]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
*-user: Fix typo in comment (ulocking -> unlocking)
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
76cad711 36#include "disas/disas.h"
57fec1fe 37#include "tcg.h"
5b6dd868
BS
38#if defined(CONFIG_USER_ONLY)
39#include "qemu.h"
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
0bc3cd62
PB
55#else
56#include "exec/address-spaces.h"
5b6dd868
BS
57#endif
58
022c62cb 59#include "exec/cputlb.h"
5b6dd868 60#include "translate-all.h"
0aa09897 61#include "qemu/timer.h"
5b6dd868
BS
62
63//#define DEBUG_TB_INVALIDATE
64//#define DEBUG_FLUSH
65/* make various TB consistency checks */
66//#define DEBUG_TB_CHECK
67
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
73#define SMC_BITMAP_USE_THRESHOLD 10
74
5b6dd868
BS
75typedef struct PageDesc {
76 /* list of TBs intersecting this ram page */
77 TranslationBlock *first_tb;
78 /* in order to optimize self modifying code, we count the number
79 of lookups we do to a given page to use a bitmap */
80 unsigned int code_write_count;
81 uint8_t *code_bitmap;
82#if defined(CONFIG_USER_ONLY)
83 unsigned long flags;
84#endif
85} PageDesc;
86
87/* In system mode we want L1_MAP to be based on ram offsets,
88 while in user mode we want it to be based on virtual addresses. */
89#if !defined(CONFIG_USER_ONLY)
90#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
91# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
94#endif
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
97#endif
98
99/* The bits remaining after N lower levels of page tables. */
100#define V_L1_BITS_REM \
101 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
102
103#if V_L1_BITS_REM < 4
104#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
105#else
106#define V_L1_BITS V_L1_BITS_REM
107#endif
108
109#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
110
111#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
112
113uintptr_t qemu_real_host_page_size;
114uintptr_t qemu_host_page_size;
115uintptr_t qemu_host_page_mask;
116
117/* This is a multi-level map on the virtual address space.
118 The bottom level has pointers to PageDesc. */
119static void *l1_map[V_L1_SIZE];
120
57fec1fe
FB
121/* code generation context */
122TCGContext tcg_ctx;
d19893da 123
5b6dd868
BS
124static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
125 tb_page_addr_t phys_page2);
a8a826a3 126static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 127
57fec1fe
FB
128void cpu_gen_init(void)
129{
130 tcg_context_init(&tcg_ctx);
57fec1fe
FB
131}
132
d19893da 133/* return non zero if the very first instruction is invalid so that
5fafdf24 134 the virtual CPU can trigger an exception.
d19893da
FB
135
136 '*gen_code_size_ptr' contains the size of the generated code (host
137 code).
138*/
9349b4f9 139int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 140{
57fec1fe 141 TCGContext *s = &tcg_ctx;
d19893da
FB
142 uint8_t *gen_code_buf;
143 int gen_code_size;
57fec1fe
FB
144#ifdef CONFIG_PROFILER
145 int64_t ti;
146#endif
147
148#ifdef CONFIG_PROFILER
b67d9a52
FB
149 s->tb_count1++; /* includes aborted translations because of
150 exceptions */
57fec1fe
FB
151 ti = profile_getclock();
152#endif
153 tcg_func_start(s);
d19893da 154
2cfc5f17
TS
155 gen_intermediate_code(env, tb);
156
ec6338ba 157 /* generate machine code */
57fec1fe 158 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
159 tb->tb_next_offset[0] = 0xffff;
160 tb->tb_next_offset[1] = 0xffff;
57fec1fe 161 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 162#ifdef USE_DIRECT_JUMP
57fec1fe
FB
163 s->tb_jmp_offset = tb->tb_jmp_offset;
164 s->tb_next = NULL;
d19893da 165#else
57fec1fe
FB
166 s->tb_jmp_offset = NULL;
167 s->tb_next = tb->tb_next;
d19893da 168#endif
57fec1fe
FB
169
170#ifdef CONFIG_PROFILER
b67d9a52
FB
171 s->tb_count++;
172 s->interm_time += profile_getclock() - ti;
173 s->code_time -= profile_getclock();
57fec1fe 174#endif
54604f74 175 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 176 *gen_code_size_ptr = gen_code_size;
57fec1fe 177#ifdef CONFIG_PROFILER
b67d9a52
FB
178 s->code_time += profile_getclock();
179 s->code_in_len += tb->size;
180 s->code_out_len += gen_code_size;
57fec1fe
FB
181#endif
182
d19893da 183#ifdef DEBUG_DISAS
8fec2b8c 184 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
93fcfe39
AL
185 qemu_log("OUT: [size=%d]\n", *gen_code_size_ptr);
186 log_disas(tb->tc_ptr, *gen_code_size_ptr);
187 qemu_log("\n");
31b1a7b4 188 qemu_log_flush();
d19893da
FB
189 }
190#endif
191 return 0;
192}
193
5fafdf24 194/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 195 */
a8a826a3
BS
196static int cpu_restore_state_from_tb(TranslationBlock *tb, CPUArchState *env,
197 uintptr_t searched_pc)
d19893da 198{
57fec1fe
FB
199 TCGContext *s = &tcg_ctx;
200 int j;
6375e09e 201 uintptr_t tc_ptr;
57fec1fe
FB
202#ifdef CONFIG_PROFILER
203 int64_t ti;
204#endif
205
206#ifdef CONFIG_PROFILER
207 ti = profile_getclock();
208#endif
209 tcg_func_start(s);
d19893da 210
2cfc5f17 211 gen_intermediate_code_pc(env, tb);
3b46e624 212
2e70f6ef
PB
213 if (use_icount) {
214 /* Reset the cycle counter to the start of the block. */
215 env->icount_decr.u16.low += tb->icount;
216 /* Clear the IO flag. */
217 env->can_do_io = 0;
218 }
219
d19893da 220 /* find opc index corresponding to search_pc */
6375e09e 221 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
222 if (searched_pc < tc_ptr)
223 return -1;
57fec1fe
FB
224
225 s->tb_next_offset = tb->tb_next_offset;
226#ifdef USE_DIRECT_JUMP
227 s->tb_jmp_offset = tb->tb_jmp_offset;
228 s->tb_next = NULL;
229#else
230 s->tb_jmp_offset = NULL;
231 s->tb_next = tb->tb_next;
232#endif
54604f74 233 j = tcg_gen_code_search_pc(s, (uint8_t *)tc_ptr, searched_pc - tc_ptr);
57fec1fe
FB
234 if (j < 0)
235 return -1;
d19893da 236 /* now find start of instruction before */
ab1103de 237 while (s->gen_opc_instr_start[j] == 0) {
d19893da 238 j--;
ab1103de 239 }
c9c99c22 240 env->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 241
e87b7cb0 242 restore_state_to_opc(env, tb, j);
57fec1fe
FB
243
244#ifdef CONFIG_PROFILER
b67d9a52
FB
245 s->restore_time += profile_getclock() - ti;
246 s->restore_count++;
57fec1fe 247#endif
d19893da
FB
248 return 0;
249}
5b6dd868 250
a8a826a3
BS
251bool cpu_restore_state(CPUArchState *env, uintptr_t retaddr)
252{
253 TranslationBlock *tb;
254
255 tb = tb_find_pc(retaddr);
256 if (tb) {
257 cpu_restore_state_from_tb(tb, env, retaddr);
258 return true;
259 }
260 return false;
261}
262
5b6dd868
BS
263#ifdef _WIN32
264static inline void map_exec(void *addr, long size)
265{
266 DWORD old_protect;
267 VirtualProtect(addr, size,
268 PAGE_EXECUTE_READWRITE, &old_protect);
269}
270#else
271static inline void map_exec(void *addr, long size)
272{
273 unsigned long start, end, page_size;
274
275 page_size = getpagesize();
276 start = (unsigned long)addr;
