]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
crypto: Clean up includes
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
e1b89321 61#include "exec/tb-hash.h"
5b6dd868 62#include "translate-all.h"
510a647f 63#include "qemu/bitmap.h"
0aa09897 64#include "qemu/timer.h"
5b6dd868
BS
65
66//#define DEBUG_TB_INVALIDATE
67//#define DEBUG_FLUSH
68/* make various TB consistency checks */
69//#define DEBUG_TB_CHECK
70
71#if !defined(CONFIG_USER_ONLY)
72/* TB consistency checks only implemented for usermode emulation. */
73#undef DEBUG_TB_CHECK
74#endif
75
76#define SMC_BITMAP_USE_THRESHOLD 10
77
5b6dd868
BS
78typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
510a647f 84 unsigned long *code_bitmap;
5b6dd868
BS
85#if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87#endif
88} PageDesc;
89
90/* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92#if !defined(CONFIG_USER_ONLY)
93#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97#endif
98#else
99# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100#endif
101
03f49957
PB
102/* Size of the L2 (and L3, etc) page tables. */
103#define V_L2_BITS 10
104#define V_L2_SIZE (1 << V_L2_BITS)
105
5b6dd868
BS
106/* The bits remaining after N lower levels of page tables. */
107#define V_L1_BITS_REM \
03f49957 108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
109
110#if V_L1_BITS_REM < 4
03f49957 111#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
112#else
113#define V_L1_BITS V_L1_BITS_REM
114#endif
115
116#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
5b6dd868 120uintptr_t qemu_host_page_size;
0c2d70c4 121intptr_t qemu_host_page_mask;
5b6dd868 122
d1142fb8 123/* The bottom level has pointers to PageDesc */
5b6dd868
BS
124static void *l1_map[V_L1_SIZE];
125
57fec1fe
FB
126/* code generation context */
127TCGContext tcg_ctx;
d19893da 128
677ef623
FK
129/* translation block context */
130#ifdef CONFIG_USER_ONLY
131__thread int have_tb_lock;
132#endif
133
134void tb_lock(void)
135{
136#ifdef CONFIG_USER_ONLY
137 assert(!have_tb_lock);
138 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
139 have_tb_lock++;
140#endif
141}
142
143void tb_unlock(void)
144{
145#ifdef CONFIG_USER_ONLY
146 assert(have_tb_lock);
147 have_tb_lock--;
148 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
149#endif
150}
151
152void tb_lock_reset(void)
153{
154#ifdef CONFIG_USER_ONLY
155 if (have_tb_lock) {
156 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
157 have_tb_lock = 0;
158 }
159#endif
160}
161
5b6dd868
BS
162static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
163 tb_page_addr_t phys_page2);
a8a826a3 164static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 165
57fec1fe
FB
166void cpu_gen_init(void)
167{
168 tcg_context_init(&tcg_ctx);
57fec1fe
FB
169}
170
fca8a500
RH
171/* Encode VAL as a signed leb128 sequence at P.
172 Return P incremented past the encoded value. */
173static uint8_t *encode_sleb128(uint8_t *p, target_long val)
174{
175 int more, byte;
176
177 do {
178 byte = val & 0x7f;
179 val >>= 7;
180 more = !((val == 0 && (byte & 0x40) == 0)
181 || (val == -1 && (byte & 0x40) != 0));
182 if (more) {
183 byte |= 0x80;
184 }
185 *p++ = byte;
186 } while (more);
187
188 return p;
189}
190
191/* Decode a signed leb128 sequence at *PP; increment *PP past the
192 decoded value. Return the decoded value. */
193static target_long decode_sleb128(uint8_t **pp)
194{
195 uint8_t *p = *pp;
196 target_long val = 0;
197 int byte, shift = 0;
198
199 do {
200 byte = *p++;
201 val |= (target_ulong)(byte & 0x7f) << shift;
202 shift += 7;
203 } while (byte & 0x80);
204 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
205 val |= -(target_ulong)1 << shift;
206 }
207
208 *pp = p;
209 return val;
210}
211
212/* Encode the data collected about the instructions while compiling TB.
213 Place the data at BLOCK, and return the number of bytes consumed.
214
215 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
216 which come from the target's insn_start data, followed by a uintptr_t
217 which comes from the host pc of the end of the code implementing the insn.
218
219 Each line of the table is encoded as sleb128 deltas from the previous
220 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
221 That is, the first column is seeded with the guest pc, the last column
222 with the host pc, and the middle columns with zeros. */
223
224static int encode_search(TranslationBlock *tb, uint8_t *block)
225{
b125f9dc 226 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
227 uint8_t *p = block;
228 int i, j, n;
229
230 tb->tc_search = block;
231
232 for (i = 0, n = tb->icount; i < n; ++i) {
233 target_ulong prev;
234
235 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
236 if (i == 0) {
237 prev = (j == 0 ? tb->pc : 0);
238 } else {
239 prev = tcg_ctx.gen_insn_data[i - 1][j];
240 }
241 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
242 }
243 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
244 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
245
246 /* Test for (pending) buffer overflow. The assumption is that any
247 one row beginning below the high water mark cannot overrun
248 the buffer completely. Thus we can test for overflow after
249 encoding a row without having to check during encoding. */
250 if (unlikely(p > highwater)) {
251 return -1;
252 }
fca8a500
RH
253 }
254
255 return p - block;
256}
257
fec88f64 258/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 259static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 260 uintptr_t searched_pc)
d19893da 261{
fca8a500
RH
262 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
263 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 264 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
265 uint8_t *p = tb->tc_search;
266 int i, j, num_insns = tb->icount;
57fec1fe 267#ifdef CONFIG_PROFILER
fca8a500 268 int64_t ti = profile_getclock();
57fec1fe
FB
269#endif
270
fca8a500
RH
271 if (searched_pc < host_pc) {
272 return -1;
273 }
d19893da 274
fca8a500
RH
275 /* Reconstruct the stored insn data while looking for the point at
276 which the end of the insn exceeds the searched_pc. */
277 for (i = 0; i < num_insns; ++i) {
278 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
279 data[j] += decode_sleb128(&p);
280 }
281 host_pc += decode_sleb128(&p);
282 if (host_pc > searched_pc) {
283 goto found;
284 }
285 }
286 return -1;
3b46e624 287
fca8a500 288 found:
bd79255d 289 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 290 assert(use_icount);
2e70f6ef 291 /* Reset the cycle counter to the start of the block. */
fca8a500 292 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 293 /* Clear the IO flag. */
99df7dce 294 cpu->can_do_io = 0;
2e70f6ef 295 }
fca8a500
RH
296 cpu->icount_decr.u16.low -= i;
297 restore_state_to_opc(env, tb, data);
57fec1fe
FB
298
299#ifdef CONFIG_PROFILER
fca8a500
RH
300 tcg_ctx.restore_time += profile_getclock() - ti;
