]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
tcg/ppc: Make direct jump patching thread-safe
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
5b6dd868
BS
22#include <sys/mman.h>
23#endif
7b31bbc2 24#include "qemu/osdep.h"
d19893da 25
2054396a 26
5b6dd868 27#include "qemu-common.h"
af5ad107 28#define NO_CPU_IO_DEFS
d3eead2e 29#include "cpu.h"
6db8b538 30#include "trace.h"
76cad711 31#include "disas/disas.h"
57fec1fe 32#include "tcg.h"
5b6dd868
BS
33#if defined(CONFIG_USER_ONLY)
34#include "qemu.h"
35#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36#include <sys/param.h>
37#if __FreeBSD_version >= 700104
38#define HAVE_KINFO_GETVMMAP
39#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
40#include <sys/proc.h>
41#include <machine/profile.h>
42#define _KERNEL
43#include <sys/user.h>
44#undef _KERNEL
45#undef sigqueue
46#include <libutil.h>
47#endif
48#endif
0bc3cd62
PB
49#else
50#include "exec/address-spaces.h"
5b6dd868
BS
51#endif
52
022c62cb 53#include "exec/cputlb.h"
e1b89321 54#include "exec/tb-hash.h"
5b6dd868 55#include "translate-all.h"
510a647f 56#include "qemu/bitmap.h"
0aa09897 57#include "qemu/timer.h"
508127e2 58#include "exec/log.h"
5b6dd868
BS
59
60//#define DEBUG_TB_INVALIDATE
61//#define DEBUG_FLUSH
62/* make various TB consistency checks */
63//#define DEBUG_TB_CHECK
64
65#if !defined(CONFIG_USER_ONLY)
66/* TB consistency checks only implemented for usermode emulation. */
67#undef DEBUG_TB_CHECK
68#endif
69
70#define SMC_BITMAP_USE_THRESHOLD 10
71
5b6dd868
BS
72typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
510a647f 78 unsigned long *code_bitmap;
5b6dd868
BS
79#if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81#endif
82} PageDesc;
83
84/* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86#if !defined(CONFIG_USER_ONLY)
87#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89#else
90# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91#endif
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94#endif
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define V_L2_BITS 10
98#define V_L2_SIZE (1 << V_L2_BITS)
99
5b6dd868
BS
100/* The bits remaining after N lower levels of page tables. */
101#define V_L1_BITS_REM \
03f49957 102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
103
104#if V_L1_BITS_REM < 4
03f49957 105#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
106#else
107#define V_L1_BITS V_L1_BITS_REM
108#endif
109
110#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
5b6dd868 114uintptr_t qemu_host_page_size;
0c2d70c4 115intptr_t qemu_host_page_mask;
5b6dd868 116
d1142fb8 117/* The bottom level has pointers to PageDesc */
5b6dd868
BS
118static void *l1_map[V_L1_SIZE];
119
57fec1fe
FB
120/* code generation context */
121TCGContext tcg_ctx;
d19893da 122
677ef623
FK
123/* translation block context */
124#ifdef CONFIG_USER_ONLY
125__thread int have_tb_lock;
126#endif
127
128void tb_lock(void)
129{
130#ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134#endif
135}
136
137void tb_unlock(void)
138{
139#ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143#endif
144}
145
146void tb_lock_reset(void)
147{
148#ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153#endif
154}
155
5b6dd868
BS
156static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
a8a826a3 158static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 159
57fec1fe
FB
160void cpu_gen_init(void)
161{
162 tcg_context_init(&tcg_ctx);
57fec1fe
FB
163}
164
fca8a500
RH
165/* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167static uint8_t *encode_sleb128(uint8_t *p, target_long val)
168{
169 int more, byte;
170
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
178 }
179 *p++ = byte;
180 } while (more);
181
182 return p;
183}
184
185/* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187static target_long decode_sleb128(uint8_t **pp)
188{
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
192
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
200 }
201
202 *pp = p;
203 return val;
204}
205
206/* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
208
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
212
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
217
218static int encode_search(TranslationBlock *tb, uint8_t *block)
219{
b125f9dc 220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
221 uint8_t *p = block;
222 int i, j, n;
223
224 tb->tc_search = block;
225
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
228
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
234 }
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
236 }
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
239
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
246 }
fca8a500
RH
247 }
248
249 return p - block;
250}
251
fec88f64 252/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 253static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 254 uintptr_t searched_pc)
d19893da 255{
fca8a500
RH
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 258 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
57fec1fe 261#ifdef CONFIG_PROFILER
fca8a500 262 int64_t ti = profile_getclock();
57fec1fe
FB
263#endif
264
fca8a500
RH
265 if (searched_pc < host_pc) {
266 return -1;
267 }
d19893da 268
fca8a500
RH
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
3b46e624 281
fca8a500 282 found:
bd79255d 283 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 284 assert(use_icount);
2e70f6ef 285 /* Reset the cycle counter to the start of the block. */
fca8a500 286 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 287 /* Clear the IO flag. */
99df7dce 288 cpu->can_do_io = 0;
2e70f6ef 289 }
fca8a500
RH
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
57fec1fe
FB
292
293#ifdef CONFIG_PROFILER
fca8a500
RH
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
57fec1fe 296#endif
d19893da
FB
297 return 0;
298}
5b6dd868 299
3f38f309 300bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
301{
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
74f10515 306 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
312 }
a8a826a3
BS
313 return true;
314 }
315 return false;
316}
317
47c16ed5 318void page_size_init(void)
5b6dd868
BS
319{
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
5b6dd868 322 qemu_real_host_page_size = getpagesize();
0c2d70c4 323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
326 }
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
329 }
0c2d70c4 330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 331}
5b6dd868 332
47c16ed5
AK
333static void page_init(void)
334{
335 page_size_init();
5b6dd868
BS
336#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
337 {
338#ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
341
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
347
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
352
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360#endif
361 }
362 }
363 }
364 free(freep);
365 mmap_unlock();
366 }
367#else
368 FILE *f;
369
370 last_brk = (unsigned long)sbrk(0);
371
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
375
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
379
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
381
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
384
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
389 }
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
391 }
392 } while (!feof(f));
393
394 fclose(f);
395 mmap_unlock();
396 }
397#endif
398 }
399#endif
400}
401
75692087
PB
402/* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
404 */
5b6dd868
BS
405static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
