]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
Merge remote-tracking branch 'remotes/otubo/tags/pull-seccomp-20160620' into staging
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
5b6dd868 21#endif
7b31bbc2 22#include "qemu/osdep.h"
d19893da 23
2054396a 24
5b6dd868 25#include "qemu-common.h"
af5ad107 26#define NO_CPU_IO_DEFS
d3eead2e 27#include "cpu.h"
6db8b538 28#include "trace.h"
76cad711 29#include "disas/disas.h"
63c91552 30#include "exec/exec-all.h"
57fec1fe 31#include "tcg.h"
5b6dd868
BS
32#if defined(CONFIG_USER_ONLY)
33#include "qemu.h"
34#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35#include <sys/param.h>
36#if __FreeBSD_version >= 700104
37#define HAVE_KINFO_GETVMMAP
38#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
39#include <sys/proc.h>
40#include <machine/profile.h>
41#define _KERNEL
42#include <sys/user.h>
43#undef _KERNEL
44#undef sigqueue
45#include <libutil.h>
46#endif
47#endif
0bc3cd62
PB
48#else
49#include "exec/address-spaces.h"
5b6dd868
BS
50#endif
51
022c62cb 52#include "exec/cputlb.h"
e1b89321 53#include "exec/tb-hash.h"
5b6dd868 54#include "translate-all.h"
510a647f 55#include "qemu/bitmap.h"
0aa09897 56#include "qemu/timer.h"
508127e2 57#include "exec/log.h"
5b6dd868
BS
58
59//#define DEBUG_TB_INVALIDATE
60//#define DEBUG_FLUSH
61/* make various TB consistency checks */
62//#define DEBUG_TB_CHECK
63
64#if !defined(CONFIG_USER_ONLY)
65/* TB consistency checks only implemented for usermode emulation. */
66#undef DEBUG_TB_CHECK
67#endif
68
69#define SMC_BITMAP_USE_THRESHOLD 10
70
5b6dd868
BS
71typedef struct PageDesc {
72 /* list of TBs intersecting this ram page */
73 TranslationBlock *first_tb;
6fad459c 74#ifdef CONFIG_SOFTMMU
5b6dd868
BS
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
510a647f 78 unsigned long *code_bitmap;
6fad459c 79#else
5b6dd868
BS
80 unsigned long flags;
81#endif
82} PageDesc;
83
84/* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86#if !defined(CONFIG_USER_ONLY)
87#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89#else
90# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91#endif
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94#endif
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define V_L2_BITS 10
98#define V_L2_SIZE (1 << V_L2_BITS)
99
5b6dd868
BS
100/* The bits remaining after N lower levels of page tables. */
101#define V_L1_BITS_REM \
03f49957 102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
103
104#if V_L1_BITS_REM < 4
03f49957 105#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
106#else
107#define V_L1_BITS V_L1_BITS_REM
108#endif
109
110#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
5b6dd868 114uintptr_t qemu_host_page_size;
0c2d70c4 115intptr_t qemu_host_page_mask;
5b6dd868 116
d1142fb8 117/* The bottom level has pointers to PageDesc */
5b6dd868
BS
118static void *l1_map[V_L1_SIZE];
119
57fec1fe
FB
120/* code generation context */
121TCGContext tcg_ctx;
d19893da 122
677ef623
FK
123/* translation block context */
124#ifdef CONFIG_USER_ONLY
125__thread int have_tb_lock;
126#endif
127
128void tb_lock(void)
129{
130#ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134#endif
135}
136
137void tb_unlock(void)
138{
139#ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143#endif
144}
145
146void tb_lock_reset(void)
147{
148#ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153#endif
154}
155
a8a826a3 156static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 157
57fec1fe
FB
158void cpu_gen_init(void)
159{
160 tcg_context_init(&tcg_ctx);
57fec1fe
FB
161}
162
fca8a500
RH
163/* Encode VAL as a signed leb128 sequence at P.
164 Return P incremented past the encoded value. */
165static uint8_t *encode_sleb128(uint8_t *p, target_long val)
166{
167 int more, byte;
168
169 do {
170 byte = val & 0x7f;
171 val >>= 7;
172 more = !((val == 0 && (byte & 0x40) == 0)
173 || (val == -1 && (byte & 0x40) != 0));
174 if (more) {
175 byte |= 0x80;
176 }
177 *p++ = byte;
178 } while (more);
179
180 return p;
181}
182
183/* Decode a signed leb128 sequence at *PP; increment *PP past the
184 decoded value. Return the decoded value. */
185static target_long decode_sleb128(uint8_t **pp)
186{
187 uint8_t *p = *pp;
188 target_long val = 0;
189 int byte, shift = 0;
190
191 do {
192 byte = *p++;
193 val |= (target_ulong)(byte & 0x7f) << shift;
194 shift += 7;
195 } while (byte & 0x80);
196 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
197 val |= -(target_ulong)1 << shift;
198 }
199
200 *pp = p;
201 return val;
202}
203
204/* Encode the data collected about the instructions while compiling TB.
205 Place the data at BLOCK, and return the number of bytes consumed.
206
207 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
208 which come from the target's insn_start data, followed by a uintptr_t
209 which comes from the host pc of the end of the code implementing the insn.