301 tcg_ctx.restore_count++;
57fec1fe 302#endif
d19893da
FB
303 return 0;
304}
5b6dd868 305
3f38f309 306bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
307{
308 TranslationBlock *tb;
309
310 tb = tb_find_pc(retaddr);
311 if (tb) {
74f10515 312 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
313 if (tb->cflags & CF_NOCACHE) {
314 /* one-shot translation, invalidate it immediately */
315 cpu->current_tb = NULL;
316 tb_phys_invalidate(tb, -1);
317 tb_free(tb);
318 }
a8a826a3
BS
319 return true;
320 }
321 return false;
322}
323
47c16ed5 324void page_size_init(void)
5b6dd868
BS
325{
326 /* NOTE: we can always suppose that qemu_host_page_size >=
327 TARGET_PAGE_SIZE */
5b6dd868 328 qemu_real_host_page_size = getpagesize();
0c2d70c4 329 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
330 if (qemu_host_page_size == 0) {
331 qemu_host_page_size = qemu_real_host_page_size;
332 }
333 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
334 qemu_host_page_size = TARGET_PAGE_SIZE;
335 }
0c2d70c4 336 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 337}
5b6dd868 338
47c16ed5
AK
339static void page_init(void)
340{
341 page_size_init();
5b6dd868
BS
342#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
343 {
344#ifdef HAVE_KINFO_GETVMMAP
345 struct kinfo_vmentry *freep;
346 int i, cnt;
347
348 freep = kinfo_getvmmap(getpid(), &cnt);
349 if (freep) {
350 mmap_lock();
351 for (i = 0; i < cnt; i++) {
352 unsigned long startaddr, endaddr;
353
354 startaddr = freep[i].kve_start;
355 endaddr = freep[i].kve_end;
356 if (h2g_valid(startaddr)) {
357 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
358
359 if (h2g_valid(endaddr)) {
360 endaddr = h2g(endaddr);
361 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
362 } else {
363#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
364 endaddr = ~0ul;
365 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
366#endif
367 }
368 }
369 }
370 free(freep);
371 mmap_unlock();
372 }
373#else
374 FILE *f;
375
376 last_brk = (unsigned long)sbrk(0);
377
378 f = fopen("/compat/linux/proc/self/maps", "r");
379 if (f) {
380 mmap_lock();
381
382 do {
383 unsigned long startaddr, endaddr;
384 int n;
385
386 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
387
388 if (n == 2 && h2g_valid(startaddr)) {
389 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
390
391 if (h2g_valid(endaddr)) {
392 endaddr = h2g(endaddr);
393 } else {
394 endaddr = ~0ul;
395 }
396 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
397 }
398 } while (!feof(f));
399
400 fclose(f);
401 mmap_unlock();
402 }
403#endif
404 }
405#endif
406}
407
75692087
PB
408/* If alloc=1:
409 * Called with mmap_lock held for user-mode emulation.
410 */
5b6dd868
BS
411static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
412{
413 PageDesc *pd;
414 void **lp;
415 int i;
416
5b6dd868
BS
417 /* Level 1. Always allocated. */
418 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
419
420 /* Level 2..N-1. */
03f49957 421 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 422 void **p = atomic_rcu_read(lp);
5b6dd868
BS
423
424 if (p == NULL) {
425 if (!alloc) {
426 return NULL;
427 }
e3a0abfd 428 p = g_new0(void *, V_L2_SIZE);
6940fab8 429 atomic_rcu_set(lp, p);
5b6dd868
BS
430 }
431
03f49957 432 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
433 }
434
6940fab8 435 pd = atomic_rcu_read(lp);
5b6dd868
BS
436 if (pd == NULL) {
437 if (!alloc) {
438 return NULL;
439 }
e3a0abfd 440 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 441 atomic_rcu_set(lp, pd);
5b6dd868
BS
442 }
443
03f49957 444 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
445}
446
447static inline PageDesc *page_find(tb_page_addr_t index)
448{
449 return page_find_alloc(index, 0);
450}
451
5b6dd868
BS
452#if defined(CONFIG_USER_ONLY)
453/* Currently it is not recommended to allocate big chunks of data in
454 user mode. It will change when a dedicated libc will be used. */
455/* ??? 64-bit hosts ought to have no problem mmaping data outside the
456 region in which the guest needs to run. Revisit this. */
457#define USE_STATIC_CODE_GEN_BUFFER
458#endif
459
5b6dd868
BS
460/* Minimum size of the code gen buffer. This number is randomly chosen,
461 but not so small that we can't have a fair number of TB's live. */
462#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
463
464/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
465 indicated, this is constrained by the range of direct branches on the
466 host cpu, as used by the TCG implementation of goto_tb. */
467#if defined(__x86_64__)
468# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
469#elif defined(__sparc__)
470# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
471#elif defined(__powerpc64__)
472# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
473#elif defined(__aarch64__)
474# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
475#elif defined(__arm__)
476# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
477#elif defined(__s390x__)
478 /* We have a +- 4GB range on the branches; leave some slop. */
479# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
480#elif defined(__mips__)
481 /* We have a 256MB branch region, but leave room to make sure the
482 main executable is also within that region. */
483# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
484#else
485# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
486#endif
487
488#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
489
490#define DEFAULT_CODE_GEN_BUFFER_SIZE \
491 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
492 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
493
494static inline size_t size_code_gen_buffer(size_t tb_size)
495{
496 /* Size the buffer. */
497 if (tb_size == 0) {
498#ifdef USE_STATIC_CODE_GEN_BUFFER
499 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
500#else
501 /* ??? Needs adjustments. */
502 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
503 static buffer, we could size this on RESERVED_VA, on the text
504 segment size of the executable, or continue to use the default. */
505 tb_size = (unsigned long)(ram_size / 4);
506#endif
507 }
508 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
509 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
510 }
511 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
512 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
513 }
0b0d3320 514 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
515 return tb_size;
516}
517
483c76e1
RH
518#ifdef __mips__
519/* In order to use J and JAL within the code_gen_buffer, we require
520 that the buffer not cross a 256MB boundary. */
521static inline bool cross_256mb(void *addr, size_t size)
522{
523 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
524}
525
526/* We weren't able to allocate a buffer without crossing that boundary,
527 so make do with the larger portion of the buffer that doesn't cross.