406{
407 PageDesc *pd;
408 void **lp;
409 int i;
410
5b6dd868
BS
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
413
414 /* Level 2..N-1. */
03f49957 415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 416 void **p = atomic_rcu_read(lp);
5b6dd868
BS
417
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
421 }
e3a0abfd 422 p = g_new0(void *, V_L2_SIZE);
6940fab8 423 atomic_rcu_set(lp, p);
5b6dd868
BS
424 }
425
03f49957 426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
427 }
428
6940fab8 429 pd = atomic_rcu_read(lp);
5b6dd868
BS
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
433 }
e3a0abfd 434 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 435 atomic_rcu_set(lp, pd);
5b6dd868
BS
436 }
437
03f49957 438 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
439}
440
441static inline PageDesc *page_find(tb_page_addr_t index)
442{
443 return page_find_alloc(index, 0);
444}
445
5b6dd868
BS
446#if defined(CONFIG_USER_ONLY)
447/* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449/* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451#define USE_STATIC_CODE_GEN_BUFFER
452#endif
453
5b6dd868
BS
454/* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457
458/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461#if defined(__x86_64__)
462# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463#elif defined(__sparc__)
464# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
465#elif defined(__powerpc64__)
466# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
467#elif defined(__powerpc__)
468# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
469#elif defined(__aarch64__)
470# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
471#elif defined(__arm__)
472# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
473#elif defined(__s390x__)
474 /* We have a +- 4GB range on the branches; leave some slop. */
475# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
476#elif defined(__mips__)
477 /* We have a 256MB branch region, but leave room to make sure the
478 main executable is also within that region. */
479# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
480#else
481# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
482#endif
483
484#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
485
486#define DEFAULT_CODE_GEN_BUFFER_SIZE \
487 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
488 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
489
490static inline size_t size_code_gen_buffer(size_t tb_size)
491{
492 /* Size the buffer. */
493 if (tb_size == 0) {
494#ifdef USE_STATIC_CODE_GEN_BUFFER
495 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
496#else
497 /* ??? Needs adjustments. */
498 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
499 static buffer, we could size this on RESERVED_VA, on the text
500 segment size of the executable, or continue to use the default. */
501 tb_size = (unsigned long)(ram_size / 4);
502#endif
503 }
504 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
506 }
507 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
508 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
509 }
0b0d3320 510 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
511 return tb_size;
512}
513
483c76e1
RH
514#ifdef __mips__
515/* In order to use J and JAL within the code_gen_buffer, we require
516 that the buffer not cross a 256MB boundary. */
517static inline bool cross_256mb(void *addr, size_t size)
518{
519 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
520}
521
522/* We weren't able to allocate a buffer without crossing that boundary,
523 so make do with the larger portion of the buffer that doesn't cross.
524 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
525static inline void *split_cross_256mb(void *buf1, size_t size1)
526{
527 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
528 size_t size2 = buf1 + size1 - buf2;
529
530 size1 = buf2 - buf1;
531 if (size1 < size2) {
532 size1 = size2;
533 buf1 = buf2;
534 }
535
536 tcg_ctx.code_gen_buffer_size = size1;
537 return buf1;
538}
539#endif
540
5b6dd868
BS
541#ifdef USE_STATIC_CODE_GEN_BUFFER
542static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
543 __attribute__((aligned(CODE_GEN_ALIGN)));
544
f293709c
RH
545# ifdef _WIN32
546static inline void do_protect(void *addr, long size, int prot)
547{
548 DWORD old_protect;
549 VirtualProtect(addr, size, prot, &old_protect);
550}
551
552static inline void map_exec(void *addr, long size)
553{
554 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
555}
556
557static inline void map_none(void *addr, long size)
558{
559 do_protect(addr, size, PAGE_NOACCESS);
560}
561# else
562static inline void do_protect(void *addr, long size, int prot)
563{
564 uintptr_t start, end;
565
566 start = (uintptr_t)addr;
567 start &= qemu_real_host_page_mask;
568
569 end = (uintptr_t)addr + size;
570 end = ROUND_UP(end, qemu_real_host_page_size);
571
572 mprotect((void *)start, end - start, prot);
573}
574
575static inline void map_exec(void *addr, long size)
576{
577 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
578}
579
580static inline void map_none(void *addr, long size)
581{
582 do_protect(addr, size, PROT_NONE);
583}
584# endif /* WIN32 */
585
5b6dd868
BS
586static inline void *alloc_code_gen_buffer(void)
587{
483c76e1 588 void *buf = static_code_gen_buffer;
f293709c
RH
589 size_t full_size, size;
590
591 /* The size of the buffer, rounded down to end on a page boundary. */
592 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
593 & qemu_real_host_page_mask) - (uintptr_t)buf;
594
595 /* Reserve a guard page. */
596 size = full_size - qemu_real_host_page_size;
597
598 /* Honor a command-line option limiting the size of the buffer. */
599 if (size > tcg_ctx.code_gen_buffer_size) {
600 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
601 & qemu_real_host_page_mask) - (uintptr_t)buf;
602 }
603 tcg_ctx.code_gen_buffer_size = size;
604
483c76e1 605#ifdef __mips__
f293709c
RH
606 if (cross_256mb(buf, size)) {
607 buf = split_cross_256mb(buf, size);
608 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
609 }
610#endif
f293709c
RH
611
612 map_exec(buf, size);
613 map_none(buf + size, qemu_real_host_page_size);
614 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
615
483c76e1 616 return buf;
5b6dd868 617}
f293709c
RH
618#elif defined(_WIN32)
619static inline void *alloc_code_gen_buffer(void)
620{
621 size_t size = tcg_ctx.code_gen_buffer_size;
622 void *buf1, *buf2;
623
624 /* Perform the allocation in two steps, so that the guard page
625 is reserved but uncommitted. */
626 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
627 MEM_RESERVE, PAGE_NOACCESS);
628 if (buf1 != NULL) {
629 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
630 assert(buf1 == buf2);
631 }
632
633 return buf1;
634}
635#else
5b6dd868
BS
636static inline void *alloc_code_gen_buffer(void)
637{
638 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
639 uintptr_t start = 0;
f293709c 640 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
641 void *buf;
642
643 /* Constrain the position of the buffer based on the host cpu.
644 Note that these addresses are chosen in concert with the
645 addresses assigned in the relevant linker script file. */
646# if defined(__PIE__) || defined(__PIC__)
647 /* Don't bother setting a preferred location if we're building
648 a position-independent executable. We're more likely to get
649 an address near the main executable if we let the kernel
650 choose the address. */
651# elif defined(__x86_64__) && defined(MAP_32BIT)
652 /* Force the memory down into low memory with the executable.