210
211 Each line of the table is encoded as sleb128 deltas from the previous
212 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
213 That is, the first column is seeded with the guest pc, the last column
214 with the host pc, and the middle columns with zeros. */
215
216static int encode_search(TranslationBlock *tb, uint8_t *block)
217{
b125f9dc 218 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
219 uint8_t *p = block;
220 int i, j, n;
221
222 tb->tc_search = block;
223
224 for (i = 0, n = tb->icount; i < n; ++i) {
225 target_ulong prev;
226
227 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
228 if (i == 0) {
229 prev = (j == 0 ? tb->pc : 0);
230 } else {
231 prev = tcg_ctx.gen_insn_data[i - 1][j];
232 }
233 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
234 }
235 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
236 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
237
238 /* Test for (pending) buffer overflow. The assumption is that any
239 one row beginning below the high water mark cannot overrun
240 the buffer completely. Thus we can test for overflow after
241 encoding a row without having to check during encoding. */
242 if (unlikely(p > highwater)) {
243 return -1;
244 }
fca8a500
RH
245 }
246
247 return p - block;
248}
249
fec88f64 250/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 251static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 252 uintptr_t searched_pc)
d19893da 253{
fca8a500
RH
254 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
255 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 256 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
257 uint8_t *p = tb->tc_search;
258 int i, j, num_insns = tb->icount;
57fec1fe 259#ifdef CONFIG_PROFILER
fca8a500 260 int64_t ti = profile_getclock();
57fec1fe
FB
261#endif
262
fca8a500
RH
263 if (searched_pc < host_pc) {
264 return -1;
265 }
d19893da 266
fca8a500
RH
267 /* Reconstruct the stored insn data while looking for the point at
268 which the end of the insn exceeds the searched_pc. */
269 for (i = 0; i < num_insns; ++i) {
270 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
271 data[j] += decode_sleb128(&p);
272 }
273 host_pc += decode_sleb128(&p);
274 if (host_pc > searched_pc) {
275 goto found;
276 }
277 }
278 return -1;
3b46e624 279
fca8a500 280 found:
bd79255d 281 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 282 assert(use_icount);
2e70f6ef 283 /* Reset the cycle counter to the start of the block. */
fca8a500 284 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 285 /* Clear the IO flag. */
99df7dce 286 cpu->can_do_io = 0;
2e70f6ef 287 }
fca8a500
RH
288 cpu->icount_decr.u16.low -= i;
289 restore_state_to_opc(env, tb, data);
57fec1fe
FB
290
291#ifdef CONFIG_PROFILER
fca8a500
RH
292 tcg_ctx.restore_time += profile_getclock() - ti;
293 tcg_ctx.restore_count++;
57fec1fe 294#endif
d19893da
FB
295 return 0;
296}
5b6dd868 297
3f38f309 298bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
299{
300 TranslationBlock *tb;
301
302 tb = tb_find_pc(retaddr);
303 if (tb) {
74f10515 304 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
307 tb_phys_invalidate(tb, -1);
308 tb_free(tb);
309 }
a8a826a3
BS
310 return true;
311 }
312 return false;
313}
314
47c16ed5 315void page_size_init(void)
5b6dd868
BS
316{
317 /* NOTE: we can always suppose that qemu_host_page_size >=
318 TARGET_PAGE_SIZE */
5b6dd868 319 qemu_real_host_page_size = getpagesize();
0c2d70c4 320 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
321 if (qemu_host_page_size == 0) {
322 qemu_host_page_size = qemu_real_host_page_size;
323 }
324 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
325 qemu_host_page_size = TARGET_PAGE_SIZE;
326 }
0c2d70c4 327 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 328}
5b6dd868 329
47c16ed5
AK
330static void page_init(void)
331{
332 page_size_init();
5b6dd868
BS
333#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
334 {
335#ifdef HAVE_KINFO_GETVMMAP
336 struct kinfo_vmentry *freep;
337 int i, cnt;
338
339 freep = kinfo_getvmmap(getpid(), &cnt);
340 if (freep) {
341 mmap_lock();
342 for (i = 0; i < cnt; i++) {
343 unsigned long startaddr, endaddr;
344
345 startaddr = freep[i].kve_start;
346 endaddr = freep[i].kve_end;
347 if (h2g_valid(startaddr)) {
348 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
349
350 if (h2g_valid(endaddr)) {
351 endaddr = h2g(endaddr);
352 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
353 } else {
354#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
355 endaddr = ~0ul;
356 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
357#endif
358 }
359 }
360 }
361 free(freep);
362 mmap_unlock();
363 }
364#else
365 FILE *f;
366
367 last_brk = (unsigned long)sbrk(0);
368
369 f = fopen("/compat/linux/proc/self/maps", "r");
370 if (f) {
371 mmap_lock();
372
373 do {
374 unsigned long startaddr, endaddr;
375 int n;
376
377 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
378
379 if (n == 2 && h2g_valid(startaddr)) {
380 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
381
382 if (h2g_valid(endaddr)) {
383 endaddr = h2g(endaddr);
384 } else {
385 endaddr = ~0ul;
386 }
387 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
388 }
389 } while (!feof(f));
390
391 fclose(f);
392 mmap_unlock();
393 }
394#endif
395 }
396#endif
397}
398
75692087
PB
399/* If alloc=1:
400 * Called with mmap_lock held for user-mode emulation.
401 */
5b6dd868
BS
402static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
403{
404 PageDesc *pd;
405 void **lp;
406 int i;
407
5b6dd868
BS
408 /* Level 1. Always allocated. */
409 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
410
411 /* Level 2..N-1. */
03f49957 412 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 413 void **p = atomic_rcu_read(lp);
5b6dd868
BS
414
415 if (p == NULL) {
416 if (!alloc) {
417 return NULL;
418 }
e3a0abfd 419 p = g_new0(void *, V_L2_SIZE);
6940fab8 420 atomic_rcu_set(lp, p);
5b6dd868
BS
421 }
422
03f49957 423 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
424 }
425
6940fab8 426 pd = atomic_rcu_read(lp);
5b6dd868
BS
427 if (pd == NULL) {
428 if (!alloc) {
429 return NULL;
430 }
e3a0abfd 431 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 432 atomic_rcu_set(lp, pd);
5b6dd868
BS
433 }
434
03f49957 435 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
436}
437
438static inline PageDesc *page_find(tb_page_addr_t index)
439{
440 return page_find_alloc(index, 0);
441}
442
5b6dd868
BS
443#if defined(CONFIG_USER_ONLY)
444/* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used. */
446/* ??? 64-bit hosts ought to have no problem mmaping data outside the
447 region in which the guest needs to run. Revisit this. */
448#define USE_STATIC_CODE_GEN_BUFFER
449#endif
450
5b6dd868
BS
451/* Minimum size of the code gen buffer. This number is randomly chosen,
452 but not so small that we can't have a fair number of TB's live. */
453#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
454
455/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
456 indicated, this is constrained by the range of direct branches on the
457 host cpu, as used by the TCG implementation of goto_tb. */
458#if defined(__x86_64__)
459# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
460#elif defined(__sparc__)
461# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
462#elif defined(__powerpc64__)
463# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
464#elif defined(__powerpc__)
465# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
466#elif defined(__aarch64__)
467# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
468#elif defined(__arm__)
469# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
470#elif defined(__s390x__)
471 /* We have a +- 4GB range on the branches; leave some slop. */
472# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
473#elif defined(__mips__)
474 /* We have a 256MB branch region, but leave room to make sure the
475 main executable is also within that region. */
476# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
477#else
478# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
479#endif
480
481#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
482
483#define DEFAULT_CODE_GEN_BUFFER_SIZE \
484 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
485 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
486
487static inline size_t size_code_gen_buffer(size_t tb_size)
488{
489 /* Size the buffer. */
490 if (tb_size == 0) {
491#ifdef USE_STATIC_CODE_GEN_BUFFER
492 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
493#else
494 /* ??? Needs adjustments. */
495 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
496 static buffer, we could size this on RESERVED_VA, on the text
497 segment size of the executable, or continue to use the default. */
498 tb_size = (unsigned long)(ram_size / 4);
499#endif
500 }
501 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
502 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
503 }
504 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
506 }
5b6dd868
BS
507 return tb_size;
508}
509
483c76e1
RH
510#ifdef __mips__
511/* In order to use J and JAL within the code_gen_buffer, we require
512 that the buffer not cross a 256MB boundary. */
513static inline bool cross_256mb(void *addr, size_t size)
514{
7ba6a512 515 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
516}
517
518/* We weren't able to allocate a buffer without crossing that boundary,
519 so make do with the larger portion of the buffer that doesn't cross.