528 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
529static inline void *split_cross_256mb(void *buf1, size_t size1)
530{
531 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
532 size_t size2 = buf1 + size1 - buf2;
533
534 size1 = buf2 - buf1;
535 if (size1 < size2) {
536 size1 = size2;
537 buf1 = buf2;
538 }
539
540 tcg_ctx.code_gen_buffer_size = size1;
541 return buf1;
542}
543#endif
544
5b6dd868
BS
545#ifdef USE_STATIC_CODE_GEN_BUFFER
546static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
547 __attribute__((aligned(CODE_GEN_ALIGN)));
548
f293709c
RH
549# ifdef _WIN32
550static inline void do_protect(void *addr, long size, int prot)
551{
552 DWORD old_protect;
553 VirtualProtect(addr, size, prot, &old_protect);
554}
555
556static inline void map_exec(void *addr, long size)
557{
558 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
559}
560
561static inline void map_none(void *addr, long size)
562{
563 do_protect(addr, size, PAGE_NOACCESS);
564}
565# else
566static inline void do_protect(void *addr, long size, int prot)
567{
568 uintptr_t start, end;
569
570 start = (uintptr_t)addr;
571 start &= qemu_real_host_page_mask;
572
573 end = (uintptr_t)addr + size;
574 end = ROUND_UP(end, qemu_real_host_page_size);
575
576 mprotect((void *)start, end - start, prot);
577}
578
579static inline void map_exec(void *addr, long size)
580{
581 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
582}
583
584static inline void map_none(void *addr, long size)
585{
586 do_protect(addr, size, PROT_NONE);
587}
588# endif /* WIN32 */
589
5b6dd868
BS
590static inline void *alloc_code_gen_buffer(void)
591{
483c76e1 592 void *buf = static_code_gen_buffer;
f293709c
RH
593 size_t full_size, size;
594
595 /* The size of the buffer, rounded down to end on a page boundary. */
596 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
597 & qemu_real_host_page_mask) - (uintptr_t)buf;
598
599 /* Reserve a guard page. */
600 size = full_size - qemu_real_host_page_size;
601
602 /* Honor a command-line option limiting the size of the buffer. */
603 if (size > tcg_ctx.code_gen_buffer_size) {
604 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
605 & qemu_real_host_page_mask) - (uintptr_t)buf;
606 }
607 tcg_ctx.code_gen_buffer_size = size;
608
483c76e1 609#ifdef __mips__
f293709c
RH
610 if (cross_256mb(buf, size)) {
611 buf = split_cross_256mb(buf, size);
612 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
613 }
614#endif
f293709c
RH
615
616 map_exec(buf, size);
617 map_none(buf + size, qemu_real_host_page_size);
618 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
619
483c76e1 620 return buf;
5b6dd868 621}
f293709c
RH
622#elif defined(_WIN32)
623static inline void *alloc_code_gen_buffer(void)
624{
625 size_t size = tcg_ctx.code_gen_buffer_size;
626 void *buf1, *buf2;
627
628 /* Perform the allocation in two steps, so that the guard page
629 is reserved but uncommitted. */
630 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
631 MEM_RESERVE, PAGE_NOACCESS);
632 if (buf1 != NULL) {
633 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
634 assert(buf1 == buf2);
635 }
636
637 return buf1;
638}
639#else
5b6dd868
BS
640static inline void *alloc_code_gen_buffer(void)
641{
642 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
643 uintptr_t start = 0;
f293709c 644 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
645 void *buf;
646
647 /* Constrain the position of the buffer based on the host cpu.
648 Note that these addresses are chosen in concert with the
649 addresses assigned in the relevant linker script file. */
650# if defined(__PIE__) || defined(__PIC__)
651 /* Don't bother setting a preferred location if we're building
652 a position-independent executable. We're more likely to get
653 an address near the main executable if we let the kernel
654 choose the address. */
655# elif defined(__x86_64__) && defined(MAP_32BIT)
656 /* Force the memory down into low memory with the executable.
657 Leave the choice of exact location with the kernel. */
658 flags |= MAP_32BIT;
659 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
660 if (size > 800u * 1024 * 1024) {
661 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
662 }
663# elif defined(__sparc__)
664 start = 0x40000000ul;
665# elif defined(__s390x__)
666 start = 0x90000000ul;
479eb121 667# elif defined(__mips__)
f293709c 668# if _MIPS_SIM == _ABI64
479eb121
RH
669 start = 0x128000000ul;
670# else
671 start = 0x08000000ul;
672# endif
5b6dd868
BS
673# endif
674
f293709c
RH
675 buf = mmap((void *)start, size + qemu_real_host_page_size,
676 PROT_NONE, flags, -1, 0);
483c76e1
RH
677 if (buf == MAP_FAILED) {
678 return NULL;
679 }
680
681#ifdef __mips__
f293709c 682 if (cross_256mb(buf, size)) {
5d831be2 683 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 684 that 256mb crossing. This time don't specify an address. */
f293709c
RH
685 size_t size2;
686 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
687 PROT_NONE, flags, -1, 0);
688 switch (buf2 != MAP_FAILED) {
689 case 1:
690 if (!cross_256mb(buf2, size)) {
483c76e1 691 /* Success! Use the new buffer. */
f293709c
RH
692 munmap(buf, size);
693 break;
483c76e1
RH
694 }
695 /* Failure. Work with what we had. */
f293709c
RH
696 munmap(buf2, size);
697 /* fallthru */
698 default:
699 /* Split the original buffer. Free the smaller half. */
700 buf2 = split_cross_256mb(buf, size);
701 size2 = tcg_ctx.code_gen_buffer_size;
702 if (buf == buf2) {
703 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
704 } else {
705 munmap(buf, size - size2);
706 }
707 size = size2;
708 break;
483c76e1 709 }
f293709c 710 buf = buf2;
483c76e1
RH
711 }
712#endif
713
f293709c
RH
714 /* Make the final buffer accessible. The guard page at the end
715 will remain inaccessible with PROT_NONE. */
716 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 717
f293709c
RH
718 /* Request large pages for the buffer. */
719 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 720
5b6dd868
BS
721 return buf;
722}
f293709c 723#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
724
725static inline void code_gen_alloc(size_t tb_size)
726{
0b0d3320
EV
727 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
728 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
729 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
730 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
731 exit(1);
732 }
733
8163b749
RH
734 /* Estimate a good size for the number of TBs we can support. We
735 still haven't deducted the prologue from the buffer size here,
736 but that's minimal and won't affect the estimate much. */
737 tcg_ctx.code_gen_max_blocks
738 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
739 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
740
677ef623 741 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
742}
743
744/* Must be called before using the QEMU cpus. 'tb_size' is the size
745 (in bytes) allocated to the translation buffer. Zero means default
746 size. */
747void tcg_exec_init(unsigned long tb_size)
748{
749 cpu_gen_init();
5b6dd868 750 page_init();
f293709c 751 code_gen_alloc(tb_size);
4cbea598 752#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
753 /* There's no guest base to take into account, so go ahead and