653 Leave the choice of exact location with the kernel. */
654 flags |= MAP_32BIT;
655 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
656 if (size > 800u * 1024 * 1024) {
657 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
658 }
659# elif defined(__sparc__)
660 start = 0x40000000ul;
661# elif defined(__s390x__)
662 start = 0x90000000ul;
479eb121 663# elif defined(__mips__)
f293709c 664# if _MIPS_SIM == _ABI64
479eb121
RH
665 start = 0x128000000ul;
666# else
667 start = 0x08000000ul;
668# endif
5b6dd868
BS
669# endif
670
f293709c
RH
671 buf = mmap((void *)start, size + qemu_real_host_page_size,
672 PROT_NONE, flags, -1, 0);
483c76e1
RH
673 if (buf == MAP_FAILED) {
674 return NULL;
675 }
676
677#ifdef __mips__
f293709c 678 if (cross_256mb(buf, size)) {
5d831be2 679 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 680 that 256mb crossing. This time don't specify an address. */
f293709c
RH
681 size_t size2;
682 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
683 PROT_NONE, flags, -1, 0);
684 switch (buf2 != MAP_FAILED) {
685 case 1:
686 if (!cross_256mb(buf2, size)) {
483c76e1 687 /* Success! Use the new buffer. */
f293709c
RH
688 munmap(buf, size);
689 break;
483c76e1
RH
690 }
691 /* Failure. Work with what we had. */
f293709c
RH
692 munmap(buf2, size);
693 /* fallthru */
694 default:
695 /* Split the original buffer. Free the smaller half. */
696 buf2 = split_cross_256mb(buf, size);
697 size2 = tcg_ctx.code_gen_buffer_size;
698 if (buf == buf2) {
699 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
700 } else {
701 munmap(buf, size - size2);
702 }
703 size = size2;
704 break;
483c76e1 705 }
f293709c 706 buf = buf2;
483c76e1
RH
707 }
708#endif
709
f293709c
RH
710 /* Make the final buffer accessible. The guard page at the end
711 will remain inaccessible with PROT_NONE. */
712 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 713
f293709c
RH
714 /* Request large pages for the buffer. */
715 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 716
5b6dd868
BS
717 return buf;
718}
f293709c 719#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
720
721static inline void code_gen_alloc(size_t tb_size)
722{
0b0d3320
EV
723 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
724 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
725 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
726 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
727 exit(1);
728 }
729
8163b749
RH
730 /* Estimate a good size for the number of TBs we can support. We
731 still haven't deducted the prologue from the buffer size here,
732 but that's minimal and won't affect the estimate much. */
733 tcg_ctx.code_gen_max_blocks
734 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
735 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
736
677ef623 737 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
738}
739
740/* Must be called before using the QEMU cpus. 'tb_size' is the size
741 (in bytes) allocated to the translation buffer. Zero means default
742 size. */
743void tcg_exec_init(unsigned long tb_size)
744{
745 cpu_gen_init();
5b6dd868 746 page_init();
f293709c 747 code_gen_alloc(tb_size);
4cbea598 748#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
749 /* There's no guest base to take into account, so go ahead and
750 initialize the prologue now. */
751 tcg_prologue_init(&tcg_ctx);
752#endif
753}
754
755bool tcg_enabled(void)
756{
0b0d3320 757 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
758}
759
760/* Allocate a new translation block. Flush the translation buffer if
761 too many translation blocks or too much generated code. */
762static TranslationBlock *tb_alloc(target_ulong pc)
763{
764 TranslationBlock *tb;
765
b125f9dc 766 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
767 return NULL;
768 }
5e5f07e0 769 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
770 tb->pc = pc;
771 tb->cflags = 0;
772 return tb;
773}
774
775void tb_free(TranslationBlock *tb)
776{
777 /* In practice this is mostly used for single use temporary TB
778 Ignore the hard cases and just back up if this TB happens to
779 be the last one generated. */
5e5f07e0
EV
780 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
781 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 782 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 783 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
784 }
785}
786
787static inline void invalidate_page_bitmap(PageDesc *p)
788{
012aef07
MA
789 g_free(p->code_bitmap);
790 p->code_bitmap = NULL;
5b6dd868
BS
791 p->code_write_count = 0;
792}
793
794/* Set to NULL all the 'first_tb' fields in all PageDescs. */
795static void page_flush_tb_1(int level, void **lp)
796{
797 int i;
798
799 if (*lp == NULL) {
800 return;
801 }
802 if (level == 0) {
803 PageDesc *pd = *lp;
804
03f49957 805 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
806 pd[i].first_tb = NULL;
807 invalidate_page_bitmap(pd + i);
808 }
809 } else {
810 void **pp = *lp;
811
03f49957 812 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
813 page_flush_tb_1(level - 1, pp + i);
814 }
815 }
816}
817
818static void page_flush_tb(void)
819{
820 int i;
821
822 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 823 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
824 }
825}
826
827/* flush all the translation blocks */
828/* XXX: tb_flush is currently not thread safe */
bbd77c18 829void tb_flush(CPUState *cpu)
5b6dd868 830{
5b6dd868
BS
831#if defined(DEBUG_FLUSH)
832 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 833 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 834 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 835 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 836 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 837#endif
0b0d3320
EV
838 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
839 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 840 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 841 }
5e5f07e0 842 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 843
bdc44640 844 CPU_FOREACH(cpu) {
8cd70437 845 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
846 }
847
eb2535f4 848 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
849 page_flush_tb();
850
0b0d3320 851 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
852 /* XXX: flush processor icache at this point if cache flush is
853 expensive */
5e5f07e0 854 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
855}
856
857#ifdef DEBUG_TB_CHECK
858
859static void tb_invalidate_check(target_ulong address)
860{
861 TranslationBlock *tb;
862 int i;
863
864 address &= TARGET_PAGE_MASK;
865 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
7e6bd36d
EC
866 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
867 tb = tb->phys_hash_next) {
5b6dd868
BS
868 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
869 address >= tb->pc + tb->size)) {
870 printf("ERROR invalidate: address=" TARGET_FMT_lx
871 " PC=%08lx size=%04x\n",
872 address, (long)tb->pc, tb->size);
873 }
874 }
875 }
876}
877
878/* verify that all the pages have correct rights for code */
879static void tb_page_check(void)
880{
881 TranslationBlock *tb;
882 int i, flags1, flags2;
883
884 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
885 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
886 tb = tb->phys_hash_next) {
5b6dd868
BS
887 flags1 = page_get_flags(tb->pc);
888 flags2 = page_get_flags(tb->pc + tb->size - 1);
889 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
890 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
891 (long)tb->pc, tb->size, flags1, flags2);
892 }
893 }
894 }
895}
896
897#endif
898
0c884d16 899static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
900{
901 TranslationBlock *tb1;
902
903 for (;;) {
904 tb1 = *ptb;
905 if (tb1 == tb) {
0c884d16 906 *ptb = tb1->phys_hash_next;
5b6dd868
BS
907 break;
908 }
0c884d16 909 ptb = &tb1->phys_hash_next;
5b6dd868
BS
910 }
911}
912
