]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
virtio-serial: remove useless set_config function
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
76cad711 36#include "disas/disas.h"
57fec1fe 37#include "tcg.h"
5b6dd868
BS
38#if defined(CONFIG_USER_ONLY)
39#include "qemu.h"
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
0bc3cd62
PB
55#else
56#include "exec/address-spaces.h"
5b6dd868
BS
57#endif
58
022c62cb 59#include "exec/cputlb.h"
5b6dd868 60#include "translate-all.h"
0aa09897 61#include "qemu/timer.h"
5b6dd868
BS
62
63//#define DEBUG_TB_INVALIDATE
64//#define DEBUG_FLUSH
65/* make various TB consistency checks */
66//#define DEBUG_TB_CHECK
67
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
73#define SMC_BITMAP_USE_THRESHOLD 10
74
5b6dd868
BS
75typedef struct PageDesc {
76 /* list of TBs intersecting this ram page */
77 TranslationBlock *first_tb;
78 /* in order to optimize self modifying code, we count the number
79 of lookups we do to a given page to use a bitmap */
80 unsigned int code_write_count;
81 uint8_t *code_bitmap;
82#if defined(CONFIG_USER_ONLY)
83 unsigned long flags;
84#endif
85} PageDesc;
86
87/* In system mode we want L1_MAP to be based on ram offsets,
88 while in user mode we want it to be based on virtual addresses. */
89#if !defined(CONFIG_USER_ONLY)
90#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
91# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
94#endif
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
97#endif
98
03f49957
PB
99/* Size of the L2 (and L3, etc) page tables. */
100#define V_L2_BITS 10
101#define V_L2_SIZE (1 << V_L2_BITS)
102
5b6dd868
BS
103/* The bits remaining after N lower levels of page tables. */
104#define V_L1_BITS_REM \
03f49957 105 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
106
107#if V_L1_BITS_REM < 4
03f49957 108#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
109#else
110#define V_L1_BITS V_L1_BITS_REM
111#endif
112
113#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
114
115#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
116
117uintptr_t qemu_real_host_page_size;
118uintptr_t qemu_host_page_size;
119uintptr_t qemu_host_page_mask;
120
121/* This is a multi-level map on the virtual address space.
122 The bottom level has pointers to PageDesc. */
123static void *l1_map[V_L1_SIZE];
124
57fec1fe
FB
125/* code generation context */
126TCGContext tcg_ctx;
d19893da 127
5b6dd868
BS
128static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
129 tb_page_addr_t phys_page2);
a8a826a3 130static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 131
57fec1fe
FB
132void cpu_gen_init(void)
133{
134 tcg_context_init(&tcg_ctx);
57fec1fe
FB
135}
136
d19893da 137/* return non zero if the very first instruction is invalid so that
5fafdf24 138 the virtual CPU can trigger an exception.
d19893da
FB
139
140 '*gen_code_size_ptr' contains the size of the generated code (host
141 code).
142*/
9349b4f9 143int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 144{
57fec1fe 145 TCGContext *s = &tcg_ctx;
1813e175 146 tcg_insn_unit *gen_code_buf;
d19893da 147 int gen_code_size;
57fec1fe
FB
148#ifdef CONFIG_PROFILER
149 int64_t ti;
150#endif
151
152#ifdef CONFIG_PROFILER
b67d9a52
FB
153 s->tb_count1++; /* includes aborted translations because of
154 exceptions */
57fec1fe
FB
155 ti = profile_getclock();
156#endif
157 tcg_func_start(s);
d19893da 158
2cfc5f17
TS
159 gen_intermediate_code(env, tb);
160
ec6338ba 161 /* generate machine code */
57fec1fe 162 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
163 tb->tb_next_offset[0] = 0xffff;
164 tb->tb_next_offset[1] = 0xffff;
57fec1fe 165 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 166#ifdef USE_DIRECT_JUMP
57fec1fe
FB
167 s->tb_jmp_offset = tb->tb_jmp_offset;
168 s->tb_next = NULL;
d19893da 169#else
57fec1fe
FB
170 s->tb_jmp_offset = NULL;
171 s->tb_next = tb->tb_next;
d19893da 172#endif
57fec1fe
FB
173
174#ifdef CONFIG_PROFILER
b67d9a52
FB
175 s->tb_count++;
176 s->interm_time += profile_getclock() - ti;
177 s->code_time -= profile_getclock();
57fec1fe 178#endif
54604f74 179 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 180 *gen_code_size_ptr = gen_code_size;
57fec1fe 181#ifdef CONFIG_PROFILER
b67d9a52
FB
182 s->code_time += profile_getclock();
183 s->code_in_len += tb->size;
184 s->code_out_len += gen_code_size;
57fec1fe
FB
185#endif
186
d19893da 187#ifdef DEBUG_DISAS
8fec2b8c 188 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
189 qemu_log("OUT: [size=%d]\n", gen_code_size);
190 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 191 qemu_log("\n");
31b1a7b4 192 qemu_log_flush();
d19893da
FB
193 }
194#endif
195 return 0;
196}
197
5fafdf24 198/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 199 */
74f10515 200static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 201 uintptr_t searched_pc)
d19893da 202{
74f10515 203 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
204 TCGContext *s = &tcg_ctx;
205 int j;
6375e09e 206 uintptr_t tc_ptr;
57fec1fe
FB
207#ifdef CONFIG_PROFILER
208 int64_t ti;
209#endif
210
211#ifdef CONFIG_PROFILER
212 ti = profile_getclock();
213#endif
214 tcg_func_start(s);
d19893da 215
2cfc5f17 216 gen_intermediate_code_pc(env, tb);
3b46e624 217
2e70f6ef
PB
218 if (use_icount) {
219 /* Reset the cycle counter to the start of the block. */
28ecfd7a 220 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 221 /* Clear the IO flag. */
99df7dce 222 cpu->can_do_io = 0;
2e70f6ef
PB
223 }
224
d19893da 225 /* find opc index corresponding to search_pc */
6375e09e 226 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
227 if (searched_pc < tc_ptr)
228 return -1;
57fec1fe
FB
229
230 s->tb_next_offset = tb->tb_next_offset;
231#ifdef USE_DIRECT_JUMP
232 s->tb_jmp_offset = tb->tb_jmp_offset;
233 s->tb_next = NULL;
234#else
235 s->tb_jmp_offset = NULL;
236 s->tb_next = tb->tb_next;
237#endif
1813e175
RH
238 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
239 searched_pc - tc_ptr);
57fec1fe
FB
240 if (j < 0)
241 return -1;
d19893da 242 /* now find start of instruction before */
ab1103de 243 while (s->gen_opc_instr_start[j] == 0) {
d19893da 244 j--;
ab1103de 245 }
28ecfd7a 246 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 247
e87b7cb0 248 restore_state_to_opc(env, tb, j);
57fec1fe
FB
249
250#ifdef CONFIG_PROFILER
b67d9a52
FB
251 s->restore_time += profile_getclock() - ti;
252 s->restore_count++;
57fec1fe 253#endif
d19893da
FB
254 return 0;
255}
5b6dd868 256
3f38f309 257bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
258{
259 TranslationBlock *tb;
260
261 tb = tb_find_pc(retaddr);
262 if (tb) {
74f10515 263 cpu_restore_state_from_tb(cpu, tb, retaddr);
a8a826a3
BS
264 return true;
265 }
266 return false;
267}
268
5b6dd868
BS
269#ifdef _WIN32
270static inline void map_exec(void *addr, long size)
271{
272 DWORD old_protect;
273 VirtualProtect(addr, size,
