]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
tcg: Remove needless CPUState::current_tb
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
5b6dd868
BS
22#include <sys/mman.h>
23#endif
7b31bbc2 24#include "qemu/osdep.h"
d19893da 25
2054396a 26
5b6dd868 27#include "qemu-common.h"
af5ad107 28#define NO_CPU_IO_DEFS
d3eead2e 29#include "cpu.h"
6db8b538 30#include "trace.h"
76cad711 31#include "disas/disas.h"
57fec1fe 32#include "tcg.h"
5b6dd868
BS
33#if defined(CONFIG_USER_ONLY)
34#include "qemu.h"
35#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36#include <sys/param.h>
37#if __FreeBSD_version >= 700104
38#define HAVE_KINFO_GETVMMAP
39#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
40#include <sys/proc.h>
41#include <machine/profile.h>
42#define _KERNEL
43#include <sys/user.h>
44#undef _KERNEL
45#undef sigqueue
46#include <libutil.h>
47#endif
48#endif
0bc3cd62
PB
49#else
50#include "exec/address-spaces.h"
5b6dd868
BS
51#endif
52
022c62cb 53#include "exec/cputlb.h"
e1b89321 54#include "exec/tb-hash.h"
5b6dd868 55#include "translate-all.h"
510a647f 56#include "qemu/bitmap.h"
0aa09897 57#include "qemu/timer.h"
508127e2 58#include "exec/log.h"
5b6dd868
BS
59
60//#define DEBUG_TB_INVALIDATE
61//#define DEBUG_FLUSH
62/* make various TB consistency checks */
63//#define DEBUG_TB_CHECK
64
65#if !defined(CONFIG_USER_ONLY)
66/* TB consistency checks only implemented for usermode emulation. */
67#undef DEBUG_TB_CHECK
68#endif
69
70#define SMC_BITMAP_USE_THRESHOLD 10
71
5b6dd868
BS
72typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
6fad459c 75#ifdef CONFIG_SOFTMMU
5b6dd868
BS
76 /* in order to optimize self modifying code, we count the number
77 of lookups we do to a given page to use a bitmap */
78 unsigned int code_write_count;
510a647f 79 unsigned long *code_bitmap;
6fad459c 80#else
5b6dd868
BS
81 unsigned long flags;
82#endif
83} PageDesc;
84
85/* In system mode we want L1_MAP to be based on ram offsets,
86 while in user mode we want it to be based on virtual addresses. */
87#if !defined(CONFIG_USER_ONLY)
88#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
89# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
90#else
91# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
92#endif
93#else
94# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
95#endif
96
03f49957
PB
97/* Size of the L2 (and L3, etc) page tables. */
98#define V_L2_BITS 10
99#define V_L2_SIZE (1 << V_L2_BITS)
100
5b6dd868
BS
101/* The bits remaining after N lower levels of page tables. */
102#define V_L1_BITS_REM \
03f49957 103 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
104
105#if V_L1_BITS_REM < 4
03f49957 106#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
107#else
108#define V_L1_BITS V_L1_BITS_REM
109#endif
110
111#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
112
113#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
114
5b6dd868 115uintptr_t qemu_host_page_size;
0c2d70c4 116intptr_t qemu_host_page_mask;
5b6dd868 117
d1142fb8 118/* The bottom level has pointers to PageDesc */
5b6dd868
BS
119static void *l1_map[V_L1_SIZE];
120
57fec1fe
FB
121/* code generation context */
122TCGContext tcg_ctx;
d19893da 123
677ef623
FK
124/* translation block context */
125#ifdef CONFIG_USER_ONLY
126__thread int have_tb_lock;
127#endif
128
129void tb_lock(void)
130{
131#ifdef CONFIG_USER_ONLY
132 assert(!have_tb_lock);
133 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
134 have_tb_lock++;
135#endif
136}
137
138void tb_unlock(void)
139{
140#ifdef CONFIG_USER_ONLY
141 assert(have_tb_lock);
142 have_tb_lock--;
143 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
144#endif
145}
146
147void tb_lock_reset(void)
148{
149#ifdef CONFIG_USER_ONLY
150 if (have_tb_lock) {
151 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
152 have_tb_lock = 0;
153 }
154#endif
155}
156
a8a826a3 157static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 158
57fec1fe
FB
159void cpu_gen_init(void)
160{
161 tcg_context_init(&tcg_ctx);
57fec1fe
FB
162}
163
fca8a500
RH
164/* Encode VAL as a signed leb128 sequence at P.
165 Return P incremented past the encoded value. */
166static uint8_t *encode_sleb128(uint8_t *p, target_long val)
167{
168 int more, byte;
169
170 do {
171 byte = val & 0x7f;
172 val >>= 7;
173 more = !((val == 0 && (byte & 0x40) == 0)
174 || (val == -1 && (byte & 0x40) != 0));
175 if (more) {
176 byte |= 0x80;
177 }
178 *p++ = byte;
179 } while (more);
180
181 return p;
182}
183
184/* Decode a signed leb128 sequence at *PP; increment *PP past the
185 decoded value. Return the decoded value. */
186static target_long decode_sleb128(uint8_t **pp)
187{
188 uint8_t *p = *pp;
189 target_long val = 0;
190 int byte, shift = 0;
191
192 do {
193 byte = *p++;
194 val |= (target_ulong)(byte & 0x7f) << shift;
195 shift += 7;
196 } while (byte & 0x80);
197 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
198 val |= -(target_ulong)1 << shift;
199 }
200
201 *pp = p;
202 return val;
203}
204
205/* Encode the data collected about the instructions while compiling TB.
206 Place the data at BLOCK, and return the number of bytes consumed.
207
208 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
209 which come from the target's insn_start data, followed by a uintptr_t
210 which comes from the host pc of the end of the code implementing the insn.