913static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
914{
915 TranslationBlock *tb1;
916 unsigned int n1;
917
918 for (;;) {
919 tb1 = *ptb;
920 n1 = (uintptr_t)tb1 & 3;
921 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
922 if (tb1 == tb) {
923 *ptb = tb1->page_next[n1];
924 break;
925 }
926 ptb = &tb1->page_next[n1];
927 }
928}
929
930static inline void tb_jmp_remove(TranslationBlock *tb, int n)
931{
932 TranslationBlock *tb1, **ptb;
933 unsigned int n1;
934
935 ptb = &tb->jmp_next[n];
936 tb1 = *ptb;
937 if (tb1) {
938 /* find tb(n) in circular list */
939 for (;;) {
940 tb1 = *ptb;
941 n1 = (uintptr_t)tb1 & 3;
942 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
943 if (n1 == n && tb1 == tb) {
944 break;
945 }
946 if (n1 == 2) {
947 ptb = &tb1->jmp_first;
948 } else {
949 ptb = &tb1->jmp_next[n1];
950 }
951 }
952 /* now we can suppress tb(n) from the list */
953 *ptb = tb->jmp_next[n];
954
955 tb->jmp_next[n] = NULL;
956 }
957}
958
959/* reset the jump entry 'n' of a TB so that it is not chained to
960 another TB */
961static inline void tb_reset_jump(TranslationBlock *tb, int n)
962{
963 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
964}
965
0c884d16 966/* invalidate one TB */
5b6dd868
BS
967void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
968{
182735ef 969 CPUState *cpu;
5b6dd868
BS
970 PageDesc *p;
971 unsigned int h, n1;
972 tb_page_addr_t phys_pc;
973 TranslationBlock *tb1, *tb2;
974
975 /* remove the TB from the hash list */
976 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
977 h = tb_phys_hash_func(phys_pc);
5e5f07e0 978 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
979
980 /* remove the TB from the page list */
981 if (tb->page_addr[0] != page_addr) {
982 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
983 tb_page_remove(&p->first_tb, tb);
984 invalidate_page_bitmap(p);
985 }
986 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
987 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
988 tb_page_remove(&p->first_tb, tb);
989 invalidate_page_bitmap(p);
990 }
991
5e5f07e0 992 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
993
994 /* remove the TB from the hash list */
995 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 996 CPU_FOREACH(cpu) {
8cd70437
AF
997 if (cpu->tb_jmp_cache[h] == tb) {
998 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
999 }
1000 }
1001
1002 /* suppress this TB from the two jump lists */
1003 tb_jmp_remove(tb, 0);
1004 tb_jmp_remove(tb, 1);
1005
1006 /* suppress any remaining jumps to this TB */
1007 tb1 = tb->jmp_first;
1008 for (;;) {
1009 n1 = (uintptr_t)tb1 & 3;
1010 if (n1 == 2) {
1011 break;
1012 }
1013 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1014 tb2 = tb1->jmp_next[n1];
1015 tb_reset_jump(tb1, n1);
1016 tb1->jmp_next[n1] = NULL;
1017 tb1 = tb2;
1018 }
1019 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1020
5e5f07e0 1021 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1022}
1023
5b6dd868
BS
1024static void build_page_bitmap(PageDesc *p)
1025{
1026 int n, tb_start, tb_end;
1027 TranslationBlock *tb;
1028
510a647f 1029 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1030
1031 tb = p->first_tb;
1032 while (tb != NULL) {
1033 n = (uintptr_t)tb & 3;
1034 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1035 /* NOTE: this is subtle as a TB may span two physical pages */
1036 if (n == 0) {
1037 /* NOTE: tb_end may be after the end of the page, but
1038 it is not a problem */
1039 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1040 tb_end = tb_start + tb->size;
1041 if (tb_end > TARGET_PAGE_SIZE) {
1042 tb_end = TARGET_PAGE_SIZE;
1043 }
1044 } else {
1045 tb_start = 0;
1046 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1047 }
510a647f 1048 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1049 tb = tb->page_next[n];
1050 }
1051}
1052
75692087 1053/* Called with mmap_lock held for user mode emulation. */
648f034c 1054TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1055 target_ulong pc, target_ulong cs_base,
89fee74a 1056 uint32_t flags, int cflags)
5b6dd868 1057{
648f034c 1058 CPUArchState *env = cpu->env_ptr;
5b6dd868 1059 TranslationBlock *tb;
5b6dd868
BS
1060 tb_page_addr_t phys_pc, phys_page2;
1061 target_ulong virt_page2;
fec88f64 1062 tcg_insn_unit *gen_code_buf;
fca8a500 1063 int gen_code_size, search_size;
fec88f64
RH
1064#ifdef CONFIG_PROFILER
1065 int64_t ti;
1066#endif
5b6dd868
BS
1067
1068 phys_pc = get_page_addr_code(env, pc);
56c0269a 1069 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1070 cflags |= CF_USE_ICOUNT;
1071 }
b125f9dc 1072
5b6dd868 1073 tb = tb_alloc(pc);
b125f9dc
RH
1074 if (unlikely(!tb)) {
1075 buffer_overflow:
5b6dd868 1076 /* flush must be done */
bbd77c18 1077 tb_flush(cpu);
5b6dd868
BS
1078 /* cannot fail at this point */
1079 tb = tb_alloc(pc);
b125f9dc 1080 assert(tb != NULL);
5b6dd868 1081 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1082 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1083 }
fec88f64
RH
1084
1085 gen_code_buf = tcg_ctx.code_gen_ptr;
1086 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1087 tb->cs_base = cs_base;
1088 tb->flags = flags;
1089 tb->cflags = cflags;
fec88f64
RH
1090
1091#ifdef CONFIG_PROFILER
1092 tcg_ctx.tb_count1++; /* includes aborted translations because of
1093 exceptions */
1094 ti = profile_getclock();
1095#endif
1096
1097 tcg_func_start(&tcg_ctx);
1098
1099 gen_intermediate_code(env, tb);
1100
1101 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1102
1103 /* generate machine code */
1104 tb->tb_next_offset[0] = 0xffff;
1105 tb->tb_next_offset[1] = 0xffff;
1106 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1107#ifdef USE_DIRECT_JUMP
1108 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1109 tcg_ctx.tb_next = NULL;
1110#else
1111 tcg_ctx.tb_jmp_offset = NULL;
1112 tcg_ctx.tb_next = tb->tb_next;
1113#endif
1114
1115#ifdef CONFIG_PROFILER
1116 tcg_ctx.tb_count++;
1117 tcg_ctx.interm_time += profile_getclock() - ti;
1118 tcg_ctx.code_time -= profile_getclock();
1119#endif
1120
b125f9dc
RH
1121 /* ??? Overflow could be handled better here. In particular, we
1122 don't need to re-do gen_intermediate_code, nor should we re-do
1123 the tcg optimization currently hidden inside tcg_gen_code. All
1124 that should be required is to flush the TBs, allocate a new TB,
1125 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1126 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1127 if (unlikely(gen_code_size < 0)) {
1128 goto buffer_overflow;
1129 }
fca8a500 1130 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1131 if (unlikely(search_size < 0)) {
1132 goto buffer_overflow;
1133 }
fec88f64
RH
1134
1135#ifdef CONFIG_PROFILER
1136 tcg_ctx.code_time += profile_getclock();
1137 tcg_ctx.code_in_len += tb->size;
1138 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1139 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1140#endif
1141
1142#ifdef DEBUG_DISAS
d977e1c2
AB
1143 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1144 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1145 qemu_log("OUT: [size=%d]\n", gen_code_size);
1146 log_disas(tb->tc_ptr, gen_code_size);
1147 qemu_log("\n");
1148 qemu_log_flush();
1149 }
1150#endif
1151
fca8a500
RH
1152 tcg_ctx.code_gen_ptr = (void *)
1153 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1154 CODE_GEN_ALIGN);
5b6dd868
BS
1155
1156 /* check next page if needed */
1157 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1158 phys_page2 = -1;
1159 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1160 phys_page2 = get_page_addr_code(env, virt_page2);
1161 }
1162 tb_link_page(tb, phys_pc, phys_page2);
1163 return tb;
1164}
1165
1166/*
1167 * Invalidate all TBs which intersect with the target physical address range
1168 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1169 * 'is_cpu_write_access' should be true if called from a real cpu write
1170 * access: the virtual CPU will exit the current TB if code is modified inside
1171 * this TB.