277 start &= ~(page_size - 1);
278
279 end = (unsigned long)addr + size;
280 end += page_size - 1;
281 end &= ~(page_size - 1);
282
283 mprotect((void *)start, end - start,
284 PROT_READ | PROT_WRITE | PROT_EXEC);
285}
286#endif
287
288static void page_init(void)
289{
290 /* NOTE: we can always suppose that qemu_host_page_size >=
291 TARGET_PAGE_SIZE */
292#ifdef _WIN32
293 {
294 SYSTEM_INFO system_info;
295
296 GetSystemInfo(&system_info);
297 qemu_real_host_page_size = system_info.dwPageSize;
298 }
299#else
300 qemu_real_host_page_size = getpagesize();
301#endif
302 if (qemu_host_page_size == 0) {
303 qemu_host_page_size = qemu_real_host_page_size;
304 }
305 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
306 qemu_host_page_size = TARGET_PAGE_SIZE;
307 }
308 qemu_host_page_mask = ~(qemu_host_page_size - 1);
309
310#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
311 {
312#ifdef HAVE_KINFO_GETVMMAP
313 struct kinfo_vmentry *freep;
314 int i, cnt;
315
316 freep = kinfo_getvmmap(getpid(), &cnt);
317 if (freep) {
318 mmap_lock();
319 for (i = 0; i < cnt; i++) {
320 unsigned long startaddr, endaddr;
321
322 startaddr = freep[i].kve_start;
323 endaddr = freep[i].kve_end;
324 if (h2g_valid(startaddr)) {
325 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
326
327 if (h2g_valid(endaddr)) {
328 endaddr = h2g(endaddr);
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
330 } else {
331#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
332 endaddr = ~0ul;
333 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
334#endif
335 }
336 }
337 }
338 free(freep);
339 mmap_unlock();
340 }
341#else
342 FILE *f;
343
344 last_brk = (unsigned long)sbrk(0);
345
346 f = fopen("/compat/linux/proc/self/maps", "r");
347 if (f) {
348 mmap_lock();
349
350 do {
351 unsigned long startaddr, endaddr;
352 int n;
353
354 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
355
356 if (n == 2 && h2g_valid(startaddr)) {
357 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
358
359 if (h2g_valid(endaddr)) {
360 endaddr = h2g(endaddr);
361 } else {
362 endaddr = ~0ul;
363 }
364 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
365 }
366 } while (!feof(f));
367
368 fclose(f);
369 mmap_unlock();
370 }
371#endif
372 }
373#endif
374}
375
376static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
377{
378 PageDesc *pd;
379 void **lp;
380 int i;
381
382#if defined(CONFIG_USER_ONLY)
383 /* We can't use g_malloc because it may recurse into a locked mutex. */
384# define ALLOC(P, SIZE) \
385 do { \
386 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
387 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
388 } while (0)
389#else
390# define ALLOC(P, SIZE) \
391 do { P = g_malloc0(SIZE); } while (0)
392#endif
393
394 /* Level 1. Always allocated. */
395 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
396
397 /* Level 2..N-1. */
398 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
399 void **p = *lp;
400
401 if (p == NULL) {
402 if (!alloc) {
403 return NULL;
404 }
405 ALLOC(p, sizeof(void *) * L2_SIZE);
406 *lp = p;
407 }
408
409 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
410 }
411
412 pd = *lp;
413 if (pd == NULL) {
414 if (!alloc) {
415 return NULL;
416 }
417 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
418 *lp = pd;
419 }
420
421#undef ALLOC
422
423 return pd + (index & (L2_SIZE - 1));
424}
425
426static inline PageDesc *page_find(tb_page_addr_t index)
427{
428 return page_find_alloc(index, 0);
429}
430
431#if !defined(CONFIG_USER_ONLY)
432#define mmap_lock() do { } while (0)
433#define mmap_unlock() do { } while (0)
434#endif
435
436#if defined(CONFIG_USER_ONLY)
437/* Currently it is not recommended to allocate big chunks of data in
438 user mode. It will change when a dedicated libc will be used. */
439/* ??? 64-bit hosts ought to have no problem mmaping data outside the
440 region in which the guest needs to run. Revisit this. */
441#define USE_STATIC_CODE_GEN_BUFFER
442#endif
443
444/* ??? Should configure for this, not list operating systems here. */
445#if (defined(__linux__) \
446 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
447 || defined(__DragonFly__) || defined(__OpenBSD__) \
448 || defined(__NetBSD__))
449# define USE_MMAP
450#endif
451
452/* Minimum size of the code gen buffer. This number is randomly chosen,
453 but not so small that we can't have a fair number of TB's live. */
454#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
455
456/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
457 indicated, this is constrained by the range of direct branches on the
458 host cpu, as used by the TCG implementation of goto_tb. */
459#if defined(__x86_64__)
460# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
461#elif defined(__sparc__)
462# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
463#elif defined(__aarch64__)
464# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
465#elif defined(__arm__)
466# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
467#elif defined(__s390x__)
468 /* We have a +- 4GB range on the branches; leave some slop. */
469# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
470#else
471# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
472#endif
473
474#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
475
476#define DEFAULT_CODE_GEN_BUFFER_SIZE \
477 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
478 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
479
480static inline size_t size_code_gen_buffer(size_t tb_size)
481{
482 /* Size the buffer. */
483 if (tb_size == 0) {
484#ifdef USE_STATIC_CODE_GEN_BUFFER
485 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
486#else
487 /* ??? Needs adjustments. */
488 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
489 static buffer, we could size this on RESERVED_VA, on the text
490 segment size of the executable, or continue to use the default. */
491 tb_size = (unsigned long)(ram_size / 4);
492#endif
493 }
494 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
495 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
496 }
497 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
498 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
499 }
0b0d3320 500 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
501 return tb_size;
502}
503
504#ifdef USE_STATIC_CODE_GEN_BUFFER
505static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
506 __attribute__((aligned(CODE_GEN_ALIGN)));
507
508static inline void *alloc_code_gen_buffer(void)
509{
0b0d3320 510 map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
511 return static_code_gen_buffer;
512}
513#elif defined(USE_MMAP)
514static inline void *alloc_code_gen_buffer(void)
515{
516 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
517 uintptr_t start = 0;
518 void *buf;
519
520 /* Constrain the position of the buffer based on the host cpu.