754 initialize the prologue now. */
755 tcg_prologue_init(&tcg_ctx);
756#endif
757}
758
759bool tcg_enabled(void)
760{
0b0d3320 761 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
762}
763
764/* Allocate a new translation block. Flush the translation buffer if
765 too many translation blocks or too much generated code. */
766static TranslationBlock *tb_alloc(target_ulong pc)
767{
768 TranslationBlock *tb;
769
b125f9dc 770 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
771 return NULL;
772 }
5e5f07e0 773 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
774 tb->pc = pc;
775 tb->cflags = 0;
776 return tb;
777}
778
779void tb_free(TranslationBlock *tb)
780{
781 /* In practice this is mostly used for single use temporary TB
782 Ignore the hard cases and just back up if this TB happens to
783 be the last one generated. */
5e5f07e0
EV
784 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
785 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 786 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 787 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
788 }
789}
790
791static inline void invalidate_page_bitmap(PageDesc *p)
792{
012aef07
MA
793 g_free(p->code_bitmap);
794 p->code_bitmap = NULL;
5b6dd868
BS
795 p->code_write_count = 0;
796}
797
798/* Set to NULL all the 'first_tb' fields in all PageDescs. */
799static void page_flush_tb_1(int level, void **lp)
800{
801 int i;
802
803 if (*lp == NULL) {
804 return;
805 }
806 if (level == 0) {
807 PageDesc *pd = *lp;
808
03f49957 809 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
810 pd[i].first_tb = NULL;
811 invalidate_page_bitmap(pd + i);
812 }
813 } else {
814 void **pp = *lp;
815
03f49957 816 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
817 page_flush_tb_1(level - 1, pp + i);
818 }
819 }
820}
821
822static void page_flush_tb(void)
823{
824 int i;
825
826 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 827 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
828 }
829}
830
831/* flush all the translation blocks */
832/* XXX: tb_flush is currently not thread safe */
bbd77c18 833void tb_flush(CPUState *cpu)
5b6dd868 834{
5b6dd868
BS
835#if defined(DEBUG_FLUSH)
836 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 837 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 838 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 839 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 840 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 841#endif
0b0d3320
EV
842 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
843 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 844 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 845 }
5e5f07e0 846 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 847
bdc44640 848 CPU_FOREACH(cpu) {
8cd70437 849 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
850 }
851
eb2535f4 852 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
853 page_flush_tb();
854
0b0d3320 855 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
856 /* XXX: flush processor icache at this point if cache flush is
857 expensive */
5e5f07e0 858 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
859}
860
861#ifdef DEBUG_TB_CHECK
862
863static void tb_invalidate_check(target_ulong address)
864{
865 TranslationBlock *tb;
866 int i;
867
868 address &= TARGET_PAGE_MASK;
869 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 870 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
871 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
872 address >= tb->pc + tb->size)) {
873 printf("ERROR invalidate: address=" TARGET_FMT_lx
874 " PC=%08lx size=%04x\n",
875 address, (long)tb->pc, tb->size);
876 }
877 }
878 }
879}
880
881/* verify that all the pages have correct rights for code */
882static void tb_page_check(void)
883{
884 TranslationBlock *tb;
885 int i, flags1, flags2;
886
887 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
888 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
889 tb = tb->phys_hash_next) {
5b6dd868
BS
890 flags1 = page_get_flags(tb->pc);
891 flags2 = page_get_flags(tb->pc + tb->size - 1);
892 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
893 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
894 (long)tb->pc, tb->size, flags1, flags2);
895 }
896 }
897 }
898}
899
900#endif
901
0c884d16 902static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
903{
904 TranslationBlock *tb1;
905
906 for (;;) {
907 tb1 = *ptb;
908 if (tb1 == tb) {
0c884d16 909 *ptb = tb1->phys_hash_next;
5b6dd868
BS
910 break;
911 }
0c884d16 912 ptb = &tb1->phys_hash_next;
5b6dd868
BS
913 }
914}
915
916static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
917{
918 TranslationBlock *tb1;
919 unsigned int n1;
920
921 for (;;) {
922 tb1 = *ptb;
923 n1 = (uintptr_t)tb1 & 3;
924 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
925 if (tb1 == tb) {
926 *ptb = tb1->page_next[n1];
927 break;
928 }
929 ptb = &tb1->page_next[n1];
930 }
931}
932
933static inline void tb_jmp_remove(TranslationBlock *tb, int n)
934{
935 TranslationBlock *tb1, **ptb;
936 unsigned int n1;
937
938 ptb = &tb->jmp_next[n];
939 tb1 = *ptb;
940 if (tb1) {
941 /* find tb(n) in circular list */
942 for (;;) {
943 tb1 = *ptb;
944 n1 = (uintptr_t)tb1 & 3;
945 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
946 if (n1 == n && tb1 == tb) {
947 break;
948 }
949 if (n1 == 2) {
950 ptb = &tb1->jmp_first;
951 } else {
952 ptb = &tb1->jmp_next[n1];
953 }
954 }
955 /* now we can suppress tb(n) from the list */
956 *ptb = tb->jmp_next[n];
957
958 tb->jmp_next[n] = NULL;
959 }
960}
961
962/* reset the jump entry 'n' of a TB so that it is not chained to
963 another TB */
964static inline void tb_reset_jump(TranslationBlock *tb, int n)
965{
966 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
967}
968
0c884d16 969/* invalidate one TB */
5b6dd868
BS
970void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
971{
182735ef 972 CPUState *cpu;
5b6dd868
BS
973 PageDesc *p;
974 unsigned int h, n1;
975 tb_page_addr_t phys_pc;
976 TranslationBlock *tb1, *tb2;
977
978 /* remove the TB from the hash list */
979 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
980 h = tb_phys_hash_func(phys_pc);
5e5f07e0 981 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
982
983 /* remove the TB from the page list */
984 if (tb->page_addr[0] != page_addr) {
985 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
986 tb_page_remove(&p->first_tb, tb);
987 invalidate_page_bitmap(p);
988 }
989 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
990 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
991 tb_page_remove(&p->first_tb, tb);
992 invalidate_page_bitmap(p);
993 }
994
5e5f07e0 995 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
996
997 /* remove the TB from the hash list */
998 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 999 CPU_FOREACH(cpu) {
8cd70437
AF
1000 if (cpu->tb_jmp_cache[h] == tb) {
1001 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
1002 }
1003 }
1004
1005 /* suppress this TB from the two jump lists */
1006 tb_jmp_remove(tb, 0);
1007 tb_jmp_remove(tb, 1);
1008
1009 /* suppress any remaining jumps to this TB */
1010 tb1 = tb->jmp_first;
1011 for (;;) {
1012 n1 = (uintptr_t)tb1 & 3;
1013 if (n1 == 2) {
1014 break;
1015 }