75692087
PB
1172 *
1173 * Called with mmap_lock held for user-mode emulation
5b6dd868 1174 */
35865339 1175void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1176{
1177 while (start < end) {
35865339 1178 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1179 start &= TARGET_PAGE_MASK;
1180 start += TARGET_PAGE_SIZE;
1181 }
1182}
1183
1184/*
1185 * Invalidate all TBs which intersect with the target physical address range
1186 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1187 * 'is_cpu_write_access' should be true if called from a real cpu write
1188 * access: the virtual CPU will exit the current TB if code is modified inside
1189 * this TB.
75692087
PB
1190 *
1191 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1192 */
1193void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1194 int is_cpu_write_access)
1195{
1196 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1197 CPUState *cpu = current_cpu;
baea4fae 1198#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1199 CPUArchState *env = NULL;
1200#endif
5b6dd868
BS
1201 tb_page_addr_t tb_start, tb_end;
1202 PageDesc *p;
1203 int n;
1204#ifdef TARGET_HAS_PRECISE_SMC
1205 int current_tb_not_found = is_cpu_write_access;
1206 TranslationBlock *current_tb = NULL;
1207 int current_tb_modified = 0;
1208 target_ulong current_pc = 0;
1209 target_ulong current_cs_base = 0;
89fee74a 1210 uint32_t current_flags = 0;
5b6dd868
BS
1211#endif /* TARGET_HAS_PRECISE_SMC */
1212
1213 p = page_find(start >> TARGET_PAGE_BITS);
1214 if (!p) {
1215 return;
1216 }
baea4fae 1217#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1218 if (cpu != NULL) {
1219 env = cpu->env_ptr;
d77953b9 1220 }
4917cf44 1221#endif
5b6dd868
BS
1222
1223 /* we remove all the TBs in the range [start, end[ */
1224 /* XXX: see if in some cases it could be faster to invalidate all
1225 the code */
1226 tb = p->first_tb;
1227 while (tb != NULL) {
1228 n = (uintptr_t)tb & 3;
1229 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1230 tb_next = tb->page_next[n];
1231 /* NOTE: this is subtle as a TB may span two physical pages */
1232 if (n == 0) {
1233 /* NOTE: tb_end may be after the end of the page, but
1234 it is not a problem */
1235 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1236 tb_end = tb_start + tb->size;
1237 } else {
1238 tb_start = tb->page_addr[1];
1239 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1240 }
1241 if (!(tb_end <= start || tb_start >= end)) {
1242#ifdef TARGET_HAS_PRECISE_SMC
1243 if (current_tb_not_found) {
1244 current_tb_not_found = 0;
1245 current_tb = NULL;
93afeade 1246 if (cpu->mem_io_pc) {
5b6dd868 1247 /* now we have a real cpu fault */
93afeade 1248 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1249 }
1250 }
1251 if (current_tb == tb &&
1252 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1253 /* If we are modifying the current TB, we must stop
1254 its execution. We could be more precise by checking
1255 that the modification is after the current PC, but it
1256 would require a specialized function to partially
1257 restore the CPU state */
1258
1259 current_tb_modified = 1;
74f10515 1260 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1261 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1262 &current_flags);
1263 }
1264#endif /* TARGET_HAS_PRECISE_SMC */
1265 /* we need to do that to handle the case where a signal
1266 occurs while doing tb_phys_invalidate() */
1267 saved_tb = NULL;
d77953b9
AF
1268 if (cpu != NULL) {
1269 saved_tb = cpu->current_tb;
1270 cpu->current_tb = NULL;
5b6dd868
BS
1271 }
1272 tb_phys_invalidate(tb, -1);
d77953b9
AF
1273 if (cpu != NULL) {
1274 cpu->current_tb = saved_tb;
c3affe56
AF
1275 if (cpu->interrupt_request && cpu->current_tb) {
1276 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1277 }
1278 }
1279 }
1280 tb = tb_next;
1281 }
1282#if !defined(CONFIG_USER_ONLY)
1283 /* if no code remaining, no need to continue to use slow writes */
1284 if (!p->first_tb) {
1285 invalidate_page_bitmap(p);
fc377bcf 1286 tlb_unprotect_code(start);
5b6dd868
BS
1287 }
1288#endif
1289#ifdef TARGET_HAS_PRECISE_SMC
1290 if (current_tb_modified) {
1291 /* we generate a block containing just the instruction
1292 modifying the memory. It will ensure that it cannot modify
1293 itself */
d77953b9 1294 cpu->current_tb = NULL;
648f034c 1295 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1296 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1297 }
1298#endif
1299}
1300
1301/* len must be <= 8 and start must be a multiple of len */
1302void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1303{
1304 PageDesc *p;
5b6dd868
BS
1305
1306#if 0
1307 if (1) {
1308 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1309 cpu_single_env->mem_io_vaddr, len,
1310 cpu_single_env->eip,
1311 cpu_single_env->eip +
1312 (intptr_t)cpu_single_env->segs[R_CS].base);
1313 }
1314#endif
1315 p = page_find(start >> TARGET_PAGE_BITS);
1316 if (!p) {
1317 return;
1318 }
fc377bcf
PB
1319 if (!p->code_bitmap &&
1320 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1321 /* build code bitmap */
1322 build_page_bitmap(p);
1323 }
5b6dd868 1324 if (p->code_bitmap) {
510a647f
EC
1325 unsigned int nr;
1326 unsigned long b;
1327
1328 nr = start & ~TARGET_PAGE_MASK;
1329 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1330 if (b & ((1 << len) - 1)) {
1331 goto do_invalidate;
1332 }
1333 } else {
1334 do_invalidate:
1335 tb_invalidate_phys_page_range(start, start + len, 1);
1336 }
1337}
1338
1339#if !defined(CONFIG_SOFTMMU)
75692087 1340/* Called with mmap_lock held. */
5b6dd868 1341static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1342 uintptr_t pc, void *puc,
1343 bool locked)
5b6dd868
BS
1344{
1345 TranslationBlock *tb;
1346 PageDesc *p;
1347 int n;
1348#ifdef TARGET_HAS_PRECISE_SMC
1349 TranslationBlock *current_tb = NULL;
4917cf44
AF
1350 CPUState *cpu = current_cpu;
1351 CPUArchState *env = NULL;
5b6dd868
BS
1352 int current_tb_modified = 0;
1353 target_ulong current_pc = 0;
1354 target_ulong current_cs_base = 0;
89fee74a 1355 uint32_t current_flags = 0;
5b6dd868
BS
1356#endif
1357
1358 addr &= TARGET_PAGE_MASK;
1359 p = page_find(addr >> TARGET_PAGE_BITS);
1360 if (!p) {
1361 return;
1362 }
1363 tb = p->first_tb;
1364#ifdef TARGET_HAS_PRECISE_SMC
1365 if (tb && pc != 0) {
1366 current_tb = tb_find_pc(pc);
1367 }
4917cf44
AF
1368 if (cpu != NULL) {
1369 env = cpu->env_ptr;
d77953b9 1370 }
5b6dd868
BS
1371#endif
1372 while (tb != NULL) {
1373 n = (uintptr_t)tb & 3;
1374 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1375#ifdef TARGET_HAS_PRECISE_SMC