521 Note that these addresses are chosen in concert with the
522 addresses assigned in the relevant linker script file. */
523# if defined(__PIE__) || defined(__PIC__)
524 /* Don't bother setting a preferred location if we're building
525 a position-independent executable. We're more likely to get
526 an address near the main executable if we let the kernel
527 choose the address. */
528# elif defined(__x86_64__) && defined(MAP_32BIT)
529 /* Force the memory down into low memory with the executable.
530 Leave the choice of exact location with the kernel. */
531 flags |= MAP_32BIT;
532 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
533 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
534 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
535 }
536# elif defined(__sparc__)
537 start = 0x40000000ul;
538# elif defined(__s390x__)
539 start = 0x90000000ul;
540# endif
541
0b0d3320 542 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868
BS
543 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
544 return buf == MAP_FAILED ? NULL : buf;
545}
546#else
547static inline void *alloc_code_gen_buffer(void)
548{
0b0d3320 549 void *buf = g_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
550
551 if (buf) {
0b0d3320 552 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
553 }
554 return buf;
555}
556#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
557
558static inline void code_gen_alloc(size_t tb_size)
559{
0b0d3320
EV
560 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
561 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
562 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
563 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
564 exit(1);
565 }
566
0b0d3320
EV
567 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
568 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
569
570 /* Steal room for the prologue at the end of the buffer. This ensures
571 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
572 from TB's to the prologue are going to be in range. It also means
573 that we don't need to mark (additional) portions of the data segment
574 as executable. */
0b0d3320
EV
575 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
576 tcg_ctx.code_gen_buffer_size - 1024;
577 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 578
0b0d3320 579 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 580 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
581 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
582 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
583 tcg_ctx.tb_ctx.tbs =
584 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
585}
586
587/* Must be called before using the QEMU cpus. 'tb_size' is the size
588 (in bytes) allocated to the translation buffer. Zero means default
589 size. */
590void tcg_exec_init(unsigned long tb_size)
591{
592 cpu_gen_init();
593 code_gen_alloc(tb_size);
0b0d3320
EV
594 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
595 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
596 page_init();
597#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
598 /* There's no guest base to take into account, so go ahead and
599 initialize the prologue now. */
600 tcg_prologue_init(&tcg_ctx);
601#endif
602}
603
604bool tcg_enabled(void)
605{
0b0d3320 606 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
607}
608
609/* Allocate a new translation block. Flush the translation buffer if
610 too many translation blocks or too much generated code. */
611static TranslationBlock *tb_alloc(target_ulong pc)
612{
613 TranslationBlock *tb;
614
5e5f07e0 615 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
616 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
617 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
618 return NULL;
619 }
5e5f07e0 620 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
621 tb->pc = pc;
622 tb->cflags = 0;
623 return tb;
624}
625
626void tb_free(TranslationBlock *tb)
627{
628 /* In practice this is mostly used for single use temporary TB
629 Ignore the hard cases and just back up if this TB happens to
630 be the last one generated. */
5e5f07e0
EV
631 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
632 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 633 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 634 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
635 }
636}
637
638static inline void invalidate_page_bitmap(PageDesc *p)
639{
640 if (p->code_bitmap) {
641 g_free(p->code_bitmap);
642 p->code_bitmap = NULL;
643 }
644 p->code_write_count = 0;
645}
646
647/* Set to NULL all the 'first_tb' fields in all PageDescs. */
648static void page_flush_tb_1(int level, void **lp)
649{
650 int i;
651
652 if (*lp == NULL) {
653 return;
654 }
655 if (level == 0) {
656 PageDesc *pd = *lp;
657
658 for (i = 0; i < L2_SIZE; ++i) {
659 pd[i].first_tb = NULL;
660 invalidate_page_bitmap(pd + i);
661 }
662 } else {
663 void **pp = *lp;
664
665 for (i = 0; i < L2_SIZE; ++i) {
666 page_flush_tb_1(level - 1, pp + i);
667 }
668 }
669}
670
671static void page_flush_tb(void)
672{
673 int i;
674
675 for (i = 0; i < V_L1_SIZE; i++) {
676 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
677 }
678}
679
680/* flush all the translation blocks */
681/* XXX: tb_flush is currently not thread safe */
682void tb_flush(CPUArchState *env1)
683{
182735ef 684 CPUState *cpu;
5b6dd868
BS
685
686#if defined(DEBUG_FLUSH)
687 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 688 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 689 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 690 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 691 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 692#endif
0b0d3320
EV
693 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
694 > tcg_ctx.code_gen_buffer_size) {
5b6dd868
BS
695 cpu_abort(env1, "Internal error: code buffer overflow\n");
696 }
5e5f07e0 697 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 698
bdc44640 699 CPU_FOREACH(cpu) {
182735ef
AF
700 CPUArchState *env = cpu->env_ptr;
701
5b6dd868
BS
702 memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof(void *));
703 }
704
5e5f07e0
EV
705 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0,
706 CODE_GEN_PHYS_HASH_SIZE * sizeof(void *));
5b6dd868
BS
707 page_flush_tb();
708
0b0d3320 709 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
710 /* XXX: flush processor icache at this point if cache flush is
711 expensive */
5e5f07e0 712 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
713}
714
715#ifdef DEBUG_TB_CHECK
716
717static void tb_invalidate_check(target_ulong address)
718{
719 TranslationBlock *tb;
720 int i;
721
722 address &= TARGET_PAGE_MASK;
723 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 724 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
725 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
726 address >= tb->pc + tb->size)) {
727 printf("ERROR invalidate: address=" TARGET_FMT_lx
728 " PC=%08lx size=%04x\n",
729 address, (long)tb->pc, tb->size);
730 }
731 }
732 }
733}
734
735/* verify that all the pages have correct rights for code */
736static void tb_page_check(void)
