >> 1;
5e5f07e0 1441 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1442 v = (uintptr_t)tb->tc_ptr;
1443 if (v == tc_ptr) {
1444 return tb;
1445 } else if (tc_ptr < v) {
1446 m_max = m - 1;
1447 } else {
1448 m_min = m + 1;
1449 }
1450 }
5e5f07e0 1451 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1452}
1453
5b6dd868 1454#if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
29d8ec7b 1455void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1456{
1457 ram_addr_t ram_addr;
5c8a00ce 1458 MemoryRegion *mr;
149f54b5 1459 hwaddr l = 1;
5b6dd868 1460
29d8ec7b 1461 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1462 if (!(memory_region_is_ram(mr)
1463 || memory_region_is_romd(mr))) {
5b6dd868
BS
1464 return;
1465 }
5c8a00ce 1466 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1467 + addr;
5b6dd868
BS
1468 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1469}
1470#endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1471
239c51a5 1472void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1473{
1474 TranslationBlock *tb;
1475
93afeade 1476 tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868 1477 if (!tb) {
a47dddd7 1478 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
93afeade 1479 (void *)cpu->mem_io_pc);
5b6dd868 1480 }
74f10515 1481 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
5b6dd868
BS
1482 tb_phys_invalidate(tb, -1);
1483}
1484
1485#ifndef CONFIG_USER_ONLY
1486/* mask must never be zero, except for A20 change call */
c3affe56 1487static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1488{
5b6dd868
BS
1489 int old_mask;
1490
259186a7
AF
1491 old_mask = cpu->interrupt_request;
1492 cpu->interrupt_request |= mask;
5b6dd868
BS
1493
1494 /*
1495 * If called from iothread context, wake the target cpu in
1496 * case its halted.
1497 */
1498 if (!qemu_cpu_is_self(cpu)) {
1499 qemu_cpu_kick(cpu);
1500 return;
1501 }
1502
1503 if (use_icount) {
28ecfd7a 1504 cpu->icount_decr.u16.high = 0xffff;
99df7dce 1505 if (!cpu_can_do_io(cpu)
5b6dd868 1506 && (mask & ~old_mask) != 0) {
a47dddd7 1507 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1508 }
1509 } else {
378df4b2 1510 cpu->tcg_exit_req = 1;
5b6dd868
BS
1511 }
1512}
1513
1514CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1515
1516/* in deterministic execution mode, instructions doing device I/Os
1517 must be at the end of the TB */
90b40a69 1518void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1519{
a47dddd7 1520#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1521 CPUArchState *env = cpu->env_ptr;
a47dddd7 1522#endif
5b6dd868
BS
1523 TranslationBlock *tb;
1524 uint32_t n, cflags;
1525 target_ulong pc, cs_base;
1526 uint64_t flags;
1527
1528 tb = tb_find_pc(retaddr);
1529 if (!tb) {
a47dddd7 1530 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1531 (void *)retaddr);
1532 }
28ecfd7a 1533 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1534 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1535 /* Calculate how many instructions had been executed before the fault
1536 occurred. */
28ecfd7a 1537 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1538 /* Generate a new TB ending on the I/O insn. */
1539 n++;
1540 /* On MIPS and SH, delay slot instructions can only be restarted if
1541 they were already the first instruction in the TB. If this is not
1542 the first instruction in a TB then re-execute the preceding
1543 branch. */
1544#if defined(TARGET_MIPS)
1545 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1546 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1547 cpu->icount_decr.u16.low++;
5b6dd868
BS
1548 env->hflags &= ~MIPS_HFLAG_BMASK;
1549 }
1550#elif defined(TARGET_SH4)
1551 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1552 && n > 1) {
1553 env->pc -= 2;
28ecfd7a 1554 cpu->icount_decr.u16.low++;
5b6dd868
BS
1555 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1556 }
1557#endif
1558 /* This should never happen. */
1559 if (n > CF_COUNT_MASK) {
a47dddd7 1560 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1561 }
1562
1563 cflags = n | CF_LAST_IO;
1564 pc = tb->pc;
1565 cs_base = tb->cs_base;
1566 flags = tb->flags;
1567 tb_phys_invalidate(tb, -1);
1568 /* FIXME: In theory this could raise an exception. In practice
1569 we have already translated the block once so it's probably ok. */
648f034c 1570 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1571 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1572 the first in the TB) then we end up generating a whole new TB and
1573 repeating the fault, which is horribly inefficient.