211
212 Each line of the table is encoded as sleb128 deltas from the previous
213 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
214 That is, the first column is seeded with the guest pc, the last column
215 with the host pc, and the middle columns with zeros. */
216
217static int encode_search(TranslationBlock *tb, uint8_t *block)
218{
b125f9dc 219 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
220 uint8_t *p = block;
221 int i, j, n;
222
223 tb->tc_search = block;
224
225 for (i = 0, n = tb->icount; i < n; ++i) {
226 target_ulong prev;
227
228 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
229 if (i == 0) {
230 prev = (j == 0 ? tb->pc : 0);
231 } else {
232 prev = tcg_ctx.gen_insn_data[i - 1][j];
233 }
234 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
235 }
236 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
237 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
238
239 /* Test for (pending) buffer overflow. The assumption is that any
240 one row beginning below the high water mark cannot overrun
241 the buffer completely. Thus we can test for overflow after
242 encoding a row without having to check during encoding. */
243 if (unlikely(p > highwater)) {
244 return -1;
245 }
fca8a500
RH
246 }
247
248 return p - block;
249}
250
fec88f64 251/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 252static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 253 uintptr_t searched_pc)
d19893da 254{
fca8a500
RH
255 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
256 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 257 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
258 uint8_t *p = tb->tc_search;
259 int i, j, num_insns = tb->icount;
57fec1fe 260#ifdef CONFIG_PROFILER
fca8a500 261 int64_t ti = profile_getclock();
57fec1fe
FB
262#endif
263
fca8a500
RH
264 if (searched_pc < host_pc) {
265 return -1;
266 }
d19893da 267
fca8a500
RH
268 /* Reconstruct the stored insn data while looking for the point at
269 which the end of the insn exceeds the searched_pc. */
270 for (i = 0; i < num_insns; ++i) {
271 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
272 data[j] += decode_sleb128(&p);
273 }
274 host_pc += decode_sleb128(&p);
275 if (host_pc > searched_pc) {
276 goto found;
277 }
278 }
279 return -1;
3b46e624 280
fca8a500 281 found:
bd79255d 282 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 283 assert(use_icount);
2e70f6ef 284 /* Reset the cycle counter to the start of the block. */
fca8a500 285 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 286 /* Clear the IO flag. */
99df7dce 287 cpu->can_do_io = 0;
2e70f6ef 288 }
fca8a500
RH
289 cpu->icount_decr.u16.low -= i;
290 restore_state_to_opc(env, tb, data);
57fec1fe
FB
291
292#ifdef CONFIG_PROFILER
fca8a500
RH
293 tcg_ctx.restore_time += profile_getclock() - ti;
294 tcg_ctx.restore_count++;
57fec1fe 295#endif
d19893da
FB
296 return 0;
297}
5b6dd868 298
3f38f309 299bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
300{
301 TranslationBlock *tb;
302
303 tb = tb_find_pc(retaddr);
304 if (tb) {
74f10515 305 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
306 if (tb->cflags & CF_NOCACHE) {
307 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
308 tb_phys_invalidate(tb, -1);
309 tb_free(tb);
310 }
a8a826a3
BS
311 return true;
312 }
313 return false;
314}
315
47c16ed5 316void page_size_init(void)
5b6dd868
BS
317{
318 /* NOTE: we can always suppose that qemu_host_page_size >=
319 TARGET_PAGE_SIZE */
5b6dd868 320 qemu_real_host_page_size = getpagesize();
0c2d70c4 321 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
322 if (qemu_host_page_size == 0) {
323 qemu_host_page_size = qemu_real_host_page_size;
324 }
325 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
326 qemu_host_page_size = TARGET_PAGE_SIZE;
327 }
0c2d70c4 328 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 329}
5b6dd868 330
47c16ed5
AK
331static void page_init(void)
332{
333 page_size_init();
5b6dd868
BS
334#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
335 {
336#ifdef HAVE_KINFO_GETVMMAP
337 struct kinfo_vmentry *freep;
338 int i, cnt;
339
340 freep = kinfo_getvmmap(getpid(), &cnt);
341 if (freep) {
342 mmap_lock();
343 for (i = 0; i < cnt; i++) {
344 unsigned long startaddr, endaddr;
345
346 startaddr = freep[i].kve_start;
347 endaddr = freep[i].kve_end;
348 if (h2g_valid(startaddr)) {
349 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
350
351 if (h2g_valid(endaddr)) {
352 endaddr = h2g(endaddr);
353 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
354 } else {
355#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
356 endaddr = ~0ul;
357 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
358#endif
359 }
360 }
361 }
362 free(freep);
363 mmap_unlock();
364 }
365#else
366 FILE *f;
367
368 last_brk = (unsigned long)sbrk(0);
369
370 f = fopen("/compat/linux/proc/self/maps", "r");
371 if (f) {
372 mmap_lock();
373
374 do {
375 unsigned long startaddr, endaddr;
376 int n;
377
378 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
379
380 if (n == 2 && h2g_valid(startaddr)) {
381 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
382
383 if (h2g_valid(endaddr)) {
384 endaddr = h2g(endaddr);
385 } else {
386 endaddr = ~0ul;
387 }
388 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
389 }
390 } while (!feof(f));
391
392 fclose(f);
393 mmap_unlock();
394 }
395#endif
396 }
397#endif
398}
399
75692087
PB
400/* If alloc=1:
401 * Called with mmap_lock held for user-mode emulation.
402 */
5b6dd868
BS
403static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
404{
405 PageDesc *pd;
406 void **lp;
407 int i;
408
5b6dd868
BS
409 /* Level 1. Always allocated. */
410 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
411
412 /* Level 2..N-1. */
03f49957 413 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 414 void **p = atomic_rcu_read(lp);
5b6dd868
BS
415
416 if (p == NULL) {
417 if (!alloc) {
418 return NULL;
419 }
e3a0abfd 420 p = g_new0(void *, V_L2_SIZE);
6940fab8 421 atomic_rcu_set(lp, p);
5b6dd868
BS
422 }
423
03f49957 424 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
425 }
426
6940fab8 427 pd = atomic_rcu_read(lp);
5b6dd868
BS
428 if (pd == NULL) {
429 if (!alloc) {
430 return NULL;
431 }
e3a0abfd 432 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 433 atomic_rcu_set(lp, pd);
5b6dd868
BS
434 }
435
03f49957 436 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
437}
438
439static inline PageDesc *page_find(tb_page_addr_t index)
440{
441 return page_find_alloc(index, 0);
442}
443
5b6dd868
BS
444#if defined(CONFIG_USER_ONLY)
445/* Currently it is not recommended to allocate big chunks of data in
446 user mode. It will change when a dedicated libc will be used. */
447/* ??? 64-bit hosts ought to have no problem mmaping data outside the
448 region in which the guest needs to run. Revisit this. */
449#define USE_STATIC_CODE_GEN_BUFFER
450#endif
451
5b6dd868
BS
452/* Minimum size of the code gen buffer. This number is randomly chosen,
453 but not so small that we can't have a fair number of TB's live. */
454#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
455
456/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
457 indicated, this is constrained by the range of direct branches on the
458 host cpu, as used by the TCG implementation of goto_tb. */
459#if defined(__x86_64__)
460# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
461#elif defined(__sparc__)
462# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
463#elif defined(__powerpc64__)
464# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
465#elif defined(__powerpc__)
466# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
467#elif defined(__aarch64__)
468# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
469#elif defined(__arm__)
470# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
471#elif defined(__s390x__)
472 /* We have a +- 4GB range on the branches; leave some slop. */
473# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
474#elif defined(__mips__)
475 /* We have a 256MB branch region, but leave room to make sure the
476 main executable is also within that region. */
477# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
478#else
479# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
480#endif
481
482#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
483
484#define DEFAULT_CODE_GEN_BUFFER_SIZE \
485 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
486 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
487
488static inline size_t size_code_gen_buffer(size_t tb_size)
489{
490 /* Size the buffer. */
491 if (tb_size == 0) {
492#ifdef USE_STATIC_CODE_GEN_BUFFER
493 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
494#else
495 /* ??? Needs adjustments. */
496 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
497 static buffer, we could size this on RESERVED_VA, on the text
498 segment size of the executable, or continue to use the default. */
499 tb_size = (unsigned long)(ram_size / 4);
500#endif
501 }
502 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
504 }
505 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
506 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
507 }
5b6dd868
BS
508 return tb_size;
509}
510
483c76e1
RH
511#ifdef __mips__
512/* In order to use J and JAL within the code_gen_buffer, we require
513 that the buffer not cross a 256MB boundary. */
514static inline bool cross_256mb(void *addr, size_t size)
515{
7ba6a512 516 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
517}
518
519/* We weren't able to allocate a buffer without crossing that boundary,
520 so make do with the larger portion of the buffer that doesn't cross.