520 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
521static inline void *split_cross_256mb(void *buf1, size_t size1)
522{
7ba6a512 523 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
524 size_t size2 = buf1 + size1 - buf2;
525
526 size1 = buf2 - buf1;
527 if (size1 < size2) {
528 size1 = size2;
529 buf1 = buf2;
530 }
531
532 tcg_ctx.code_gen_buffer_size = size1;
533 return buf1;
534}
535#endif
536
5b6dd868
BS
537#ifdef USE_STATIC_CODE_GEN_BUFFER
538static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
539 __attribute__((aligned(CODE_GEN_ALIGN)));
540
f293709c
RH
541# ifdef _WIN32
542static inline void do_protect(void *addr, long size, int prot)
543{
544 DWORD old_protect;
545 VirtualProtect(addr, size, prot, &old_protect);
546}
547
548static inline void map_exec(void *addr, long size)
549{
550 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
551}
552
553static inline void map_none(void *addr, long size)
554{
555 do_protect(addr, size, PAGE_NOACCESS);
556}
557# else
558static inline void do_protect(void *addr, long size, int prot)
559{
560 uintptr_t start, end;
561
562 start = (uintptr_t)addr;
563 start &= qemu_real_host_page_mask;
564
565 end = (uintptr_t)addr + size;
566 end = ROUND_UP(end, qemu_real_host_page_size);
567
568 mprotect((void *)start, end - start, prot);
569}
570
571static inline void map_exec(void *addr, long size)
572{
573 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
574}
575
576static inline void map_none(void *addr, long size)
577{
578 do_protect(addr, size, PROT_NONE);
579}
580# endif /* WIN32 */
581
5b6dd868
BS
582static inline void *alloc_code_gen_buffer(void)
583{
483c76e1 584 void *buf = static_code_gen_buffer;
f293709c
RH
585 size_t full_size, size;
586
587 /* The size of the buffer, rounded down to end on a page boundary. */
588 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
589 & qemu_real_host_page_mask) - (uintptr_t)buf;
590
591 /* Reserve a guard page. */
592 size = full_size - qemu_real_host_page_size;
593
594 /* Honor a command-line option limiting the size of the buffer. */
595 if (size > tcg_ctx.code_gen_buffer_size) {
596 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
597 & qemu_real_host_page_mask) - (uintptr_t)buf;
598 }
599 tcg_ctx.code_gen_buffer_size = size;
600
483c76e1 601#ifdef __mips__
f293709c
RH
602 if (cross_256mb(buf, size)) {
603 buf = split_cross_256mb(buf, size);
604 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
605 }
606#endif
f293709c
RH
607
608 map_exec(buf, size);
609 map_none(buf + size, qemu_real_host_page_size);
610 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
611
483c76e1 612 return buf;
5b6dd868 613}
f293709c
RH
614#elif defined(_WIN32)
615static inline void *alloc_code_gen_buffer(void)
616{
617 size_t size = tcg_ctx.code_gen_buffer_size;
618 void *buf1, *buf2;
619
620 /* Perform the allocation in two steps, so that the guard page
621 is reserved but uncommitted. */
622 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
623 MEM_RESERVE, PAGE_NOACCESS);
624 if (buf1 != NULL) {
625 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
626 assert(buf1 == buf2);
627 }
628
629 return buf1;
630}
631#else
5b6dd868
BS
632static inline void *alloc_code_gen_buffer(void)
633{
634 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
635 uintptr_t start = 0;
f293709c 636 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
637 void *buf;
638
639 /* Constrain the position of the buffer based on the host cpu.
640 Note that these addresses are chosen in concert with the
641 addresses assigned in the relevant linker script file. */
642# if defined(__PIE__) || defined(__PIC__)
643 /* Don't bother setting a preferred location if we're building
644 a position-independent executable. We're more likely to get
645 an address near the main executable if we let the kernel
646 choose the address. */
647# elif defined(__x86_64__) && defined(MAP_32BIT)
648 /* Force the memory down into low memory with the executable.
649 Leave the choice of exact location with the kernel. */
650 flags |= MAP_32BIT;
651 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
652 if (size > 800u * 1024 * 1024) {
653 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
654 }
655# elif defined(__sparc__)
656 start = 0x40000000ul;
657# elif defined(__s390x__)
658 start = 0x90000000ul;
479eb121 659# elif defined(__mips__)
f293709c 660# if _MIPS_SIM == _ABI64
479eb121
RH
661 start = 0x128000000ul;
662# else
663 start = 0x08000000ul;
664# endif
5b6dd868
BS
665# endif
666
f293709c
RH
667 buf = mmap((void *)start, size + qemu_real_host_page_size,
668 PROT_NONE, flags, -1, 0);
483c76e1
RH
669 if (buf == MAP_FAILED) {
670 return NULL;
671 }
672
673#ifdef __mips__
f293709c 674 if (cross_256mb(buf, size)) {
5d831be2 675 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 676 that 256mb crossing. This time don't specify an address. */
f293709c
RH
677 size_t size2;
678 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
679 PROT_NONE, flags, -1, 0);
680 switch (buf2 != MAP_FAILED) {
681 case 1:
682 if (!cross_256mb(buf2, size)) {
483c76e1 683 /* Success! Use the new buffer. */
8bdf4997 684 munmap(buf, size + qemu_real_host_page_size);
f293709c 685 break;
483c76e1
RH
686 }
687 /* Failure. Work with what we had. */
8bdf4997 688 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
689 /* fallthru */
690 default:
691 /* Split the original buffer. Free the smaller half. */
692 buf2 = split_cross_256mb(buf, size);
693 size2 = tcg_ctx.code_gen_buffer_size;
694 if (buf == buf2) {
695 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
696 } else {
697 munmap(buf, size - size2);
698 }
699 size = size2;
700 break;
483c76e1 701 }
f293709c 702 buf = buf2;
483c76e1
RH
703 }
704#endif
705
f293709c
RH
706 /* Make the final buffer accessible. The guard page at the end
707 will remain inaccessible with PROT_NONE. */
708 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 709
f293709c
RH
710 /* Request large pages for the buffer. */
711 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 712
5b6dd868
BS
713 return buf;
714}
f293709c 715#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
716
717static inline void code_gen_alloc(size_t tb_size)
718{
0b0d3320
EV
719 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
720 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
721 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
722 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
723 exit(1);
724 }
725
8163b749
RH
726 /* Estimate a good size for the number of TBs we can support. We
727 still haven't deducted the prologue from the buffer size here,
728 but that's minimal and won't affect the estimate much. */
729 tcg_ctx.code_gen_max_blocks
730 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
731 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
732
677ef623 733 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
734}
735
909eaac9
EC
736static void tb_htable_init(void)
737{
738 unsigned int mode = QHT_MODE_AUTO_RESIZE;
739
740 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
741}
742
5b6dd868
BS
743/* Must be called before using the QEMU cpus. 'tb_size' is the size
744 (in bytes) allocated to the translation buffer. Zero means default
745 size. */
746void tcg_exec_init(unsigned long tb_size)
747{
748 cpu_gen_init();
5b6dd868 749 page_init();
