]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
int128: Add int128_make128
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
5b6dd868 21#endif
7b31bbc2 22#include "qemu/osdep.h"
d19893da 23
2054396a 24
5b6dd868 25#include "qemu-common.h"
af5ad107 26#define NO_CPU_IO_DEFS
d3eead2e 27#include "cpu.h"
6db8b538 28#include "trace.h"
76cad711 29#include "disas/disas.h"
63c91552 30#include "exec/exec-all.h"
57fec1fe 31#include "tcg.h"
5b6dd868
BS
32#if defined(CONFIG_USER_ONLY)
33#include "qemu.h"
34#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35#include <sys/param.h>
36#if __FreeBSD_version >= 700104
37#define HAVE_KINFO_GETVMMAP
38#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
39#include <sys/proc.h>
40#include <machine/profile.h>
41#define _KERNEL
42#include <sys/user.h>
43#undef _KERNEL
44#undef sigqueue
45#include <libutil.h>
46#endif
47#endif
0bc3cd62
PB
48#else
49#include "exec/address-spaces.h"
5b6dd868
BS
50#endif
51
022c62cb 52#include "exec/cputlb.h"
e1b89321 53#include "exec/tb-hash.h"
5b6dd868 54#include "translate-all.h"
510a647f 55#include "qemu/bitmap.h"
0aa09897 56#include "qemu/timer.h"
508127e2 57#include "exec/log.h"
5b6dd868
BS
58
59//#define DEBUG_TB_INVALIDATE
60//#define DEBUG_FLUSH
61/* make various TB consistency checks */
62//#define DEBUG_TB_CHECK
63
64#if !defined(CONFIG_USER_ONLY)
65/* TB consistency checks only implemented for usermode emulation. */
66#undef DEBUG_TB_CHECK
67#endif
68
69#define SMC_BITMAP_USE_THRESHOLD 10
70
5b6dd868
BS
71typedef struct PageDesc {
72 /* list of TBs intersecting this ram page */
73 TranslationBlock *first_tb;
6fad459c 74#ifdef CONFIG_SOFTMMU
5b6dd868
BS
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
510a647f 78 unsigned long *code_bitmap;
6fad459c 79#else
5b6dd868
BS
80 unsigned long flags;
81#endif
82} PageDesc;
83
84/* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86#if !defined(CONFIG_USER_ONLY)
87#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89#else
90# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91#endif
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94#endif
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define V_L2_BITS 10
98#define V_L2_SIZE (1 << V_L2_BITS)
99
5b6dd868 100uintptr_t qemu_host_page_size;
0c2d70c4 101intptr_t qemu_host_page_mask;
5b6dd868 102
66ec9f49
VK
103/*
104 * L1 Mapping properties
105 */
106static int v_l1_size;
107static int v_l1_shift;
108static int v_l2_levels;
109
110/* The bottom level has pointers to PageDesc, and is indexed by
111 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
112 */
113#define V_L1_MIN_BITS 4
114#define V_L1_MAX_BITS (V_L2_BITS + 3)
115#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
116
117static void *l1_map[V_L1_MAX_SIZE];
5b6dd868 118
57fec1fe
FB
119/* code generation context */
120TCGContext tcg_ctx;
d19893da 121
677ef623
FK
122/* translation block context */
123#ifdef CONFIG_USER_ONLY
124__thread int have_tb_lock;
125#endif
126
66ec9f49
VK
127static void page_table_config_init(void)
128{
129 uint32_t v_l1_bits;
130
131 assert(TARGET_PAGE_BITS);
132 /* The bits remaining after N lower levels of page tables. */
133 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
134 if (v_l1_bits < V_L1_MIN_BITS) {
135 v_l1_bits += V_L2_BITS;
136 }
137
138 v_l1_size = 1 << v_l1_bits;
139 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
140 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
141
142 assert(v_l1_bits <= V_L1_MAX_BITS);
143 assert(v_l1_shift % V_L2_BITS == 0);
144 assert(v_l2_levels >= 0);
145}
146
677ef623
FK
147void tb_lock(void)
148{
149#ifdef CONFIG_USER_ONLY
150 assert(!have_tb_lock);
151 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
152 have_tb_lock++;
153#endif
154}
155
156void tb_unlock(void)
157{
158#ifdef CONFIG_USER_ONLY
159 assert(have_tb_lock);
160 have_tb_lock--;
161 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
162#endif
163}
164
165void tb_lock_reset(void)
166{
167#ifdef CONFIG_USER_ONLY
168 if (have_tb_lock) {
169 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
170 have_tb_lock = 0;
171 }
172#endif
173}
174
a8a826a3 175static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 176
57fec1fe
FB
177void cpu_gen_init(void)
178{
179 tcg_context_init(&tcg_ctx);
57fec1fe
FB
180}
181
fca8a500
RH
182/* Encode VAL as a signed leb128 sequence at P.
183 Return P incremented past the encoded value. */
184static uint8_t *encode_sleb128(uint8_t *p, target_long val)
185{
186 int more, byte;
187
188 do {
189 byte = val & 0x7f;
190 val >>= 7;
191 more = !((val == 0 && (byte & 0x40) == 0)
192 || (val == -1 && (byte & 0x40) != 0));
193 if (more) {
194 byte |= 0x80;
195 }
196 *p++ = byte;
197 } while (more);
198
199 return p;
200}
201
202/* Decode a signed leb128 sequence at *PP; increment *PP past the
203 decoded value. Return the decoded value. */
204static target_long decode_sleb128(uint8_t **pp)
205{
206 uint8_t *p = *pp;
207 target_long val = 0;
208 int byte, shift = 0;
209
210 do {
211 byte = *p++;
212 val |= (target_ulong)(byte & 0x7f) << shift;
213 shift += 7;
214 } while (byte & 0x80);
215 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
216 val |= -(target_ulong)1 << shift;
217 }
218
219 *pp = p;
220 return val;
221}
222
223/* Encode the data collected about the instructions while compiling TB.
224 Place the data at BLOCK, and return the number of bytes consumed.
225
226 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
227 which come from the target's insn_start data, followed by a uintptr_t
228 which comes from the host pc of the end of the code implementing the insn.