737{
738 TranslationBlock *tb;
739 int i, flags1, flags2;
740
741 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
742 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
743 tb = tb->phys_hash_next) {
5b6dd868
BS
744 flags1 = page_get_flags(tb->pc);
745 flags2 = page_get_flags(tb->pc + tb->size - 1);
746 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
747 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
748 (long)tb->pc, tb->size, flags1, flags2);
749 }
750 }
751 }
752}
753
754#endif
755
0c884d16 756static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
757{
758 TranslationBlock *tb1;
759
760 for (;;) {
761 tb1 = *ptb;
762 if (tb1 == tb) {
0c884d16 763 *ptb = tb1->phys_hash_next;
5b6dd868
BS
764 break;
765 }
0c884d16 766 ptb = &tb1->phys_hash_next;
5b6dd868
BS
767 }
768}
769
770static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
771{
772 TranslationBlock *tb1;
773 unsigned int n1;
774
775 for (;;) {
776 tb1 = *ptb;
777 n1 = (uintptr_t)tb1 & 3;
778 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
779 if (tb1 == tb) {
780 *ptb = tb1->page_next[n1];
781 break;
782 }
783 ptb = &tb1->page_next[n1];
784 }
785}
786
787static inline void tb_jmp_remove(TranslationBlock *tb, int n)
788{
789 TranslationBlock *tb1, **ptb;
790 unsigned int n1;
791
792 ptb = &tb->jmp_next[n];
793 tb1 = *ptb;
794 if (tb1) {
795 /* find tb(n) in circular list */
796 for (;;) {
797 tb1 = *ptb;
798 n1 = (uintptr_t)tb1 & 3;
799 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
800 if (n1 == n && tb1 == tb) {
801 break;
802 }
803 if (n1 == 2) {
804 ptb = &tb1->jmp_first;
805 } else {
806 ptb = &tb1->jmp_next[n1];
807 }
808 }
809 /* now we can suppress tb(n) from the list */
810 *ptb = tb->jmp_next[n];
811
812 tb->jmp_next[n] = NULL;
813 }
814}
815
816/* reset the jump entry 'n' of a TB so that it is not chained to
817 another TB */
818static inline void tb_reset_jump(TranslationBlock *tb, int n)
819{
820 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
821}
822
0c884d16 823/* invalidate one TB */
5b6dd868
BS
824void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
825{
182735ef 826 CPUState *cpu;
5b6dd868
BS
827 PageDesc *p;
828 unsigned int h, n1;
829 tb_page_addr_t phys_pc;
830 TranslationBlock *tb1, *tb2;
831
832 /* remove the TB from the hash list */
833 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
834 h = tb_phys_hash_func(phys_pc);
5e5f07e0 835 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
836
837 /* remove the TB from the page list */
838 if (tb->page_addr[0] != page_addr) {
839 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
840 tb_page_remove(&p->first_tb, tb);
841 invalidate_page_bitmap(p);
842 }
843 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
844 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
845 tb_page_remove(&p->first_tb, tb);
846 invalidate_page_bitmap(p);
847 }
848
5e5f07e0 849 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
850
851 /* remove the TB from the hash list */
852 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 853 CPU_FOREACH(cpu) {
182735ef
AF
854 CPUArchState *env = cpu->env_ptr;
855
5b6dd868
BS
856 if (env->tb_jmp_cache[h] == tb) {
857 env->tb_jmp_cache[h] = NULL;
858 }
859 }
860
861 /* suppress this TB from the two jump lists */
862 tb_jmp_remove(tb, 0);
863 tb_jmp_remove(tb, 1);
864
865 /* suppress any remaining jumps to this TB */
866 tb1 = tb->jmp_first;
867 for (;;) {
868 n1 = (uintptr_t)tb1 & 3;
869 if (n1 == 2) {
870 break;
871 }
872 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
873 tb2 = tb1->jmp_next[n1];
874 tb_reset_jump(tb1, n1);
875 tb1->jmp_next[n1] = NULL;
876 tb1 = tb2;
877 }
878 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
879
5e5f07e0 880 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
881}
882
883static inline void set_bits(uint8_t *tab, int start, int len)
884{
885 int end, mask, end1;
886
887 end = start + len;
888 tab += start >> 3;
889 mask = 0xff << (start & 7);
890 if ((start & ~7) == (end & ~7)) {
891 if (start < end) {
892 mask &= ~(0xff << (end & 7));
893 *tab |= mask;
894 }
895 } else {
896 *tab++ |= mask;
897 start = (start + 8) & ~7;
898 end1 = end & ~7;
899 while (start < end1) {
900 *tab++ = 0xff;
901 start += 8;
902 }
903 if (start < end) {
904 mask = ~(0xff << (end & 7));
905 *tab |= mask;
906 }
907 }
908}
909
910static void build_page_bitmap(PageDesc *p)
911{
912 int n, tb_start, tb_end;
913 TranslationBlock *tb;
914
915 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
916
917 tb = p->first_tb;
918 while (tb != NULL) {
919 n = (uintptr_t)tb & 3;
920 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
921 /* NOTE: this is subtle as a TB may span two physical pages */
922 if (n == 0) {
923 /* NOTE: tb_end may be after the end of the page, but
924 it is not a problem */
925 tb_start = tb->pc & ~TARGET_PAGE_MASK;
926 tb_end = tb_start + tb->size;
927 if (tb_end > TARGET_PAGE_SIZE) {
928 tb_end = TARGET_PAGE_SIZE;
929 }
930 } else {
931 tb_start = 0;
932 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
933 }
934 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
935 tb = tb->page_next[n];
936 }
937}
938
939TranslationBlock *tb_gen_code(CPUArchState *env,
940 target_ulong pc, target_ulong cs_base,
941 int flags, int cflags)
942{
943 TranslationBlock *tb;
944 uint8_t *tc_ptr;
945 tb_page_addr_t phys_pc, phys_page2;
946 target_ulong virt_page2;
947 int code_gen_size;
948
949 phys_pc = get_page_addr_code(env, pc);
950 tb = tb_alloc(pc);
951 if (!tb) {
952 /* flush must be done */
953 tb_flush(env);
954 /* cannot fail at this point */
955 tb = tb_alloc(pc);
956 /* Don't forget to invalidate previous TB info. */
5e5f07e0 957 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 958 }
0b0d3320 959 tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
960 tb->tc_ptr = tc_ptr;
961 tb->cs_base = cs_base;
962 tb->flags = flags;
963 tb->cflags = cflags;
964 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
965 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
966 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
967
968 /* check next page if needed */
969 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
970 phys_page2 = -1;
971 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
972 phys_page2 = get_page_addr_code(env, virt_page2);
973 }
974 tb_link_page(tb, phys_pc, phys_page2);
975 return tb;
976}
977
978/*
979 * Invalidate all TBs which intersect with the target physical address range
980 * [start;end[. NOTE: start and end may refer to *different* physical pages.
981 * 'is_cpu_write_access' should be true if called from a real cpu write
982 * access: the virtual CPU will exit the current TB if code is modified inside
983 * this TB.
984 */
985void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
986 int is_cpu_write_access)
987{
988 while (start < end) {
989 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
990 start &= TARGET_PAGE_MASK;
991 start += TARGET_PAGE_SIZE;
992 }
993}
994
995/*
996 * Invalidate all TBs which intersect with the target physical address range
997 * [start;end[. NOTE: start and end must refer to the *same* physical page.