909eaac9 750 tb_htable_init();
f293709c 751 code_gen_alloc(tb_size);
4cbea598 752#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
753 /* There's no guest base to take into account, so go ahead and
754 initialize the prologue now. */
755 tcg_prologue_init(&tcg_ctx);
756#endif
757}
758
759bool tcg_enabled(void)
760{
0b0d3320 761 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
762}
763
764/* Allocate a new translation block. Flush the translation buffer if
765 too many translation blocks or too much generated code. */
766static TranslationBlock *tb_alloc(target_ulong pc)
767{
768 TranslationBlock *tb;
769
b125f9dc 770 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
771 return NULL;
772 }
5e5f07e0 773 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
774 tb->pc = pc;
775 tb->cflags = 0;
776 return tb;
777}
778
779void tb_free(TranslationBlock *tb)
780{
781 /* In practice this is mostly used for single use temporary TB
782 Ignore the hard cases and just back up if this TB happens to
783 be the last one generated. */
5e5f07e0
EV
784 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
785 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 786 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 787 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
788 }
789}
790
791static inline void invalidate_page_bitmap(PageDesc *p)
792{
6fad459c 793#ifdef CONFIG_SOFTMMU
012aef07
MA
794 g_free(p->code_bitmap);
795 p->code_bitmap = NULL;
5b6dd868 796 p->code_write_count = 0;
6fad459c 797#endif
5b6dd868
BS
798}
799
800/* Set to NULL all the 'first_tb' fields in all PageDescs. */
801static void page_flush_tb_1(int level, void **lp)
802{
803 int i;
804
805 if (*lp == NULL) {
806 return;
807 }
808 if (level == 0) {
809 PageDesc *pd = *lp;
810
03f49957 811 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
812 pd[i].first_tb = NULL;
813 invalidate_page_bitmap(pd + i);
814 }
815 } else {
816 void **pp = *lp;
817
03f49957 818 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
819 page_flush_tb_1(level - 1, pp + i);
820 }
821 }
822}
823
824static void page_flush_tb(void)
825{
826 int i;
827
828 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 829 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
830 }
831}
832
833/* flush all the translation blocks */
834/* XXX: tb_flush is currently not thread safe */
bbd77c18 835void tb_flush(CPUState *cpu)
5b6dd868 836{
5b6dd868
BS
837#if defined(DEBUG_FLUSH)
838 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 839 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 840 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 841 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 842 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 843#endif
0b0d3320
EV
844 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
845 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 846 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 847 }
5e5f07e0 848 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 849
bdc44640 850 CPU_FOREACH(cpu) {
8cd70437 851 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
6f789be5 852 cpu->tb_flushed = true;
5b6dd868
BS
853 }
854
909eaac9 855 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
5b6dd868
BS
856 page_flush_tb();
857
0b0d3320 858 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
859 /* XXX: flush processor icache at this point if cache flush is
860 expensive */
5e5f07e0 861 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
862}
863
864#ifdef DEBUG_TB_CHECK
865
909eaac9
EC
866static void
867do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
5b6dd868 868{
909eaac9
EC
869 TranslationBlock *tb = p;
870 target_ulong addr = *(target_ulong *)userp;
871
872 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
873 printf("ERROR invalidate: address=" TARGET_FMT_lx
874 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
875 }
876}
5b6dd868 877
909eaac9
EC
878static void tb_invalidate_check(target_ulong address)
879{
5b6dd868 880 address &= TARGET_PAGE_MASK;
909eaac9
EC
881 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
882}
883
884static void
885do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
886{
887 TranslationBlock *tb = p;
888 int flags1, flags2;
889
890 flags1 = page_get_flags(tb->pc);
891 flags2 = page_get_flags(tb->pc + tb->size - 1);
892 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
893 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
894 (long)tb->pc, tb->size, flags1, flags2);
5b6dd868
BS
895 }
896}
897
898/* verify that all the pages have correct rights for code */
899static void tb_page_check(void)
900{
909eaac9 901 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
5b6dd868
BS
902}
903
904#endif
905
5b6dd868
BS
906static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
907{
908 TranslationBlock *tb1;
909 unsigned int n1;
910
911 for (;;) {
912 tb1 = *ptb;
913 n1 = (uintptr_t)tb1 & 3;
914 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
915 if (tb1 == tb) {
916 *ptb = tb1->page_next[n1];
917 break;
918 }
919 ptb = &tb1->page_next[n1];
920 }
921}
922
13362678
SF
923/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
924static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 925{
c37e6d7e
SF
926 TranslationBlock *tb1;
927 uintptr_t *ptb, ntb;
5b6dd868
BS
928 unsigned int n1;
929
f309101c 930 ptb = &tb->jmp_list_next[n];
c37e6d7e 931 if (*ptb) {
5b6dd868
BS
932 /* find tb(n) in circular list */
933 for (;;) {
c37e6d7e
SF
934 ntb = *ptb;
935 n1 = ntb & 3;
936 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
937 if (n1 == n && tb1 == tb) {
938 break;
939 }
940 if (n1 == 2) {
f309101c 941 ptb = &tb1->jmp_list_first;
5b6dd868 942 } else {
f309101c 943 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
944 }
945 }
946 /* now we can suppress tb(n) from the list */
f309101c 947 *ptb = tb->jmp_list_next[n];
5b6dd868 948
c37e6d7e 949 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
950 }
951}
952
953/* reset the jump entry 'n' of a TB so that it is not chained to
954 another TB */
955static inline void tb_reset_jump(TranslationBlock *tb, int n)
956{
f309101c
SF
957 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
958 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
959}
960
89bba496
SF
961/* remove any jumps to the TB */
962static inline void tb_jmp_unlink(TranslationBlock *tb)
963{
f9c5b66f
SF
964 TranslationBlock *tb1;
965 uintptr_t *ptb, ntb;
89bba496
SF
966 unsigned int n1;
967
f9c5b66f 968 ptb = &tb->jmp_list_first;
89bba496 969 for (;;) {
f9c5b66f
SF
970 ntb = *ptb;
971 n1 = ntb & 3;
972 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
973 if (n1 == 2) {
974 break;
975 }
f9c5b66f
SF
976 tb_reset_jump(tb1, n1);
977 *ptb = tb1->jmp_list_next[n1];
978 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 979 }
89bba496
SF
980}
981
0c884d16 982/* invalidate one TB */
5b6dd868
BS
983void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
984{
182735ef 985 CPUState *cpu;
5b6dd868 986 PageDesc *p;
42bd3228 987 uint32_t h;
5b6dd868 988 tb_page_addr_t phys_pc;
5b6dd868
BS
989
990 /* remove the TB from the hash list */
991 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
42bd3228 992 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 993 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
5b6dd868
BS
994
995 /* remove the TB from the page list */