229
230 Each line of the table is encoded as sleb128 deltas from the previous
231 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
232 That is, the first column is seeded with the guest pc, the last column
233 with the host pc, and the middle columns with zeros. */
234
235static int encode_search(TranslationBlock *tb, uint8_t *block)
236{
b125f9dc 237 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
238 uint8_t *p = block;
239 int i, j, n;
240
241 tb->tc_search = block;
242
243 for (i = 0, n = tb->icount; i < n; ++i) {
244 target_ulong prev;
245
246 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
247 if (i == 0) {
248 prev = (j == 0 ? tb->pc : 0);
249 } else {
250 prev = tcg_ctx.gen_insn_data[i - 1][j];
251 }
252 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
253 }
254 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
255 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
256
257 /* Test for (pending) buffer overflow. The assumption is that any
258 one row beginning below the high water mark cannot overrun
259 the buffer completely. Thus we can test for overflow after
260 encoding a row without having to check during encoding. */
261 if (unlikely(p > highwater)) {
262 return -1;
263 }
fca8a500
RH
264 }
265
266 return p - block;
267}
268
fec88f64 269/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 270static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 271 uintptr_t searched_pc)
d19893da 272{
fca8a500
RH
273 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
274 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 275 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
276 uint8_t *p = tb->tc_search;
277 int i, j, num_insns = tb->icount;
57fec1fe 278#ifdef CONFIG_PROFILER
fca8a500 279 int64_t ti = profile_getclock();
57fec1fe
FB
280#endif
281
01ecaf43
RH
282 searched_pc -= GETPC_ADJ;
283
fca8a500
RH
284 if (searched_pc < host_pc) {
285 return -1;
286 }
d19893da 287
fca8a500
RH
288 /* Reconstruct the stored insn data while looking for the point at
289 which the end of the insn exceeds the searched_pc. */
290 for (i = 0; i < num_insns; ++i) {
291 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
292 data[j] += decode_sleb128(&p);
293 }
294 host_pc += decode_sleb128(&p);
295 if (host_pc > searched_pc) {
296 goto found;
297 }
298 }
299 return -1;
3b46e624 300
fca8a500 301 found:
bd79255d 302 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 303 assert(use_icount);
2e70f6ef 304 /* Reset the cycle counter to the start of the block. */
fca8a500 305 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 306 /* Clear the IO flag. */
99df7dce 307 cpu->can_do_io = 0;
2e70f6ef 308 }
fca8a500
RH
309 cpu->icount_decr.u16.low -= i;
310 restore_state_to_opc(env, tb, data);
57fec1fe
FB
311
312#ifdef CONFIG_PROFILER
fca8a500
RH
313 tcg_ctx.restore_time += profile_getclock() - ti;
314 tcg_ctx.restore_count++;
57fec1fe 315#endif
d19893da
FB
316 return 0;
317}
5b6dd868 318
3f38f309 319bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
320{
321 TranslationBlock *tb;
322
323 tb = tb_find_pc(retaddr);
324 if (tb) {
74f10515 325 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
326 if (tb->cflags & CF_NOCACHE) {
327 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
328 tb_phys_invalidate(tb, -1);
329 tb_free(tb);
330 }
a8a826a3
BS
331 return true;
332 }
333 return false;
334}
335
47c16ed5 336void page_size_init(void)
5b6dd868
BS
337{
338 /* NOTE: we can always suppose that qemu_host_page_size >=
339 TARGET_PAGE_SIZE */
5b6dd868 340 qemu_real_host_page_size = getpagesize();
0c2d70c4 341 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
342 if (qemu_host_page_size == 0) {
343 qemu_host_page_size = qemu_real_host_page_size;
344 }
345 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
346 qemu_host_page_size = TARGET_PAGE_SIZE;
347 }
0c2d70c4 348 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 349}
5b6dd868 350
47c16ed5
AK
351static void page_init(void)
352{
353 page_size_init();
66ec9f49
VK
354 page_table_config_init();
355
5b6dd868
BS
356#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
357 {
358#ifdef HAVE_KINFO_GETVMMAP
359 struct kinfo_vmentry *freep;
360 int i, cnt;
361
362 freep = kinfo_getvmmap(getpid(), &cnt);
363 if (freep) {
364 mmap_lock();
365 for (i = 0; i < cnt; i++) {
366 unsigned long startaddr, endaddr;
367
368 startaddr = freep[i].kve_start;
369 endaddr = freep[i].kve_end;
370 if (h2g_valid(startaddr)) {
371 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
372
373 if (h2g_valid(endaddr)) {
374 endaddr = h2g(endaddr);
375 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
376 } else {
377#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
378 endaddr = ~0ul;
379 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
380#endif
381 }
382 }
383 }
384 free(freep);
385 mmap_unlock();
386 }
387#else
388 FILE *f;
389
390 last_brk = (unsigned long)sbrk(0);
391
392 f = fopen("/compat/linux/proc/self/maps", "r");
393 if (f) {
394 mmap_lock();
395
396 do {
397 unsigned long startaddr, endaddr;
398 int n;
399
400 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
401
402 if (n == 2 && h2g_valid(startaddr)) {
403 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
404
405 if (h2g_valid(endaddr)) {
406 endaddr = h2g(endaddr);
407 } else {
408 endaddr = ~0ul;
409 }
410 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
411 }
412 } while (!feof(f));
413
414 fclose(f);
415 mmap_unlock();
416 }
417#endif
418 }
419#endif
420}
421
75692087
PB
422/* If alloc=1:
423 * Called with mmap_lock held for user-mode emulation.
424 */
5b6dd868
BS
425static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
426{
427 PageDesc *pd;
428 void **lp;
429 int i;
430
5b6dd868 431 /* Level 1. Always allocated. */
66ec9f49 432 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
5b6dd868
BS
433
434 /* Level 2..N-1. */
66ec9f49 435 for (i = v_l2_levels; i > 0; i--) {
6940fab8 436 void **p = atomic_rcu_read(lp);
5b6dd868
BS
437
438 if (p == NULL) {
439 if (!alloc) {
440 return NULL;
441 }
e3a0abfd 442 p = g_new0(void *, V_L2_SIZE);
6940fab8 443 atomic_rcu_set(lp, p);
5b6dd868
BS
444 }
445
03f49957 446 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
447 }
448
6940fab8 449 pd = atomic_rcu_read(lp);
5b6dd868
BS
450 if (pd == NULL) {
451 if (!alloc) {
452 return NULL;
453 }
e3a0abfd 454 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 455 atomic_rcu_set(lp, pd);
5b6dd868
BS
456 }
457
03f49957 458 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
459}
460
461static inline PageDesc *page_find(tb_page_addr_t index)
462{
463 return page_find_alloc(index, 0);
464}
465
5b6dd868
BS
466#if defined(CONFIG_USER_ONLY)
467/* Currently it is not recommended to allocate big chunks of data in
468 user mode. It will change when a dedicated libc will be used. */
469/* ??? 64-bit hosts ought to have no problem mmaping data outside the
470 region in which the guest needs to run. Revisit this. */
471#define USE_STATIC_CODE_GEN_BUFFER
472#endif
473
5b6dd868
BS
474/* Minimum size of the code gen buffer. This number is randomly chosen,
475 but not so small that we can't have a fair number of TB's live. */
476#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
477
478/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
479 indicated, this is constrained by the range of direct branches on the
480 host cpu, as used by the TCG implementation of goto_tb. */
481#if defined(__x86_64__)
482# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
483#elif defined(__sparc__)
484# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
485#elif defined(__powerpc64__)
486# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
487#elif defined(__powerpc__)
488# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
489#elif defined(__aarch64__)
490# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
491#elif defined(__arm__)
492# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
493#elif defined(__s390x__)
494 /* We have a +- 4GB range on the branches; leave some slop. */
495# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
496#elif defined(__mips__)
497 /* We have a 256MB branch region, but leave room to make sure the
498 main executable is also within that region. */
499# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
500#else
501# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
502#endif
503
504#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
505
506#define DEFAULT_CODE_GEN_BUFFER_SIZE \
507 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
508 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
509
510static inline size_t size_code_gen_buffer(size_t tb_size)
511{
512 /* Size the buffer. */
513 if (tb_size == 0) {
514#ifdef USE_STATIC_CODE_GEN_BUFFER
515 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
516#else
517 /* ??? Needs adjustments. */
518 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
519 static buffer, we could size this on RESERVED_VA, on the text
520 segment size of the executable, or continue to use the default. */
521 tb_size = (unsigned long)(ram_size / 4);
522#endif
523 }
524 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
525 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
526 }
527 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
528 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
529 }
5b6dd868
BS
530 return tb_size;
531}
532
483c76e1
RH
533#ifdef __mips__
534/* In order to use J and JAL within the code_gen_buffer, we require
535 that the buffer not cross a 256MB boundary. */
536static inline bool cross_256mb(void *addr, size_t size)
537{
7ba6a512 538 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
539}
540
541/* We weren't able to allocate a buffer without crossing that boundary,
542 so make do with the larger portion of the buffer that doesn't cross.