998 * 'is_cpu_write_access' should be true if called from a real cpu write
999 * access: the virtual CPU will exit the current TB if code is modified inside
1000 * this TB.
1001 */
1002void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1003 int is_cpu_write_access)
1004{
1005 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44
AF
1006 CPUState *cpu = current_cpu;
1007#if defined(TARGET_HAS_PRECISE_SMC) || !defined(CONFIG_USER_ONLY)
1008 CPUArchState *env = NULL;
1009#endif
5b6dd868
BS
1010 tb_page_addr_t tb_start, tb_end;
1011 PageDesc *p;
1012 int n;
1013#ifdef TARGET_HAS_PRECISE_SMC
1014 int current_tb_not_found = is_cpu_write_access;
1015 TranslationBlock *current_tb = NULL;
1016 int current_tb_modified = 0;
1017 target_ulong current_pc = 0;
1018 target_ulong current_cs_base = 0;
1019 int current_flags = 0;
1020#endif /* TARGET_HAS_PRECISE_SMC */
1021
1022 p = page_find(start >> TARGET_PAGE_BITS);
1023 if (!p) {
1024 return;
1025 }
1026 if (!p->code_bitmap &&
1027 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1028 is_cpu_write_access) {
1029 /* build code bitmap */
1030 build_page_bitmap(p);
1031 }
4917cf44
AF
1032#if defined(TARGET_HAS_PRECISE_SMC) || !defined(CONFIG_USER_ONLY)
1033 if (cpu != NULL) {
1034 env = cpu->env_ptr;
d77953b9 1035 }
4917cf44 1036#endif
5b6dd868
BS
1037
1038 /* we remove all the TBs in the range [start, end[ */
1039 /* XXX: see if in some cases it could be faster to invalidate all
1040 the code */
1041 tb = p->first_tb;
1042 while (tb != NULL) {
1043 n = (uintptr_t)tb & 3;
1044 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1045 tb_next = tb->page_next[n];
1046 /* NOTE: this is subtle as a TB may span two physical pages */
1047 if (n == 0) {
1048 /* NOTE: tb_end may be after the end of the page, but
1049 it is not a problem */
1050 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1051 tb_end = tb_start + tb->size;
1052 } else {
1053 tb_start = tb->page_addr[1];
1054 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1055 }
1056 if (!(tb_end <= start || tb_start >= end)) {
1057#ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb_not_found) {
1059 current_tb_not_found = 0;
1060 current_tb = NULL;
1061 if (env->mem_io_pc) {
1062 /* now we have a real cpu fault */
1063 current_tb = tb_find_pc(env->mem_io_pc);
1064 }
1065 }
1066 if (current_tb == tb &&
1067 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1068 /* If we are modifying the current TB, we must stop
1069 its execution. We could be more precise by checking
1070 that the modification is after the current PC, but it
1071 would require a specialized function to partially
1072 restore the CPU state */
1073
1074 current_tb_modified = 1;
a8a826a3 1075 cpu_restore_state_from_tb(current_tb, env, env->mem_io_pc);
5b6dd868
BS
1076 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1077 &current_flags);
1078 }
1079#endif /* TARGET_HAS_PRECISE_SMC */
1080 /* we need to do that to handle the case where a signal
1081 occurs while doing tb_phys_invalidate() */
1082 saved_tb = NULL;
d77953b9
AF
1083 if (cpu != NULL) {
1084 saved_tb = cpu->current_tb;
1085 cpu->current_tb = NULL;
5b6dd868
BS
1086 }
1087 tb_phys_invalidate(tb, -1);
d77953b9
AF
1088 if (cpu != NULL) {
1089 cpu->current_tb = saved_tb;
c3affe56
AF
1090 if (cpu->interrupt_request && cpu->current_tb) {
1091 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1092 }
1093 }
1094 }
1095 tb = tb_next;
1096 }
1097#if !defined(CONFIG_USER_ONLY)
1098 /* if no code remaining, no need to continue to use slow writes */
1099 if (!p->first_tb) {
1100 invalidate_page_bitmap(p);
1101 if (is_cpu_write_access) {
1102 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1103 }
1104 }
1105#endif
1106#ifdef TARGET_HAS_PRECISE_SMC
1107 if (current_tb_modified) {
1108 /* we generate a block containing just the instruction
1109 modifying the memory. It will ensure that it cannot modify
1110 itself */
d77953b9 1111 cpu->current_tb = NULL;
5b6dd868
BS
1112 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1113 cpu_resume_from_signal(env, NULL);
1114 }
1115#endif
1116}
1117
1118/* len must be <= 8 and start must be a multiple of len */
1119void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1120{
1121 PageDesc *p;
1122 int offset, b;
1123
1124#if 0
1125 if (1) {
1126 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1127 cpu_single_env->mem_io_vaddr, len,
1128 cpu_single_env->eip,
1129 cpu_single_env->eip +
1130 (intptr_t)cpu_single_env->segs[R_CS].base);
1131 }
1132#endif
1133 p = page_find(start >> TARGET_PAGE_BITS);
1134 if (!p) {
1135 return;
1136 }
1137 if (p->code_bitmap) {
1138 offset = start & ~TARGET_PAGE_MASK;
1139 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1140 if (b & ((1 << len) - 1)) {
1141 goto do_invalidate;
1142 }
1143 } else {
1144 do_invalidate:
1145 tb_invalidate_phys_page_range(start, start + len, 1);
1146 }
1147}
1148
1149#if !defined(CONFIG_SOFTMMU)
1150static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1151 uintptr_t pc, void *puc,
1152 bool locked)
5b6dd868
BS
1153{
1154 TranslationBlock *tb;
1155 PageDesc *p;
1156 int n;
1157#ifdef TARGET_HAS_PRECISE_SMC
1158 TranslationBlock *current_tb = NULL;
4917cf44
AF
1159 CPUState *cpu = current_cpu;
1160 CPUArchState *env = NULL;
5b6dd868
BS
1161 int current_tb_modified = 0;
1162 target_ulong current_pc = 0;
1163 target_ulong current_cs_base = 0;
1164 int current_flags = 0;
1165#endif
1166
1167 addr &= TARGET_PAGE_MASK;
1168 p = page_find(addr >> TARGET_PAGE_BITS);
1169 if (!p) {
1170 return;
1171 }
1172 tb = p->first_tb;
1173#ifdef TARGET_HAS_PRECISE_SMC
1174 if (tb && pc != 0) {
1175 current_tb = tb_find_pc(pc);
1176 }
4917cf44
AF
1177 if (cpu != NULL) {
1178 env = cpu->env_ptr;
d77953b9 1179 }
5b6dd868
BS
1180#endif
1181 while (tb != NULL) {
1182 n = (uintptr_t)tb & 3;
1183 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1184#ifdef TARGET_HAS_PRECISE_SMC
1185 if (current_tb == tb &&
1186 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1187 /* If we are modifying the current TB, we must stop
1188 its execution. We could be more precise by checking
1189 that the modification is after the current PC, but it
1190 would require a specialized function to partially
1191 restore the CPU state */
1192
1193 current_tb_modified = 1;
a8a826a3 1194 cpu_restore_state_from_tb(current_tb, env, pc);
5b6dd868
BS
1195 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1196 &current_flags);
1197 }
1198#endif /* TARGET_HAS_PRECISE_SMC */