521 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
522static inline void *split_cross_256mb(void *buf1, size_t size1)
523{
7ba6a512 524 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
525 size_t size2 = buf1 + size1 - buf2;
526
527 size1 = buf2 - buf1;
528 if (size1 < size2) {
529 size1 = size2;
530 buf1 = buf2;
531 }
532
533 tcg_ctx.code_gen_buffer_size = size1;
534 return buf1;
535}
536#endif
537
5b6dd868
BS
538#ifdef USE_STATIC_CODE_GEN_BUFFER
539static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
540 __attribute__((aligned(CODE_GEN_ALIGN)));
541
f293709c
RH
542# ifdef _WIN32
543static inline void do_protect(void *addr, long size, int prot)
544{
545 DWORD old_protect;
546 VirtualProtect(addr, size, prot, &old_protect);
547}
548
549static inline void map_exec(void *addr, long size)
550{
551 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
552}
553
554static inline void map_none(void *addr, long size)
555{
556 do_protect(addr, size, PAGE_NOACCESS);
557}
558# else
559static inline void do_protect(void *addr, long size, int prot)
560{
561 uintptr_t start, end;
562
563 start = (uintptr_t)addr;
564 start &= qemu_real_host_page_mask;
565
566 end = (uintptr_t)addr + size;
567 end = ROUND_UP(end, qemu_real_host_page_size);
568
569 mprotect((void *)start, end - start, prot);
570}
571
572static inline void map_exec(void *addr, long size)
573{
574 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
575}
576
577static inline void map_none(void *addr, long size)
578{
579 do_protect(addr, size, PROT_NONE);
580}
581# endif /* WIN32 */
582
5b6dd868
BS
583static inline void *alloc_code_gen_buffer(void)
584{
483c76e1 585 void *buf = static_code_gen_buffer;
f293709c
RH
586 size_t full_size, size;
587
588 /* The size of the buffer, rounded down to end on a page boundary. */
589 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
590 & qemu_real_host_page_mask) - (uintptr_t)buf;
591
592 /* Reserve a guard page. */
593 size = full_size - qemu_real_host_page_size;
594
595 /* Honor a command-line option limiting the size of the buffer. */
596 if (size > tcg_ctx.code_gen_buffer_size) {
597 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
598 & qemu_real_host_page_mask) - (uintptr_t)buf;
599 }
600 tcg_ctx.code_gen_buffer_size = size;
601
483c76e1 602#ifdef __mips__
f293709c
RH
603 if (cross_256mb(buf, size)) {
604 buf = split_cross_256mb(buf, size);
605 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
606 }
607#endif
f293709c
RH
608
609 map_exec(buf, size);
610 map_none(buf + size, qemu_real_host_page_size);
611 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
612
483c76e1 613 return buf;
5b6dd868 614}
f293709c
RH
615#elif defined(_WIN32)
616static inline void *alloc_code_gen_buffer(void)
617{
618 size_t size = tcg_ctx.code_gen_buffer_size;
619 void *buf1, *buf2;
620
621 /* Perform the allocation in two steps, so that the guard page
622 is reserved but uncommitted. */
623 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
624 MEM_RESERVE, PAGE_NOACCESS);
625 if (buf1 != NULL) {
626 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
627 assert(buf1 == buf2);
628 }
629
630 return buf1;
631}
632#else
5b6dd868
BS
633static inline void *alloc_code_gen_buffer(void)
634{
635 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
636 uintptr_t start = 0;
f293709c 637 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
638 void *buf;
639
640 /* Constrain the position of the buffer based on the host cpu.
641 Note that these addresses are chosen in concert with the
642 addresses assigned in the relevant linker script file. */
643# if defined(__PIE__) || defined(__PIC__)
644 /* Don't bother setting a preferred location if we're building
645 a position-independent executable. We're more likely to get
646 an address near the main executable if we let the kernel
647 choose the address. */
648# elif defined(__x86_64__) && defined(MAP_32BIT)
649 /* Force the memory down into low memory with the executable.
650 Leave the choice of exact location with the kernel. */
651 flags |= MAP_32BIT;
652 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
653 if (size > 800u * 1024 * 1024) {
654 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
655 }
656# elif defined(__sparc__)
657 start = 0x40000000ul;
658# elif defined(__s390x__)
659 start = 0x90000000ul;
479eb121 660# elif defined(__mips__)
f293709c 661# if _MIPS_SIM == _ABI64
479eb121
RH
662 start = 0x128000000ul;
663# else
664 start = 0x08000000ul;
665# endif
5b6dd868
BS
666# endif
667
f293709c
RH
668 buf = mmap((void *)start, size + qemu_real_host_page_size,
669 PROT_NONE, flags, -1, 0);
483c76e1
RH
670 if (buf == MAP_FAILED) {
671 return NULL;
672 }
673
674#ifdef __mips__
f293709c 675 if (cross_256mb(buf, size)) {
5d831be2 676 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 677 that 256mb crossing. This time don't specify an address. */
f293709c
RH
678 size_t size2;
679 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
680 PROT_NONE, flags, -1, 0);
681 switch (buf2 != MAP_FAILED) {
682 case 1:
683 if (!cross_256mb(buf2, size)) {
483c76e1 684 /* Success! Use the new buffer. */
8bdf4997 685 munmap(buf, size + qemu_real_host_page_size);
f293709c 686 break;
483c76e1
RH
687 }
688 /* Failure. Work with what we had. */
8bdf4997 689 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
690 /* fallthru */
691 default:
692 /* Split the original buffer. Free the smaller half. */
693 buf2 = split_cross_256mb(buf, size);
694 size2 = tcg_ctx.code_gen_buffer_size;
695 if (buf == buf2) {
696 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
697 } else {
698 munmap(buf, size - size2);
699 }
700 size = size2;
701 break;
483c76e1 702 }
f293709c 703 buf = buf2;
483c76e1
RH
704 }
705#endif
706
f293709c
RH
707 /* Make the final buffer accessible. The guard page at the end
708 will remain inaccessible with PROT_NONE. */
709 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 710
f293709c
RH
711 /* Request large pages for the buffer. */
712 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 713
5b6dd868
BS
714 return buf;
715}
f293709c 716#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
717
718static inline void code_gen_alloc(size_t tb_size)
719{
0b0d3320
EV
720 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
721 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
722 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
723 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
724 exit(1);
725 }
726
8163b749
RH
727 /* Estimate a good size for the number of TBs we can support. We
728 still haven't deducted the prologue from the buffer size here,
729 but that's minimal and won't affect the estimate much. */
730 tcg_ctx.code_gen_max_blocks
731 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
732 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
733
677ef623 734 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
735}
736
737/* Must be called before using the QEMU cpus. 'tb_size' is the size
738 (in bytes) allocated to the translation buffer. Zero means default
739 size. */
740void tcg_exec_init(unsigned long tb_size)
741{
742 cpu_gen_init();
5b6dd868 743 page_init();
f293709c 744 code_gen_alloc(tb_size);
4cbea598 745#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
746 /* There's no guest base to take into account, so go ahead and
747 initialize the prologue now. */
748 tcg_prologue_init(&tcg_ctx);
749#endif
750}
751
752bool tcg_enabled(void)
753{
0b0d3320 754 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
755}
756
757/* Allocate a new translation block. Flush the translation buffer if
758 too many translation blocks or too much generated code. */
759static TranslationBlock *tb_alloc(target_ulong pc)
760{
761 TranslationBlock *tb;
762
b125f9dc 763 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
764 return NULL;
765 }
5e5f07e0 766 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
767 tb->pc = pc;
768 tb->cflags = 0;
769 return tb;
770}
771
772void tb_free(TranslationBlock *tb)
773{
774 /* In practice this is mostly used for single use temporary TB
775 Ignore the hard cases and just back up if this TB happens to
776 be the last one generated. */
5e5f07e0
EV
777 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