274 PAGE_EXECUTE_READWRITE, &old_protect);
275}
276#else
277static inline void map_exec(void *addr, long size)
278{
279 unsigned long start, end, page_size;
280
281 page_size = getpagesize();
282 start = (unsigned long)addr;
283 start &= ~(page_size - 1);
284
285 end = (unsigned long)addr + size;
286 end += page_size - 1;
287 end &= ~(page_size - 1);
288
289 mprotect((void *)start, end - start,
290 PROT_READ | PROT_WRITE | PROT_EXEC);
291}
292#endif
293
47c16ed5 294void page_size_init(void)
5b6dd868
BS
295{
296 /* NOTE: we can always suppose that qemu_host_page_size >=
297 TARGET_PAGE_SIZE */
5b6dd868 298 qemu_real_host_page_size = getpagesize();
5b6dd868
BS
299 if (qemu_host_page_size == 0) {
300 qemu_host_page_size = qemu_real_host_page_size;
301 }
302 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
303 qemu_host_page_size = TARGET_PAGE_SIZE;
304 }
305 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 306}
5b6dd868 307
47c16ed5
AK
308static void page_init(void)
309{
310 page_size_init();
5b6dd868
BS
311#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
312 {
313#ifdef HAVE_KINFO_GETVMMAP
314 struct kinfo_vmentry *freep;
315 int i, cnt;
316
317 freep = kinfo_getvmmap(getpid(), &cnt);
318 if (freep) {
319 mmap_lock();
320 for (i = 0; i < cnt; i++) {
321 unsigned long startaddr, endaddr;
322
323 startaddr = freep[i].kve_start;
324 endaddr = freep[i].kve_end;
325 if (h2g_valid(startaddr)) {
326 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
327
328 if (h2g_valid(endaddr)) {
329 endaddr = h2g(endaddr);
330 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
331 } else {
332#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
333 endaddr = ~0ul;
334 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
335#endif
336 }
337 }
338 }
339 free(freep);
340 mmap_unlock();
341 }
342#else
343 FILE *f;
344
345 last_brk = (unsigned long)sbrk(0);
346
347 f = fopen("/compat/linux/proc/self/maps", "r");
348 if (f) {
349 mmap_lock();
350
351 do {
352 unsigned long startaddr, endaddr;
353 int n;
354
355 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
356
357 if (n == 2 && h2g_valid(startaddr)) {
358 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
359
360 if (h2g_valid(endaddr)) {
361 endaddr = h2g(endaddr);
362 } else {
363 endaddr = ~0ul;
364 }
365 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
366 }
367 } while (!feof(f));
368
369 fclose(f);
370 mmap_unlock();
371 }
372#endif
373 }
374#endif
375}
376
377static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
378{
379 PageDesc *pd;
380 void **lp;
381 int i;
382
383#if defined(CONFIG_USER_ONLY)
384 /* We can't use g_malloc because it may recurse into a locked mutex. */
385# define ALLOC(P, SIZE) \
386 do { \
387 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
388 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
389 } while (0)
390#else
391# define ALLOC(P, SIZE) \
392 do { P = g_malloc0(SIZE); } while (0)
393#endif
394
395 /* Level 1. Always allocated. */
396 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
397
398 /* Level 2..N-1. */
03f49957 399 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
400 void **p = *lp;
401
402 if (p == NULL) {
403 if (!alloc) {
404 return NULL;
405 }
03f49957 406 ALLOC(p, sizeof(void *) * V_L2_SIZE);
5b6dd868
BS
407 *lp = p;
408 }
409
03f49957 410 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
411 }
412
413 pd = *lp;
414 if (pd == NULL) {
415 if (!alloc) {
416 return NULL;
417 }
03f49957 418 ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE);
5b6dd868
BS
419 *lp = pd;
420 }
421
422#undef ALLOC
423
03f49957 424 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
425}
426
427static inline PageDesc *page_find(tb_page_addr_t index)
428{
429 return page_find_alloc(index, 0);
430}
431
432#if !defined(CONFIG_USER_ONLY)
433#define mmap_lock() do { } while (0)
434#define mmap_unlock() do { } while (0)
435#endif
436
437#if defined(CONFIG_USER_ONLY)
438/* Currently it is not recommended to allocate big chunks of data in
439 user mode. It will change when a dedicated libc will be used. */
440/* ??? 64-bit hosts ought to have no problem mmaping data outside the
441 region in which the guest needs to run. Revisit this. */
442#define USE_STATIC_CODE_GEN_BUFFER
443#endif
444
445/* ??? Should configure for this, not list operating systems here. */
446#if (defined(__linux__) \
447 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
448 || defined(__DragonFly__) || defined(__OpenBSD__) \
449 || defined(__NetBSD__))
450# define USE_MMAP
451#endif
452
453/* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
456
457/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460#if defined(__x86_64__)
461# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462#elif defined(__sparc__)
463# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
464#elif defined(__aarch64__)
465# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
466#elif defined(__arm__)
467# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
468#elif defined(__s390x__)
469 /* We have a +- 4GB range on the branches; leave some slop. */
470# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
471#elif defined(__mips__)
472 /* We have a 256MB branch region, but leave room to make sure the
473 main executable is also within that region. */
474# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
475#else
476# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
477#endif
478
479#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
480
481#define DEFAULT_CODE_GEN_BUFFER_SIZE \
482 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
483 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
484
485static inline size_t size_code_gen_buffer(size_t tb_size)
486{
487 /* Size the buffer. */
488 if (tb_size == 0) {
489#ifdef USE_STATIC_CODE_GEN_BUFFER
490 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
491#else
492 /* ??? Needs adjustments. */
493 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
494 static buffer, we could size this on RESERVED_VA, on the text
495 segment size of the executable, or continue to use the default. */
496 tb_size = (unsigned long)(ram_size / 4);
497#endif
498 }
499 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
500 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
501 }
502 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
504 }
0b0d3320 505 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
506 return tb_size;
507}
508
483c76e1
RH
509#ifdef __mips__
510/* In order to use J and JAL within the code_gen_buffer, we require
511 that the buffer not cross a 256MB boundary. */
512static inline bool cross_256mb(void *addr, size_t size)
513{
514 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
515}
516
517/* We weren't able to allocate a buffer without crossing that boundary,
518 so make do with the larger portion of the buffer that doesn't cross.