1376 if (current_tb == tb &&
1377 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1378 /* If we are modifying the current TB, we must stop
1379 its execution. We could be more precise by checking
1380 that the modification is after the current PC, but it
1381 would require a specialized function to partially
1382 restore the CPU state */
1383
1384 current_tb_modified = 1;
74f10515 1385 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1386 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1387 &current_flags);
1388 }
1389#endif /* TARGET_HAS_PRECISE_SMC */
1390 tb_phys_invalidate(tb, addr);
1391 tb = tb->page_next[n];
1392 }
1393 p->first_tb = NULL;
1394#ifdef TARGET_HAS_PRECISE_SMC
1395 if (current_tb_modified) {
1396 /* we generate a block containing just the instruction
1397 modifying the memory. It will ensure that it cannot modify
1398 itself */
d77953b9 1399 cpu->current_tb = NULL;
648f034c 1400 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1401 if (locked) {
1402 mmap_unlock();
1403 }
0ea8cb88 1404 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1405 }
1406#endif
1407}
1408#endif
1409
75692087
PB
1410/* add the tb in the target page and protect it if necessary
1411 *
1412 * Called with mmap_lock held for user-mode emulation.
1413 */
5b6dd868
BS
1414static inline void tb_alloc_page(TranslationBlock *tb,
1415 unsigned int n, tb_page_addr_t page_addr)
1416{
1417 PageDesc *p;
1418#ifndef CONFIG_USER_ONLY
1419 bool page_already_protected;
1420#endif
1421
1422 tb->page_addr[n] = page_addr;
1423 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1424 tb->page_next[n] = p->first_tb;
1425#ifndef CONFIG_USER_ONLY
1426 page_already_protected = p->first_tb != NULL;
1427#endif
1428 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1429 invalidate_page_bitmap(p);
1430
5b6dd868
BS
1431#if defined(CONFIG_USER_ONLY)
1432 if (p->flags & PAGE_WRITE) {
1433 target_ulong addr;
1434 PageDesc *p2;
1435 int prot;
1436
1437 /* force the host page as non writable (writes will have a
1438 page fault + mprotect overhead) */
1439 page_addr &= qemu_host_page_mask;
1440 prot = 0;
1441 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1442 addr += TARGET_PAGE_SIZE) {
1443
1444 p2 = page_find(addr >> TARGET_PAGE_BITS);
1445 if (!p2) {
1446 continue;
1447 }
1448 prot |= p2->flags;
1449 p2->flags &= ~PAGE_WRITE;
1450 }
1451 mprotect(g2h(page_addr), qemu_host_page_size,
1452 (prot & PAGE_BITS) & ~PAGE_WRITE);
1453#ifdef DEBUG_TB_INVALIDATE
1454 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1455 page_addr);
1456#endif
1457 }
1458#else
1459 /* if some code is already present, then the pages are already
1460 protected. So we handle the case where only the first TB is
1461 allocated in a physical page */
1462 if (!page_already_protected) {
1463 tlb_protect_code(page_addr);
1464 }
1465#endif
5b6dd868
BS
1466}
1467
1468/* add a new TB and link it to the physical page tables. phys_page2 is
75692087 1469 * (-1) to indicate that only one page contains the TB.
9fd1a948
PB
1470 *
1471 * Called with mmap_lock held for user-mode emulation.
75692087 1472 */
5b6dd868
BS
1473static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1474 tb_page_addr_t phys_page2)
1475{
1476 unsigned int h;
1477 TranslationBlock **ptb;
1478
5b6dd868
BS
1479 /* add in the physical hash table */
1480 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1481 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1482 tb->phys_hash_next = *ptb;
1483 *ptb = tb;
1484
1485 /* add in the page list */
1486 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1487 if (phys_page2 != -1) {
1488 tb_alloc_page(tb, 1, phys_page2);
1489 } else {
1490 tb->page_addr[1] = -1;
1491 }
1492
1493 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1494 tb->jmp_next[0] = NULL;
1495 tb->jmp_next[1] = NULL;
1496
1497 /* init original jump addresses */
1498 if (tb->tb_next_offset[0] != 0xffff) {
1499 tb_reset_jump(tb, 0);
1500 }
1501 if (tb->tb_next_offset[1] != 0xffff) {
1502 tb_reset_jump(tb, 1);
1503 }
1504
1505#ifdef DEBUG_TB_CHECK
1506 tb_page_check();
1507#endif
5b6dd868
BS
1508}
1509
5b6dd868
BS
1510/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1511 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1512static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1513{
1514 int m_min, m_max, m;
1515 uintptr_t v;
1516 TranslationBlock *tb;
1517
5e5f07e0 1518 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1519 return NULL;
1520 }
0b0d3320
EV
1521 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1522 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1523 return NULL;
1524 }
1525 /* binary search (cf Knuth) */
1526 m_min = 0;
5e5f07e0 1527 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1528 while (m_min <= m_max) {
1529 m = (m_min + m_max) >> 1;
5e5f07e0 1530 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1531 v = (uintptr_t)tb->tc_ptr;
1532 if (v == tc_ptr) {
1533 return tb;
1534 } else if (tc_ptr < v) {
1535 m_max = m - 1;
1536 } else {
1537 m_min = m + 1;
1538 }
1539 }
5e5f07e0 1540 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1541}
1542
ec53b45b 1543#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1544void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1545{
1546 ram_addr_t ram_addr;
5c8a00ce 1547 MemoryRegion *mr;
149f54b5 1548 hwaddr l = 1;
5b6dd868 1549
41063e1e 1550 rcu_read_lock();
29d8ec7b 1551 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1552 if (!(memory_region_is_ram(mr)
1553 || memory_region_is_romd(mr))) {
41063e1e 1554 rcu_read_unlock();
5b6dd868
BS
1555 return;
1556 }
5c8a00ce 1557 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1558 + addr;
5b6dd868 1559 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1560 rcu_read_unlock();
5b6dd868 1561}
ec53b45b 1562#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1563
239c51a5 1564void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1565{
1566 TranslationBlock *tb;
1567
93afeade 1568 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1569 if (tb) {
1570 /* We can use retranslation to find the PC. */
1571 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1572 tb_phys_invalidate(tb, -1);
1573 } else {
1574 /* The exception probably happened in a helper. The CPU state should
1575 have been saved before calling it. Fetch the PC from there. */
1576 CPUArchState *env = cpu->env_ptr;
1577 target_ulong pc, cs_base;
1578 tb_page_addr_t addr;
89fee74a 1579 uint32_t flags;
8d302e76
AJ
1580