543 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
544static inline void *split_cross_256mb(void *buf1, size_t size1)
545{
7ba6a512 546 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
547 size_t size2 = buf1 + size1 - buf2;
548
549 size1 = buf2 - buf1;
550 if (size1 < size2) {
551 size1 = size2;
552 buf1 = buf2;
553 }
554
555 tcg_ctx.code_gen_buffer_size = size1;
556 return buf1;
557}
558#endif
559
5b6dd868
BS
560#ifdef USE_STATIC_CODE_GEN_BUFFER
561static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
562 __attribute__((aligned(CODE_GEN_ALIGN)));
563
f293709c
RH
564# ifdef _WIN32
565static inline void do_protect(void *addr, long size, int prot)
566{
567 DWORD old_protect;
568 VirtualProtect(addr, size, prot, &old_protect);
569}
570
571static inline void map_exec(void *addr, long size)
572{
573 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
574}
575
576static inline void map_none(void *addr, long size)
577{
578 do_protect(addr, size, PAGE_NOACCESS);
579}
580# else
581static inline void do_protect(void *addr, long size, int prot)
582{
583 uintptr_t start, end;
584
585 start = (uintptr_t)addr;
586 start &= qemu_real_host_page_mask;
587
588 end = (uintptr_t)addr + size;
589 end = ROUND_UP(end, qemu_real_host_page_size);
590
591 mprotect((void *)start, end - start, prot);
592}
593
594static inline void map_exec(void *addr, long size)
595{
596 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
597}
598
599static inline void map_none(void *addr, long size)
600{
601 do_protect(addr, size, PROT_NONE);
602}
603# endif /* WIN32 */
604
5b6dd868
BS
605static inline void *alloc_code_gen_buffer(void)
606{
483c76e1 607 void *buf = static_code_gen_buffer;
f293709c
RH
608 size_t full_size, size;
609
610 /* The size of the buffer, rounded down to end on a page boundary. */
611 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
612 & qemu_real_host_page_mask) - (uintptr_t)buf;
613
614 /* Reserve a guard page. */
615 size = full_size - qemu_real_host_page_size;
616
617 /* Honor a command-line option limiting the size of the buffer. */
618 if (size > tcg_ctx.code_gen_buffer_size) {
619 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
620 & qemu_real_host_page_mask) - (uintptr_t)buf;
621 }
622 tcg_ctx.code_gen_buffer_size = size;
623
483c76e1 624#ifdef __mips__
f293709c
RH
625 if (cross_256mb(buf, size)) {
626 buf = split_cross_256mb(buf, size);
627 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
628 }
629#endif
f293709c
RH
630
631 map_exec(buf, size);
632 map_none(buf + size, qemu_real_host_page_size);
633 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
634
483c76e1 635 return buf;
5b6dd868 636}
f293709c
RH
637#elif defined(_WIN32)
638static inline void *alloc_code_gen_buffer(void)
639{
640 size_t size = tcg_ctx.code_gen_buffer_size;
641 void *buf1, *buf2;
642
643 /* Perform the allocation in two steps, so that the guard page
644 is reserved but uncommitted. */
645 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
646 MEM_RESERVE, PAGE_NOACCESS);
647 if (buf1 != NULL) {
648 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
649 assert(buf1 == buf2);
650 }
651
652 return buf1;
653}
654#else
5b6dd868
BS
655static inline void *alloc_code_gen_buffer(void)
656{
657 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
658 uintptr_t start = 0;
f293709c 659 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
660 void *buf;
661
662 /* Constrain the position of the buffer based on the host cpu.
663 Note that these addresses are chosen in concert with the
664 addresses assigned in the relevant linker script file. */
665# if defined(__PIE__) || defined(__PIC__)
666 /* Don't bother setting a preferred location if we're building
667 a position-independent executable. We're more likely to get
668 an address near the main executable if we let the kernel
669 choose the address. */
670# elif defined(__x86_64__) && defined(MAP_32BIT)
671 /* Force the memory down into low memory with the executable.
672 Leave the choice of exact location with the kernel. */
673 flags |= MAP_32BIT;
674 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
675 if (size > 800u * 1024 * 1024) {
676 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
677 }
678# elif defined(__sparc__)
679 start = 0x40000000ul;
680# elif defined(__s390x__)
681 start = 0x90000000ul;
479eb121 682# elif defined(__mips__)
f293709c 683# if _MIPS_SIM == _ABI64
479eb121
RH
684 start = 0x128000000ul;
685# else
686 start = 0x08000000ul;
687# endif
5b6dd868
BS
688# endif
689
f293709c
RH
690 buf = mmap((void *)start, size + qemu_real_host_page_size,
691 PROT_NONE, flags, -1, 0);
483c76e1
RH
692 if (buf == MAP_FAILED) {
693 return NULL;
694 }
695
696#ifdef __mips__
f293709c 697 if (cross_256mb(buf, size)) {
5d831be2 698 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 699 that 256mb crossing. This time don't specify an address. */
f293709c
RH
700 size_t size2;
701 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
702 PROT_NONE, flags, -1, 0);
703 switch (buf2 != MAP_FAILED) {
704 case 1:
705 if (!cross_256mb(buf2, size)) {
483c76e1 706 /* Success! Use the new buffer. */
8bdf4997 707 munmap(buf, size + qemu_real_host_page_size);
f293709c 708 break;
483c76e1
RH
709 }
710 /* Failure. Work with what we had. */
8bdf4997 711 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
712 /* fallthru */
713 default:
714 /* Split the original buffer. Free the smaller half. */
715 buf2 = split_cross_256mb(buf, size);
716 size2 = tcg_ctx.code_gen_buffer_size;
717 if (buf == buf2) {
718 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
719 } else {
720 munmap(buf, size - size2);
721 }
722 size = size2;
723 break;
483c76e1 724 }
f293709c 725 buf = buf2;
483c76e1
RH
726 }
727#endif
728
f293709c
RH
729 /* Make the final buffer accessible. The guard page at the end
730 will remain inaccessible with PROT_NONE. */
731 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 732
f293709c
RH
733 /* Request large pages for the buffer. */
734 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 735
5b6dd868
BS
736 return buf;
737}
f293709c 738#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
739
740static inline void code_gen_alloc(size_t tb_size)
741{
0b0d3320
EV
742 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
743 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
744 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
745 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
746 exit(1);
747 }
748
8163b749
RH
749 /* Estimate a good size for the number of TBs we can support. We
750 still haven't deducted the prologue from the buffer size here,
751 but that's minimal and won't affect the estimate much. */
752 tcg_ctx.code_gen_max_blocks
753 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
754 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
755
677ef623 756 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
757}
758
909eaac9
EC
759static void tb_htable_init(void)
760{
761 unsigned int mode = QHT_MODE_AUTO_RESIZE;
762
763 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
764}
765
5b6dd868
BS
766/* Must be called before using the QEMU cpus. 'tb_size' is the size
767 (in bytes) allocated to the translation buffer. Zero means default
768 size. */
769void tcg_exec_init(unsigned long tb_size)
770{
771 cpu_gen_init();
5b6dd868 772 page_init();
909eaac9 773 tb_htable_init();
f293709c 774 code_gen_alloc(tb_size);
4cbea598 775#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
776 /* There's no guest base to take into account, so go ahead and
777 initialize the prologue now. */
778 tcg_prologue_init(&tcg_ctx);
779#endif
780}
781
782bool tcg_enabled(void)
783{
0b0d3320 784 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
785}
786
787/* Allocate a new translation block. Flush the translation buffer if
788 too many translation blocks or too much generated code. */
789static TranslationBlock *tb_alloc(target_ulong pc)
790{
791 TranslationBlock *tb;
792
b125f9dc 793 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
794 return NULL;
795 }
5e5f07e0 796 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
797 tb->pc = pc;
798 tb->cflags = 0;
6d21e420 799 tb->invalid = false;
5b6dd868
BS
800 return tb;
801}
802
803void tb_free(TranslationBlock *tb)
804{
805 /* In practice this is mostly used for single use temporary TB
806 Ignore the hard cases and just back up if this TB happens to
807 be the last one generated. */
5e5f07e0
EV
808 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
809 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 810 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 811 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
812 }
813}
814
815static inline void invalidate_page_bitmap(PageDesc *p)
816{
6fad459c 817#ifdef CONFIG_SOFTMMU
012aef07
MA
818 g_free(p->code_bitmap);
819 p->code_bitmap = NULL;
5b6dd868 820 p->code_write_count = 0;
6fad459c 821#endif
5b6dd868
BS
822}
823
824/* Set to NULL all the 'first_tb' fields in all PageDescs. */
825static void page_flush_tb_1(int level, void **lp)
826{
827 int i;
828
829 if (*lp == NULL) {
830 return;
831 }
832 if (level == 0) {
833 PageDesc *pd = *lp;
834
03f49957 835 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
836 pd[i].first_tb = NULL;
837 invalidate_page_bitmap(pd + i);
838 }
839 } else {
840 void **pp = *lp;
841
03f49957 842 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
843 page_flush_tb_1(level - 1, pp + i);
844 }
845 }
846}
847
848static void page_flush_tb(void)
849{
66ec9f49 850 int i, l1_sz = v_l1_size;
5b6dd868 851
66ec9f49
VK
852 for (i = 0; i < l1_sz; i++) {
853 page_flush_tb_1(v_l2_levels, l1_map + i);
5b6dd868
BS
854 }
855}
856
857/* flush all the translation blocks */
3359baad 858static void do_tb_flush(CPUState *cpu, void *data)
5b6dd868 859{
3359baad
SF
860 unsigned tb_flush_req = (unsigned) (uintptr_t) data;
861
862 tb_lock();
863
864 /* If it's already been done on request of another CPU,
865 * just retry.