996 if (tb->page_addr[0] != page_addr) {
997 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
998 tb_page_remove(&p->first_tb, tb);
999 invalidate_page_bitmap(p);
1000 }
1001 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1002 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1003 tb_page_remove(&p->first_tb, tb);
1004 invalidate_page_bitmap(p);
1005 }
1006
5b6dd868
BS
1007 /* remove the TB from the hash list */
1008 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1009 CPU_FOREACH(cpu) {
8cd70437
AF
1010 if (cpu->tb_jmp_cache[h] == tb) {
1011 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
1012 }
1013 }
1014
1015 /* suppress this TB from the two jump lists */
13362678
SF
1016 tb_remove_from_jmp_list(tb, 0);
1017 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1018
1019 /* suppress any remaining jumps to this TB */
89bba496 1020 tb_jmp_unlink(tb);
5b6dd868 1021
5e5f07e0 1022 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1023}
1024
6fad459c 1025#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1026static void build_page_bitmap(PageDesc *p)
1027{
1028 int n, tb_start, tb_end;
1029 TranslationBlock *tb;
1030
510a647f 1031 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1032
1033 tb = p->first_tb;
1034 while (tb != NULL) {
1035 n = (uintptr_t)tb & 3;
1036 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1037 /* NOTE: this is subtle as a TB may span two physical pages */
1038 if (n == 0) {
1039 /* NOTE: tb_end may be after the end of the page, but
1040 it is not a problem */
1041 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1042 tb_end = tb_start + tb->size;
1043 if (tb_end > TARGET_PAGE_SIZE) {
1044 tb_end = TARGET_PAGE_SIZE;
1045 }
1046 } else {
1047 tb_start = 0;
1048 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1049 }
510a647f 1050 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1051 tb = tb->page_next[n];
1052 }
1053}
6fad459c 1054#endif
5b6dd868 1055
e90d96b1
SF
1056/* add the tb in the target page and protect it if necessary
1057 *
1058 * Called with mmap_lock held for user-mode emulation.
1059 */
1060static inline void tb_alloc_page(TranslationBlock *tb,
1061 unsigned int n, tb_page_addr_t page_addr)
1062{
1063 PageDesc *p;
1064#ifndef CONFIG_USER_ONLY
1065 bool page_already_protected;
1066#endif
1067
1068 tb->page_addr[n] = page_addr;
1069 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1070 tb->page_next[n] = p->first_tb;
1071#ifndef CONFIG_USER_ONLY
1072 page_already_protected = p->first_tb != NULL;
1073#endif
1074 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1075 invalidate_page_bitmap(p);
1076
1077#if defined(CONFIG_USER_ONLY)
1078 if (p->flags & PAGE_WRITE) {
1079 target_ulong addr;
1080 PageDesc *p2;
1081 int prot;
1082
1083 /* force the host page as non writable (writes will have a
1084 page fault + mprotect overhead) */
1085 page_addr &= qemu_host_page_mask;
1086 prot = 0;
1087 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1088 addr += TARGET_PAGE_SIZE) {
1089
1090 p2 = page_find(addr >> TARGET_PAGE_BITS);
1091 if (!p2) {
1092 continue;
1093 }
1094 prot |= p2->flags;
1095 p2->flags &= ~PAGE_WRITE;
1096 }
1097 mprotect(g2h(page_addr), qemu_host_page_size,
1098 (prot & PAGE_BITS) & ~PAGE_WRITE);
1099#ifdef DEBUG_TB_INVALIDATE
1100 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1101 page_addr);
1102#endif
1103 }
1104#else
1105 /* if some code is already present, then the pages are already
1106 protected. So we handle the case where only the first TB is
1107 allocated in a physical page */
1108 if (!page_already_protected) {
1109 tlb_protect_code(page_addr);
1110 }
1111#endif
1112}
1113
1114/* add a new TB and link it to the physical page tables. phys_page2 is
1115 * (-1) to indicate that only one page contains the TB.
1116 *
1117 * Called with mmap_lock held for user-mode emulation.
1118 */
1119static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1120 tb_page_addr_t phys_page2)
1121{
42bd3228 1122 uint32_t h;
e90d96b1 1123
42bd3228
EC
1124 /* add in the hash table */
1125 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 1126 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
e90d96b1
SF
1127
1128 /* add in the page list */
1129 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1130 if (phys_page2 != -1) {
1131 tb_alloc_page(tb, 1, phys_page2);
1132 } else {
1133 tb->page_addr[1] = -1;
1134 }
1135
e90d96b1
SF
1136#ifdef DEBUG_TB_CHECK
1137 tb_page_check();
1138#endif
1139}
1140
75692087 1141/* Called with mmap_lock held for user mode emulation. */
648f034c 1142TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1143 target_ulong pc, target_ulong cs_base,
89fee74a 1144 uint32_t flags, int cflags)
5b6dd868 1145{
648f034c 1146 CPUArchState *env = cpu->env_ptr;
5b6dd868 1147 TranslationBlock *tb;
5b6dd868
BS
1148 tb_page_addr_t phys_pc, phys_page2;
1149 target_ulong virt_page2;
fec88f64 1150 tcg_insn_unit *gen_code_buf;
fca8a500 1151 int gen_code_size, search_size;
fec88f64
RH
1152#ifdef CONFIG_PROFILER
1153 int64_t ti;
1154#endif
5b6dd868
BS
1155
1156 phys_pc = get_page_addr_code(env, pc);
56c0269a 1157 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1158 cflags |= CF_USE_ICOUNT;
1159 }
b125f9dc 1160
5b6dd868 1161 tb = tb_alloc(pc);
b125f9dc
RH
1162 if (unlikely(!tb)) {
1163 buffer_overflow:
5b6dd868 1164 /* flush must be done */
bbd77c18 1165 tb_flush(cpu);
5b6dd868
BS
1166 /* cannot fail at this point */
1167 tb = tb_alloc(pc);
b125f9dc 1168 assert(tb != NULL);
5b6dd868 1169 }
fec88f64
RH
1170
1171 gen_code_buf = tcg_ctx.code_gen_ptr;
1172 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1173 tb->cs_base = cs_base;
1174 tb->flags = flags;
1175 tb->cflags = cflags;
fec88f64
RH
1176
1177#ifdef CONFIG_PROFILER
1178 tcg_ctx.tb_count1++; /* includes aborted translations because of
1179 exceptions */
1180 ti = profile_getclock();
1181#endif
1182
1183 tcg_func_start(&tcg_ctx);
1184
1185 gen_intermediate_code(env, tb);
1186
1187 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1188
1189 /* generate machine code */
f309101c
SF
1190 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1191 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1192 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1193#ifdef USE_DIRECT_JUMP
f309101c
SF
1194 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1195 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1196#else
f309101c
SF
1197 tcg_ctx.tb_jmp_insn_offset = NULL;
1198 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1199#endif
1200
1201#ifdef CONFIG_PROFILER
1202 tcg_ctx.tb_count++;
1203 tcg_ctx.interm_time += profile_getclock() - ti;
1204 tcg_ctx.code_time -= profile_getclock();
1205#endif
1206
b125f9dc
RH
1207 /* ??? Overflow could be handled better here. In particular, we
1208 don't need to re-do gen_intermediate_code, nor should we re-do
1209 the tcg optimization currently hidden inside tcg_gen_code. All
1210 that should be required is to flush the TBs, allocate a new TB,
1211 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1212 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1213 if (unlikely(gen_code_size < 0)) {
1214 goto buffer_overflow;
1215 }
fca8a500 1216 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1217 if (unlikely(search_size < 0)) {
1218 goto buffer_overflow;
1219 }
fec88f64
RH
1220
1221#ifdef CONFIG_PROFILER
1222 tcg_ctx.code_time += profile_getclock();