778 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 779 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 780 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
781 }
782}
783
784static inline void invalidate_page_bitmap(PageDesc *p)
785{
6fad459c 786#ifdef CONFIG_SOFTMMU
012aef07
MA
787 g_free(p->code_bitmap);
788 p->code_bitmap = NULL;
5b6dd868 789 p->code_write_count = 0;
6fad459c 790#endif
5b6dd868
BS
791}
792
793/* Set to NULL all the 'first_tb' fields in all PageDescs. */
794static void page_flush_tb_1(int level, void **lp)
795{
796 int i;
797
798 if (*lp == NULL) {
799 return;
800 }
801 if (level == 0) {
802 PageDesc *pd = *lp;
803
03f49957 804 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
805 pd[i].first_tb = NULL;
806 invalidate_page_bitmap(pd + i);
807 }
808 } else {
809 void **pp = *lp;
810
03f49957 811 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
812 page_flush_tb_1(level - 1, pp + i);
813 }
814 }
815}
816
817static void page_flush_tb(void)
818{
819 int i;
820
821 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 822 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
823 }
824}
825
826/* flush all the translation blocks */
827/* XXX: tb_flush is currently not thread safe */
bbd77c18 828void tb_flush(CPUState *cpu)
5b6dd868 829{
5b6dd868
BS
830#if defined(DEBUG_FLUSH)
831 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 832 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 833 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 834 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 835 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 836#endif
0b0d3320
EV
837 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
838 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 839 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 840 }
5e5f07e0 841 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 842
bdc44640 843 CPU_FOREACH(cpu) {
8cd70437 844 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
6f789be5 845 cpu->tb_flushed = true;
5b6dd868
BS
846 }
847
eb2535f4 848 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
849 page_flush_tb();
850
0b0d3320 851 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
852 /* XXX: flush processor icache at this point if cache flush is
853 expensive */
5e5f07e0 854 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
855}
856
857#ifdef DEBUG_TB_CHECK
858
859static void tb_invalidate_check(target_ulong address)
860{
861 TranslationBlock *tb;
862 int i;
863
864 address &= TARGET_PAGE_MASK;
865 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
7e6bd36d
EC
866 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
867 tb = tb->phys_hash_next) {
5b6dd868
BS
868 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
869 address >= tb->pc + tb->size)) {
870 printf("ERROR invalidate: address=" TARGET_FMT_lx
871 " PC=%08lx size=%04x\n",
872 address, (long)tb->pc, tb->size);
873 }
874 }
875 }
876}
877
878/* verify that all the pages have correct rights for code */
879static void tb_page_check(void)
880{
881 TranslationBlock *tb;
882 int i, flags1, flags2;
883
884 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
885 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
886 tb = tb->phys_hash_next) {
5b6dd868
BS
887 flags1 = page_get_flags(tb->pc);
888 flags2 = page_get_flags(tb->pc + tb->size - 1);
889 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
890 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
891 (long)tb->pc, tb->size, flags1, flags2);
892 }
893 }
894 }
895}
896
897#endif
898
0c884d16 899static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
900{
901 TranslationBlock *tb1;
902
903 for (;;) {
904 tb1 = *ptb;
905 if (tb1 == tb) {
0c884d16 906 *ptb = tb1->phys_hash_next;
5b6dd868
BS
907 break;
908 }
0c884d16 909 ptb = &tb1->phys_hash_next;
5b6dd868
BS
910 }
911}
912
913static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
914{
915 TranslationBlock *tb1;
916 unsigned int n1;
917
918 for (;;) {
919 tb1 = *ptb;
920 n1 = (uintptr_t)tb1 & 3;
921 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
922 if (tb1 == tb) {
923 *ptb = tb1->page_next[n1];
924 break;
925 }
926 ptb = &tb1->page_next[n1];
927 }
928}
929
13362678
SF
930/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
931static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 932{
c37e6d7e
SF
933 TranslationBlock *tb1;
934 uintptr_t *ptb, ntb;
5b6dd868
BS
935 unsigned int n1;
936
f309101c 937 ptb = &tb->jmp_list_next[n];
c37e6d7e 938 if (*ptb) {
5b6dd868
BS
939 /* find tb(n) in circular list */
940 for (;;) {
c37e6d7e
SF
941 ntb = *ptb;
942 n1 = ntb & 3;
943 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
944 if (n1 == n && tb1 == tb) {
945 break;
946 }
947 if (n1 == 2) {
f309101c 948 ptb = &tb1->jmp_list_first;
5b6dd868 949 } else {
f309101c 950 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
951 }
952 }
953 /* now we can suppress tb(n) from the list */
f309101c 954 *ptb = tb->jmp_list_next[n];
5b6dd868 955
c37e6d7e 956 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
957 }
958}
959
960/* reset the jump entry 'n' of a TB so that it is not chained to
961 another TB */
962static inline void tb_reset_jump(TranslationBlock *tb, int n)
963{
f309101c
SF
964 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
965 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
966}
967
89bba496
SF
968/* remove any jumps to the TB */
969static inline void tb_jmp_unlink(TranslationBlock *tb)
970{
f9c5b66f
SF
971 TranslationBlock *tb1;
972 uintptr_t *ptb, ntb;
89bba496
SF
973 unsigned int n1;
974
f9c5b66f 975 ptb = &tb->jmp_list_first;
89bba496 976 for (;;) {
f9c5b66f
SF
977 ntb = *ptb;
978 n1 = ntb & 3;
979 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
980 if (n1 == 2) {
981 break;
982 }
f9c5b66f
SF
983 tb_reset_jump(tb1, n1);
984 *ptb = tb1->jmp_list_next[n1];
985 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 986 }
89bba496
SF
987}
988
0c884d16 989/* invalidate one TB */
5b6dd868
BS
990void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
991{
182735ef 992 CPUState *cpu;
5b6dd868 993 PageDesc *p;
89bba496 994 unsigned int h;
5b6dd868 995 tb_page_addr_t phys_pc;
5b6dd868
BS
996
997 /* remove the TB from the hash list */
998 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
999 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1000 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
1001
1002 /* remove the TB from the page list */
1003 if (tb->page_addr[0] != page_addr) {
1004 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1005 tb_page_remove(&p->first_tb, tb);
1006 invalidate_page_bitmap(p);
1007 }
1008 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1009 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1010 tb_page_remove(&p->first_tb, tb);
1011 invalidate_page_bitmap(p);
1012 }
1013
5b6dd868
BS
1014 /* remove the TB from the hash list */
1015 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1016 CPU_FOREACH(cpu) {
8cd70437
AF
1017 if (cpu->tb_jmp_cache[h] == tb) {
1018 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
1019 }
1020 }
1021
1022 /* suppress this TB from the two jump lists */
13362678
SF
1023 tb_remove_from_jmp_list(tb, 0);
1024 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1025
1026 /* suppress any remaining jumps to this TB */
89bba496 1027 tb_jmp_unlink(tb);
5b6dd868 1028
5e5f07e0 1029 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1030}
1031
6fad459c 1032#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1033static void build_page_bitmap(PageDesc *p)
1034{
1035 int n, tb_start, tb_end;
1036 TranslationBlock *tb;
1037
510a647f 1038 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1039
1040 tb = p->first_tb;
1041 while (tb != NULL) {
1042 n = (uintptr_t)tb & 3;
1043 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1045 if (n == 0) {
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1049 tb_end = tb_start + tb->size;
1050 if (tb_end > TARGET_PAGE_SIZE) {
1051 tb_end = TARGET_PAGE_SIZE;
1052 }
1053 } else {
1054 tb_start = 0;
1055 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1056 }
510a647f 1057 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1058 tb = tb->page_next[n];
1059 }
1060}
6fad459c 1061#endif
5b6dd868 1062
e90d96b1
SF
1063/* add the tb in the target page and protect it if necessary
1064 *
1065 * Called with mmap_lock held for user-mode emulation.