1199 tb_phys_invalidate(tb, addr);
1200 tb = tb->page_next[n];
1201 }
1202 p->first_tb = NULL;
1203#ifdef TARGET_HAS_PRECISE_SMC
1204 if (current_tb_modified) {
1205 /* we generate a block containing just the instruction
1206 modifying the memory. It will ensure that it cannot modify
1207 itself */
d77953b9 1208 cpu->current_tb = NULL;
5b6dd868 1209 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1210 if (locked) {
1211 mmap_unlock();
1212 }
5b6dd868
BS
1213 cpu_resume_from_signal(env, puc);
1214 }
1215#endif
1216}
1217#endif
1218
1219/* add the tb in the target page and protect it if necessary */
1220static inline void tb_alloc_page(TranslationBlock *tb,
1221 unsigned int n, tb_page_addr_t page_addr)
1222{
1223 PageDesc *p;
1224#ifndef CONFIG_USER_ONLY
1225 bool page_already_protected;
1226#endif
1227
1228 tb->page_addr[n] = page_addr;
1229 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1230 tb->page_next[n] = p->first_tb;
1231#ifndef CONFIG_USER_ONLY
1232 page_already_protected = p->first_tb != NULL;
1233#endif
1234 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1235 invalidate_page_bitmap(p);
1236
1237#if defined(TARGET_HAS_SMC) || 1
1238
1239#if defined(CONFIG_USER_ONLY)
1240 if (p->flags & PAGE_WRITE) {
1241 target_ulong addr;
1242 PageDesc *p2;
1243 int prot;
1244
1245 /* force the host page as non writable (writes will have a
1246 page fault + mprotect overhead) */
1247 page_addr &= qemu_host_page_mask;
1248 prot = 0;
1249 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1250 addr += TARGET_PAGE_SIZE) {
1251
1252 p2 = page_find(addr >> TARGET_PAGE_BITS);
1253 if (!p2) {
1254 continue;
1255 }
1256 prot |= p2->flags;
1257 p2->flags &= ~PAGE_WRITE;
1258 }
1259 mprotect(g2h(page_addr), qemu_host_page_size,
1260 (prot & PAGE_BITS) & ~PAGE_WRITE);
1261#ifdef DEBUG_TB_INVALIDATE
1262 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1263 page_addr);
1264#endif
1265 }
1266#else
1267 /* if some code is already present, then the pages are already
1268 protected. So we handle the case where only the first TB is
1269 allocated in a physical page */
1270 if (!page_already_protected) {
1271 tlb_protect_code(page_addr);
1272 }
1273#endif
1274
1275#endif /* TARGET_HAS_SMC */
1276}
1277
1278/* add a new TB and link it to the physical page tables. phys_page2 is
1279 (-1) to indicate that only one page contains the TB. */
1280static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1281 tb_page_addr_t phys_page2)
1282{
1283 unsigned int h;
1284 TranslationBlock **ptb;
1285
1286 /* Grab the mmap lock to stop another thread invalidating this TB
1287 before we are done. */
1288 mmap_lock();
1289 /* add in the physical hash table */
1290 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1291 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1292 tb->phys_hash_next = *ptb;
1293 *ptb = tb;
1294
1295 /* add in the page list */
1296 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1297 if (phys_page2 != -1) {
1298 tb_alloc_page(tb, 1, phys_page2);
1299 } else {
1300 tb->page_addr[1] = -1;
1301 }
1302
1303 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1304 tb->jmp_next[0] = NULL;
1305 tb->jmp_next[1] = NULL;
1306
1307 /* init original jump addresses */
1308 if (tb->tb_next_offset[0] != 0xffff) {
1309 tb_reset_jump(tb, 0);
1310 }
1311 if (tb->tb_next_offset[1] != 0xffff) {
1312 tb_reset_jump(tb, 1);
1313 }
1314
1315#ifdef DEBUG_TB_CHECK
1316 tb_page_check();
1317#endif
1318 mmap_unlock();
1319}
1320
1321#if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU)
1322/* check whether the given addr is in TCG generated code buffer or not */
1323bool is_tcg_gen_code(uintptr_t tc_ptr)
1324{
52ae646d 1325 /* This can be called during code generation, code_gen_buffer_size
5b6dd868 1326 is used instead of code_gen_ptr for upper boundary checking */
0b0d3320
EV
1327 return (tc_ptr >= (uintptr_t)tcg_ctx.code_gen_buffer &&
1328 tc_ptr < (uintptr_t)(tcg_ctx.code_gen_buffer +
52ae646d 1329 tcg_ctx.code_gen_buffer_size));
5b6dd868
BS
1330}
1331#endif
1332
1333/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1334 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1335static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1336{
1337 int m_min, m_max, m;
1338 uintptr_t v;
1339 TranslationBlock *tb;
1340
5e5f07e0 1341 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1342 return NULL;
1343 }
0b0d3320
EV
1344 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1345 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1346 return NULL;
1347 }
1348 /* binary search (cf Knuth) */
1349 m_min = 0;
5e5f07e0 1350 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1351 while (m_min <= m_max) {
1352 m = (m_min + m_max) >> 1;
5e5f07e0 1353 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1354 v = (uintptr_t)tb->tc_ptr;
1355 if (v == tc_ptr) {
1356 return tb;
1357 } else if (tc_ptr < v) {
1358 m_max = m - 1;
1359 } else {
1360 m_min = m + 1;
1361 }
1362 }
5e5f07e0 1363 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1364}
1365
5b6dd868
BS
1366#if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
1367void tb_invalidate_phys_addr(hwaddr addr)
1368{
1369 ram_addr_t ram_addr;
5c8a00ce 1370 MemoryRegion *mr;
149f54b5 1371 hwaddr l = 1;
5b6dd868 1372
5c8a00ce
PB
1373 mr = address_space_translate(&address_space_memory, addr, &addr, &l, false);
1374 if (!(memory_region_is_ram(mr)
1375 || memory_region_is_romd(mr))) {
5b6dd868
BS
1376 return;
1377 }
5c8a00ce 1378 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1379 + addr;
5b6dd868
BS
1380 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1381}
1382#endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1383
5b6dd868
BS
1384void tb_check_watchpoint(CPUArchState *env)
1385{
1386 TranslationBlock *tb;
1387
1388 tb = tb_find_pc(env->mem_io_pc);
1389 if (!tb) {
1390 cpu_abort(env, "check_watchpoint: could not find TB for pc=%p",
1391 (void *)env->mem_io_pc);
1392 }
a8a826a3 1393 cpu_restore_state_from_tb(tb, env, env->mem_io_pc);
5b6dd868
BS
1394 tb_phys_invalidate(tb, -1);
1395}
1396
1397#ifndef CONFIG_USER_ONLY
1398/* mask must never be zero, except for A20 change call */
c3affe56 1399static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1400{
c3affe56 1401 CPUArchState *env = cpu->env_ptr;
5b6dd868
BS
1402 int old_mask;
1403
259186a7
AF
1404 old_mask = cpu->interrupt_request;
1405 cpu->interrupt_request |= mask;
5b6dd868
BS
1406
1407 /*
1408 * If called from iothread context, wake the target cpu in
1409 * case its halted.