1581 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1582 addr = get_page_addr_code(env, pc);
1583 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1584 }
5b6dd868
BS
1585}
1586
1587#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1588/* in deterministic execution mode, instructions doing device I/Os
1589 must be at the end of the TB */
90b40a69 1590void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1591{
a47dddd7 1592#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1593 CPUArchState *env = cpu->env_ptr;
a47dddd7 1594#endif
5b6dd868
BS
1595 TranslationBlock *tb;
1596 uint32_t n, cflags;
1597 target_ulong pc, cs_base;
89fee74a 1598 uint32_t flags;
5b6dd868
BS
1599
1600 tb = tb_find_pc(retaddr);
1601 if (!tb) {
a47dddd7 1602 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1603 (void *)retaddr);
1604 }
28ecfd7a 1605 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1606 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1607 /* Calculate how many instructions had been executed before the fault
1608 occurred. */
28ecfd7a 1609 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1610 /* Generate a new TB ending on the I/O insn. */
1611 n++;
1612 /* On MIPS and SH, delay slot instructions can only be restarted if
1613 they were already the first instruction in the TB. If this is not
1614 the first instruction in a TB then re-execute the preceding
1615 branch. */
1616#if defined(TARGET_MIPS)
1617 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1618 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1619 cpu->icount_decr.u16.low++;
5b6dd868
BS
1620 env->hflags &= ~MIPS_HFLAG_BMASK;
1621 }
1622#elif defined(TARGET_SH4)
1623 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1624 && n > 1) {
1625 env->pc -= 2;
28ecfd7a 1626 cpu->icount_decr.u16.low++;
5b6dd868
BS
1627 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1628 }
1629#endif
1630 /* This should never happen. */
1631 if (n > CF_COUNT_MASK) {
a47dddd7 1632 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1633 }
1634
1635 cflags = n | CF_LAST_IO;
1636 pc = tb->pc;
1637 cs_base = tb->cs_base;
1638 flags = tb->flags;
1639 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1640 if (tb->cflags & CF_NOCACHE) {
1641 if (tb->orig_tb) {
1642 /* Invalidate original TB if this TB was generated in
1643 * cpu_exec_nocache() */
1644 tb_phys_invalidate(tb->orig_tb, -1);
1645 }
1646 tb_free(tb);
1647 }
5b6dd868
BS
1648 /* FIXME: In theory this could raise an exception. In practice
1649 we have already translated the block once so it's probably ok. */
648f034c 1650 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1651 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1652 the first in the TB) then we end up generating a whole new TB and
1653 repeating the fault, which is horribly inefficient.
1654 Better would be to execute just this insn uncached, or generate a
1655 second new TB. */
0ea8cb88 1656 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1657}
1658
611d4f99 1659void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1660{
1661 unsigned int i;
1662
1663 /* Discard jump cache entries for any tb which might potentially
1664 overlap the flushed page. */
1665 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1666 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1667 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1668
1669 i = tb_jmp_cache_hash_page(addr);
8cd70437 1670 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1671 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1672}
1673
1674void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1675{
1676 int i, target_code_size, max_target_code_size;
1677 int direct_jmp_count, direct_jmp2_count, cross_page;
1678 TranslationBlock *tb;
1679
1680 target_code_size = 0;
1681 max_target_code_size = 0;
1682 cross_page = 0;
1683 direct_jmp_count = 0;
1684 direct_jmp2_count = 0;
5e5f07e0
EV
1685 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1686 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1687 target_code_size += tb->size;
1688 if (tb->size > max_target_code_size) {
1689 max_target_code_size = tb->size;
1690 }
1691 if (tb->page_addr[1] != -1) {
1692 cross_page++;
1693 }
1694 if (tb->tb_next_offset[0] != 0xffff) {
1695 direct_jmp_count++;
1696 if (tb->tb_next_offset[1] != 0xffff) {
1697 direct_jmp2_count++;
1698 }
1699 }
1700 }
1701 /* XXX: avoid using doubles ? */
1702 cpu_fprintf(f, "Translation buffer state:\n");
1703 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1704 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1705 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1706 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1707 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1708 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1709 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1710 tcg_ctx.tb_ctx.nb_tbs : 0,
1711 max_target_code_size);
5b6dd868 1712 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1713 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1714 tcg_ctx.code_gen_buffer) /
1715 tcg_ctx.tb_ctx.nb_tbs : 0,
1716 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1717 tcg_ctx.code_gen_buffer) /
1718 target_code_size : 0);
1719 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1720 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1721 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1722 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1723 direct_jmp_count,
5e5f07e0
EV
1724 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1725 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1726 direct_jmp2_count,
5e5f07e0
EV
1727 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1728 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1729 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1730 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1731 cpu_fprintf(f, "TB invalidate count %d\n",
1732 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1733 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1734 tcg_dump_info(f, cpu_fprintf);
1735}
1736
246ae24d
MF
1737void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1738{
1739 tcg_dump_op_count(f, cpu_fprintf);
1740}
1741
5b6dd868
BS
1742#else /* CONFIG_USER_ONLY */
1743
c3affe56 1744void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1745{
259186a7 1746 cpu->interrupt_request |= mask;
378df4b2 1747 cpu->tcg_exit_req = 1;
5b6dd868
BS
1748}
1749
1750/*
1751 * Walks guest process memory "regions" one by one
1752 * and calls callback function 'fn' for each region.