1066 */
1067static inline void tb_alloc_page(TranslationBlock *tb,
1068 unsigned int n, tb_page_addr_t page_addr)
1069{
1070 PageDesc *p;
1071#ifndef CONFIG_USER_ONLY
1072 bool page_already_protected;
1073#endif
1074
1075 tb->page_addr[n] = page_addr;
1076 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1077 tb->page_next[n] = p->first_tb;
1078#ifndef CONFIG_USER_ONLY
1079 page_already_protected = p->first_tb != NULL;
1080#endif
1081 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1082 invalidate_page_bitmap(p);
1083
1084#if defined(CONFIG_USER_ONLY)
1085 if (p->flags & PAGE_WRITE) {
1086 target_ulong addr;
1087 PageDesc *p2;
1088 int prot;
1089
1090 /* force the host page as non writable (writes will have a
1091 page fault + mprotect overhead) */
1092 page_addr &= qemu_host_page_mask;
1093 prot = 0;
1094 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1095 addr += TARGET_PAGE_SIZE) {
1096
1097 p2 = page_find(addr >> TARGET_PAGE_BITS);
1098 if (!p2) {
1099 continue;
1100 }
1101 prot |= p2->flags;
1102 p2->flags &= ~PAGE_WRITE;
1103 }
1104 mprotect(g2h(page_addr), qemu_host_page_size,
1105 (prot & PAGE_BITS) & ~PAGE_WRITE);
1106#ifdef DEBUG_TB_INVALIDATE
1107 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1108 page_addr);
1109#endif
1110 }
1111#else
1112 /* if some code is already present, then the pages are already
1113 protected. So we handle the case where only the first TB is
1114 allocated in a physical page */
1115 if (!page_already_protected) {
1116 tlb_protect_code(page_addr);
1117 }
1118#endif
1119}
1120
1121/* add a new TB and link it to the physical page tables. phys_page2 is
1122 * (-1) to indicate that only one page contains the TB.
1123 *
1124 * Called with mmap_lock held for user-mode emulation.
1125 */
1126static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1127 tb_page_addr_t phys_page2)
1128{
1129 unsigned int h;
1130 TranslationBlock **ptb;
1131
1132 /* add in the physical hash table */
1133 h = tb_phys_hash_func(phys_pc);
1134 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1135 tb->phys_hash_next = *ptb;
1136 *ptb = tb;
1137
1138 /* add in the page list */
1139 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1140 if (phys_page2 != -1) {
1141 tb_alloc_page(tb, 1, phys_page2);
1142 } else {
1143 tb->page_addr[1] = -1;
1144 }
1145
e90d96b1
SF
1146#ifdef DEBUG_TB_CHECK
1147 tb_page_check();
1148#endif
1149}
1150
75692087 1151/* Called with mmap_lock held for user mode emulation. */
648f034c 1152TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1153 target_ulong pc, target_ulong cs_base,
89fee74a 1154 uint32_t flags, int cflags)
5b6dd868 1155{
648f034c 1156 CPUArchState *env = cpu->env_ptr;
5b6dd868 1157 TranslationBlock *tb;
5b6dd868
BS
1158 tb_page_addr_t phys_pc, phys_page2;
1159 target_ulong virt_page2;
fec88f64 1160 tcg_insn_unit *gen_code_buf;
fca8a500 1161 int gen_code_size, search_size;
fec88f64
RH
1162#ifdef CONFIG_PROFILER
1163 int64_t ti;
1164#endif
5b6dd868
BS
1165
1166 phys_pc = get_page_addr_code(env, pc);
56c0269a 1167 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1168 cflags |= CF_USE_ICOUNT;
1169 }
b125f9dc 1170
5b6dd868 1171 tb = tb_alloc(pc);
b125f9dc
RH
1172 if (unlikely(!tb)) {
1173 buffer_overflow:
5b6dd868 1174 /* flush must be done */
bbd77c18 1175 tb_flush(cpu);
5b6dd868
BS
1176 /* cannot fail at this point */
1177 tb = tb_alloc(pc);
b125f9dc 1178 assert(tb != NULL);
5b6dd868 1179 }
fec88f64
RH
1180
1181 gen_code_buf = tcg_ctx.code_gen_ptr;
1182 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1183 tb->cs_base = cs_base;
1184 tb->flags = flags;
1185 tb->cflags = cflags;
fec88f64
RH
1186
1187#ifdef CONFIG_PROFILER
1188 tcg_ctx.tb_count1++; /* includes aborted translations because of
1189 exceptions */
1190 ti = profile_getclock();
1191#endif
1192
1193 tcg_func_start(&tcg_ctx);
1194
1195 gen_intermediate_code(env, tb);
1196
1197 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1198
1199 /* generate machine code */
f309101c
SF
1200 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1201 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1202 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1203#ifdef USE_DIRECT_JUMP
f309101c
SF
1204 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1205 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1206#else
f309101c
SF
1207 tcg_ctx.tb_jmp_insn_offset = NULL;
1208 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1209#endif
1210
1211#ifdef CONFIG_PROFILER
1212 tcg_ctx.tb_count++;
1213 tcg_ctx.interm_time += profile_getclock() - ti;
1214 tcg_ctx.code_time -= profile_getclock();
1215#endif
1216
b125f9dc
RH
1217 /* ??? Overflow could be handled better here. In particular, we
1218 don't need to re-do gen_intermediate_code, nor should we re-do
1219 the tcg optimization currently hidden inside tcg_gen_code. All
1220 that should be required is to flush the TBs, allocate a new TB,
1221 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1222 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1223 if (unlikely(gen_code_size < 0)) {
1224 goto buffer_overflow;
1225 }
fca8a500 1226 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1227 if (unlikely(search_size < 0)) {
1228 goto buffer_overflow;
1229 }
fec88f64
RH
1230
1231#ifdef CONFIG_PROFILER
1232 tcg_ctx.code_time += profile_getclock();
1233 tcg_ctx.code_in_len += tb->size;
1234 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1235 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1236#endif
1237
1238#ifdef DEBUG_DISAS
d977e1c2
AB
1239 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1240 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1241 qemu_log("OUT: [size=%d]\n", gen_code_size);
1242 log_disas(tb->tc_ptr, gen_code_size);
1243 qemu_log("\n");
1244 qemu_log_flush();
1245 }
1246#endif
1247
fca8a500
RH
1248 tcg_ctx.code_gen_ptr = (void *)
1249 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1250 CODE_GEN_ALIGN);
5b6dd868 1251
901bc3de
SF
1252 /* init jump list */
1253 assert(((uintptr_t)tb & 3) == 0);
1254 tb->jmp_list_first = (uintptr_t)tb | 2;
1255 tb->jmp_list_next[0] = (uintptr_t)NULL;
1256 tb->jmp_list_next[1] = (uintptr_t)NULL;
1257
1258 /* init original jump addresses wich has been set during tcg_gen_code() */
1259 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1260 tb_reset_jump(tb, 0);
1261 }
1262 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1263 tb_reset_jump(tb, 1);
1264 }
1265
5b6dd868
BS
1266 /* check next page if needed */
1267 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1268 phys_page2 = -1;
1269 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1270 phys_page2 = get_page_addr_code(env, virt_page2);
1271 }
901bc3de
SF
1272 /* As long as consistency of the TB stuff is provided by tb_lock in user
1273 * mode and is implicit in single-threaded softmmu emulation, no explicit
1274 * memory barrier is required before tb_link_page() makes the TB visible
1275 * through the physical hash table and physical page list.