1016 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1017 tb2 = tb1->jmp_next[n1];
1018 tb_reset_jump(tb1, n1);
1019 tb1->jmp_next[n1] = NULL;
1020 tb1 = tb2;
1021 }
1022 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1023
5e5f07e0 1024 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1025}
1026
5b6dd868
BS
1027static void build_page_bitmap(PageDesc *p)
1028{
1029 int n, tb_start, tb_end;
1030 TranslationBlock *tb;
1031
510a647f 1032 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1033
1034 tb = p->first_tb;
1035 while (tb != NULL) {
1036 n = (uintptr_t)tb & 3;
1037 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1038 /* NOTE: this is subtle as a TB may span two physical pages */
1039 if (n == 0) {
1040 /* NOTE: tb_end may be after the end of the page, but
1041 it is not a problem */
1042 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1043 tb_end = tb_start + tb->size;
1044 if (tb_end > TARGET_PAGE_SIZE) {
1045 tb_end = TARGET_PAGE_SIZE;
1046 }
1047 } else {
1048 tb_start = 0;
1049 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1050 }
510a647f 1051 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1052 tb = tb->page_next[n];
1053 }
1054}
1055
75692087 1056/* Called with mmap_lock held for user mode emulation. */
648f034c 1057TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
1058 target_ulong pc, target_ulong cs_base,
1059 int flags, int cflags)
1060{
648f034c 1061 CPUArchState *env = cpu->env_ptr;
5b6dd868 1062 TranslationBlock *tb;
5b6dd868
BS
1063 tb_page_addr_t phys_pc, phys_page2;
1064 target_ulong virt_page2;
fec88f64 1065 tcg_insn_unit *gen_code_buf;
fca8a500 1066 int gen_code_size, search_size;
fec88f64
RH
1067#ifdef CONFIG_PROFILER
1068 int64_t ti;
1069#endif
5b6dd868
BS
1070
1071 phys_pc = get_page_addr_code(env, pc);
56c0269a 1072 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1073 cflags |= CF_USE_ICOUNT;
1074 }
b125f9dc 1075
5b6dd868 1076 tb = tb_alloc(pc);
b125f9dc
RH
1077 if (unlikely(!tb)) {
1078 buffer_overflow:
5b6dd868 1079 /* flush must be done */
bbd77c18 1080 tb_flush(cpu);
5b6dd868
BS
1081 /* cannot fail at this point */
1082 tb = tb_alloc(pc);
b125f9dc 1083 assert(tb != NULL);
5b6dd868 1084 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1085 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1086 }
fec88f64
RH
1087
1088 gen_code_buf = tcg_ctx.code_gen_ptr;
1089 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1090 tb->cs_base = cs_base;
1091 tb->flags = flags;
1092 tb->cflags = cflags;
fec88f64
RH
1093
1094#ifdef CONFIG_PROFILER
1095 tcg_ctx.tb_count1++; /* includes aborted translations because of
1096 exceptions */
1097 ti = profile_getclock();
1098#endif
1099
1100 tcg_func_start(&tcg_ctx);
1101
1102 gen_intermediate_code(env, tb);
1103
1104 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1105
1106 /* generate machine code */
1107 tb->tb_next_offset[0] = 0xffff;
1108 tb->tb_next_offset[1] = 0xffff;
1109 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1110#ifdef USE_DIRECT_JUMP
1111 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1112 tcg_ctx.tb_next = NULL;
1113#else
1114 tcg_ctx.tb_jmp_offset = NULL;
1115 tcg_ctx.tb_next = tb->tb_next;
1116#endif
1117
1118#ifdef CONFIG_PROFILER
1119 tcg_ctx.tb_count++;
1120 tcg_ctx.interm_time += profile_getclock() - ti;
1121 tcg_ctx.code_time -= profile_getclock();
1122#endif
1123
b125f9dc
RH
1124 /* ??? Overflow could be handled better here. In particular, we
1125 don't need to re-do gen_intermediate_code, nor should we re-do
1126 the tcg optimization currently hidden inside tcg_gen_code. All
1127 that should be required is to flush the TBs, allocate a new TB,
1128 re-initialize it per above, and re-do the actual code generation. */
fec88f64 1129 gen_code_size = tcg_gen_code(&tcg_ctx, gen_code_buf);
b125f9dc
RH
1130 if (unlikely(gen_code_size < 0)) {
1131 goto buffer_overflow;
1132 }
fca8a500 1133 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1134 if (unlikely(search_size < 0)) {
1135 goto buffer_overflow;
1136 }
fec88f64
RH
1137
1138#ifdef CONFIG_PROFILER
1139 tcg_ctx.code_time += profile_getclock();
1140 tcg_ctx.code_in_len += tb->size;
1141 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1142 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1143#endif
1144
1145#ifdef DEBUG_DISAS
1146 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1147 qemu_log("OUT: [size=%d]\n", gen_code_size);
1148 log_disas(tb->tc_ptr, gen_code_size);
1149 qemu_log("\n");
1150 qemu_log_flush();
1151 }
1152#endif
1153
fca8a500
RH
1154 tcg_ctx.code_gen_ptr = (void *)
1155 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1156 CODE_GEN_ALIGN);
5b6dd868
BS
1157
1158 /* check next page if needed */
1159 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1160 phys_page2 = -1;
1161 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1162 phys_page2 = get_page_addr_code(env, virt_page2);
1163 }
1164 tb_link_page(tb, phys_pc, phys_page2);
1165 return tb;
1166}
1167
1168/*
1169 * Invalidate all TBs which intersect with the target physical address range
1170 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1171 * 'is_cpu_write_access' should be true if called from a real cpu write
1172 * access: the virtual CPU will exit the current TB if code is modified inside
1173 * this TB.
75692087
PB
1174 *
1175 * Called with mmap_lock held for user-mode emulation
5b6dd868 1176 */
35865339 1177void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1178{
1179 while (start < end) {
35865339 1180 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1181 start &= TARGET_PAGE_MASK;
1182 start += TARGET_PAGE_SIZE;
1183 }
1184}
1185
1186/*
1187 * Invalidate all TBs which intersect with the target physical address range
1188 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1189 * 'is_cpu_write_access' should be true if called from a real cpu write
1190 * access: the virtual CPU will exit the current TB if code is modified inside
1191 * this TB.
75692087
PB
1192 *
1193 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1194 */
1195void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1196 int is_cpu_write_access)
1197{
1198 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1199 CPUState *cpu = current_cpu;
baea4fae 1200#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1201 CPUArchState *env = NULL;
1202#endif
5b6dd868
BS
1203 tb_page_addr_t tb_start, tb_end;
1204 PageDesc *p;
1205 int n;
1206#ifdef TARGET_HAS_PRECISE_SMC
1207 int current_tb_not_found = is_cpu_write_access;
1208 TranslationBlock *current_tb = NULL;
1209 int current_tb_modified = 0;
1210 target_ulong current_pc = 0;
1211 target_ulong current_cs_base = 0;
1212 int current_flags = 0;
1213#endif /* TARGET_HAS_PRECISE_SMC */
1214
1215 p = page_find(start >> TARGET_PAGE_BITS);
1216 if (!p) {
1217 return;
1218 }
baea4fae 1219#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1220 if (cpu != NULL) {
1221 env = cpu->env_ptr;
d77953b9 1222 }
4917cf44 1223#endif
5b6dd868
BS
1224
1225 /* we remove all the TBs in the range [start, end[ */
1226 /* XXX: see if in some cases it could be faster to invalidate all
1227 the code */
1228 tb = p->first_tb;
1229 while (tb != NULL) {
1230 n = (uintptr_t)tb & 3;
1231 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1232 tb_next = tb->page_next[n];