519 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
520static inline void *split_cross_256mb(void *buf1, size_t size1)
521{
522 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
523 size_t size2 = buf1 + size1 - buf2;
524
525 size1 = buf2 - buf1;
526 if (size1 < size2) {
527 size1 = size2;
528 buf1 = buf2;
529 }
530
531 tcg_ctx.code_gen_buffer_size = size1;
532 return buf1;
533}
534#endif
535
5b6dd868
BS
536#ifdef USE_STATIC_CODE_GEN_BUFFER
537static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
538 __attribute__((aligned(CODE_GEN_ALIGN)));
539
540static inline void *alloc_code_gen_buffer(void)
541{
483c76e1
RH
542 void *buf = static_code_gen_buffer;
543#ifdef __mips__
544 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
545 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
546 }
547#endif
548 map_exec(buf, tcg_ctx.code_gen_buffer_size);
549 return buf;
5b6dd868
BS
550}
551#elif defined(USE_MMAP)
552static inline void *alloc_code_gen_buffer(void)
553{
554 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
555 uintptr_t start = 0;
556 void *buf;
557
558 /* Constrain the position of the buffer based on the host cpu.
559 Note that these addresses are chosen in concert with the
560 addresses assigned in the relevant linker script file. */
561# if defined(__PIE__) || defined(__PIC__)
562 /* Don't bother setting a preferred location if we're building
563 a position-independent executable. We're more likely to get
564 an address near the main executable if we let the kernel
565 choose the address. */
566# elif defined(__x86_64__) && defined(MAP_32BIT)
567 /* Force the memory down into low memory with the executable.
568 Leave the choice of exact location with the kernel. */
569 flags |= MAP_32BIT;
570 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
571 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
572 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
573 }
574# elif defined(__sparc__)
575 start = 0x40000000ul;
576# elif defined(__s390x__)
577 start = 0x90000000ul;
479eb121
RH
578# elif defined(__mips__)
579 /* ??? We ought to more explicitly manage layout for softmmu too. */
580# ifdef CONFIG_USER_ONLY
581 start = 0x68000000ul;
582# elif _MIPS_SIM == _ABI64
583 start = 0x128000000ul;
584# else
585 start = 0x08000000ul;
586# endif
5b6dd868
BS
587# endif
588
0b0d3320 589 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868 590 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
483c76e1
RH
591 if (buf == MAP_FAILED) {
592 return NULL;
593 }
594
595#ifdef __mips__
596 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
597 /* Try again, with the original still mapped, to avoid re-aquiring
598 that 256mb crossing. This time don't specify an address. */
599 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
600 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
601 flags, -1, 0);
602 if (buf2 != MAP_FAILED) {
603 if (!cross_256mb(buf2, size1)) {
604 /* Success! Use the new buffer. */
605 munmap(buf, size1);
606 return buf2;
607 }
608 /* Failure. Work with what we had. */
609 munmap(buf2, size1);
610 }
611
612 /* Split the original buffer. Free the smaller half. */
613 buf2 = split_cross_256mb(buf, size1);
614 size2 = tcg_ctx.code_gen_buffer_size;
615 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
616 return buf2;
617 }
618#endif
619
620 return buf;
5b6dd868
BS
621}
622#else
623static inline void *alloc_code_gen_buffer(void)
624{
0b0d3320 625 void *buf = g_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868 626
483c76e1
RH
627 if (buf == NULL) {
628 return NULL;
629 }
630
631#ifdef __mips__
632 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
633 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
634 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
635 /* Success! Use the new buffer. */
636 free(buf);
637 buf = buf2;
638 } else {
639 /* Failure. Work with what we had. Since this is malloc
640 and not mmap, we can't free the other half. */
641 free(buf2);
642 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
643 }
5b6dd868 644 }
483c76e1
RH
645#endif
646
647 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
648 return buf;
649}
650#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
651
652static inline void code_gen_alloc(size_t tb_size)
653{
0b0d3320
EV
654 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
655 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
656 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
657 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
658 exit(1);
659 }
660
0b0d3320
EV
661 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
662 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
663
664 /* Steal room for the prologue at the end of the buffer. This ensures
665 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
666 from TB's to the prologue are going to be in range. It also means
667 that we don't need to mark (additional) portions of the data segment
668 as executable. */
0b0d3320
EV
669 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
670 tcg_ctx.code_gen_buffer_size - 1024;
671 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 672
0b0d3320 673 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 674 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
675 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
676 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
677 tcg_ctx.tb_ctx.tbs =
678 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
679}
680
681/* Must be called before using the QEMU cpus. 'tb_size' is the size
682 (in bytes) allocated to the translation buffer. Zero means default
683 size. */
684void tcg_exec_init(unsigned long tb_size)
685{
686 cpu_gen_init();
687 code_gen_alloc(tb_size);
0b0d3320
EV
688 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
689 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
690 page_init();
691#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
692 /* There's no guest base to take into account, so go ahead and
693 initialize the prologue now. */
694 tcg_prologue_init(&tcg_ctx);
695#endif
696}
697
698bool tcg_enabled(void)
699{
0b0d3320 700 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
701}
702
703/* Allocate a new translation block. Flush the translation buffer if
704 too many translation blocks or too much generated code. */
705static TranslationBlock *tb_alloc(target_ulong pc)
706{
707 TranslationBlock *tb;
708
5e5f07e0 709 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
710 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
711 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
712 return NULL;
713 }
5e5f07e0 714 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
715 tb->pc = pc;
716 tb->cflags = 0;
717 return tb;
718}
719
720void tb_free(TranslationBlock *tb)
721{
722 /* In practice this is mostly used for single use temporary TB
723 Ignore the hard cases and just back up if this TB happens to
724 be the last one generated. */
5e5f07e0
EV
725 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
726 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 727 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 728 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
729 }
730}
731
732static inline void invalidate_page_bitmap(PageDesc *p)
733{
734 if (p->code_bitmap) {
735 g_free(p->code_bitmap);
736 p->code_bitmap = NULL;
737 }
738 p->code_write_count = 0;
739}
740
741/* Set to NULL all the 'first_tb' fields in all PageDescs. */
742static void page_flush_tb_1(int level, void **lp)
743{
744 int i;
745
746 if (*lp == NULL) {
747 return;
748 }
749 if (level == 0) {
750 PageDesc *pd = *lp;
751
03f49957 752 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
753 pd[i].first_tb = NULL;
754 invalidate_page_bitmap(pd + i);
755 }
756 } else {
757 void **pp = *lp;
758
03f49957 759 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
760 page_flush_tb_1(level - 1, pp + i);
761 }
762 }
763}
764
765static void page_flush_tb(void)
766{
767 int i;
768
769 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 770 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
771 }
772}
773
774/* flush all the translation blocks */
775/* XXX: tb_flush is currently not thread safe */
776void tb_flush(CPUArchState *env1)
777{
a47dddd7 778 CPUState *cpu = ENV_GET_CPU(env1);
5b6dd868
BS
779
780#if defined(DEBUG_FLUSH)