1276 */
5b6dd868
BS
1277 tb_link_page(tb, phys_pc, phys_page2);
1278 return tb;
1279}
1280
1281/*
1282 * Invalidate all TBs which intersect with the target physical address range
1283 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1284 * 'is_cpu_write_access' should be true if called from a real cpu write
1285 * access: the virtual CPU will exit the current TB if code is modified inside
1286 * this TB.
75692087
PB
1287 *
1288 * Called with mmap_lock held for user-mode emulation
5b6dd868 1289 */
35865339 1290void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1291{
1292 while (start < end) {
35865339 1293 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1294 start &= TARGET_PAGE_MASK;
1295 start += TARGET_PAGE_SIZE;
1296 }
1297}
1298
1299/*
1300 * Invalidate all TBs which intersect with the target physical address range
1301 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1302 * 'is_cpu_write_access' should be true if called from a real cpu write
1303 * access: the virtual CPU will exit the current TB if code is modified inside
1304 * this TB.
75692087
PB
1305 *
1306 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1307 */
1308void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1309 int is_cpu_write_access)
1310{
3213525f 1311 TranslationBlock *tb, *tb_next;
baea4fae 1312#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1313 CPUState *cpu = current_cpu;
4917cf44
AF
1314 CPUArchState *env = NULL;
1315#endif
5b6dd868
BS
1316 tb_page_addr_t tb_start, tb_end;
1317 PageDesc *p;
1318 int n;
1319#ifdef TARGET_HAS_PRECISE_SMC
1320 int current_tb_not_found = is_cpu_write_access;
1321 TranslationBlock *current_tb = NULL;
1322 int current_tb_modified = 0;
1323 target_ulong current_pc = 0;
1324 target_ulong current_cs_base = 0;
89fee74a 1325 uint32_t current_flags = 0;
5b6dd868
BS
1326#endif /* TARGET_HAS_PRECISE_SMC */
1327
1328 p = page_find(start >> TARGET_PAGE_BITS);
1329 if (!p) {
1330 return;
1331 }
baea4fae 1332#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1333 if (cpu != NULL) {
1334 env = cpu->env_ptr;
d77953b9 1335 }
4917cf44 1336#endif
5b6dd868
BS
1337
1338 /* we remove all the TBs in the range [start, end[ */
1339 /* XXX: see if in some cases it could be faster to invalidate all
1340 the code */
1341 tb = p->first_tb;
1342 while (tb != NULL) {
1343 n = (uintptr_t)tb & 3;
1344 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1345 tb_next = tb->page_next[n];
1346 /* NOTE: this is subtle as a TB may span two physical pages */
1347 if (n == 0) {
1348 /* NOTE: tb_end may be after the end of the page, but
1349 it is not a problem */
1350 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1351 tb_end = tb_start + tb->size;
1352 } else {
1353 tb_start = tb->page_addr[1];
1354 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1355 }
1356 if (!(tb_end <= start || tb_start >= end)) {
1357#ifdef TARGET_HAS_PRECISE_SMC
1358 if (current_tb_not_found) {
1359 current_tb_not_found = 0;
1360 current_tb = NULL;
93afeade 1361 if (cpu->mem_io_pc) {
5b6dd868 1362 /* now we have a real cpu fault */
93afeade 1363 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1364 }
1365 }
1366 if (current_tb == tb &&
1367 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1368 /* If we are modifying the current TB, we must stop
1369 its execution. We could be more precise by checking
1370 that the modification is after the current PC, but it
1371 would require a specialized function to partially
1372 restore the CPU state */
1373
1374 current_tb_modified = 1;
74f10515 1375 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1376 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1377 &current_flags);
1378 }
1379#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1380 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1381 }
1382 tb = tb_next;
1383 }
1384#if !defined(CONFIG_USER_ONLY)
1385 /* if no code remaining, no need to continue to use slow writes */
1386 if (!p->first_tb) {
1387 invalidate_page_bitmap(p);
fc377bcf 1388 tlb_unprotect_code(start);
5b6dd868
BS
1389 }
1390#endif
1391#ifdef TARGET_HAS_PRECISE_SMC
1392 if (current_tb_modified) {
1393 /* we generate a block containing just the instruction
1394 modifying the memory. It will ensure that it cannot modify
1395 itself */
648f034c 1396 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1397 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1398 }
1399#endif
1400}
1401
6fad459c 1402#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1403/* len must be <= 8 and start must be a multiple of len */
1404void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1405{
1406 PageDesc *p;
5b6dd868
BS
1407
1408#if 0
1409 if (1) {
1410 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1411 cpu_single_env->mem_io_vaddr, len,
1412 cpu_single_env->eip,
1413 cpu_single_env->eip +
1414 (intptr_t)cpu_single_env->segs[R_CS].base);
1415 }
1416#endif
1417 p = page_find(start >> TARGET_PAGE_BITS);
1418 if (!p) {
1419 return;
1420 }
fc377bcf
PB
1421 if (!p->code_bitmap &&
1422 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1423 /* build code bitmap */
1424 build_page_bitmap(p);
1425 }
5b6dd868 1426 if (p->code_bitmap) {
510a647f
EC
1427 unsigned int nr;
1428 unsigned long b;
1429
1430 nr = start & ~TARGET_PAGE_MASK;
1431 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1432 if (b & ((1 << len) - 1)) {
1433 goto do_invalidate;
1434 }
1435 } else {
1436 do_invalidate:
1437 tb_invalidate_phys_page_range(start, start + len, 1);
1438 }
1439}
6fad459c 1440#else
75692087 1441/* Called with mmap_lock held. */
5b6dd868 1442static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1443 uintptr_t pc, void *puc,
1444 bool locked)
5b6dd868
BS
1445{
1446 TranslationBlock *tb;
1447 PageDesc *p;
1448 int n;
1449#ifdef TARGET_HAS_PRECISE_SMC
1450 TranslationBlock *current_tb = NULL;
4917cf44
AF
1451 CPUState *cpu = current_cpu;
1452 CPUArchState *env = NULL;
5b6dd868
BS
1453 int current_tb_modified = 0;
1454 target_ulong current_pc = 0;
1455 target_ulong current_cs_base = 0;
89fee74a 1456 uint32_t current_flags = 0;
5b6dd868
BS
1457#endif
1458
1459 addr &= TARGET_PAGE_MASK;
1460 p = page_find(addr >> TARGET_PAGE_BITS);
1461 if (!p) {
1462 return;
1463 }
1464 tb = p->first_tb;
1465#ifdef TARGET_HAS_PRECISE_SMC
1466 if (tb && pc != 0) {
1467 current_tb = tb_find_pc(pc);
1468 }
4917cf44
AF
1469 if (cpu != NULL) {
1470 env = cpu->env_ptr;
d77953b9 1471 }
5b6dd868
BS
1472#endif
1473 while (tb != NULL) {
1474 n = (uintptr_t)tb & 3;
1475 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1476#ifdef TARGET_HAS_PRECISE_SMC
1477 if (current_tb == tb &&
1478 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1479 /* If we are modifying the current TB, we must stop
1480 its execution. We could be more precise by checking
1481 that the modification is after the current PC, but it
1482 would require a specialized function to partially
1483 restore the CPU state */
1484
1485 current_tb_modified = 1;
74f10515 1486 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1487 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1488 &current_flags);
1489 }
1490#endif /* TARGET_HAS_PRECISE_SMC */
1491 tb_phys_invalidate(tb, addr);
1492 tb = tb->page_next[n];
1493 }
1494 p->first_tb = NULL;
1495#ifdef TARGET_HAS_PRECISE_SMC
1496 if (current_tb_modified) {
1497 /* we generate a block containing just the instruction
1498 modifying the memory. It will ensure that it cannot modify
1499 itself */
648f034c 1500 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1501 if (locked) {
1502 mmap_unlock();
1503 }
0ea8cb88 1504 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1505 }
1506#endif
1507}
1508#endif
1509
5b6dd868
BS
1510/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1511 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1512static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1513{
1514 int m_min, m_max, m;
1515 uintptr_t v;
1516 TranslationBlock *tb;
1517
5e5f07e0 1518 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1519 return NULL;
1520 }
0b0d3320
EV
1521 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1522 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1523 return NULL;
1524 }
1525 /* binary search (cf Knuth) */
1526 m_min = 0;
5e5f07e0 1527 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1528 while (m_min <= m_max) {