1574 Better would be to execute just this insn uncached, or generate a
1575 second new TB. */
0ea8cb88 1576 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1577}
1578
611d4f99 1579void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1580{
1581 unsigned int i;
1582
1583 /* Discard jump cache entries for any tb which might potentially
1584 overlap the flushed page. */
1585 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1586 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1587 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1588
1589 i = tb_jmp_cache_hash_page(addr);
8cd70437 1590 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1591 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1592}
1593
1594void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1595{
1596 int i, target_code_size, max_target_code_size;
1597 int direct_jmp_count, direct_jmp2_count, cross_page;
1598 TranslationBlock *tb;
1599
1600 target_code_size = 0;
1601 max_target_code_size = 0;
1602 cross_page = 0;
1603 direct_jmp_count = 0;
1604 direct_jmp2_count = 0;
5e5f07e0
EV
1605 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1606 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1607 target_code_size += tb->size;
1608 if (tb->size > max_target_code_size) {
1609 max_target_code_size = tb->size;
1610 }
1611 if (tb->page_addr[1] != -1) {
1612 cross_page++;
1613 }
1614 if (tb->tb_next_offset[0] != 0xffff) {
1615 direct_jmp_count++;
1616 if (tb->tb_next_offset[1] != 0xffff) {
1617 direct_jmp2_count++;
1618 }
1619 }
1620 }
1621 /* XXX: avoid using doubles ? */
1622 cpu_fprintf(f, "Translation buffer state:\n");
1623 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1624 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1625 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1626 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1627 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1628 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1629 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1630 tcg_ctx.tb_ctx.nb_tbs : 0,
1631 max_target_code_size);
5b6dd868 1632 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1633 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1634 tcg_ctx.code_gen_buffer) /
1635 tcg_ctx.tb_ctx.nb_tbs : 0,
1636 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1637 tcg_ctx.code_gen_buffer) /
1638 target_code_size : 0);
1639 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1640 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1641 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1642 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1643 direct_jmp_count,
5e5f07e0
EV
1644 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1645 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1646 direct_jmp2_count,
5e5f07e0
EV
1647 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1648 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1649 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1650 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1651 cpu_fprintf(f, "TB invalidate count %d\n",
1652 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1653 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1654 tcg_dump_info(f, cpu_fprintf);
1655}
1656
246ae24d
MF
1657void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1658{
1659 tcg_dump_op_count(f, cpu_fprintf);
1660}
1661
5b6dd868
BS
1662#else /* CONFIG_USER_ONLY */
1663
c3affe56 1664void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1665{
259186a7 1666 cpu->interrupt_request |= mask;
378df4b2 1667 cpu->tcg_exit_req = 1;
5b6dd868
BS
1668}
1669
1670/*
1671 * Walks guest process memory "regions" one by one
1672 * and calls callback function 'fn' for each region.
1673 */
1674struct walk_memory_regions_data {
1675 walk_memory_regions_fn fn;
1676 void *priv;
1a1c4db9 1677 target_ulong start;
5b6dd868
BS
1678 int prot;
1679};
1680
1681static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1682 target_ulong end, int new_prot)
5b6dd868 1683{
1a1c4db9 1684 if (data->start != -1u) {
5b6dd868
BS
1685 int rc = data->fn(data->priv, data->start, end, data->prot);
1686 if (rc != 0) {
1687 return rc;
1688 }
1689 }
1690
1a1c4db9 1691 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1692 data->prot = new_prot;
1693
1694 return 0;
1695}
1696
1697static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1698 target_ulong base, int level, void **lp)
5b6dd868 1699{
1a1c4db9 1700 target_ulong pa;
5b6dd868
BS
1701 int i, rc;
1702
1703 if (*lp == NULL) {
1704 return walk_memory_regions_end(data, base, 0);
1705 }
1706
1707 if (level == 0) {
1708 PageDesc *pd = *lp;
1709
03f49957 1710 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1711 int prot = pd[i].flags;
1712
1713 pa = base | (i << TARGET_PAGE_BITS);
1714 if (prot != data->prot) {
1715 rc = walk_memory_regions_end(data, pa, prot);
1716 if (rc != 0) {
1717 return rc;
1718 }
1719 }
1720 }
1721 } else {
1722 void **pp = *lp;
1723
03f49957 1724 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1725 pa = base | ((target_ulong)i <<
03f49957 1726 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1727 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1728 if (rc != 0) {
1729 return rc;
1730 }
1731 }
1732 }
1733
1734 return 0;
1735}
1736
1737int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1738{
1739 struct walk_memory_regions_data data;
1740 uintptr_t i;
1741
1742 data.fn = fn;
1743 data.priv = priv;
1a1c4db9 1744 data.start = -1u;
5b6dd868
BS
1745 data.prot = 0;
1746
1747 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1748 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1749 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1750 if (rc != 0) {
1751 return rc;
1752 }
1753 }
1754
1755 return walk_memory_regions_end(&data, 0, 0);
1756}
1757
1a1c4db9
MI
1758static int dump_region(void *priv, target_ulong start,
1759 target_ulong end, unsigned long prot)
5b6dd868
BS
1760{
1761 FILE *f = (FILE *)priv;
1762
1a1c4db9
MI
1763 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1764 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1765 start, end, end - start,
1766 ((prot & PAGE_READ) ? 'r' : '-'),
1767 ((prot & PAGE_WRITE) ? 'w' : '-'),
1768 ((prot & PAGE_EXEC) ? 'x' : '-'));
1769
1770 return 0;
1771}
1772
1773/* dump memory mappings */
1774void page_dump(FILE *f)
1775{
1a1c4db9 1776 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1777 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1778 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1779 walk_memory_regions(f, dump_region);
1780}
1781
1782int page_get_flags(target_ulong address)
1783{
1784 PageDesc *p;
1785
1786 p = page_find(address >> TARGET_PAGE_BITS);
1787 if (!p) {
1788 return 0;
1789 }
1790 return p->flags;
1791}
1792
1793/* Modify the flags of a page and invalidate the code if necessary.