1223 tcg_ctx.code_in_len += tb->size;
1224 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1225 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1226#endif
1227
1228#ifdef DEBUG_DISAS
d977e1c2
AB
1229 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1230 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1231 qemu_log("OUT: [size=%d]\n", gen_code_size);
1232 log_disas(tb->tc_ptr, gen_code_size);
1233 qemu_log("\n");
1234 qemu_log_flush();
1235 }
1236#endif
1237
fca8a500
RH
1238 tcg_ctx.code_gen_ptr = (void *)
1239 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1240 CODE_GEN_ALIGN);
5b6dd868 1241
901bc3de
SF
1242 /* init jump list */
1243 assert(((uintptr_t)tb & 3) == 0);
1244 tb->jmp_list_first = (uintptr_t)tb | 2;
1245 tb->jmp_list_next[0] = (uintptr_t)NULL;
1246 tb->jmp_list_next[1] = (uintptr_t)NULL;
1247
1248 /* init original jump addresses wich has been set during tcg_gen_code() */
1249 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1250 tb_reset_jump(tb, 0);
1251 }
1252 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1253 tb_reset_jump(tb, 1);
1254 }
1255
5b6dd868
BS
1256 /* check next page if needed */
1257 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1258 phys_page2 = -1;
1259 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1260 phys_page2 = get_page_addr_code(env, virt_page2);
1261 }
901bc3de
SF
1262 /* As long as consistency of the TB stuff is provided by tb_lock in user
1263 * mode and is implicit in single-threaded softmmu emulation, no explicit
1264 * memory barrier is required before tb_link_page() makes the TB visible
1265 * through the physical hash table and physical page list.
1266 */
5b6dd868
BS
1267 tb_link_page(tb, phys_pc, phys_page2);
1268 return tb;
1269}
1270
1271/*
1272 * Invalidate all TBs which intersect with the target physical address range
1273 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1274 * 'is_cpu_write_access' should be true if called from a real cpu write
1275 * access: the virtual CPU will exit the current TB if code is modified inside
1276 * this TB.
75692087
PB
1277 *
1278 * Called with mmap_lock held for user-mode emulation
5b6dd868 1279 */
35865339 1280void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1281{
1282 while (start < end) {
35865339 1283 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1284 start &= TARGET_PAGE_MASK;
1285 start += TARGET_PAGE_SIZE;
1286 }
1287}
1288
1289/*
1290 * Invalidate all TBs which intersect with the target physical address range
1291 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1292 * 'is_cpu_write_access' should be true if called from a real cpu write
1293 * access: the virtual CPU will exit the current TB if code is modified inside
1294 * this TB.
75692087
PB
1295 *
1296 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1297 */
1298void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1299 int is_cpu_write_access)
1300{
3213525f 1301 TranslationBlock *tb, *tb_next;
baea4fae 1302#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1303 CPUState *cpu = current_cpu;
4917cf44
AF
1304 CPUArchState *env = NULL;
1305#endif
5b6dd868
BS
1306 tb_page_addr_t tb_start, tb_end;
1307 PageDesc *p;
1308 int n;
1309#ifdef TARGET_HAS_PRECISE_SMC
1310 int current_tb_not_found = is_cpu_write_access;
1311 TranslationBlock *current_tb = NULL;
1312 int current_tb_modified = 0;
1313 target_ulong current_pc = 0;
1314 target_ulong current_cs_base = 0;
89fee74a 1315 uint32_t current_flags = 0;
5b6dd868
BS
1316#endif /* TARGET_HAS_PRECISE_SMC */
1317
1318 p = page_find(start >> TARGET_PAGE_BITS);
1319 if (!p) {
1320 return;
1321 }
baea4fae 1322#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1323 if (cpu != NULL) {
1324 env = cpu->env_ptr;
d77953b9 1325 }
4917cf44 1326#endif
5b6dd868
BS
1327
1328 /* we remove all the TBs in the range [start, end[ */
1329 /* XXX: see if in some cases it could be faster to invalidate all
1330 the code */
1331 tb = p->first_tb;
1332 while (tb != NULL) {
1333 n = (uintptr_t)tb & 3;
1334 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1335 tb_next = tb->page_next[n];
1336 /* NOTE: this is subtle as a TB may span two physical pages */
1337 if (n == 0) {
1338 /* NOTE: tb_end may be after the end of the page, but
1339 it is not a problem */
1340 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1341 tb_end = tb_start + tb->size;
1342 } else {
1343 tb_start = tb->page_addr[1];
1344 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1345 }
1346 if (!(tb_end <= start || tb_start >= end)) {
1347#ifdef TARGET_HAS_PRECISE_SMC
1348 if (current_tb_not_found) {
1349 current_tb_not_found = 0;
1350 current_tb = NULL;
93afeade 1351 if (cpu->mem_io_pc) {
5b6dd868 1352 /* now we have a real cpu fault */
93afeade 1353 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1354 }
1355 }
1356 if (current_tb == tb &&
1357 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1358 /* If we are modifying the current TB, we must stop
1359 its execution. We could be more precise by checking
1360 that the modification is after the current PC, but it
1361 would require a specialized function to partially
1362 restore the CPU state */
1363
1364 current_tb_modified = 1;
74f10515 1365 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1366 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1367 &current_flags);
1368 }
1369#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1370 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1371 }
1372 tb = tb_next;
1373 }
1374#if !defined(CONFIG_USER_ONLY)
1375 /* if no code remaining, no need to continue to use slow writes */
1376 if (!p->first_tb) {
1377 invalidate_page_bitmap(p);
fc377bcf 1378 tlb_unprotect_code(start);
5b6dd868
BS
1379 }
1380#endif
1381#ifdef TARGET_HAS_PRECISE_SMC
1382 if (current_tb_modified) {
1383 /* we generate a block containing just the instruction
1384 modifying the memory. It will ensure that it cannot modify
1385 itself */
648f034c 1386 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
6886b980 1387 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1388 }
1389#endif
1390}
1391
6fad459c 1392#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1393/* len must be <= 8 and start must be a multiple of len */
1394void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1395{
1396 PageDesc *p;
5b6dd868
BS
1397
1398#if 0
1399 if (1) {
1400 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1401 cpu_single_env->mem_io_vaddr, len,
1402 cpu_single_env->eip,
1403 cpu_single_env->eip +
1404 (intptr_t)cpu_single_env->segs[R_CS].base);
1405 }
1406#endif
1407 p = page_find(start >> TARGET_PAGE_BITS);
1408 if (!p) {
1409 return;
1410 }
fc377bcf
PB
1411 if (!p->code_bitmap &&
1412 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1413 /* build code bitmap */
1414 build_page_bitmap(p);
1415 }
5b6dd868 1416 if (p->code_bitmap) {
510a647f
EC
1417 unsigned int nr;
1418 unsigned long b;
1419
1420 nr = start & ~TARGET_PAGE_MASK;
1421 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1422 if (b & ((1 << len) - 1)) {
1423 goto do_invalidate;
1424 }
1425 } else {
1426 do_invalidate:
1427 tb_invalidate_phys_page_range(start, start + len, 1);
1428 }
1429}
6fad459c 1430#else
75809229
PM
1431/* Called with mmap_lock held. If pc is not 0 then it indicates the
1432 * host PC of the faulting store instruction that caused this invalidate.