1753 */
1754struct walk_memory_regions_data {
1755 walk_memory_regions_fn fn;
1756 void *priv;
1a1c4db9 1757 target_ulong start;
5b6dd868
BS
1758 int prot;
1759};
1760
1761static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1762 target_ulong end, int new_prot)
5b6dd868 1763{
1a1c4db9 1764 if (data->start != -1u) {
5b6dd868
BS
1765 int rc = data->fn(data->priv, data->start, end, data->prot);
1766 if (rc != 0) {
1767 return rc;
1768 }
1769 }
1770
1a1c4db9 1771 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1772 data->prot = new_prot;
1773
1774 return 0;
1775}
1776
1777static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1778 target_ulong base, int level, void **lp)
5b6dd868 1779{
1a1c4db9 1780 target_ulong pa;
5b6dd868
BS
1781 int i, rc;
1782
1783 if (*lp == NULL) {
1784 return walk_memory_regions_end(data, base, 0);
1785 }
1786
1787 if (level == 0) {
1788 PageDesc *pd = *lp;
1789
03f49957 1790 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1791 int prot = pd[i].flags;
1792
1793 pa = base | (i << TARGET_PAGE_BITS);
1794 if (prot != data->prot) {
1795 rc = walk_memory_regions_end(data, pa, prot);
1796 if (rc != 0) {
1797 return rc;
1798 }
1799 }
1800 }
1801 } else {
1802 void **pp = *lp;
1803
03f49957 1804 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1805 pa = base | ((target_ulong)i <<
03f49957 1806 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1807 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1808 if (rc != 0) {
1809 return rc;
1810 }
1811 }
1812 }
1813
1814 return 0;
1815}
1816
1817int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1818{
1819 struct walk_memory_regions_data data;
1820 uintptr_t i;
1821
1822 data.fn = fn;
1823 data.priv = priv;
1a1c4db9 1824 data.start = -1u;
5b6dd868
BS
1825 data.prot = 0;
1826
1827 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1828 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1829 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1830 if (rc != 0) {
1831 return rc;
1832 }
1833 }
1834
1835 return walk_memory_regions_end(&data, 0, 0);
1836}
1837
1a1c4db9
MI
1838static int dump_region(void *priv, target_ulong start,
1839 target_ulong end, unsigned long prot)
5b6dd868
BS
1840{
1841 FILE *f = (FILE *)priv;
1842
1a1c4db9
MI
1843 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1844 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1845 start, end, end - start,
1846 ((prot & PAGE_READ) ? 'r' : '-'),
1847 ((prot & PAGE_WRITE) ? 'w' : '-'),
1848 ((prot & PAGE_EXEC) ? 'x' : '-'));
1849
1850 return 0;
1851}
1852
1853/* dump memory mappings */
1854void page_dump(FILE *f)
1855{
1a1c4db9 1856 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1857 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1858 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1859 walk_memory_regions(f, dump_region);
1860}
1861
1862int page_get_flags(target_ulong address)
1863{
1864 PageDesc *p;
1865
1866 p = page_find(address >> TARGET_PAGE_BITS);
1867 if (!p) {
1868 return 0;
1869 }
1870 return p->flags;
1871}
1872
1873/* Modify the flags of a page and invalidate the code if necessary.
1874 The flag PAGE_WRITE_ORG is positioned automatically depending
1875 on PAGE_WRITE. The mmap_lock should already be held. */
1876void page_set_flags(target_ulong start, target_ulong end, int flags)
1877{
1878 target_ulong addr, len;
1879
1880 /* This function should never be called with addresses outside the
1881 guest address space. If this assert fires, it probably indicates
1882 a missing call to h2g_valid. */
1883#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1884 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1885#endif
1886 assert(start < end);
1887
1888 start = start & TARGET_PAGE_MASK;
1889 end = TARGET_PAGE_ALIGN(end);
1890
1891 if (flags & PAGE_WRITE) {
1892 flags |= PAGE_WRITE_ORG;
1893 }
1894
1895 for (addr = start, len = end - start;
1896 len != 0;
1897 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1898 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1899
1900 /* If the write protection bit is set, then we invalidate
1901 the code inside. */
1902 if (!(p->flags & PAGE_WRITE) &&
1903 (flags & PAGE_WRITE) &&
1904 p->first_tb) {
d02532f0 1905 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1906 }
1907 p->flags = flags;
1908 }
1909}
1910
1911int page_check_range(target_ulong start, target_ulong len, int flags)
1912{
1913 PageDesc *p;
1914 target_ulong end;
1915 target_ulong addr;
1916
1917 /* This function should never be called with addresses outside the
1918 guest address space. If this assert fires, it probably indicates
1919 a missing call to h2g_valid. */
1920#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1921 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1922#endif
1923
1924 if (len == 0) {
1925 return 0;
1926 }
1927 if (start + len - 1 < start) {
1928 /* We've wrapped around. */
1929 return -1;
1930 }
1931
1932 /* must do before we loose bits in the next step */
1933 end = TARGET_PAGE_ALIGN(start + len);
1934 start = start & TARGET_PAGE_MASK;
1935
1936 for (addr = start, len = end - start;
1937 len != 0;
1938 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1939 p = page_find(addr >> TARGET_PAGE_BITS);
1940 if (!p) {
1941 return -1;
1942 }
1943 if (!(p->flags & PAGE_VALID)) {
1944 return -1;
1945 }
1946
1947 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1948 return -1;
1949 }
1950 if (flags & PAGE_WRITE) {
1951 if (!(p->flags & PAGE_WRITE_ORG)) {
1952 return -1;
1953 }
1954 /* unprotect the page if it was put read-only because it
1955 contains translated code */
1956 if (!(p->flags & PAGE_WRITE)) {
1957 if (!page_unprotect(addr, 0, NULL)) {
1958 return -1;
1959 }
1960 }
5b6dd868
BS
1961 }
1962 }
1963 return 0;
1964}
1965
1966/* called from signal handler: invalidate the code and unprotect the
1967 page. Return TRUE if the fault was successfully handled. */
1968int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1969{
1970 unsigned int prot;
1971 PageDesc *p;
1972 target_ulong host_start, host_end, addr;
1973
1974 /* Technically this isn't safe inside a signal handler. However we
1975 know this only ever happens in a synchronous SEGV handler, so in
1976 practice it seems to be ok. */
1977 mmap_lock();
1978
1979 p = page_find(address >> TARGET_PAGE_BITS);
1980 if (!p) {
1981 mmap_unlock();
1982 return 0;
1983 }
1984
1985 /* if the page was really writable, then we change its
1986 protection back to writable */
1987 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1988 host_start = address & qemu_host_page_mask;
1989 host_end = host_start + qemu_host_page_size;
1990
1991 prot = 0;
1992 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1993 p = page_find(addr >> TARGET_PAGE_BITS);
1994 p->flags |= PAGE_WRITE;
1995 prot |= p->flags;
1996
1997 /* and since the content will be modified, we must invalidate
1998 the corresponding translated code. */
d02532f0 1999 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
2000#ifdef DEBUG_TB_CHECK
2001 tb_invalidate_check(addr);
2002#endif
2003 }
2004 mprotect((void *)g2h(host_start), qemu_host_page_size,
2005 prot & PAGE_BITS);
2006
2007 mmap_unlock();
2008 return 1;
2009 }
2010 mmap_unlock();
2011 return 0;
2012}
2013#endif /* CONFIG_USER_ONLY */