1794 The flag PAGE_WRITE_ORG is positioned automatically depending
1795 on PAGE_WRITE. The mmap_lock should already be held. */
1796void page_set_flags(target_ulong start, target_ulong end, int flags)
1797{
1798 target_ulong addr, len;
1799
1800 /* This function should never be called with addresses outside the
1801 guest address space. If this assert fires, it probably indicates
1802 a missing call to h2g_valid. */
1803#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1804 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1805#endif
1806 assert(start < end);
1807
1808 start = start & TARGET_PAGE_MASK;
1809 end = TARGET_PAGE_ALIGN(end);
1810
1811 if (flags & PAGE_WRITE) {
1812 flags |= PAGE_WRITE_ORG;
1813 }
1814
1815 for (addr = start, len = end - start;
1816 len != 0;
1817 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1818 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1819
1820 /* If the write protection bit is set, then we invalidate
1821 the code inside. */
1822 if (!(p->flags & PAGE_WRITE) &&
1823 (flags & PAGE_WRITE) &&
1824 p->first_tb) {
d02532f0 1825 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1826 }
1827 p->flags = flags;
1828 }
1829}
1830
1831int page_check_range(target_ulong start, target_ulong len, int flags)
1832{
1833 PageDesc *p;
1834 target_ulong end;
1835 target_ulong addr;
1836
1837 /* This function should never be called with addresses outside the
1838 guest address space. If this assert fires, it probably indicates
1839 a missing call to h2g_valid. */
1840#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1841 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1842#endif
1843
1844 if (len == 0) {
1845 return 0;
1846 }
1847 if (start + len - 1 < start) {
1848 /* We've wrapped around. */
1849 return -1;
1850 }
1851
1852 /* must do before we loose bits in the next step */
1853 end = TARGET_PAGE_ALIGN(start + len);
1854 start = start & TARGET_PAGE_MASK;
1855
1856 for (addr = start, len = end - start;
1857 len != 0;
1858 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1859 p = page_find(addr >> TARGET_PAGE_BITS);
1860 if (!p) {
1861 return -1;
1862 }
1863 if (!(p->flags & PAGE_VALID)) {
1864 return -1;
1865 }
1866
1867 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1868 return -1;
1869 }
1870 if (flags & PAGE_WRITE) {
1871 if (!(p->flags & PAGE_WRITE_ORG)) {
1872 return -1;
1873 }
1874 /* unprotect the page if it was put read-only because it
1875 contains translated code */
1876 if (!(p->flags & PAGE_WRITE)) {
1877 if (!page_unprotect(addr, 0, NULL)) {
1878 return -1;
1879 }
1880 }
5b6dd868
BS
1881 }
1882 }
1883 return 0;
1884}
1885
1886/* called from signal handler: invalidate the code and unprotect the
1887 page. Return TRUE if the fault was successfully handled. */
1888int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1889{
1890 unsigned int prot;
1891 PageDesc *p;
1892 target_ulong host_start, host_end, addr;
1893
1894 /* Technically this isn't safe inside a signal handler. However we
1895 know this only ever happens in a synchronous SEGV handler, so in
1896 practice it seems to be ok. */
1897 mmap_lock();
1898
1899 p = page_find(address >> TARGET_PAGE_BITS);
1900 if (!p) {
1901 mmap_unlock();
1902 return 0;
1903 }
1904
1905 /* if the page was really writable, then we change its
1906 protection back to writable */
1907 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1908 host_start = address & qemu_host_page_mask;
1909 host_end = host_start + qemu_host_page_size;
1910
1911 prot = 0;
1912 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1913 p = page_find(addr >> TARGET_PAGE_BITS);
1914 p->flags |= PAGE_WRITE;
1915 prot |= p->flags;
1916
1917 /* and since the content will be modified, we must invalidate
1918 the corresponding translated code. */
d02532f0 1919 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1920#ifdef DEBUG_TB_CHECK
1921 tb_invalidate_check(addr);
1922#endif
1923 }
1924 mprotect((void *)g2h(host_start), qemu_host_page_size,
1925 prot & PAGE_BITS);
1926
1927 mmap_unlock();
1928 return 1;
1929 }
1930 mmap_unlock();
1931 return 0;
1932}
1933#endif /* CONFIG_USER_ONLY */