1433 * Returns true if the caller needs to abort execution of the current
1434 * TB (because it was modified by this store and the guest CPU has
1435 * precise-SMC semantics).
1436 */
1437static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
5b6dd868
BS
1438{
1439 TranslationBlock *tb;
1440 PageDesc *p;
1441 int n;
1442#ifdef TARGET_HAS_PRECISE_SMC
1443 TranslationBlock *current_tb = NULL;
4917cf44
AF
1444 CPUState *cpu = current_cpu;
1445 CPUArchState *env = NULL;
5b6dd868
BS
1446 int current_tb_modified = 0;
1447 target_ulong current_pc = 0;
1448 target_ulong current_cs_base = 0;
89fee74a 1449 uint32_t current_flags = 0;
5b6dd868
BS
1450#endif
1451
1452 addr &= TARGET_PAGE_MASK;
1453 p = page_find(addr >> TARGET_PAGE_BITS);
1454 if (!p) {
75809229 1455 return false;
5b6dd868
BS
1456 }
1457 tb = p->first_tb;
1458#ifdef TARGET_HAS_PRECISE_SMC
1459 if (tb && pc != 0) {
1460 current_tb = tb_find_pc(pc);
1461 }
4917cf44
AF
1462 if (cpu != NULL) {
1463 env = cpu->env_ptr;
d77953b9 1464 }
5b6dd868
BS
1465#endif
1466 while (tb != NULL) {
1467 n = (uintptr_t)tb & 3;
1468 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1469#ifdef TARGET_HAS_PRECISE_SMC
1470 if (current_tb == tb &&
1471 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1472 /* If we are modifying the current TB, we must stop
1473 its execution. We could be more precise by checking
1474 that the modification is after the current PC, but it
1475 would require a specialized function to partially
1476 restore the CPU state */
1477
1478 current_tb_modified = 1;
74f10515 1479 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1480 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1481 &current_flags);
1482 }
1483#endif /* TARGET_HAS_PRECISE_SMC */
1484 tb_phys_invalidate(tb, addr);
1485 tb = tb->page_next[n];
1486 }
1487 p->first_tb = NULL;
1488#ifdef TARGET_HAS_PRECISE_SMC
1489 if (current_tb_modified) {
1490 /* we generate a block containing just the instruction
1491 modifying the memory. It will ensure that it cannot modify
1492 itself */
648f034c 1493 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
75809229 1494 return true;
5b6dd868
BS
1495 }
1496#endif
75809229 1497 return false;
5b6dd868
BS
1498}
1499#endif
1500
5b6dd868
BS
1501/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1502 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1503static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1504{
1505 int m_min, m_max, m;
1506 uintptr_t v;
1507 TranslationBlock *tb;
1508
5e5f07e0 1509 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1510 return NULL;
1511 }
0b0d3320
EV
1512 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1513 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1514 return NULL;
1515 }
1516 /* binary search (cf Knuth) */
1517 m_min = 0;
5e5f07e0 1518 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1519 while (m_min <= m_max) {
1520 m = (m_min + m_max) >> 1;
5e5f07e0 1521 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1522 v = (uintptr_t)tb->tc_ptr;
1523 if (v == tc_ptr) {
1524 return tb;
1525 } else if (tc_ptr < v) {
1526 m_max = m - 1;
1527 } else {
1528 m_min = m + 1;
1529 }
1530 }
5e5f07e0 1531 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1532}
1533
ec53b45b 1534#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1535void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1536{
1537 ram_addr_t ram_addr;
5c8a00ce 1538 MemoryRegion *mr;
149f54b5 1539 hwaddr l = 1;
5b6dd868 1540
41063e1e 1541 rcu_read_lock();
29d8ec7b 1542 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1543 if (!(memory_region_is_ram(mr)
1544 || memory_region_is_romd(mr))) {
41063e1e 1545 rcu_read_unlock();
5b6dd868
BS
1546 return;
1547 }
e4e69794 1548 ram_addr = memory_region_get_ram_addr(mr) + addr;
5b6dd868 1549 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1550 rcu_read_unlock();
5b6dd868 1551}
ec53b45b 1552#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1553
239c51a5 1554void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1555{
1556 TranslationBlock *tb;
1557
93afeade 1558 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1559 if (tb) {
1560 /* We can use retranslation to find the PC. */
1561 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1562 tb_phys_invalidate(tb, -1);
1563 } else {
1564 /* The exception probably happened in a helper. The CPU state should
1565 have been saved before calling it. Fetch the PC from there. */
1566 CPUArchState *env = cpu->env_ptr;
1567 target_ulong pc, cs_base;
1568 tb_page_addr_t addr;
89fee74a 1569 uint32_t flags;
8d302e76
AJ
1570
1571 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1572 addr = get_page_addr_code(env, pc);
1573 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1574 }
5b6dd868
BS
1575}
1576
1577#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1578/* in deterministic execution mode, instructions doing device I/Os
1579 must be at the end of the TB */
90b40a69 1580void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1581{
a47dddd7 1582#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1583 CPUArchState *env = cpu->env_ptr;
a47dddd7 1584#endif
5b6dd868
BS
1585 TranslationBlock *tb;
1586 uint32_t n, cflags;
1587 target_ulong pc, cs_base;
89fee74a 1588 uint32_t flags;
5b6dd868
BS
1589
1590 tb = tb_find_pc(retaddr);
1591 if (!tb) {
a47dddd7 1592 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1593 (void *)retaddr);
1594 }
28ecfd7a 1595 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1596 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1597 /* Calculate how many instructions had been executed before the fault
1598 occurred. */
28ecfd7a 1599 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1600 /* Generate a new TB ending on the I/O insn. */
1601 n++;
1602 /* On MIPS and SH, delay slot instructions can only be restarted if
1603 they were already the first instruction in the TB. If this is not
1604 the first instruction in a TB then re-execute the preceding
1605 branch. */
1606#if defined(TARGET_MIPS)
1607 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1608 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1609 cpu->icount_decr.u16.low++;
5b6dd868
BS
1610 env->hflags &= ~MIPS_HFLAG_BMASK;
1611 }
1612#elif defined(TARGET_SH4)
1613 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1614 && n > 1) {
1615 env->pc -= 2;
28ecfd7a 1616 cpu->icount_decr.u16.low++;
5b6dd868
BS
1617 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1618 }
1619#endif
1620 /* This should never happen. */
1621 if (n > CF_COUNT_MASK) {