1410 */
1411 if (!qemu_cpu_is_self(cpu)) {
1412 qemu_cpu_kick(cpu);
1413 return;
1414 }
1415
1416 if (use_icount) {
1417 env->icount_decr.u16.high = 0xffff;
1418 if (!can_do_io(env)
1419 && (mask & ~old_mask) != 0) {
1420 cpu_abort(env, "Raised interrupt while not in I/O function");
1421 }
1422 } else {
378df4b2 1423 cpu->tcg_exit_req = 1;
5b6dd868
BS
1424 }
1425}
1426
1427CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1428
1429/* in deterministic execution mode, instructions doing device I/Os
1430 must be at the end of the TB */
1431void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
1432{
1433 TranslationBlock *tb;
1434 uint32_t n, cflags;
1435 target_ulong pc, cs_base;
1436 uint64_t flags;
1437
1438 tb = tb_find_pc(retaddr);
1439 if (!tb) {
1440 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
1441 (void *)retaddr);
1442 }
1443 n = env->icount_decr.u16.low + tb->icount;
a8a826a3 1444 cpu_restore_state_from_tb(tb, env, retaddr);
5b6dd868
BS
1445 /* Calculate how many instructions had been executed before the fault
1446 occurred. */
1447 n = n - env->icount_decr.u16.low;
1448 /* Generate a new TB ending on the I/O insn. */
1449 n++;
1450 /* On MIPS and SH, delay slot instructions can only be restarted if
1451 they were already the first instruction in the TB. If this is not
1452 the first instruction in a TB then re-execute the preceding
1453 branch. */
1454#if defined(TARGET_MIPS)
1455 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1456 env->active_tc.PC -= 4;
1457 env->icount_decr.u16.low++;
1458 env->hflags &= ~MIPS_HFLAG_BMASK;
1459 }
1460#elif defined(TARGET_SH4)
1461 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1462 && n > 1) {
1463 env->pc -= 2;
1464 env->icount_decr.u16.low++;
1465 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1466 }
1467#endif
1468 /* This should never happen. */
1469 if (n > CF_COUNT_MASK) {
1470 cpu_abort(env, "TB too big during recompile");
1471 }
1472
1473 cflags = n | CF_LAST_IO;
1474 pc = tb->pc;
1475 cs_base = tb->cs_base;
1476 flags = tb->flags;
1477 tb_phys_invalidate(tb, -1);
1478 /* FIXME: In theory this could raise an exception. In practice
1479 we have already translated the block once so it's probably ok. */
1480 tb_gen_code(env, pc, cs_base, flags, cflags);
1481 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1482 the first in the TB) then we end up generating a whole new TB and
1483 repeating the fault, which is horribly inefficient.
1484 Better would be to execute just this insn uncached, or generate a
1485 second new TB. */
1486 cpu_resume_from_signal(env, NULL);
1487}
1488
1489void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1490{
1491 unsigned int i;
1492
1493 /* Discard jump cache entries for any tb which might potentially
1494 overlap the flushed page. */
1495 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1496 memset(&env->tb_jmp_cache[i], 0,
1497 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1498
1499 i = tb_jmp_cache_hash_page(addr);
1500 memset(&env->tb_jmp_cache[i], 0,
1501 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1502}
1503
1504void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1505{
1506 int i, target_code_size, max_target_code_size;
1507 int direct_jmp_count, direct_jmp2_count, cross_page;
1508 TranslationBlock *tb;
1509
1510 target_code_size = 0;
1511 max_target_code_size = 0;
1512 cross_page = 0;
1513 direct_jmp_count = 0;
1514 direct_jmp2_count = 0;
5e5f07e0
EV
1515 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1516 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1517 target_code_size += tb->size;
1518 if (tb->size > max_target_code_size) {
1519 max_target_code_size = tb->size;
1520 }
1521 if (tb->page_addr[1] != -1) {
1522 cross_page++;
1523 }
1524 if (tb->tb_next_offset[0] != 0xffff) {
1525 direct_jmp_count++;
1526 if (tb->tb_next_offset[1] != 0xffff) {
1527 direct_jmp2_count++;
1528 }
1529 }
1530 }
1531 /* XXX: avoid using doubles ? */
1532 cpu_fprintf(f, "Translation buffer state:\n");
1533 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1534 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1535 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1536 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1537 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1538 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1539 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1540 tcg_ctx.tb_ctx.nb_tbs : 0,
1541 max_target_code_size);
5b6dd868 1542 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1543 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1544 tcg_ctx.code_gen_buffer) /
1545 tcg_ctx.tb_ctx.nb_tbs : 0,
1546 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1547 tcg_ctx.code_gen_buffer) /
1548 target_code_size : 0);
1549 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1550 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1551 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1552 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1553 direct_jmp_count,
5e5f07e0
EV
1554 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1555 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1556 direct_jmp2_count,
5e5f07e0
EV
1557 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1558 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1559 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1560 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1561 cpu_fprintf(f, "TB invalidate count %d\n",
1562 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1563 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1564 tcg_dump_info(f, cpu_fprintf);
1565}
1566
1567#else /* CONFIG_USER_ONLY */
1568
c3affe56 1569void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1570{
259186a7 1571 cpu->interrupt_request |= mask;
378df4b2 1572 cpu->tcg_exit_req = 1;
5b6dd868
BS
1573}
1574
1575/*
1576 * Walks guest process memory "regions" one by one
1577 * and calls callback function 'fn' for each region.