781 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 782 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 783 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 784 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 785 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 786#endif
0b0d3320
EV
787 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
788 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 789 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 790 }
5e5f07e0 791 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 792
bdc44640 793 CPU_FOREACH(cpu) {
8cd70437 794 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
795 }
796
eb2535f4 797 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
798 page_flush_tb();
799
0b0d3320 800 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
801 /* XXX: flush processor icache at this point if cache flush is
802 expensive */
5e5f07e0 803 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
804}
805
806#ifdef DEBUG_TB_CHECK
807
808static void tb_invalidate_check(target_ulong address)
809{
810 TranslationBlock *tb;
811 int i;
812
813 address &= TARGET_PAGE_MASK;
814 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 815 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
816 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
817 address >= tb->pc + tb->size)) {
818 printf("ERROR invalidate: address=" TARGET_FMT_lx
819 " PC=%08lx size=%04x\n",
820 address, (long)tb->pc, tb->size);
821 }
822 }
823 }
824}
825
826/* verify that all the pages have correct rights for code */
827static void tb_page_check(void)
828{
829 TranslationBlock *tb;
830 int i, flags1, flags2;
831
832 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
833 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
834 tb = tb->phys_hash_next) {
5b6dd868
BS
835 flags1 = page_get_flags(tb->pc);
836 flags2 = page_get_flags(tb->pc + tb->size - 1);
837 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
838 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
839 (long)tb->pc, tb->size, flags1, flags2);
840 }
841 }
842 }
843}
844
845#endif
846
0c884d16 847static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
848{
849 TranslationBlock *tb1;
850
851 for (;;) {
852 tb1 = *ptb;
853 if (tb1 == tb) {
0c884d16 854 *ptb = tb1->phys_hash_next;
5b6dd868
BS
855 break;
856 }
0c884d16 857 ptb = &tb1->phys_hash_next;
5b6dd868
BS
858 }
859}
860
861static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
862{
863 TranslationBlock *tb1;
864 unsigned int n1;
865
866 for (;;) {
867 tb1 = *ptb;
868 n1 = (uintptr_t)tb1 & 3;
869 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
870 if (tb1 == tb) {
871 *ptb = tb1->page_next[n1];
872 break;
873 }
874 ptb = &tb1->page_next[n1];
875 }
876}
877
878static inline void tb_jmp_remove(TranslationBlock *tb, int n)
879{
880 TranslationBlock *tb1, **ptb;
881 unsigned int n1;
882
883 ptb = &tb->jmp_next[n];
884 tb1 = *ptb;
885 if (tb1) {
886 /* find tb(n) in circular list */
887 for (;;) {
888 tb1 = *ptb;
889 n1 = (uintptr_t)tb1 & 3;
890 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
891 if (n1 == n && tb1 == tb) {
892 break;
893 }
894 if (n1 == 2) {
895 ptb = &tb1->jmp_first;
896 } else {
897 ptb = &tb1->jmp_next[n1];
898 }
899 }
900 /* now we can suppress tb(n) from the list */
901 *ptb = tb->jmp_next[n];
902
903 tb->jmp_next[n] = NULL;
904 }
905}
906
907/* reset the jump entry 'n' of a TB so that it is not chained to
908 another TB */
909static inline void tb_reset_jump(TranslationBlock *tb, int n)
910{
911 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
912}
913
0c884d16 914/* invalidate one TB */
5b6dd868
BS
915void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
916{
182735ef 917 CPUState *cpu;
5b6dd868
BS
918 PageDesc *p;
919 unsigned int h, n1;
920 tb_page_addr_t phys_pc;
921 TranslationBlock *tb1, *tb2;
922
923 /* remove the TB from the hash list */
924 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
925 h = tb_phys_hash_func(phys_pc);
5e5f07e0 926 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
927
928 /* remove the TB from the page list */
929 if (tb->page_addr[0] != page_addr) {
930 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
931 tb_page_remove(&p->first_tb, tb);
932 invalidate_page_bitmap(p);
933 }
934 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
935 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
936 tb_page_remove(&p->first_tb, tb);
937 invalidate_page_bitmap(p);
938 }
939
5e5f07e0 940 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
941
942 /* remove the TB from the hash list */
943 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 944 CPU_FOREACH(cpu) {
8cd70437
AF
945 if (cpu->tb_jmp_cache[h] == tb) {
946 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
947 }
948 }
949
950 /* suppress this TB from the two jump lists */
951 tb_jmp_remove(tb, 0);
952 tb_jmp_remove(tb, 1);
953
954 /* suppress any remaining jumps to this TB */
955 tb1 = tb->jmp_first;
956 for (;;) {
957 n1 = (uintptr_t)tb1 & 3;
958 if (n1 == 2) {
959 break;
960 }
961 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
962 tb2 = tb1->jmp_next[n1];
963 tb_reset_jump(tb1, n1);
964 tb1->jmp_next[n1] = NULL;
965 tb1 = tb2;
966 }
967 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
968
5e5f07e0 969 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
970}
971
972static inline void set_bits(uint8_t *tab, int start, int len)
973{
974 int end, mask, end1;
975
976 end = start + len;
977 tab += start >> 3;
978 mask = 0xff << (start & 7);
979 if ((start & ~7) == (end & ~7)) {
980 if (start < end) {
981 mask &= ~(0xff << (end & 7));
982 *tab |= mask;
983 }
984 } else {
985 *tab++ |= mask;
986 start = (start + 8) & ~7;
987 end1 = end & ~7;
988 while (start < end1) {
989 *tab++ = 0xff;
990 start += 8;
991 }
992 if (start < end) {
993 mask = ~(0xff << (end & 7));
994 *tab |= mask;
995 }
996 }
997}
998
999static void build_page_bitmap(PageDesc *p)
1000{
1001 int n, tb_start, tb_end;
1002 TranslationBlock *tb;
1003
1004 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1005
1006 tb = p->first_tb;
1007 while (tb != NULL) {
1008 n = (uintptr_t)tb & 3;
1009 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1010 /* NOTE: this is subtle as a TB may span two physical pages */
1011 if (n == 0) {
1012 /* NOTE: tb_end may be after the end of the page, but
1013 it is not a problem */
1014 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1015 tb_end = tb_start + tb->size;
1016 if (tb_end > TARGET_PAGE_SIZE) {
1017 tb_end = TARGET_PAGE_SIZE;
1018 }
1019 } else {
1020 tb_start = 0;
1021 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1022 }
1023 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1024 tb = tb->page_next[n];
1025 }
1026}
1027
648f034c 1028TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
1029 target_ulong pc, target_ulong cs_base,
1030 int flags, int cflags)
1031{
648f034c 1032 CPUArchState *env = cpu->env_ptr;
5b6dd868 1033 TranslationBlock *tb;
5b6dd868
BS
1034 tb_page_addr_t phys_pc, phys_page2;
1035 target_ulong virt_page2;
1036 int code_gen_size;
1037
1038 phys_pc = get_page_addr_code(env, pc);
1039 tb = tb_alloc(pc);
1040 if (!tb) {
1041 /* flush must be done */
1042 tb_flush(env);
1043 /* cannot fail at this point */
1044 tb = tb_alloc(pc);
1045 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1046 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1047 }
1813e175 1048 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
1049 tb->cs_base = cs_base;
1050 tb->flags = flags;
1051 tb->cflags = cflags;
1052 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
1053 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1054 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
1055
1056 /* check next page if needed */
1057 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1058 phys_page2 = -1;
1059 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1060 phys_page2 = get_page_addr_code(env, virt_page2);
1061 }
1062 tb_link_page(tb, phys_pc, phys_page2);
1063 return tb;
1064}
1065
1066/*
1067 * Invalidate all TBs which intersect with the target physical address range
1068 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1069 * 'is_cpu_write_access' should be true if called from a real cpu write
1070 * access: the virtual CPU will exit the current TB if code is modified inside
1071 * this TB.