1233 /* NOTE: this is subtle as a TB may span two physical pages */
1234 if (n == 0) {
1235 /* NOTE: tb_end may be after the end of the page, but
1236 it is not a problem */
1237 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1238 tb_end = tb_start + tb->size;
1239 } else {
1240 tb_start = tb->page_addr[1];
1241 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1242 }
1243 if (!(tb_end <= start || tb_start >= end)) {
1244#ifdef TARGET_HAS_PRECISE_SMC
1245 if (current_tb_not_found) {
1246 current_tb_not_found = 0;
1247 current_tb = NULL;
93afeade 1248 if (cpu->mem_io_pc) {
5b6dd868 1249 /* now we have a real cpu fault */
93afeade 1250 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1251 }
1252 }
1253 if (current_tb == tb &&
1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
1260
1261 current_tb_modified = 1;
74f10515 1262 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
1265 }
1266#endif /* TARGET_HAS_PRECISE_SMC */
1267 /* we need to do that to handle the case where a signal
1268 occurs while doing tb_phys_invalidate() */
1269 saved_tb = NULL;
d77953b9
AF
1270 if (cpu != NULL) {
1271 saved_tb = cpu->current_tb;
1272 cpu->current_tb = NULL;
5b6dd868
BS
1273 }
1274 tb_phys_invalidate(tb, -1);
d77953b9
AF
1275 if (cpu != NULL) {
1276 cpu->current_tb = saved_tb;
c3affe56
AF
1277 if (cpu->interrupt_request && cpu->current_tb) {
1278 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1279 }
1280 }
1281 }
1282 tb = tb_next;
1283 }
1284#if !defined(CONFIG_USER_ONLY)
1285 /* if no code remaining, no need to continue to use slow writes */
1286 if (!p->first_tb) {
1287 invalidate_page_bitmap(p);
fc377bcf 1288 tlb_unprotect_code(start);
5b6dd868
BS
1289 }
1290#endif
1291#ifdef TARGET_HAS_PRECISE_SMC
1292 if (current_tb_modified) {
1293 /* we generate a block containing just the instruction
1294 modifying the memory. It will ensure that it cannot modify
1295 itself */
d77953b9 1296 cpu->current_tb = NULL;
648f034c 1297 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1298 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1299 }
1300#endif
1301}
1302
1303/* len must be <= 8 and start must be a multiple of len */
1304void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1305{
1306 PageDesc *p;
5b6dd868
BS
1307
1308#if 0
1309 if (1) {
1310 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1311 cpu_single_env->mem_io_vaddr, len,
1312 cpu_single_env->eip,
1313 cpu_single_env->eip +
1314 (intptr_t)cpu_single_env->segs[R_CS].base);
1315 }
1316#endif
1317 p = page_find(start >> TARGET_PAGE_BITS);
1318 if (!p) {
1319 return;
1320 }
fc377bcf
PB
1321 if (!p->code_bitmap &&
1322 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1323 /* build code bitmap */
1324 build_page_bitmap(p);
1325 }
5b6dd868 1326 if (p->code_bitmap) {
510a647f
EC
1327 unsigned int nr;
1328 unsigned long b;
1329
1330 nr = start & ~TARGET_PAGE_MASK;
1331 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1332 if (b & ((1 << len) - 1)) {
1333 goto do_invalidate;
1334 }
1335 } else {
1336 do_invalidate:
1337 tb_invalidate_phys_page_range(start, start + len, 1);
1338 }
1339}
1340
1341#if !defined(CONFIG_SOFTMMU)
75692087 1342/* Called with mmap_lock held. */
5b6dd868 1343static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1344 uintptr_t pc, void *puc,
1345 bool locked)
5b6dd868
BS
1346{
1347 TranslationBlock *tb;
1348 PageDesc *p;
1349 int n;
1350#ifdef TARGET_HAS_PRECISE_SMC
1351 TranslationBlock *current_tb = NULL;
4917cf44
AF
1352 CPUState *cpu = current_cpu;
1353 CPUArchState *env = NULL;
5b6dd868
BS
1354 int current_tb_modified = 0;
1355 target_ulong current_pc = 0;
1356 target_ulong current_cs_base = 0;
1357 int current_flags = 0;
1358#endif
1359
1360 addr &= TARGET_PAGE_MASK;
1361 p = page_find(addr >> TARGET_PAGE_BITS);
1362 if (!p) {
1363 return;
1364 }
1365 tb = p->first_tb;
1366#ifdef TARGET_HAS_PRECISE_SMC
1367 if (tb && pc != 0) {
1368 current_tb = tb_find_pc(pc);
1369 }
4917cf44
AF
1370 if (cpu != NULL) {
1371 env = cpu->env_ptr;
d77953b9 1372 }
5b6dd868
BS
1373#endif
1374 while (tb != NULL) {
1375 n = (uintptr_t)tb & 3;
1376 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1377#ifdef TARGET_HAS_PRECISE_SMC
1378 if (current_tb == tb &&
1379 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1380 /* If we are modifying the current TB, we must stop
1381 its execution. We could be more precise by checking
1382 that the modification is after the current PC, but it
1383 would require a specialized function to partially
1384 restore the CPU state */
1385
1386 current_tb_modified = 1;
74f10515 1387 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1388 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1389 &current_flags);
1390 }
1391#endif /* TARGET_HAS_PRECISE_SMC */
1392 tb_phys_invalidate(tb, addr);
1393 tb = tb->page_next[n];
1394 }
1395 p->first_tb = NULL;
1396#ifdef TARGET_HAS_PRECISE_SMC
1397 if (current_tb_modified) {
1398 /* we generate a block containing just the instruction
1399 modifying the memory. It will ensure that it cannot modify
1400 itself */
d77953b9 1401 cpu->current_tb = NULL;
648f034c 1402 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1403 if (locked) {
1404 mmap_unlock();
1405 }
0ea8cb88 1406 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1407 }
1408#endif
1409}
1410#endif
1411
75692087
PB
1412/* add the tb in the target page and protect it if necessary
1413 *
1414 * Called with mmap_lock held for user-mode emulation.
1415 */
5b6dd868
BS
1416static inline void tb_alloc_page(TranslationBlock *tb,
1417 unsigned int n, tb_page_addr_t page_addr)
1418{
1419 PageDesc *p;
1420#ifndef CONFIG_USER_ONLY
1421 bool page_already_protected;
1422#endif
1423
1424 tb->page_addr[n] = page_addr;
1425 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1426 tb->page_next[n] = p->first_tb;
1427#ifndef CONFIG_USER_ONLY
1428 page_already_protected = p->first_tb != NULL;
1429#endif
1430 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1431 invalidate_page_bitmap(p);
1432
5b6dd868
BS
1433#if defined(CONFIG_USER_ONLY)
1434 if (p->flags & PAGE_WRITE) {
1435 target_ulong addr;
1436 PageDesc *p2;
1437 int prot;
1438
1439 /* force the host page as non writable (writes will have a
1440 page fault + mprotect overhead) */
1441 page_addr &= qemu_host_page_mask;
1442 prot = 0;
1443 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1444 addr += TARGET_PAGE_SIZE) {
1445
1446 p2 = page_find(addr >> TARGET_PAGE_BITS);
1447 if (!p2) {
1448 continue;
1449 }
1450 prot |= p2->flags;
1451 p2->flags &= ~PAGE_WRITE;
1452 }
1453 mprotect(g2h(page_addr), qemu_host_page_size,
1454 (prot & PAGE_BITS) & ~PAGE_WRITE);
1455#ifdef DEBUG_TB_INVALIDATE
1456 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1457 page_addr);
1458#endif
1459 }
1460#else
1461 /* if some code is already present, then the pages are already
1462 protected. So we handle the case where only the first TB is
1463 allocated in a physical page */
1464 if (!page_already_protected) {
1465 tlb_protect_code(page_addr);
1466 }
1467#endif
5b6dd868
BS
1468}
1469
1470/* add a new TB and link it to the physical page tables. phys_page2 is
75692087 1471 * (-1) to indicate that only one page contains the TB.
9fd1a948
PB
1472 *
1473 * Called with mmap_lock held for user-mode emulation.