866 */
867 if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
868 goto done;
135a972b 869 }
3359baad 870
5b6dd868
BS
871#if defined(DEBUG_FLUSH)
872 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 873 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 874 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 875 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 876 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 877#endif
0b0d3320
EV
878 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
879 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 880 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 881 }
5b6dd868 882
bdc44640 883 CPU_FOREACH(cpu) {
89a16b1e
SF
884 int i;
885
886 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
887 atomic_set(&cpu->tb_jmp_cache[i], NULL);
888 }
5b6dd868
BS
889 }
890
118b0730 891 tcg_ctx.tb_ctx.nb_tbs = 0;
909eaac9 892 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
5b6dd868
BS
893 page_flush_tb();
894
0b0d3320 895 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
896 /* XXX: flush processor icache at this point if cache flush is
897 expensive */
3359baad
SF
898 atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
899 tcg_ctx.tb_ctx.tb_flush_count + 1);
900
901done:
902 tb_unlock();
903}
904
905void tb_flush(CPUState *cpu)
906{
907 if (tcg_enabled()) {
908 uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
909 async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
910 }
5b6dd868
BS
911}
912
913#ifdef DEBUG_TB_CHECK
914
909eaac9
EC
915static void
916do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
5b6dd868 917{
909eaac9
EC
918 TranslationBlock *tb = p;
919 target_ulong addr = *(target_ulong *)userp;
920
921 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
922 printf("ERROR invalidate: address=" TARGET_FMT_lx
923 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
924 }
925}
5b6dd868 926
909eaac9
EC
927static void tb_invalidate_check(target_ulong address)
928{
5b6dd868 929 address &= TARGET_PAGE_MASK;
909eaac9
EC
930 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
931}
932
933static void
934do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
935{
936 TranslationBlock *tb = p;
937 int flags1, flags2;
938
939 flags1 = page_get_flags(tb->pc);
940 flags2 = page_get_flags(tb->pc + tb->size - 1);
941 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
942 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
943 (long)tb->pc, tb->size, flags1, flags2);
5b6dd868
BS
944 }
945}
946
947/* verify that all the pages have correct rights for code */
948static void tb_page_check(void)
949{
909eaac9 950 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
5b6dd868
BS
951}
952
953#endif
954
5b6dd868
BS
955static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
956{
957 TranslationBlock *tb1;
958 unsigned int n1;
959
960 for (;;) {
961 tb1 = *ptb;
962 n1 = (uintptr_t)tb1 & 3;
963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
964 if (tb1 == tb) {
965 *ptb = tb1->page_next[n1];
966 break;
967 }
968 ptb = &tb1->page_next[n1];
969 }
970}
971
13362678
SF
972/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
973static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 974{
c37e6d7e
SF
975 TranslationBlock *tb1;
976 uintptr_t *ptb, ntb;
5b6dd868
BS
977 unsigned int n1;
978
f309101c 979 ptb = &tb->jmp_list_next[n];
c37e6d7e 980 if (*ptb) {
5b6dd868
BS
981 /* find tb(n) in circular list */
982 for (;;) {
c37e6d7e
SF
983 ntb = *ptb;
984 n1 = ntb & 3;
985 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
986 if (n1 == n && tb1 == tb) {
987 break;
988 }
989 if (n1 == 2) {
f309101c 990 ptb = &tb1->jmp_list_first;
5b6dd868 991 } else {
f309101c 992 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
993 }
994 }
995 /* now we can suppress tb(n) from the list */
f309101c 996 *ptb = tb->jmp_list_next[n];
5b6dd868 997
c37e6d7e 998 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
999 }
1000}
1001
1002/* reset the jump entry 'n' of a TB so that it is not chained to
1003 another TB */
1004static inline void tb_reset_jump(TranslationBlock *tb, int n)
1005{
f309101c
SF
1006 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
1007 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
1008}
1009
89bba496
SF
1010/* remove any jumps to the TB */
1011static inline void tb_jmp_unlink(TranslationBlock *tb)
1012{
f9c5b66f
SF
1013 TranslationBlock *tb1;
1014 uintptr_t *ptb, ntb;
89bba496
SF
1015 unsigned int n1;
1016
f9c5b66f 1017 ptb = &tb->jmp_list_first;
89bba496 1018 for (;;) {
f9c5b66f
SF
1019 ntb = *ptb;
1020 n1 = ntb & 3;
1021 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
1022 if (n1 == 2) {
1023 break;
1024 }
f9c5b66f
SF
1025 tb_reset_jump(tb1, n1);
1026 *ptb = tb1->jmp_list_next[n1];
1027 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 1028 }
89bba496
SF
1029}
1030
0c884d16 1031/* invalidate one TB */
5b6dd868
BS
1032void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1033{
182735ef 1034 CPUState *cpu;
5b6dd868 1035 PageDesc *p;
42bd3228 1036 uint32_t h;
5b6dd868 1037 tb_page_addr_t phys_pc;
5b6dd868 1038
6d21e420
PB
1039 atomic_set(&tb->invalid, true);
1040
5b6dd868
BS
1041 /* remove the TB from the hash list */
1042 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
42bd3228 1043 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 1044 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
5b6dd868
BS
1045
1046 /* remove the TB from the page list */
1047 if (tb->page_addr[0] != page_addr) {
1048 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1049 tb_page_remove(&p->first_tb, tb);
1050 invalidate_page_bitmap(p);
1051 }
1052 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1053 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1054 tb_page_remove(&p->first_tb, tb);
1055 invalidate_page_bitmap(p);
1056 }
1057
5b6dd868
BS
1058 /* remove the TB from the hash list */
1059 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1060 CPU_FOREACH(cpu) {
89a16b1e
SF
1061 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1062 atomic_set(&cpu->tb_jmp_cache[h], NULL);
5b6dd868
BS
1063 }
1064 }
1065
1066 /* suppress this TB from the two jump lists */
13362678
SF
1067 tb_remove_from_jmp_list(tb, 0);
1068 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1069
1070 /* suppress any remaining jumps to this TB */
89bba496 1071 tb_jmp_unlink(tb);
5b6dd868 1072
5e5f07e0 1073 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1074}
1075
6fad459c 1076#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1077static void build_page_bitmap(PageDesc *p)
1078{
1079 int n, tb_start, tb_end;
1080 TranslationBlock *tb;
1081
510a647f 1082 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1083
1084 tb = p->first_tb;
1085 while (tb != NULL) {
1086 n = (uintptr_t)tb & 3;
1087 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1088 /* NOTE: this is subtle as a TB may span two physical pages */
1089 if (n == 0) {
1090 /* NOTE: tb_end may be after the end of the page, but
1091 it is not a problem */
1092 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1093 tb_end = tb_start + tb->size;
1094 if (tb_end > TARGET_PAGE_SIZE) {
1095 tb_end = TARGET_PAGE_SIZE;
1096 }
1097 } else {
1098 tb_start = 0;
1099 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1100 }
510a647f 1101 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1102 tb = tb->page_next[n];
1103 }
1104}
6fad459c 1105#endif
5b6dd868 1106
e90d96b1
SF
1107/* add the tb in the target page and protect it if necessary
1108 *
1109 * Called with mmap_lock held for user-mode emulation.