1578 */
1579struct walk_memory_regions_data {
1580 walk_memory_regions_fn fn;
1581 void *priv;
1582 uintptr_t start;
1583 int prot;
1584};
1585
1586static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1587 abi_ulong end, int new_prot)
1588{
1589 if (data->start != -1ul) {
1590 int rc = data->fn(data->priv, data->start, end, data->prot);
1591 if (rc != 0) {
1592 return rc;
1593 }
1594 }
1595
1596 data->start = (new_prot ? end : -1ul);
1597 data->prot = new_prot;
1598
1599 return 0;
1600}
1601
1602static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1603 abi_ulong base, int level, void **lp)
1604{
1605 abi_ulong pa;
1606 int i, rc;
1607
1608 if (*lp == NULL) {
1609 return walk_memory_regions_end(data, base, 0);
1610 }
1611
1612 if (level == 0) {
1613 PageDesc *pd = *lp;
1614
1615 for (i = 0; i < L2_SIZE; ++i) {
1616 int prot = pd[i].flags;
1617
1618 pa = base | (i << TARGET_PAGE_BITS);
1619 if (prot != data->prot) {
1620 rc = walk_memory_regions_end(data, pa, prot);
1621 if (rc != 0) {
1622 return rc;
1623 }
1624 }
1625 }
1626 } else {
1627 void **pp = *lp;
1628
1629 for (i = 0; i < L2_SIZE; ++i) {
1630 pa = base | ((abi_ulong)i <<
1631 (TARGET_PAGE_BITS + L2_BITS * level));
1632 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1633 if (rc != 0) {
1634 return rc;
1635 }
1636 }
1637 }
1638
1639 return 0;
1640}
1641
1642int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1643{
1644 struct walk_memory_regions_data data;
1645 uintptr_t i;
1646
1647 data.fn = fn;
1648 data.priv = priv;
1649 data.start = -1ul;
1650 data.prot = 0;
1651
1652 for (i = 0; i < V_L1_SIZE; i++) {
1653 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1654 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1655
1656 if (rc != 0) {
1657 return rc;
1658 }
1659 }
1660
1661 return walk_memory_regions_end(&data, 0, 0);
1662}
1663
1664static int dump_region(void *priv, abi_ulong start,
1665 abi_ulong end, unsigned long prot)
1666{
1667 FILE *f = (FILE *)priv;
1668
1669 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
1670 " "TARGET_ABI_FMT_lx" %c%c%c\n",
1671 start, end, end - start,
1672 ((prot & PAGE_READ) ? 'r' : '-'),
1673 ((prot & PAGE_WRITE) ? 'w' : '-'),
1674 ((prot & PAGE_EXEC) ? 'x' : '-'));
1675
1676 return 0;
1677}
1678
1679/* dump memory mappings */
1680void page_dump(FILE *f)
1681{
1682 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
1683 "start", "end", "size", "prot");
1684 walk_memory_regions(f, dump_region);
1685}
1686
1687int page_get_flags(target_ulong address)
1688{
1689 PageDesc *p;
1690
1691 p = page_find(address >> TARGET_PAGE_BITS);
1692 if (!p) {
1693 return 0;
1694 }
1695 return p->flags;
1696}
1697
1698/* Modify the flags of a page and invalidate the code if necessary.
1699 The flag PAGE_WRITE_ORG is positioned automatically depending
1700 on PAGE_WRITE. The mmap_lock should already be held. */
1701void page_set_flags(target_ulong start, target_ulong end, int flags)
1702{
1703 target_ulong addr, len;
1704
1705 /* This function should never be called with addresses outside the
1706 guest address space. If this assert fires, it probably indicates
1707 a missing call to h2g_valid. */
1708#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1709 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1710#endif
1711 assert(start < end);
1712
1713 start = start & TARGET_PAGE_MASK;
1714 end = TARGET_PAGE_ALIGN(end);
1715
1716 if (flags & PAGE_WRITE) {
1717 flags |= PAGE_WRITE_ORG;
1718 }
1719
1720 for (addr = start, len = end - start;
1721 len != 0;
1722 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1723 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1724
1725 /* If the write protection bit is set, then we invalidate
1726 the code inside. */
1727 if (!(p->flags & PAGE_WRITE) &&
1728 (flags & PAGE_WRITE) &&
1729 p->first_tb) {
d02532f0 1730 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1731 }
1732 p->flags = flags;
1733 }
1734}
1735
1736int page_check_range(target_ulong start, target_ulong len, int flags)
1737{
1738 PageDesc *p;
1739 target_ulong end;
1740 target_ulong addr;
1741
1742 /* This function should never be called with addresses outside the
1743 guest address space. If this assert fires, it probably indicates
1744 a missing call to h2g_valid. */
1745#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1746 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1747#endif
1748
1749 if (len == 0) {
1750 return 0;
1751 }
1752 if (start + len - 1 < start) {
1753 /* We've wrapped around. */
1754 return -1;
1755 }
1756
1757 /* must do before we loose bits in the next step */
1758 end = TARGET_PAGE_ALIGN(start + len);
1759 start = start & TARGET_PAGE_MASK;
1760
1761 for (addr = start, len = end - start;
1762 len != 0;
1763 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1764 p = page_find(addr >> TARGET_PAGE_BITS);
1765 if (!p) {
1766 return -1;
1767 }
1768 if (!(p->flags & PAGE_VALID)) {
1769 return -1;
1770 }
1771
1772 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1773 return -1;
1774 }
1775 if (flags & PAGE_WRITE) {
1776 if (!(p->flags & PAGE_WRITE_ORG)) {
1777 return -1;
1778 }
1779 /* unprotect the page if it was put read-only because it
1780 contains translated code */
1781 if (!(p->flags & PAGE_WRITE)) {
1782 if (!page_unprotect(addr, 0, NULL)) {
1783 return -1;
1784 }
1785 }
1786 return 0;
1787 }
1788 }
1789 return 0;
1790}
1791
1792/* called from signal handler: invalidate the code and unprotect the
1793 page. Return TRUE if the fault was successfully handled. */
1794int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1795{
1796 unsigned int prot;
1797 PageDesc *p;
1798 target_ulong host_start, host_end, addr;
1799
1800 /* Technically this isn't safe inside a signal handler. However we
1801 know this only ever happens in a synchronous SEGV handler, so in
1802 practice it seems to be ok. */
1803 mmap_lock();
1804
1805 p = page_find(address >> TARGET_PAGE_BITS);
1806 if (!p) {
1807 mmap_unlock();
1808 return 0;
1809 }
1810
1811 /* if the page was really writable, then we change its
1812 protection back to writable */
1813 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1814 host_start = address & qemu_host_page_mask;
1815 host_end = host_start + qemu_host_page_size;
1816
1817 prot = 0;
1818 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1819 p = page_find(addr >> TARGET_PAGE_BITS);
1820 p->flags |= PAGE_WRITE;
1821 prot |= p->flags;
1822
1823 /* and since the content will be modified, we must invalidate
1824 the corresponding translated code. */
d02532f0 1825 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1826#ifdef DEBUG_TB_CHECK
1827 tb_invalidate_check(addr);
1828#endif
1829 }
1830 mprotect((void *)g2h(host_start), qemu_host_page_size,
1831 prot & PAGE_BITS);
1832
1833 mmap_unlock();
1834 return 1;
1835 }
1836 mmap_unlock();
1837 return 0;
1838}
1839#endif /* CONFIG_USER_ONLY */