75692087 1474 */
5b6dd868
BS
1475static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1476 tb_page_addr_t phys_page2)
1477{
1478 unsigned int h;
1479 TranslationBlock **ptb;
1480
5b6dd868
BS
1481 /* add in the physical hash table */
1482 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1483 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1484 tb->phys_hash_next = *ptb;
1485 *ptb = tb;
1486
1487 /* add in the page list */
1488 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1489 if (phys_page2 != -1) {
1490 tb_alloc_page(tb, 1, phys_page2);
1491 } else {
1492 tb->page_addr[1] = -1;
1493 }
1494
1495 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1496 tb->jmp_next[0] = NULL;
1497 tb->jmp_next[1] = NULL;
1498
1499 /* init original jump addresses */
1500 if (tb->tb_next_offset[0] != 0xffff) {
1501 tb_reset_jump(tb, 0);
1502 }
1503 if (tb->tb_next_offset[1] != 0xffff) {
1504 tb_reset_jump(tb, 1);
1505 }
1506
1507#ifdef DEBUG_TB_CHECK
1508 tb_page_check();
1509#endif
5b6dd868
BS
1510}
1511
5b6dd868
BS
1512/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1513 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1514static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1515{
1516 int m_min, m_max, m;
1517 uintptr_t v;
1518 TranslationBlock *tb;
1519
5e5f07e0 1520 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1521 return NULL;
1522 }
0b0d3320
EV
1523 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1524 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1525 return NULL;
1526 }
1527 /* binary search (cf Knuth) */
1528 m_min = 0;
5e5f07e0 1529 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1530 while (m_min <= m_max) {
1531 m = (m_min + m_max) >> 1;
5e5f07e0 1532 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1533 v = (uintptr_t)tb->tc_ptr;
1534 if (v == tc_ptr) {
1535 return tb;
1536 } else if (tc_ptr < v) {
1537 m_max = m - 1;
1538 } else {
1539 m_min = m + 1;
1540 }
1541 }
5e5f07e0 1542 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1543}
1544
ec53b45b 1545#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1546void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1547{
1548 ram_addr_t ram_addr;
5c8a00ce 1549 MemoryRegion *mr;
149f54b5 1550 hwaddr l = 1;
5b6dd868 1551
41063e1e 1552 rcu_read_lock();
29d8ec7b 1553 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1554 if (!(memory_region_is_ram(mr)
1555 || memory_region_is_romd(mr))) {
41063e1e 1556 rcu_read_unlock();
5b6dd868
BS
1557 return;
1558 }
5c8a00ce 1559 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1560 + addr;
5b6dd868 1561 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1562 rcu_read_unlock();
5b6dd868 1563}
ec53b45b 1564#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1565
239c51a5 1566void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1567{
1568 TranslationBlock *tb;
1569
93afeade 1570 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1571 if (tb) {
1572 /* We can use retranslation to find the PC. */
1573 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1574 tb_phys_invalidate(tb, -1);
1575 } else {
1576 /* The exception probably happened in a helper. The CPU state should
1577 have been saved before calling it. Fetch the PC from there. */
1578 CPUArchState *env = cpu->env_ptr;
1579 target_ulong pc, cs_base;
1580 tb_page_addr_t addr;
1581 int flags;
1582
1583 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1584 addr = get_page_addr_code(env, pc);
1585 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1586 }
5b6dd868
BS
1587}
1588
1589#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1590/* in deterministic execution mode, instructions doing device I/Os
1591 must be at the end of the TB */
90b40a69 1592void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1593{
a47dddd7 1594#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1595 CPUArchState *env = cpu->env_ptr;
a47dddd7 1596#endif
5b6dd868
BS
1597 TranslationBlock *tb;
1598 uint32_t n, cflags;
1599 target_ulong pc, cs_base;
1600 uint64_t flags;
1601
1602 tb = tb_find_pc(retaddr);
1603 if (!tb) {
a47dddd7 1604 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1605 (void *)retaddr);
1606 }
28ecfd7a 1607 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1608 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1609 /* Calculate how many instructions had been executed before the fault
1610 occurred. */
28ecfd7a 1611 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1612 /* Generate a new TB ending on the I/O insn. */
1613 n++;
1614 /* On MIPS and SH, delay slot instructions can only be restarted if
1615 they were already the first instruction in the TB. If this is not
1616 the first instruction in a TB then re-execute the preceding
1617 branch. */
1618#if defined(TARGET_MIPS)
1619 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1620 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1621 cpu->icount_decr.u16.low++;
5b6dd868
BS
1622 env->hflags &= ~MIPS_HFLAG_BMASK;
1623 }
1624#elif defined(TARGET_SH4)
1625 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1626 && n > 1) {
1627 env->pc -= 2;
28ecfd7a 1628 cpu->icount_decr.u16.low++;
5b6dd868
BS
1629 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1630 }
1631#endif
1632 /* This should never happen. */
1633 if (n > CF_COUNT_MASK) {
a47dddd7 1634 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1635 }
1636
1637 cflags = n | CF_LAST_IO;
1638 pc = tb->pc;
1639 cs_base = tb->cs_base;
1640 flags = tb->flags;
1641 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1642 if (tb->cflags & CF_NOCACHE) {
1643 if (tb->orig_tb) {
1644 /* Invalidate original TB if this TB was generated in
1645 * cpu_exec_nocache() */
1646 tb_phys_invalidate(tb->orig_tb, -1);
1647 }
1648 tb_free(tb);
1649 }
5b6dd868
BS
1650 /* FIXME: In theory this could raise an exception. In practice
1651 we have already translated the block once so it's probably ok. */
648f034c 1652 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1653 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1654 the first in the TB) then we end up generating a whole new TB and
1655 repeating the fault, which is horribly inefficient.
1656 Better would be to execute just this insn uncached, or generate a
1657 second new TB. */
0ea8cb88 1658 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1659}
1660
611d4f99 1661void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1662{
1663 unsigned int i;
1664
1665 /* Discard jump cache entries for any tb which might potentially
1666 overlap the flushed page. */
1667 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1668 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1669 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1670
1671 i = tb_jmp_cache_hash_page(addr);
8cd70437 1672 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1673 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1674}
1675
1676void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1677{
1678 int i, target_code_size, max_target_code_size;
1679 int direct_jmp_count, direct_jmp2_count, cross_page;
1680 TranslationBlock *tb;
1681
1682 target_code_size = 0;
1683 max_target_code_size = 0;
1684 cross_page = 0;
1685 direct_jmp_count = 0;
1686 direct_jmp2_count = 0;
5e5f07e0
EV
1687 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1688 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1689 target_code_size += tb->size;
1690 if (tb->size > max_target_code_size) {
1691 max_target_code_size = tb->size;
1692 }
1693 if (tb->page_addr[1] != -1) {
1694 cross_page++;
1695 }
1696 if (tb->tb_next_offset[0] != 0xffff) {
1697 direct_jmp_count++;
1698 if (tb->tb_next_offset[1] != 0xffff) {
1699 direct_jmp2_count++;
1700 }
1701 }
1702 }
1703 /* XXX: avoid using doubles ? */
1704 cpu_fprintf(f, "Translation buffer state:\n");
1705 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1706 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1707 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1708 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1709 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1710 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1711 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1712 tcg_ctx.tb_ctx.nb_tbs : 0,
1713 max_target_code_size);
5b6dd868 1714 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1715 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1716 tcg_ctx.code_gen_buffer) /
1717 tcg_ctx.tb_ctx.nb_tbs : 0,
1718 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1719 tcg_ctx.code_gen_buffer) /
1720 target_code_size : 0);
1721 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1722 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1723 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1724 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1725 direct_jmp_count,
5e5f07e0
EV
1726 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1727 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1728 direct_jmp2_count,
5e5f07e0
EV
1729 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1730 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1731 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1732 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1733 cpu_fprintf(f, "TB invalidate count %d\n",
1734 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1735 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1736 tcg_dump_info(f, cpu_fprintf);
1737}
1738
246ae24d
MF
1739void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1740{
1741 tcg_dump_op_count(f, cpu_fprintf);
1742}
1743
5b6dd868
BS
1744#else /* CONFIG_USER_ONLY */
1745
c3affe56 1746void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1747{
259186a7 1748 cpu->interrupt_request |= mask;
378df4b2 1749 cpu->tcg_exit_req = 1;
5b6dd868
BS
1750}
1751
1752/*
1753 * Walks guest process memory "regions" one by one
1754 * and calls callback function 'fn' for each region.