1110 */
1111static inline void tb_alloc_page(TranslationBlock *tb,
1112 unsigned int n, tb_page_addr_t page_addr)
1113{
1114 PageDesc *p;
1115#ifndef CONFIG_USER_ONLY
1116 bool page_already_protected;
1117#endif
1118
1119 tb->page_addr[n] = page_addr;
1120 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1121 tb->page_next[n] = p->first_tb;
1122#ifndef CONFIG_USER_ONLY
1123 page_already_protected = p->first_tb != NULL;
1124#endif
1125 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1126 invalidate_page_bitmap(p);
1127
1128#if defined(CONFIG_USER_ONLY)
1129 if (p->flags & PAGE_WRITE) {
1130 target_ulong addr;
1131 PageDesc *p2;
1132 int prot;
1133
1134 /* force the host page as non writable (writes will have a
1135 page fault + mprotect overhead) */
1136 page_addr &= qemu_host_page_mask;
1137 prot = 0;
1138 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1139 addr += TARGET_PAGE_SIZE) {
1140
1141 p2 = page_find(addr >> TARGET_PAGE_BITS);
1142 if (!p2) {
1143 continue;
1144 }
1145 prot |= p2->flags;
1146 p2->flags &= ~PAGE_WRITE;
1147 }
1148 mprotect(g2h(page_addr), qemu_host_page_size,
1149 (prot & PAGE_BITS) & ~PAGE_WRITE);
1150#ifdef DEBUG_TB_INVALIDATE
1151 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1152 page_addr);
1153#endif
1154 }
1155#else
1156 /* if some code is already present, then the pages are already
1157 protected. So we handle the case where only the first TB is
1158 allocated in a physical page */
1159 if (!page_already_protected) {
1160 tlb_protect_code(page_addr);
1161 }
1162#endif
1163}
1164
1165/* add a new TB and link it to the physical page tables. phys_page2 is
1166 * (-1) to indicate that only one page contains the TB.
1167 *
1168 * Called with mmap_lock held for user-mode emulation.
1169 */
1170static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1171 tb_page_addr_t phys_page2)
1172{
42bd3228 1173 uint32_t h;
e90d96b1 1174
e90d96b1
SF
1175 /* add in the page list */
1176 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1177 if (phys_page2 != -1) {
1178 tb_alloc_page(tb, 1, phys_page2);
1179 } else {
1180 tb->page_addr[1] = -1;
1181 }
1182
2e1ae44a
AB
1183 /* add in the hash table */
1184 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1185 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1186
e90d96b1
SF
1187#ifdef DEBUG_TB_CHECK
1188 tb_page_check();
1189#endif
1190}
1191
75692087 1192/* Called with mmap_lock held for user mode emulation. */
648f034c 1193TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1194 target_ulong pc, target_ulong cs_base,
89fee74a 1195 uint32_t flags, int cflags)
5b6dd868 1196{
648f034c 1197 CPUArchState *env = cpu->env_ptr;
5b6dd868 1198 TranslationBlock *tb;
5b6dd868
BS
1199 tb_page_addr_t phys_pc, phys_page2;
1200 target_ulong virt_page2;
fec88f64 1201 tcg_insn_unit *gen_code_buf;
fca8a500 1202 int gen_code_size, search_size;
fec88f64
RH
1203#ifdef CONFIG_PROFILER
1204 int64_t ti;
1205#endif
5b6dd868
BS
1206
1207 phys_pc = get_page_addr_code(env, pc);
56c0269a 1208 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1209 cflags |= CF_USE_ICOUNT;
1210 }
b125f9dc 1211
5b6dd868 1212 tb = tb_alloc(pc);
b125f9dc
RH
1213 if (unlikely(!tb)) {
1214 buffer_overflow:
5b6dd868 1215 /* flush must be done */
bbd77c18 1216 tb_flush(cpu);
3359baad
SF
1217 mmap_unlock();
1218 cpu_loop_exit(cpu);
5b6dd868 1219 }
fec88f64
RH
1220
1221 gen_code_buf = tcg_ctx.code_gen_ptr;
1222 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1223 tb->cs_base = cs_base;
1224 tb->flags = flags;
1225 tb->cflags = cflags;
fec88f64
RH
1226
1227#ifdef CONFIG_PROFILER
1228 tcg_ctx.tb_count1++; /* includes aborted translations because of
1229 exceptions */
1230 ti = profile_getclock();
1231#endif
1232
1233 tcg_func_start(&tcg_ctx);
1234
7c255043 1235 tcg_ctx.cpu = ENV_GET_CPU(env);
fec88f64 1236 gen_intermediate_code(env, tb);
7c255043 1237 tcg_ctx.cpu = NULL;
fec88f64
RH
1238
1239 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1240
1241 /* generate machine code */
f309101c
SF
1242 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1243 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1244 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1245#ifdef USE_DIRECT_JUMP
f309101c
SF
1246 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1247 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1248#else
f309101c
SF
1249 tcg_ctx.tb_jmp_insn_offset = NULL;
1250 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1251#endif
1252
1253#ifdef CONFIG_PROFILER
1254 tcg_ctx.tb_count++;
1255 tcg_ctx.interm_time += profile_getclock() - ti;
1256 tcg_ctx.code_time -= profile_getclock();
1257#endif
1258
b125f9dc
RH
1259 /* ??? Overflow could be handled better here. In particular, we
1260 don't need to re-do gen_intermediate_code, nor should we re-do
1261 the tcg optimization currently hidden inside tcg_gen_code. All
1262 that should be required is to flush the TBs, allocate a new TB,
1263 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1264 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1265 if (unlikely(gen_code_size < 0)) {
1266 goto buffer_overflow;
1267 }
fca8a500 1268 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1269 if (unlikely(search_size < 0)) {
1270 goto buffer_overflow;
1271 }
fec88f64
RH
1272
1273#ifdef CONFIG_PROFILER
1274 tcg_ctx.code_time += profile_getclock();
1275 tcg_ctx.code_in_len += tb->size;
1276 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1277 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1278#endif
1279
1280#ifdef DEBUG_DISAS
d977e1c2
AB
1281 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1282 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1283 qemu_log("OUT: [size=%d]\n", gen_code_size);
1284 log_disas(tb->tc_ptr, gen_code_size);
1285 qemu_log("\n");
1286 qemu_log_flush();
1287 }
1288#endif
1289
fca8a500
RH
1290 tcg_ctx.code_gen_ptr = (void *)
1291 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1292 CODE_GEN_ALIGN);
5b6dd868 1293
901bc3de
SF
1294 /* init jump list */
1295 assert(((uintptr_t)tb & 3) == 0);
1296 tb->jmp_list_first = (uintptr_t)tb | 2;
1297 tb->jmp_list_next[0] = (uintptr_t)NULL;
1298 tb->jmp_list_next[1] = (uintptr_t)NULL;
1299
1300 /* init original jump addresses wich has been set during tcg_gen_code() */
1301 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1302 tb_reset_jump(tb, 0);
1303 }
1304 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1305 tb_reset_jump(tb, 1);
1306 }
1307
5b6dd868
BS
1308 /* check next page if needed */
1309 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1310 phys_page2 = -1;
1311 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1312 phys_page2 = get_page_addr_code(env, virt_page2);
1313 }
901bc3de
SF
1314 /* As long as consistency of the TB stuff is provided by tb_lock in user
1315 * mode and is implicit in single-threaded softmmu emulation, no explicit
1316 * memory barrier is required before tb_link_page() makes the TB visible
1317 * through the physical hash table and physical page list.
1318 */
5b6dd868
BS
1319 tb_link_page(tb, phys_pc, phys_page2);
1320 return tb;
1321}
1322
1323/*
1324 * Invalidate all TBs which intersect with the target physical address range
1325 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1326 * 'is_cpu_write_access' should be true if called from a real cpu write
1327 * access: the virtual CPU will exit the current TB if code is modified inside
1328 * this TB.
75692087
PB
1329 *
1330 * Called with mmap_lock held for user-mode emulation
5b6dd868 1331 */
35865339 1332void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1333{
1334 while (start < end) {
35865339 1335 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1336 start &= TARGET_PAGE_MASK;
1337 start += TARGET_PAGE_SIZE;
1338 }
1339}
1340
1341/*
1342 * Invalidate all TBs which intersect with the target physical address range
1343 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1344 * 'is_cpu_write_access' should be true if called from a real cpu write
1345 * access: the virtual CPU will exit the current TB if code is modified inside
1346 * this TB.