1072 */
1073void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1074 int is_cpu_write_access)
1075{
1076 while (start < end) {
1077 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1078 start &= TARGET_PAGE_MASK;
1079 start += TARGET_PAGE_SIZE;
1080 }
1081}
1082
1083/*
1084 * Invalidate all TBs which intersect with the target physical address range
1085 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1086 * 'is_cpu_write_access' should be true if called from a real cpu write
1087 * access: the virtual CPU will exit the current TB if code is modified inside
1088 * this TB.
1089 */
1090void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1091 int is_cpu_write_access)
1092{
1093 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1094 CPUState *cpu = current_cpu;
baea4fae 1095#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1096 CPUArchState *env = NULL;
1097#endif
5b6dd868
BS
1098 tb_page_addr_t tb_start, tb_end;
1099 PageDesc *p;
1100 int n;
1101#ifdef TARGET_HAS_PRECISE_SMC
1102 int current_tb_not_found = is_cpu_write_access;
1103 TranslationBlock *current_tb = NULL;
1104 int current_tb_modified = 0;
1105 target_ulong current_pc = 0;
1106 target_ulong current_cs_base = 0;
1107 int current_flags = 0;
1108#endif /* TARGET_HAS_PRECISE_SMC */
1109
1110 p = page_find(start >> TARGET_PAGE_BITS);
1111 if (!p) {
1112 return;
1113 }
1114 if (!p->code_bitmap &&
1115 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1116 is_cpu_write_access) {
1117 /* build code bitmap */
1118 build_page_bitmap(p);
1119 }
baea4fae 1120#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1121 if (cpu != NULL) {
1122 env = cpu->env_ptr;
d77953b9 1123 }
4917cf44 1124#endif
5b6dd868
BS
1125
1126 /* we remove all the TBs in the range [start, end[ */
1127 /* XXX: see if in some cases it could be faster to invalidate all
1128 the code */
1129 tb = p->first_tb;
1130 while (tb != NULL) {
1131 n = (uintptr_t)tb & 3;
1132 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1133 tb_next = tb->page_next[n];
1134 /* NOTE: this is subtle as a TB may span two physical pages */
1135 if (n == 0) {
1136 /* NOTE: tb_end may be after the end of the page, but
1137 it is not a problem */
1138 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1139 tb_end = tb_start + tb->size;
1140 } else {
1141 tb_start = tb->page_addr[1];
1142 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1143 }
1144 if (!(tb_end <= start || tb_start >= end)) {
1145#ifdef TARGET_HAS_PRECISE_SMC
1146 if (current_tb_not_found) {
1147 current_tb_not_found = 0;
1148 current_tb = NULL;
93afeade 1149 if (cpu->mem_io_pc) {
5b6dd868 1150 /* now we have a real cpu fault */
93afeade 1151 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1152 }
1153 }
1154 if (current_tb == tb &&
1155 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1156 /* If we are modifying the current TB, we must stop
1157 its execution. We could be more precise by checking
1158 that the modification is after the current PC, but it
1159 would require a specialized function to partially
1160 restore the CPU state */
1161
1162 current_tb_modified = 1;
74f10515 1163 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1164 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1165 &current_flags);
1166 }
1167#endif /* TARGET_HAS_PRECISE_SMC */
1168 /* we need to do that to handle the case where a signal
1169 occurs while doing tb_phys_invalidate() */
1170 saved_tb = NULL;
d77953b9
AF
1171 if (cpu != NULL) {
1172 saved_tb = cpu->current_tb;
1173 cpu->current_tb = NULL;
5b6dd868
BS
1174 }
1175 tb_phys_invalidate(tb, -1);
d77953b9
AF
1176 if (cpu != NULL) {
1177 cpu->current_tb = saved_tb;
c3affe56
AF
1178 if (cpu->interrupt_request && cpu->current_tb) {
1179 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1180 }
1181 }
1182 }
1183 tb = tb_next;
1184 }
1185#if !defined(CONFIG_USER_ONLY)
1186 /* if no code remaining, no need to continue to use slow writes */
1187 if (!p->first_tb) {
1188 invalidate_page_bitmap(p);
1189 if (is_cpu_write_access) {
baea4fae 1190 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
5b6dd868
BS
1191 }
1192 }
1193#endif
1194#ifdef TARGET_HAS_PRECISE_SMC
1195 if (current_tb_modified) {
1196 /* we generate a block containing just the instruction
1197 modifying the memory. It will ensure that it cannot modify
1198 itself */
d77953b9 1199 cpu->current_tb = NULL;
648f034c 1200 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1201 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1202 }
1203#endif
1204}
1205
1206/* len must be <= 8 and start must be a multiple of len */
1207void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1208{
1209 PageDesc *p;
1210 int offset, b;
1211
1212#if 0
1213 if (1) {
1214 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1215 cpu_single_env->mem_io_vaddr, len,
1216 cpu_single_env->eip,
1217 cpu_single_env->eip +
1218 (intptr_t)cpu_single_env->segs[R_CS].base);
1219 }
1220#endif
1221 p = page_find(start >> TARGET_PAGE_BITS);
1222 if (!p) {
1223 return;
1224 }
1225 if (p->code_bitmap) {
1226 offset = start & ~TARGET_PAGE_MASK;
1227 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1228 if (b & ((1 << len) - 1)) {
1229 goto do_invalidate;
1230 }
1231 } else {
1232 do_invalidate:
1233 tb_invalidate_phys_page_range(start, start + len, 1);
1234 }
1235}
1236
1237#if !defined(CONFIG_SOFTMMU)
1238static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1239 uintptr_t pc, void *puc,
1240 bool locked)
5b6dd868
BS
1241{
1242 TranslationBlock *tb;
1243 PageDesc *p;
1244 int n;
1245#ifdef TARGET_HAS_PRECISE_SMC
1246 TranslationBlock *current_tb = NULL;
4917cf44
AF
1247 CPUState *cpu = current_cpu;
1248 CPUArchState *env = NULL;
5b6dd868
BS
1249 int current_tb_modified = 0;
1250 target_ulong current_pc = 0;
1251 target_ulong current_cs_base = 0;
1252 int current_flags = 0;
1253#endif
1254
1255 addr &= TARGET_PAGE_MASK;
1256 p = page_find(addr >> TARGET_PAGE_BITS);
1257 if (!p) {
1258 return;
1259 }
1260 tb = p->first_tb;
1261#ifdef TARGET_HAS_PRECISE_SMC
1262 if (tb && pc != 0) {
1263 current_tb = tb_find_pc(pc);
1264 }
4917cf44
AF
1265 if (cpu != NULL) {
1266 env = cpu->env_ptr;
d77953b9 1267 }
5b6dd868
BS
1268#endif
1269 while (tb != NULL) {
1270 n = (uintptr_t)tb & 3;
1271 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1272#ifdef TARGET_HAS_PRECISE_SMC
1273 if (current_tb == tb &&
1274 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1275 /* If we are modifying the current TB, we must stop