1529 m = (m_min + m_max) >> 1;
5e5f07e0 1530 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1531 v = (uintptr_t)tb->tc_ptr;
1532 if (v == tc_ptr) {
1533 return tb;
1534 } else if (tc_ptr < v) {
1535 m_max = m - 1;
1536 } else {
1537 m_min = m + 1;
1538 }
1539 }
5e5f07e0 1540 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1541}
1542
ec53b45b 1543#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1544void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1545{
1546 ram_addr_t ram_addr;
5c8a00ce 1547 MemoryRegion *mr;
149f54b5 1548 hwaddr l = 1;
5b6dd868 1549
41063e1e 1550 rcu_read_lock();
29d8ec7b 1551 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1552 if (!(memory_region_is_ram(mr)
1553 || memory_region_is_romd(mr))) {
41063e1e 1554 rcu_read_unlock();
5b6dd868
BS
1555 return;
1556 }
5c8a00ce 1557 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1558 + addr;
5b6dd868 1559 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1560 rcu_read_unlock();
5b6dd868 1561}
ec53b45b 1562#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1563
239c51a5 1564void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1565{
1566 TranslationBlock *tb;
1567
93afeade 1568 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1569 if (tb) {
1570 /* We can use retranslation to find the PC. */
1571 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1572 tb_phys_invalidate(tb, -1);
1573 } else {
1574 /* The exception probably happened in a helper. The CPU state should
1575 have been saved before calling it. Fetch the PC from there. */
1576 CPUArchState *env = cpu->env_ptr;
1577 target_ulong pc, cs_base;
1578 tb_page_addr_t addr;
89fee74a 1579 uint32_t flags;
8d302e76
AJ
1580
1581 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1582 addr = get_page_addr_code(env, pc);
1583 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1584 }
5b6dd868
BS
1585}
1586
1587#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1588/* in deterministic execution mode, instructions doing device I/Os
1589 must be at the end of the TB */
90b40a69 1590void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1591{
a47dddd7 1592#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1593 CPUArchState *env = cpu->env_ptr;
a47dddd7 1594#endif
5b6dd868
BS
1595 TranslationBlock *tb;
1596 uint32_t n, cflags;
1597 target_ulong pc, cs_base;
89fee74a 1598 uint32_t flags;
5b6dd868
BS
1599
1600 tb = tb_find_pc(retaddr);
1601 if (!tb) {
a47dddd7 1602 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1603 (void *)retaddr);
1604 }
28ecfd7a 1605 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1606 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1607 /* Calculate how many instructions had been executed before the fault
1608 occurred. */
28ecfd7a 1609 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1610 /* Generate a new TB ending on the I/O insn. */
1611 n++;
1612 /* On MIPS and SH, delay slot instructions can only be restarted if
1613 they were already the first instruction in the TB. If this is not
1614 the first instruction in a TB then re-execute the preceding
1615 branch. */
1616#if defined(TARGET_MIPS)
1617 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1618 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1619 cpu->icount_decr.u16.low++;
5b6dd868
BS
1620 env->hflags &= ~MIPS_HFLAG_BMASK;
1621 }
1622#elif defined(TARGET_SH4)
1623 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1624 && n > 1) {
1625 env->pc -= 2;
28ecfd7a 1626 cpu->icount_decr.u16.low++;
5b6dd868
BS
1627 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1628 }
1629#endif
1630 /* This should never happen. */
1631 if (n > CF_COUNT_MASK) {
a47dddd7 1632 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1633 }
1634
1635 cflags = n | CF_LAST_IO;
1636 pc = tb->pc;
1637 cs_base = tb->cs_base;
1638 flags = tb->flags;
1639 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1640 if (tb->cflags & CF_NOCACHE) {
1641 if (tb->orig_tb) {
1642 /* Invalidate original TB if this TB was generated in
1643 * cpu_exec_nocache() */
1644 tb_phys_invalidate(tb->orig_tb, -1);
1645 }
1646 tb_free(tb);
1647 }
5b6dd868
BS
1648 /* FIXME: In theory this could raise an exception. In practice
1649 we have already translated the block once so it's probably ok. */
648f034c 1650 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1651 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1652 the first in the TB) then we end up generating a whole new TB and
1653 repeating the fault, which is horribly inefficient.
1654 Better would be to execute just this insn uncached, or generate a
1655 second new TB. */
0ea8cb88 1656 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1657}
1658
611d4f99 1659void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1660{
1661 unsigned int i;
1662
1663 /* Discard jump cache entries for any tb which might potentially
1664 overlap the flushed page. */
1665 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1666 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1667 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1668
1669 i = tb_jmp_cache_hash_page(addr);
8cd70437 1670 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1671 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1672}
1673
1674void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1675{
1676 int i, target_code_size, max_target_code_size;
1677 int direct_jmp_count, direct_jmp2_count, cross_page;
1678 TranslationBlock *tb;
1679
1680 target_code_size = 0;
1681 max_target_code_size = 0;
1682 cross_page = 0;
1683 direct_jmp_count = 0;
1684 direct_jmp2_count = 0;
5e5f07e0
EV
1685 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1686 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1687 target_code_size += tb->size;
1688 if (tb->size > max_target_code_size) {
1689 max_target_code_size = tb->size;
1690 }
1691 if (tb->page_addr[1] != -1) {
1692 cross_page++;
1693 }
f309101c 1694 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1695 direct_jmp_count++;
f309101c 1696 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1697 direct_jmp2_count++;
1698 }
1699 }
1700 }
1701 /* XXX: avoid using doubles ? */
1702 cpu_fprintf(f, "Translation buffer state:\n");
1703 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1704 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1705 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1706 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1707 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1708 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1709 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1710 tcg_ctx.tb_ctx.nb_tbs : 0,
1711 max_target_code_size);
5b6dd868 1712 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1713 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1714 tcg_ctx.code_gen_buffer) /
1715 tcg_ctx.tb_ctx.nb_tbs : 0,
1716 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1717 tcg_ctx.code_gen_buffer) /
1718 target_code_size : 0);
1719 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1720 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1721 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1722 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1723 direct_jmp_count,
5e5f07e0
EV
1724 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1725 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1726 direct_jmp2_count,
5e5f07e0
EV
1727 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1728 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1729 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1730 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1731 cpu_fprintf(f, "TB invalidate count %d\n",
1732 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1733 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1734 tcg_dump_info(f, cpu_fprintf);
1735}
1736
246ae24d
MF
1737void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1738{
1739 tcg_dump_op_count(f, cpu_fprintf);
1740}
1741
5b6dd868
BS
1742#else /* CONFIG_USER_ONLY */
1743
c3affe56 1744void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1745{
259186a7 1746 cpu->interrupt_request |= mask;
378df4b2 1747 cpu->tcg_exit_req = 1;
5b6dd868
BS
1748}
1749
1750/*
1751 * Walks guest process memory "regions" one by one
1752 * and calls callback function 'fn' for each region.