75692087
PB
1347 *
1348 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1349 */
1350void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1351 int is_cpu_write_access)
1352{
3213525f 1353 TranslationBlock *tb, *tb_next;
baea4fae 1354#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1355 CPUState *cpu = current_cpu;
4917cf44
AF
1356 CPUArchState *env = NULL;
1357#endif
5b6dd868
BS
1358 tb_page_addr_t tb_start, tb_end;
1359 PageDesc *p;
1360 int n;
1361#ifdef TARGET_HAS_PRECISE_SMC
1362 int current_tb_not_found = is_cpu_write_access;
1363 TranslationBlock *current_tb = NULL;
1364 int current_tb_modified = 0;
1365 target_ulong current_pc = 0;
1366 target_ulong current_cs_base = 0;
89fee74a 1367 uint32_t current_flags = 0;
5b6dd868
BS
1368#endif /* TARGET_HAS_PRECISE_SMC */
1369
1370 p = page_find(start >> TARGET_PAGE_BITS);
1371 if (!p) {
1372 return;
1373 }
baea4fae 1374#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1375 if (cpu != NULL) {
1376 env = cpu->env_ptr;
d77953b9 1377 }
4917cf44 1378#endif
5b6dd868
BS
1379
1380 /* we remove all the TBs in the range [start, end[ */
1381 /* XXX: see if in some cases it could be faster to invalidate all
1382 the code */
1383 tb = p->first_tb;
1384 while (tb != NULL) {
1385 n = (uintptr_t)tb & 3;
1386 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1387 tb_next = tb->page_next[n];
1388 /* NOTE: this is subtle as a TB may span two physical pages */
1389 if (n == 0) {
1390 /* NOTE: tb_end may be after the end of the page, but
1391 it is not a problem */
1392 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1393 tb_end = tb_start + tb->size;
1394 } else {
1395 tb_start = tb->page_addr[1];
1396 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1397 }
1398 if (!(tb_end <= start || tb_start >= end)) {
1399#ifdef TARGET_HAS_PRECISE_SMC
1400 if (current_tb_not_found) {
1401 current_tb_not_found = 0;
1402 current_tb = NULL;
93afeade 1403 if (cpu->mem_io_pc) {
5b6dd868 1404 /* now we have a real cpu fault */
93afeade 1405 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1406 }
1407 }
1408 if (current_tb == tb &&
1409 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1410 /* If we are modifying the current TB, we must stop
1411 its execution. We could be more precise by checking
1412 that the modification is after the current PC, but it
1413 would require a specialized function to partially
1414 restore the CPU state */
1415
1416 current_tb_modified = 1;
74f10515 1417 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1418 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1419 &current_flags);
1420 }
1421#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1422 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1423 }
1424 tb = tb_next;
1425 }
1426#if !defined(CONFIG_USER_ONLY)
1427 /* if no code remaining, no need to continue to use slow writes */
1428 if (!p->first_tb) {
1429 invalidate_page_bitmap(p);
fc377bcf 1430 tlb_unprotect_code(start);
5b6dd868
BS
1431 }
1432#endif
1433#ifdef TARGET_HAS_PRECISE_SMC
1434 if (current_tb_modified) {
1435 /* we generate a block containing just the instruction
1436 modifying the memory. It will ensure that it cannot modify
1437 itself */
648f034c 1438 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
6886b980 1439 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1440 }
1441#endif
1442}
1443
6fad459c 1444#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1445/* len must be <= 8 and start must be a multiple of len */
1446void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1447{
1448 PageDesc *p;
5b6dd868
BS
1449
1450#if 0
1451 if (1) {
1452 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1453 cpu_single_env->mem_io_vaddr, len,
1454 cpu_single_env->eip,
1455 cpu_single_env->eip +
1456 (intptr_t)cpu_single_env->segs[R_CS].base);
1457 }
1458#endif
1459 p = page_find(start >> TARGET_PAGE_BITS);
1460 if (!p) {
1461 return;
1462 }
fc377bcf
PB
1463 if (!p->code_bitmap &&
1464 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1465 /* build code bitmap */
1466 build_page_bitmap(p);
1467 }
5b6dd868 1468 if (p->code_bitmap) {
510a647f
EC
1469 unsigned int nr;
1470 unsigned long b;
1471
1472 nr = start & ~TARGET_PAGE_MASK;
1473 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1474 if (b & ((1 << len) - 1)) {
1475 goto do_invalidate;
1476 }
1477 } else {
1478 do_invalidate:
1479 tb_invalidate_phys_page_range(start, start + len, 1);
1480 }
1481}
6fad459c 1482#else
75809229
PM
1483/* Called with mmap_lock held. If pc is not 0 then it indicates the
1484 * host PC of the faulting store instruction that caused this invalidate.
1485 * Returns true if the caller needs to abort execution of the current
1486 * TB (because it was modified by this store and the guest CPU has
1487 * precise-SMC semantics).
1488 */
1489static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
5b6dd868
BS
1490{
1491 TranslationBlock *tb;
1492 PageDesc *p;
1493 int n;
1494#ifdef TARGET_HAS_PRECISE_SMC
1495 TranslationBlock *current_tb = NULL;
4917cf44
AF
1496 CPUState *cpu = current_cpu;
1497 CPUArchState *env = NULL;
5b6dd868
BS
1498 int current_tb_modified = 0;
1499 target_ulong current_pc = 0;
1500 target_ulong current_cs_base = 0;
89fee74a 1501 uint32_t current_flags = 0;
5b6dd868
BS
1502#endif
1503
1504 addr &= TARGET_PAGE_MASK;
1505 p = page_find(addr >> TARGET_PAGE_BITS);
1506 if (!p) {
75809229 1507 return false;
5b6dd868
BS
1508 }
1509 tb = p->first_tb;
1510#ifdef TARGET_HAS_PRECISE_SMC
1511 if (tb && pc != 0) {
1512 current_tb = tb_find_pc(pc);
1513 }
4917cf44
AF
1514 if (cpu != NULL) {
1515 env = cpu->env_ptr;
d77953b9 1516 }
5b6dd868
BS
1517#endif
1518 while (tb != NULL) {
1519 n = (uintptr_t)tb & 3;
1520 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1521#ifdef TARGET_HAS_PRECISE_SMC
1522 if (current_tb == tb &&
1523 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1524 /* If we are modifying the current TB, we must stop
1525 its execution. We could be more precise by checking
1526 that the modification is after the current PC, but it
1527 would require a specialized function to partially
1528 restore the CPU state */
1529
1530 current_tb_modified = 1;
74f10515 1531 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1532 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1533 &current_flags);
1534 }
1535#endif /* TARGET_HAS_PRECISE_SMC */
1536 tb_phys_invalidate(tb, addr);
1537 tb = tb->page_next[n];
1538 }
1539 p->first_tb = NULL;
1540#ifdef TARGET_HAS_PRECISE_SMC
1541 if (current_tb_modified) {
1542 /* we generate a block containing just the instruction
1543 modifying the memory. It will ensure that it cannot modify
1544 itself */
648f034c 1545 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
75809229 1546 return true;
5b6dd868
BS
1547 }
1548#endif
75809229 1549 return false;
5b6dd868
BS
1550}
1551#endif
1552
5b6dd868
BS
1553/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1554 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1555static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1556{
1557 int m_min, m_max, m;
1558 uintptr_t v;
1559 TranslationBlock *tb;
1560
5e5f07e0 1561 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1562 return NULL;
1563 }
0b0d3320
EV
1564 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1565 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1566 return NULL;
1567 }
1568 /* binary search (cf Knuth) */
1569 m_min = 0;
5e5f07e0 1570 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1571 while (m_min <= m_max) {
1572 m = (m_min + m_max) >> 1;
5e5f07e0 1573 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1574 v = (uintptr_t)tb->tc_ptr;
1575 if (v == tc_ptr) {
1576 return tb;
1577 } else if (tc_ptr < v) {
1578 m_max = m - 1;
1579 } else {
1580 m_min = m + 1;
1581 }
1582 }
5e5f07e0 1583 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1584}
1585
ec53b45b 1586#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1587void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1588{
1589 ram_addr_t ram_addr;
5c8a00ce 1590 MemoryRegion *mr;
149f54b5 1591 hwaddr l = 1;
5b6dd868 1592
41063e1e 1593 rcu_read_lock();
29d8ec7b 1594 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1595 if (!(memory_region_is_ram(mr)
1596 || memory_region_is_romd(mr))) {
41063e1e 1597 rcu_read_unlock();
5b6dd868
BS
1598 return;
1599 }
e4e69794 1600 ram_addr = memory_region_get_ram_addr(mr) + addr;
5b6dd868 1601 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1602 rcu_read_unlock();
5b6dd868 1603}
ec53b45b 1604#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1605
239c51a5 1606void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1607{
1608 TranslationBlock *tb;
1609