1276 its execution. We could be more precise by checking
1277 that the modification is after the current PC, but it
1278 would require a specialized function to partially
1279 restore the CPU state */
1280
1281 current_tb_modified = 1;
74f10515 1282 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1283 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1284 &current_flags);
1285 }
1286#endif /* TARGET_HAS_PRECISE_SMC */
1287 tb_phys_invalidate(tb, addr);
1288 tb = tb->page_next[n];
1289 }
1290 p->first_tb = NULL;
1291#ifdef TARGET_HAS_PRECISE_SMC
1292 if (current_tb_modified) {
1293 /* we generate a block containing just the instruction
1294 modifying the memory. It will ensure that it cannot modify
1295 itself */
d77953b9 1296 cpu->current_tb = NULL;
648f034c 1297 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1298 if (locked) {
1299 mmap_unlock();
1300 }
0ea8cb88 1301 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1302 }
1303#endif
1304}
1305#endif
1306
1307/* add the tb in the target page and protect it if necessary */
1308static inline void tb_alloc_page(TranslationBlock *tb,
1309 unsigned int n, tb_page_addr_t page_addr)
1310{
1311 PageDesc *p;
1312#ifndef CONFIG_USER_ONLY
1313 bool page_already_protected;
1314#endif
1315
1316 tb->page_addr[n] = page_addr;
1317 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1318 tb->page_next[n] = p->first_tb;
1319#ifndef CONFIG_USER_ONLY
1320 page_already_protected = p->first_tb != NULL;
1321#endif
1322 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1323 invalidate_page_bitmap(p);
1324
1325#if defined(TARGET_HAS_SMC) || 1
1326
1327#if defined(CONFIG_USER_ONLY)
1328 if (p->flags & PAGE_WRITE) {
1329 target_ulong addr;
1330 PageDesc *p2;
1331 int prot;
1332
1333 /* force the host page as non writable (writes will have a
1334 page fault + mprotect overhead) */
1335 page_addr &= qemu_host_page_mask;
1336 prot = 0;
1337 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1338 addr += TARGET_PAGE_SIZE) {
1339
1340 p2 = page_find(addr >> TARGET_PAGE_BITS);
1341 if (!p2) {
1342 continue;
1343 }
1344 prot |= p2->flags;
1345 p2->flags &= ~PAGE_WRITE;
1346 }
1347 mprotect(g2h(page_addr), qemu_host_page_size,
1348 (prot & PAGE_BITS) & ~PAGE_WRITE);
1349#ifdef DEBUG_TB_INVALIDATE
1350 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1351 page_addr);
1352#endif
1353 }
1354#else
1355 /* if some code is already present, then the pages are already
1356 protected. So we handle the case where only the first TB is
1357 allocated in a physical page */
1358 if (!page_already_protected) {
1359 tlb_protect_code(page_addr);
1360 }
1361#endif
1362
1363#endif /* TARGET_HAS_SMC */
1364}
1365
1366/* add a new TB and link it to the physical page tables. phys_page2 is
1367 (-1) to indicate that only one page contains the TB. */
1368static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1369 tb_page_addr_t phys_page2)
1370{
1371 unsigned int h;
1372 TranslationBlock **ptb;
1373
1374 /* Grab the mmap lock to stop another thread invalidating this TB
1375 before we are done. */
1376 mmap_lock();
1377 /* add in the physical hash table */
1378 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1379 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1380 tb->phys_hash_next = *ptb;
1381 *ptb = tb;
1382
1383 /* add in the page list */
1384 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1385 if (phys_page2 != -1) {
1386 tb_alloc_page(tb, 1, phys_page2);
1387 } else {
1388 tb->page_addr[1] = -1;
1389 }
1390
1391 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1392 tb->jmp_next[0] = NULL;
1393 tb->jmp_next[1] = NULL;
1394
1395 /* init original jump addresses */
1396 if (tb->tb_next_offset[0] != 0xffff) {
1397 tb_reset_jump(tb, 0);
1398 }
1399 if (tb->tb_next_offset[1] != 0xffff) {
1400 tb_reset_jump(tb, 1);
1401 }
1402
1403#ifdef DEBUG_TB_CHECK
1404 tb_page_check();
1405#endif
1406 mmap_unlock();
1407}
1408
5b6dd868
BS
1409/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1410 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1411static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1412{
1413 int m_min, m_max, m;
1414 uintptr_t v;
1415 TranslationBlock *tb;
1416
5e5f07e0 1417 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1418 return NULL;
1419 }
0b0d3320
EV
1420 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1421 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1422 return NULL;
1423 }
1424 /* binary search (cf Knuth) */
1425 m_min = 0;
5e5f07e0 1426 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1427 while (m_min <= m_max) {
1428 m = (m_min + m_max) >> 1;
5e5f07e0 1429 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1430 v = (uintptr_t)tb->tc_ptr;
1431 if (v == tc_ptr) {
1432 return tb;
1433 } else if (tc_ptr < v) {
1434 m_max = m - 1;
1435 } else {
1436 m_min = m + 1;
1437 }
1438 }
5e5f07e0 1439 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1440}
1441
5b6dd868 1442#if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
29d8ec7b 1443void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1444{
1445 ram_addr_t ram_addr;
5c8a00ce 1446 MemoryRegion *mr;
149f54b5 1447 hwaddr l = 1;
5b6dd868 1448
29d8ec7b 1449 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1450 if (!(memory_region_is_ram(mr)
1451 || memory_region_is_romd(mr))) {
5b6dd868
BS
1452 return;
1453 }
5c8a00ce 1454 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1455 + addr;
5b6dd868
BS
1456 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1457}
1458#endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1459
239c51a5 1460void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1461{
1462 TranslationBlock *tb;
1463
93afeade 1464 tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868 1465 if (!tb) {
a47dddd7 1466 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
93afeade 1467 (void *)cpu->mem_io_pc);
5b6dd868 1468 }
74f10515 1469 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
5b6dd868
BS
1470 tb_phys_invalidate(tb, -1);
1471}
1472
1473#ifndef CONFIG_USER_ONLY
1474/* mask must never be zero, except for A20 change call */
c3affe56 1475static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1476{
5b6dd868
BS
1477 int old_mask;
1478
259186a7
AF
1479 old_mask = cpu->interrupt_request;
1480 cpu->interrupt_request |= mask;
5b6dd868
BS
1481
1482 /*
1483 * If called from iothread context, wake the target cpu in
1484 * case its halted.