1753 */
1754struct walk_memory_regions_data {
1755 walk_memory_regions_fn fn;
1756 void *priv;
1a1c4db9 1757 target_ulong start;
5b6dd868
BS
1758 int prot;
1759};
1760
1761static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1762 target_ulong end, int new_prot)
5b6dd868 1763{
1a1c4db9 1764 if (data->start != -1u) {
5b6dd868
BS
1765 int rc = data->fn(data->priv, data->start, end, data->prot);
1766 if (rc != 0) {
1767 return rc;
1768 }
1769 }
1770
1a1c4db9 1771 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1772 data->prot = new_prot;
1773
1774 return 0;
1775}
1776
1777static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1778 target_ulong base, int level, void **lp)
5b6dd868 1779{
1a1c4db9 1780 target_ulong pa;
5b6dd868
BS
1781 int i, rc;
1782
1783 if (*lp == NULL) {
1784 return walk_memory_regions_end(data, base, 0);
1785 }
1786
1787 if (level == 0) {
1788 PageDesc *pd = *lp;
1789
03f49957 1790 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1791 int prot = pd[i].flags;
1792
1793 pa = base | (i << TARGET_PAGE_BITS);
1794 if (prot != data->prot) {
1795 rc = walk_memory_regions_end(data, pa, prot);
1796 if (rc != 0) {
1797 return rc;
1798 }
1799 }
1800 }
1801 } else {
1802 void **pp = *lp;
1803
03f49957 1804 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1805 pa = base | ((target_ulong)i <<
03f49957 1806 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1807 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1808 if (rc != 0) {
1809 return rc;
1810 }
1811 }
1812 }
1813
1814 return 0;
1815}
1816
1817int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1818{
1819 struct walk_memory_regions_data data;
1820 uintptr_t i;
1821
1822 data.fn = fn;
1823 data.priv = priv;
1a1c4db9 1824 data.start = -1u;
5b6dd868
BS
1825 data.prot = 0;
1826
1827 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1828 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1829 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1830 if (rc != 0) {
1831 return rc;
1832 }
1833 }
1834
1835 return walk_memory_regions_end(&data, 0, 0);
1836}
1837
1a1c4db9
MI
1838static int dump_region(void *priv, target_ulong start,
1839 target_ulong end, unsigned long prot)
5b6dd868
BS
1840{
1841 FILE *f = (FILE *)priv;
1842
1a1c4db9
MI
1843 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1844 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1845 start, end, end - start,
1846 ((prot & PAGE_READ) ? 'r' : '-'),
1847 ((prot & PAGE_WRITE) ? 'w' : '-'),
1848 ((prot & PAGE_EXEC) ? 'x' : '-'));
1849
1850 return 0;
1851}
1852
1853/* dump memory mappings */
1854void page_dump(FILE *f)
1855{
1a1c4db9 1856 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1857 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1858 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1859 walk_memory_regions(f, dump_region);
1860}
1861
1862int page_get_flags(target_ulong address)
1863{
1864 PageDesc *p;
1865
1866 p = page_find(address >> TARGET_PAGE_BITS);
1867 if (!p) {
1868 return 0;
1869 }
1870 return p->flags;
1871}
1872
1873/* Modify the flags of a page and invalidate the code if necessary.
1874 The flag PAGE_WRITE_ORG is positioned automatically depending
1875 on PAGE_WRITE. The mmap_lock should already be held. */
1876void page_set_flags(target_ulong start, target_ulong end, int flags)
1877{
1878 target_ulong addr, len;
1879
1880 /* This function should never be called with addresses outside the
1881 guest address space. If this assert fires, it probably indicates
1882 a missing call to h2g_valid. */
1883#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1884 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1885#endif
1886 assert(start < end);
1887
1888 start = start & TARGET_PAGE_MASK;
1889 end = TARGET_PAGE_ALIGN(end);
1890
1891 if (flags & PAGE_WRITE) {
1892 flags |= PAGE_WRITE_ORG;
1893 }
1894
1895 for (addr = start, len = end - start;
1896 len != 0;
1897 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1898 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1899
1900 /* If the write protection bit is set, then we invalidate
1901 the code inside. */
1902 if (!(p->flags & PAGE_WRITE) &&
1903 (flags & PAGE_WRITE) &&
1904 p->first_tb) {
d02532f0 1905 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1906 }
1907 p->flags = flags;
1908 }
1909}
1910
1911int page_check_range(target_ulong start, target_ulong len, int flags)
1912{
1913 PageDesc *p;
1914 target_ulong end;
1915 target_ulong addr;
1916
1917 /* This function should never be called with addresses outside the
1918 guest address space. If this assert fires, it probably indicates
1919 a missing call to h2g_valid. */
1920#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1921 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1922#endif
1923
1924 if (len == 0) {
1925 return 0;
1926 }
1927 if (start + len - 1 < start) {
1928 /* We've wrapped around. */
1929 return -1;
1930 }
1931
1932 /* must do before we loose bits in the next step */
1933 end = TARGET_PAGE_ALIGN(start + len);
1934 start = start & TARGET_PAGE_MASK;
1935
1936 for (addr = start, len = end - start;
1937 len != 0;
1938 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1939 p = page_find(addr >> TARGET_PAGE_BITS);
1940 if (!p) {
1941 return -1;
1942 }
1943 if (!(p->flags & PAGE_VALID)) {
1944 return -1;
1945 }
1946
1947 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1948 return -1;
1949 }
1950 if (flags & PAGE_WRITE) {
1951 if (!(p->flags & PAGE_WRITE_ORG)) {
1952 return -1;
1953 }
1954 /* unprotect the page if it was put read-only because it
1955 contains translated code */
1956 if (!(p->flags & PAGE_WRITE)) {
1957 if (!page_unprotect(addr, 0, NULL)) {
1958 return -1;
1959 }
1960 }
5b6dd868
BS
1961 }
1962 }
1963 return 0;
1964}
1965
1966/* called from signal handler: invalidate the code and unprotect the
1967 page. Return TRUE if the fault was successfully handled. */
1968int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1969{
1970 unsigned int prot;
1971 PageDesc *p;
1972 target_ulong host_start, host_end, addr;
1973
1974 /* Technically this isn't safe inside a signal handler. However we
1975 know this only ever happens in a synchronous SEGV handler, so in
1976 practice it seems to be ok. */
1977 mmap_lock();
1978
1979 p = page_find(address >> TARGET_PAGE_BITS);
1980 if (!p) {
1981 mmap_unlock();
1982 return 0;
1983 }
1984
1985 /* if the page was really writable, then we change its
1986 protection back to writable */
1987 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1988 host_start = address & qemu_host_page_mask;
1989 host_end = host_start + qemu_host_page_size;
1990
1991 prot = 0;
1992 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1993 p = page_find(addr >> TARGET_PAGE_BITS);
1994 p->flags |= PAGE_WRITE;
1995 prot |= p->flags;
1996
1997 /* and since the content will be modified, we must invalidate
1998 the corresponding translated code. */
d02532f0 1999 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
2000#ifdef DEBUG_TB_CHECK
2001 tb_invalidate_check(addr);
2002#endif
2003 }
2004 mprotect((void *)g2h(host_start), qemu_host_page_size,
2005 prot & PAGE_BITS);
2006
2007 mmap_unlock();
2008 return 1;
2009 }
2010 mmap_unlock();
2011 return 0;
2012}
2013#endif /* CONFIG_USER_ONLY */