93afeade 1610 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1611 if (tb) {
1612 /* We can use retranslation to find the PC. */
1613 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1614 tb_phys_invalidate(tb, -1);
1615 } else {
1616 /* The exception probably happened in a helper. The CPU state should
1617 have been saved before calling it. Fetch the PC from there. */
1618 CPUArchState *env = cpu->env_ptr;
1619 target_ulong pc, cs_base;
1620 tb_page_addr_t addr;
89fee74a 1621 uint32_t flags;
8d302e76
AJ
1622
1623 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1624 addr = get_page_addr_code(env, pc);
1625 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1626 }
5b6dd868
BS
1627}
1628
1629#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1630/* in deterministic execution mode, instructions doing device I/Os
1631 must be at the end of the TB */
90b40a69 1632void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1633{
a47dddd7 1634#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1635 CPUArchState *env = cpu->env_ptr;
a47dddd7 1636#endif
5b6dd868
BS
1637 TranslationBlock *tb;
1638 uint32_t n, cflags;
1639 target_ulong pc, cs_base;
89fee74a 1640 uint32_t flags;
5b6dd868
BS
1641
1642 tb = tb_find_pc(retaddr);
1643 if (!tb) {
a47dddd7 1644 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1645 (void *)retaddr);
1646 }
28ecfd7a 1647 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1648 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1649 /* Calculate how many instructions had been executed before the fault
1650 occurred. */
28ecfd7a 1651 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1652 /* Generate a new TB ending on the I/O insn. */
1653 n++;
1654 /* On MIPS and SH, delay slot instructions can only be restarted if
1655 they were already the first instruction in the TB. If this is not
1656 the first instruction in a TB then re-execute the preceding
1657 branch. */
1658#if defined(TARGET_MIPS)
1659 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1660 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1661 cpu->icount_decr.u16.low++;
5b6dd868
BS
1662 env->hflags &= ~MIPS_HFLAG_BMASK;
1663 }
1664#elif defined(TARGET_SH4)
1665 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1666 && n > 1) {
1667 env->pc -= 2;
28ecfd7a 1668 cpu->icount_decr.u16.low++;
5b6dd868
BS
1669 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1670 }
1671#endif
1672 /* This should never happen. */
1673 if (n > CF_COUNT_MASK) {
a47dddd7 1674 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1675 }
1676
1677 cflags = n | CF_LAST_IO;
1678 pc = tb->pc;
1679 cs_base = tb->cs_base;
1680 flags = tb->flags;
1681 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1682 if (tb->cflags & CF_NOCACHE) {
1683 if (tb->orig_tb) {
1684 /* Invalidate original TB if this TB was generated in
1685 * cpu_exec_nocache() */
1686 tb_phys_invalidate(tb->orig_tb, -1);
1687 }
1688 tb_free(tb);
1689 }
5b6dd868
BS
1690 /* FIXME: In theory this could raise an exception. In practice
1691 we have already translated the block once so it's probably ok. */
648f034c 1692 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1693 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1694 the first in the TB) then we end up generating a whole new TB and
1695 repeating the fault, which is horribly inefficient.
1696 Better would be to execute just this insn uncached, or generate a
1697 second new TB. */
6886b980 1698 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1699}
1700
611d4f99 1701void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1702{
1703 unsigned int i;
1704
1705 /* Discard jump cache entries for any tb which might potentially
1706 overlap the flushed page. */
1707 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1708 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1709 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1710
1711 i = tb_jmp_cache_hash_page(addr);
8cd70437 1712 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1713 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1714}
1715
7266ae91
EC
1716static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1717 struct qht_stats hst)
1718{
1719 uint32_t hgram_opts;
1720 size_t hgram_bins;
1721 char *hgram;
1722
1723 if (!hst.head_buckets) {
1724 return;
1725 }
1726 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1727 hst.used_head_buckets, hst.head_buckets,
1728 (double)hst.used_head_buckets / hst.head_buckets * 100);
1729
1730 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1731 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1732 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1733 hgram_opts |= QDIST_PR_NODECIMAL;
1734 }
1735 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1736 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1737 qdist_avg(&hst.occupancy) * 100, hgram);
1738 g_free(hgram);
1739
1740 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1741 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1742 if (hgram_bins > 10) {
1743 hgram_bins = 10;
1744 } else {
1745 hgram_bins = 0;
1746 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1747 }
1748 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1749 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1750 qdist_avg(&hst.chain), hgram);
1751 g_free(hgram);
1752}
1753
5b6dd868
BS
1754void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1755{
1756 int i, target_code_size, max_target_code_size;
1757 int direct_jmp_count, direct_jmp2_count, cross_page;
1758 TranslationBlock *tb;
329844d4 1759 struct qht_stats hst;
5b6dd868
BS
1760
1761 target_code_size = 0;
1762 max_target_code_size = 0;
1763 cross_page = 0;
1764 direct_jmp_count = 0;
1765 direct_jmp2_count = 0;
5e5f07e0
EV
1766 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1767 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1768 target_code_size += tb->size;
1769 if (tb->size > max_target_code_size) {
1770 max_target_code_size = tb->size;
1771 }
1772 if (tb->page_addr[1] != -1) {
1773 cross_page++;
1774 }
f309101c 1775 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1776 direct_jmp_count++;
f309101c 1777 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1778 direct_jmp2_count++;
1779 }
1780 }
1781 }
1782 /* XXX: avoid using doubles ? */
1783 cpu_fprintf(f, "Translation buffer state:\n");
1784 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1785 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1786 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1787 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1788 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1789 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1790 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1791 tcg_ctx.tb_ctx.nb_tbs : 0,
1792 max_target_code_size);
5b6dd868 1793 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1794 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1795 tcg_ctx.code_gen_buffer) /
1796 tcg_ctx.tb_ctx.nb_tbs : 0,
1797 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1798 tcg_ctx.code_gen_buffer) /
1799 target_code_size : 0);
1800 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1801 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1802 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1803 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1804 direct_jmp_count,
5e5f07e0
EV
1805 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1806 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1807 direct_jmp2_count,
5e5f07e0
EV
1808 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1809 tcg_ctx.tb_ctx.nb_tbs : 0);
329844d4
EC
1810
1811 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
7266ae91 1812 print_qht_statistics(f, cpu_fprintf, hst);
329844d4
EC
1813 qht_statistics_destroy(&hst);
1814
5b6dd868 1815 cpu_fprintf(f, "\nStatistics:\n");
3359baad
SF
1816 cpu_fprintf(f, "TB flush count %u\n",
1817 atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
5e5f07e0
EV
1818 cpu_fprintf(f, "TB invalidate count %d\n",
1819 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1820 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1821 tcg_dump_info(f, cpu_fprintf);
1822}
1823
246ae24d
MF
1824void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1825{
1826 tcg_dump_op_count(f, cpu_fprintf);
1827}
1828
5b6dd868
BS
1829#else /* CONFIG_USER_ONLY */
1830
c3affe56 1831void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1832{
259186a7 1833 cpu->interrupt_request |= mask;
378df4b2 1834 cpu->tcg_exit_req = 1;
5b6dd868
BS
1835}
1836
1837/*
1838 * Walks guest process memory "regions" one by one
1839 * and calls callback function 'fn' for each region.