1485 */
1486 if (!qemu_cpu_is_self(cpu)) {
1487 qemu_cpu_kick(cpu);
1488 return;
1489 }
1490
1491 if (use_icount) {
28ecfd7a 1492 cpu->icount_decr.u16.high = 0xffff;
99df7dce 1493 if (!cpu_can_do_io(cpu)
5b6dd868 1494 && (mask & ~old_mask) != 0) {
a47dddd7 1495 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1496 }
1497 } else {
378df4b2 1498 cpu->tcg_exit_req = 1;
5b6dd868
BS
1499 }
1500}
1501
1502CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1503
1504/* in deterministic execution mode, instructions doing device I/Os
1505 must be at the end of the TB */
90b40a69 1506void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1507{
a47dddd7 1508#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1509 CPUArchState *env = cpu->env_ptr;
a47dddd7 1510#endif
5b6dd868
BS
1511 TranslationBlock *tb;
1512 uint32_t n, cflags;
1513 target_ulong pc, cs_base;
1514 uint64_t flags;
1515
1516 tb = tb_find_pc(retaddr);
1517 if (!tb) {
a47dddd7 1518 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1519 (void *)retaddr);
1520 }
28ecfd7a 1521 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1522 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1523 /* Calculate how many instructions had been executed before the fault
1524 occurred. */
28ecfd7a 1525 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1526 /* Generate a new TB ending on the I/O insn. */
1527 n++;
1528 /* On MIPS and SH, delay slot instructions can only be restarted if
1529 they were already the first instruction in the TB. If this is not
1530 the first instruction in a TB then re-execute the preceding
1531 branch. */
1532#if defined(TARGET_MIPS)
1533 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1534 env->active_tc.PC -= 4;
28ecfd7a 1535 cpu->icount_decr.u16.low++;
5b6dd868
BS
1536 env->hflags &= ~MIPS_HFLAG_BMASK;
1537 }
1538#elif defined(TARGET_SH4)
1539 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1540 && n > 1) {
1541 env->pc -= 2;
28ecfd7a 1542 cpu->icount_decr.u16.low++;
5b6dd868
BS
1543 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1544 }
1545#endif
1546 /* This should never happen. */
1547 if (n > CF_COUNT_MASK) {
a47dddd7 1548 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1549 }
1550
1551 cflags = n | CF_LAST_IO;
1552 pc = tb->pc;
1553 cs_base = tb->cs_base;
1554 flags = tb->flags;
1555 tb_phys_invalidate(tb, -1);
1556 /* FIXME: In theory this could raise an exception. In practice
1557 we have already translated the block once so it's probably ok. */
648f034c 1558 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1559 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1560 the first in the TB) then we end up generating a whole new TB and
1561 repeating the fault, which is horribly inefficient.
1562 Better would be to execute just this insn uncached, or generate a
1563 second new TB. */
0ea8cb88 1564 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1565}
1566
611d4f99 1567void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1568{
1569 unsigned int i;
1570
1571 /* Discard jump cache entries for any tb which might potentially
1572 overlap the flushed page. */
1573 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1574 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1575 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1576
1577 i = tb_jmp_cache_hash_page(addr);
8cd70437 1578 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1579 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1580}
1581
1582void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1583{
1584 int i, target_code_size, max_target_code_size;
1585 int direct_jmp_count, direct_jmp2_count, cross_page;
1586 TranslationBlock *tb;
1587
1588 target_code_size = 0;
1589 max_target_code_size = 0;
1590 cross_page = 0;
1591 direct_jmp_count = 0;
1592 direct_jmp2_count = 0;
5e5f07e0
EV
1593 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1594 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1595 target_code_size += tb->size;
1596 if (tb->size > max_target_code_size) {
1597 max_target_code_size = tb->size;
1598 }
1599 if (tb->page_addr[1] != -1) {
1600 cross_page++;
1601 }
1602 if (tb->tb_next_offset[0] != 0xffff) {
1603 direct_jmp_count++;
1604 if (tb->tb_next_offset[1] != 0xffff) {
1605 direct_jmp2_count++;
1606 }
1607 }
1608 }
1609 /* XXX: avoid using doubles ? */
1610 cpu_fprintf(f, "Translation buffer state:\n");
1611 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1612 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1613 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1614 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1615 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1616 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1617 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1618 tcg_ctx.tb_ctx.nb_tbs : 0,
1619 max_target_code_size);
5b6dd868 1620 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1621 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1622 tcg_ctx.code_gen_buffer) /
1623 tcg_ctx.tb_ctx.nb_tbs : 0,
1624 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1625 tcg_ctx.code_gen_buffer) /
1626 target_code_size : 0);
1627 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1628 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1629 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1630 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1631 direct_jmp_count,
5e5f07e0
EV
1632 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1633 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1634 direct_jmp2_count,
5e5f07e0
EV
1635 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1636 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1637 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1638 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1639 cpu_fprintf(f, "TB invalidate count %d\n",
1640 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1641 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1642 tcg_dump_info(f, cpu_fprintf);
1643}
1644
1645#else /* CONFIG_USER_ONLY */
1646
c3affe56 1647void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1648{
259186a7 1649 cpu->interrupt_request |= mask;
378df4b2 1650 cpu->tcg_exit_req = 1;
5b6dd868
BS
1651}
1652
1653/*
1654 * Walks guest process memory "regions" one by one
1655 * and calls callback function 'fn' for each region.