1755 */
1756struct walk_memory_regions_data {
1757 walk_memory_regions_fn fn;
1758 void *priv;
1a1c4db9 1759 target_ulong start;
5b6dd868
BS
1760 int prot;
1761};
1762
1763static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1764 target_ulong end, int new_prot)
5b6dd868 1765{
1a1c4db9 1766 if (data->start != -1u) {
5b6dd868
BS
1767 int rc = data->fn(data->priv, data->start, end, data->prot);
1768 if (rc != 0) {
1769 return rc;
1770 }
1771 }
1772
1a1c4db9 1773 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1774 data->prot = new_prot;
1775
1776 return 0;
1777}
1778
1779static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1780 target_ulong base, int level, void **lp)
5b6dd868 1781{
1a1c4db9 1782 target_ulong pa;
5b6dd868
BS
1783 int i, rc;
1784
1785 if (*lp == NULL) {
1786 return walk_memory_regions_end(data, base, 0);
1787 }
1788
1789 if (level == 0) {
1790 PageDesc *pd = *lp;
1791
03f49957 1792 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1793 int prot = pd[i].flags;
1794
1795 pa = base | (i << TARGET_PAGE_BITS);
1796 if (prot != data->prot) {
1797 rc = walk_memory_regions_end(data, pa, prot);
1798 if (rc != 0) {
1799 return rc;
1800 }
1801 }
1802 }
1803 } else {
1804 void **pp = *lp;
1805
03f49957 1806 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1807 pa = base | ((target_ulong)i <<
03f49957 1808 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1809 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1810 if (rc != 0) {
1811 return rc;
1812 }
1813 }
1814 }
1815
1816 return 0;
1817}
1818
1819int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1820{
1821 struct walk_memory_regions_data data;
1822 uintptr_t i;
1823
1824 data.fn = fn;
1825 data.priv = priv;
1a1c4db9 1826 data.start = -1u;
5b6dd868
BS
1827 data.prot = 0;
1828
1829 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1830 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1831 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1832 if (rc != 0) {
1833 return rc;
1834 }
1835 }
1836
1837 return walk_memory_regions_end(&data, 0, 0);
1838}
1839
1a1c4db9
MI
1840static int dump_region(void *priv, target_ulong start,
1841 target_ulong end, unsigned long prot)
5b6dd868
BS
1842{
1843 FILE *f = (FILE *)priv;
1844
1a1c4db9
MI
1845 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1846 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1847 start, end, end - start,
1848 ((prot & PAGE_READ) ? 'r' : '-'),
1849 ((prot & PAGE_WRITE) ? 'w' : '-'),
1850 ((prot & PAGE_EXEC) ? 'x' : '-'));
1851
1852 return 0;
1853}
1854
1855/* dump memory mappings */
1856void page_dump(FILE *f)
1857{
1a1c4db9 1858 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1859 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1860 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1861 walk_memory_regions(f, dump_region);
1862}
1863
1864int page_get_flags(target_ulong address)
1865{
1866 PageDesc *p;
1867
1868 p = page_find(address >> TARGET_PAGE_BITS);
1869 if (!p) {
1870 return 0;
1871 }
1872 return p->flags;
1873}
1874
1875/* Modify the flags of a page and invalidate the code if necessary.
1876 The flag PAGE_WRITE_ORG is positioned automatically depending
1877 on PAGE_WRITE. The mmap_lock should already be held. */
1878void page_set_flags(target_ulong start, target_ulong end, int flags)
1879{
1880 target_ulong addr, len;
1881
1882 /* This function should never be called with addresses outside the
1883 guest address space. If this assert fires, it probably indicates
1884 a missing call to h2g_valid. */
1885#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1886 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1887#endif
1888 assert(start < end);
1889
1890 start = start & TARGET_PAGE_MASK;
1891 end = TARGET_PAGE_ALIGN(end);
1892
1893 if (flags & PAGE_WRITE) {
1894 flags |= PAGE_WRITE_ORG;
1895 }
1896
1897 for (addr = start, len = end - start;
1898 len != 0;
1899 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1900 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1901
1902 /* If the write protection bit is set, then we invalidate
1903 the code inside. */
1904 if (!(p->flags & PAGE_WRITE) &&
1905 (flags & PAGE_WRITE) &&
1906 p->first_tb) {
d02532f0 1907 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1908 }
1909 p->flags = flags;
1910 }
1911}
1912
1913int page_check_range(target_ulong start, target_ulong len, int flags)
1914{
1915 PageDesc *p;
1916 target_ulong end;
1917 target_ulong addr;
1918
1919 /* This function should never be called with addresses outside the
1920 guest address space. If this assert fires, it probably indicates
1921 a missing call to h2g_valid. */
1922#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1923 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1924#endif
1925
1926 if (len == 0) {
1927 return 0;
1928 }
1929 if (start + len - 1 < start) {
1930 /* We've wrapped around. */
1931 return -1;
1932 }
1933
1934 /* must do before we loose bits in the next step */
1935 end = TARGET_PAGE_ALIGN(start + len);
1936 start = start & TARGET_PAGE_MASK;
1937
1938 for (addr = start, len = end - start;
1939 len != 0;
1940 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1941 p = page_find(addr >> TARGET_PAGE_BITS);
1942 if (!p) {
1943 return -1;
1944 }
1945 if (!(p->flags & PAGE_VALID)) {
1946 return -1;
1947 }
1948
1949 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1950 return -1;
1951 }
1952 if (flags & PAGE_WRITE) {
1953 if (!(p->flags & PAGE_WRITE_ORG)) {
1954 return -1;
1955 }
1956 /* unprotect the page if it was put read-only because it
1957 contains translated code */
1958 if (!(p->flags & PAGE_WRITE)) {
1959 if (!page_unprotect(addr, 0, NULL)) {
1960 return -1;
1961 }
1962 }
5b6dd868
BS
1963 }
1964 }
1965 return 0;
1966}
1967
1968/* called from signal handler: invalidate the code and unprotect the
1969 page. Return TRUE if the fault was successfully handled. */
1970int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1971{
1972 unsigned int prot;
1973 PageDesc *p;
1974 target_ulong host_start, host_end, addr;
1975
1976 /* Technically this isn't safe inside a signal handler. However we
1977 know this only ever happens in a synchronous SEGV handler, so in
1978 practice it seems to be ok. */
1979 mmap_lock();
1980
1981 p = page_find(address >> TARGET_PAGE_BITS);
1982 if (!p) {
1983 mmap_unlock();
1984 return 0;
1985 }
1986
1987 /* if the page was really writable, then we change its
1988 protection back to writable */
1989 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1990 host_start = address & qemu_host_page_mask;
1991 host_end = host_start + qemu_host_page_size;
1992
1993 prot = 0;
1994 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1995 p = page_find(addr >> TARGET_PAGE_BITS);
1996 p->flags |= PAGE_WRITE;
1997 prot |= p->flags;
1998
1999 /* and since the content will be modified, we must invalidate
2000 the corresponding translated code. */
d02532f0 2001 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
2002#ifdef DEBUG_TB_CHECK
2003 tb_invalidate_check(addr);
2004#endif
2005 }
2006 mprotect((void *)g2h(host_start), qemu_host_page_size,
2007 prot & PAGE_BITS);
2008
2009 mmap_unlock();
2010 return 1;
2011 }
2012 mmap_unlock();
2013 return 0;
2014}
2015#endif /* CONFIG_USER_ONLY */