1840 */
1841struct walk_memory_regions_data {
1842 walk_memory_regions_fn fn;
1843 void *priv;
1a1c4db9 1844 target_ulong start;
5b6dd868
BS
1845 int prot;
1846};
1847
1848static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1849 target_ulong end, int new_prot)
5b6dd868 1850{
1a1c4db9 1851 if (data->start != -1u) {
5b6dd868
BS
1852 int rc = data->fn(data->priv, data->start, end, data->prot);
1853 if (rc != 0) {
1854 return rc;
1855 }
1856 }
1857
1a1c4db9 1858 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1859 data->prot = new_prot;
1860
1861 return 0;
1862}
1863
1864static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1865 target_ulong base, int level, void **lp)
5b6dd868 1866{
1a1c4db9 1867 target_ulong pa;
5b6dd868
BS
1868 int i, rc;
1869
1870 if (*lp == NULL) {
1871 return walk_memory_regions_end(data, base, 0);
1872 }
1873
1874 if (level == 0) {
1875 PageDesc *pd = *lp;
1876
03f49957 1877 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1878 int prot = pd[i].flags;
1879
1880 pa = base | (i << TARGET_PAGE_BITS);
1881 if (prot != data->prot) {
1882 rc = walk_memory_regions_end(data, pa, prot);
1883 if (rc != 0) {
1884 return rc;
1885 }
1886 }
1887 }
1888 } else {
1889 void **pp = *lp;
1890
03f49957 1891 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1892 pa = base | ((target_ulong)i <<
03f49957 1893 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1894 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1895 if (rc != 0) {
1896 return rc;
1897 }
1898 }
1899 }
1900
1901 return 0;
1902}
1903
1904int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1905{
1906 struct walk_memory_regions_data data;
66ec9f49 1907 uintptr_t i, l1_sz = v_l1_size;
5b6dd868
BS
1908
1909 data.fn = fn;
1910 data.priv = priv;
1a1c4db9 1911 data.start = -1u;
5b6dd868
BS
1912 data.prot = 0;
1913
66ec9f49
VK
1914 for (i = 0; i < l1_sz; i++) {
1915 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
1916 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
5b6dd868
BS
1917 if (rc != 0) {
1918 return rc;
1919 }
1920 }
1921
1922 return walk_memory_regions_end(&data, 0, 0);
1923}
1924
1a1c4db9
MI
1925static int dump_region(void *priv, target_ulong start,
1926 target_ulong end, unsigned long prot)
5b6dd868
BS
1927{
1928 FILE *f = (FILE *)priv;
1929
1a1c4db9
MI
1930 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1931 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1932 start, end, end - start,
1933 ((prot & PAGE_READ) ? 'r' : '-'),
1934 ((prot & PAGE_WRITE) ? 'w' : '-'),
1935 ((prot & PAGE_EXEC) ? 'x' : '-'));
1936
1937 return 0;
1938}
1939
1940/* dump memory mappings */
1941void page_dump(FILE *f)
1942{
1a1c4db9 1943 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1944 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1945 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1946 walk_memory_regions(f, dump_region);
1947}
1948
1949int page_get_flags(target_ulong address)
1950{
1951 PageDesc *p;
1952
1953 p = page_find(address >> TARGET_PAGE_BITS);
1954 if (!p) {
1955 return 0;
1956 }
1957 return p->flags;
1958}
1959
1960/* Modify the flags of a page and invalidate the code if necessary.
1961 The flag PAGE_WRITE_ORG is positioned automatically depending
1962 on PAGE_WRITE. The mmap_lock should already be held. */
1963void page_set_flags(target_ulong start, target_ulong end, int flags)
1964{
1965 target_ulong addr, len;
1966
1967 /* This function should never be called with addresses outside the
1968 guest address space. If this assert fires, it probably indicates
1969 a missing call to h2g_valid. */
1970#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1971 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1972#endif
1973 assert(start < end);
1974
1975 start = start & TARGET_PAGE_MASK;
1976 end = TARGET_PAGE_ALIGN(end);
1977
1978 if (flags & PAGE_WRITE) {
1979 flags |= PAGE_WRITE_ORG;
1980 }
1981
1982 for (addr = start, len = end - start;
1983 len != 0;
1984 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1985 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1986
1987 /* If the write protection bit is set, then we invalidate
1988 the code inside. */
1989 if (!(p->flags & PAGE_WRITE) &&
1990 (flags & PAGE_WRITE) &&
1991 p->first_tb) {
75809229 1992 tb_invalidate_phys_page(addr, 0);
5b6dd868
BS
1993 }
1994 p->flags = flags;
1995 }
1996}
1997
1998int page_check_range(target_ulong start, target_ulong len, int flags)
1999{
2000 PageDesc *p;
2001 target_ulong end;
2002 target_ulong addr;
2003
2004 /* This function should never be called with addresses outside the
2005 guest address space. If this assert fires, it probably indicates
2006 a missing call to h2g_valid. */
2007#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 2008 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
2009#endif
2010
2011 if (len == 0) {
2012 return 0;
2013 }
2014 if (start + len - 1 < start) {
2015 /* We've wrapped around. */
2016 return -1;
2017 }
2018
2019 /* must do before we loose bits in the next step */
2020 end = TARGET_PAGE_ALIGN(start + len);
2021 start = start & TARGET_PAGE_MASK;
2022
2023 for (addr = start, len = end - start;
2024 len != 0;
2025 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2026 p = page_find(addr >> TARGET_PAGE_BITS);
2027 if (!p) {
2028 return -1;
2029 }
2030 if (!(p->flags & PAGE_VALID)) {
2031 return -1;
2032 }
2033
2034 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2035 return -1;
2036 }
2037 if (flags & PAGE_WRITE) {
2038 if (!(p->flags & PAGE_WRITE_ORG)) {
2039 return -1;
2040 }
2041 /* unprotect the page if it was put read-only because it
2042 contains translated code */
2043 if (!(p->flags & PAGE_WRITE)) {
f213e72f 2044 if (!page_unprotect(addr, 0)) {
5b6dd868
BS
2045 return -1;
2046 }
2047 }
5b6dd868
BS
2048 }
2049 }
2050 return 0;
2051}
2052
2053/* called from signal handler: invalidate the code and unprotect the
f213e72f
PM
2054 * page. Return 0 if the fault was not handled, 1 if it was handled,
2055 * and 2 if it was handled but the caller must cause the TB to be
2056 * immediately exited. (We can only return 2 if the 'pc' argument is
2057 * non-zero.)
2058 */
2059int page_unprotect(target_ulong address, uintptr_t pc)
5b6dd868
BS
2060{
2061 unsigned int prot;
7399a337 2062 bool current_tb_invalidated;
5b6dd868
BS
2063 PageDesc *p;
2064 target_ulong host_start, host_end, addr;
2065
2066 /* Technically this isn't safe inside a signal handler. However we
2067 know this only ever happens in a synchronous SEGV handler, so in
2068 practice it seems to be ok. */
2069 mmap_lock();
2070
2071 p = page_find(address >> TARGET_PAGE_BITS);
2072 if (!p) {
2073 mmap_unlock();
2074 return 0;
2075 }
2076
2077 /* if the page was really writable, then we change its
2078 protection back to writable */
2079 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2080 host_start = address & qemu_host_page_mask;
2081 host_end = host_start + qemu_host_page_size;
2082
2083 prot = 0;
7399a337 2084 current_tb_invalidated = false;
5b6dd868
BS
2085 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2086 p = page_find(addr >> TARGET_PAGE_BITS);
2087 p->flags |= PAGE_WRITE;
2088 prot |= p->flags;
2089
2090 /* and since the content will be modified, we must invalidate
2091 the corresponding translated code. */
7399a337 2092 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
5b6dd868
BS
2093#ifdef DEBUG_TB_CHECK
2094 tb_invalidate_check(addr);
2095#endif
2096 }
2097 mprotect((void *)g2h(host_start), qemu_host_page_size,
2098 prot & PAGE_BITS);
2099
2100 mmap_unlock();
7399a337
SS
2101 /* If current TB was invalidated return to main loop */
2102 return current_tb_invalidated ? 2 : 1;
5b6dd868
BS
2103 }
2104 mmap_unlock();
2105 return 0;
2106}
2107#endif /* CONFIG_USER_ONLY */