1656 */
1657struct walk_memory_regions_data {
1658 walk_memory_regions_fn fn;
1659 void *priv;
1660 uintptr_t start;
1661 int prot;
1662};
1663
1664static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1665 abi_ulong end, int new_prot)
1666{
1667 if (data->start != -1ul) {
1668 int rc = data->fn(data->priv, data->start, end, data->prot);
1669 if (rc != 0) {
1670 return rc;
1671 }
1672 }
1673
1674 data->start = (new_prot ? end : -1ul);
1675 data->prot = new_prot;
1676
1677 return 0;
1678}
1679
1680static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1681 abi_ulong base, int level, void **lp)
1682{
1683 abi_ulong pa;
1684 int i, rc;
1685
1686 if (*lp == NULL) {
1687 return walk_memory_regions_end(data, base, 0);
1688 }
1689
1690 if (level == 0) {
1691 PageDesc *pd = *lp;
1692
03f49957 1693 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1694 int prot = pd[i].flags;
1695
1696 pa = base | (i << TARGET_PAGE_BITS);
1697 if (prot != data->prot) {
1698 rc = walk_memory_regions_end(data, pa, prot);
1699 if (rc != 0) {
1700 return rc;
1701 }
1702 }
1703 }
1704 } else {
1705 void **pp = *lp;
1706
03f49957 1707 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868 1708 pa = base | ((abi_ulong)i <<
03f49957 1709 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1710 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1711 if (rc != 0) {
1712 return rc;
1713 }
1714 }
1715 }
1716
1717 return 0;
1718}
1719
1720int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1721{
1722 struct walk_memory_regions_data data;
1723 uintptr_t i;
1724
1725 data.fn = fn;
1726 data.priv = priv;
1727 data.start = -1ul;
1728 data.prot = 0;
1729
1730 for (i = 0; i < V_L1_SIZE; i++) {
1731 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
03f49957 1732 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1733
1734 if (rc != 0) {
1735 return rc;
1736 }
1737 }
1738
1739 return walk_memory_regions_end(&data, 0, 0);
1740}
1741
1742static int dump_region(void *priv, abi_ulong start,
1743 abi_ulong end, unsigned long prot)
1744{
1745 FILE *f = (FILE *)priv;
1746
1747 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
1748 " "TARGET_ABI_FMT_lx" %c%c%c\n",
1749 start, end, end - start,
1750 ((prot & PAGE_READ) ? 'r' : '-'),
1751 ((prot & PAGE_WRITE) ? 'w' : '-'),
1752 ((prot & PAGE_EXEC) ? 'x' : '-'));
1753
1754 return 0;
1755}
1756
1757/* dump memory mappings */
1758void page_dump(FILE *f)
1759{
227b8175
SW
1760 const int length = sizeof(abi_ulong) * 2;
1761 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1762 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1763 walk_memory_regions(f, dump_region);
1764}
1765
1766int page_get_flags(target_ulong address)
1767{
1768 PageDesc *p;
1769
1770 p = page_find(address >> TARGET_PAGE_BITS);
1771 if (!p) {
1772 return 0;
1773 }
1774 return p->flags;
1775}
1776
1777/* Modify the flags of a page and invalidate the code if necessary.
1778 The flag PAGE_WRITE_ORG is positioned automatically depending
1779 on PAGE_WRITE. The mmap_lock should already be held. */
1780void page_set_flags(target_ulong start, target_ulong end, int flags)
1781{
1782 target_ulong addr, len;
1783
1784 /* This function should never be called with addresses outside the
1785 guest address space. If this assert fires, it probably indicates
1786 a missing call to h2g_valid. */
1787#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1788 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1789#endif
1790 assert(start < end);
1791
1792 start = start & TARGET_PAGE_MASK;
1793 end = TARGET_PAGE_ALIGN(end);
1794
1795 if (flags & PAGE_WRITE) {
1796 flags |= PAGE_WRITE_ORG;
1797 }
1798
1799 for (addr = start, len = end - start;
1800 len != 0;
1801 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1802 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1803
1804 /* If the write protection bit is set, then we invalidate
1805 the code inside. */
1806 if (!(p->flags & PAGE_WRITE) &&
1807 (flags & PAGE_WRITE) &&
1808 p->first_tb) {
d02532f0 1809 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1810 }
1811 p->flags = flags;
1812 }
1813}
1814
1815int page_check_range(target_ulong start, target_ulong len, int flags)
1816{
1817 PageDesc *p;
1818 target_ulong end;
1819 target_ulong addr;
1820
1821 /* This function should never be called with addresses outside the
1822 guest address space. If this assert fires, it probably indicates
1823 a missing call to h2g_valid. */
1824#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1825 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1826#endif
1827
1828 if (len == 0) {
1829 return 0;
1830 }
1831 if (start + len - 1 < start) {
1832 /* We've wrapped around. */
1833 return -1;
1834 }
1835
1836 /* must do before we loose bits in the next step */
1837 end = TARGET_PAGE_ALIGN(start + len);
1838 start = start & TARGET_PAGE_MASK;
1839
1840 for (addr = start, len = end - start;
1841 len != 0;
1842 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1843 p = page_find(addr >> TARGET_PAGE_BITS);
1844 if (!p) {
1845 return -1;
1846 }
1847 if (!(p->flags & PAGE_VALID)) {
1848 return -1;
1849 }
1850
1851 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1852 return -1;
1853 }
1854 if (flags & PAGE_WRITE) {
1855 if (!(p->flags & PAGE_WRITE_ORG)) {
1856 return -1;
1857 }
1858 /* unprotect the page if it was put read-only because it
1859 contains translated code */
1860 if (!(p->flags & PAGE_WRITE)) {
1861 if (!page_unprotect(addr, 0, NULL)) {
1862 return -1;
1863 }
1864 }
5b6dd868
BS
1865 }
1866 }
1867 return 0;
1868}
1869
1870/* called from signal handler: invalidate the code and unprotect the
1871 page. Return TRUE if the fault was successfully handled. */
1872int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1873{
1874 unsigned int prot;
1875 PageDesc *p;
1876 target_ulong host_start, host_end, addr;
1877
1878 /* Technically this isn't safe inside a signal handler. However we
1879 know this only ever happens in a synchronous SEGV handler, so in
1880 practice it seems to be ok. */
1881 mmap_lock();
1882
1883 p = page_find(address >> TARGET_PAGE_BITS);
1884 if (!p) {
1885 mmap_unlock();
1886 return 0;
1887 }
1888
1889 /* if the page was really writable, then we change its
1890 protection back to writable */
1891 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1892 host_start = address & qemu_host_page_mask;
1893 host_end = host_start + qemu_host_page_size;
1894
1895 prot = 0;
1896 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1897 p = page_find(addr >> TARGET_PAGE_BITS);
1898 p->flags |= PAGE_WRITE;
1899 prot |= p->flags;
1900
1901 /* and since the content will be modified, we must invalidate
1902 the corresponding translated code. */
d02532f0 1903 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1904#ifdef DEBUG_TB_CHECK
1905 tb_invalidate_check(addr);
1906#endif
1907 }
1908 mprotect((void *)g2h(host_start), qemu_host_page_size,
1909 prot & PAGE_BITS);
1910
1911 mmap_unlock();
1912 return 1;
1913 }
1914 mmap_unlock();
1915 return 0;
1916}
1917#endif /* CONFIG_USER_ONLY */