a47dddd7 1622 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1623 }
1624
1625 cflags = n | CF_LAST_IO;
1626 pc = tb->pc;
1627 cs_base = tb->cs_base;
1628 flags = tb->flags;
1629 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1630 if (tb->cflags & CF_NOCACHE) {
1631 if (tb->orig_tb) {
1632 /* Invalidate original TB if this TB was generated in
1633 * cpu_exec_nocache() */
1634 tb_phys_invalidate(tb->orig_tb, -1);
1635 }
1636 tb_free(tb);
1637 }
5b6dd868
BS
1638 /* FIXME: In theory this could raise an exception. In practice
1639 we have already translated the block once so it's probably ok. */
648f034c 1640 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1641 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1642 the first in the TB) then we end up generating a whole new TB and
1643 repeating the fault, which is horribly inefficient.
1644 Better would be to execute just this insn uncached, or generate a
1645 second new TB. */
6886b980 1646 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1647}
1648
611d4f99 1649void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1650{
1651 unsigned int i;
1652
1653 /* Discard jump cache entries for any tb which might potentially
1654 overlap the flushed page. */
1655 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1656 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1657 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1658
1659 i = tb_jmp_cache_hash_page(addr);
8cd70437 1660 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1661 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1662}
1663
1664void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1665{
1666 int i, target_code_size, max_target_code_size;
1667 int direct_jmp_count, direct_jmp2_count, cross_page;
1668 TranslationBlock *tb;
329844d4
EC
1669 struct qht_stats hst;
1670 uint32_t hgram_opts;
1671 size_t hgram_bins;
1672 char *hgram;
5b6dd868
BS
1673
1674 target_code_size = 0;
1675 max_target_code_size = 0;
1676 cross_page = 0;
1677 direct_jmp_count = 0;
1678 direct_jmp2_count = 0;
5e5f07e0
EV
1679 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1680 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1681 target_code_size += tb->size;
1682 if (tb->size > max_target_code_size) {
1683 max_target_code_size = tb->size;
1684 }
1685 if (tb->page_addr[1] != -1) {
1686 cross_page++;
1687 }
f309101c 1688 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1689 direct_jmp_count++;
f309101c 1690 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1691 direct_jmp2_count++;
1692 }
1693 }
1694 }
1695 /* XXX: avoid using doubles ? */
1696 cpu_fprintf(f, "Translation buffer state:\n");
1697 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1698 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1699 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1700 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1701 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1702 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1703 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1704 tcg_ctx.tb_ctx.nb_tbs : 0,
1705 max_target_code_size);
5b6dd868 1706 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1707 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1708 tcg_ctx.code_gen_buffer) /
1709 tcg_ctx.tb_ctx.nb_tbs : 0,
1710 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1711 tcg_ctx.code_gen_buffer) /
1712 target_code_size : 0);
1713 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1714 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1715 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1716 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1717 direct_jmp_count,
5e5f07e0
EV
1718 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1719 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1720 direct_jmp2_count,
5e5f07e0
EV
1721 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1722 tcg_ctx.tb_ctx.nb_tbs : 0);
329844d4
EC
1723
1724 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1725
1726 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1727 hst.used_head_buckets, hst.head_buckets,
1728 (double)hst.used_head_buckets / hst.head_buckets * 100);
1729
1730 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1731 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1732 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1733 hgram_opts |= QDIST_PR_NODECIMAL;
1734 }
1735 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1736 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1737 qdist_avg(&hst.occupancy) * 100, hgram);
1738 g_free(hgram);
1739
1740 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1741 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1742 if (hgram_bins > 10) {
1743 hgram_bins = 10;
1744 } else {
1745 hgram_bins = 0;
1746 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1747 }
1748 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1749 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1750 qdist_avg(&hst.chain), hgram);
1751 g_free(hgram);
1752
1753 qht_statistics_destroy(&hst);
1754
5b6dd868 1755 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1756 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1757 cpu_fprintf(f, "TB invalidate count %d\n",
1758 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1759 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1760 tcg_dump_info(f, cpu_fprintf);
1761}
1762
246ae24d
MF
1763void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1764{
1765 tcg_dump_op_count(f, cpu_fprintf);
1766}
1767
5b6dd868
BS
1768#else /* CONFIG_USER_ONLY */
1769
c3affe56 1770void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1771{
259186a7 1772 cpu->interrupt_request |= mask;
378df4b2 1773 cpu->tcg_exit_req = 1;
5b6dd868
BS
1774}
1775
1776/*
1777 * Walks guest process memory "regions" one by one
1778 * and calls callback function 'fn' for each region.
1779 */
1780struct walk_memory_regions_data {
1781 walk_memory_regions_fn fn;
1782 void *priv;
1a1c4db9 1783 target_ulong start;
5b6dd868
BS
1784 int prot;
1785};
1786
1787static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1788 target_ulong end, int new_prot)
5b6dd868 1789{
1a1c4db9 1790 if (data->start != -1u) {
5b6dd868
BS
1791 int rc = data->fn(data->priv, data->start, end, data->prot);
1792 if (rc != 0) {
1793 return rc;
1794 }
1795 }
1796
1a1c4db9 1797 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1798 data->prot = new_prot;
1799
1800 return 0;
1801}
1802
1803static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1804 target_ulong base, int level, void **lp)
5b6dd868 1805{
1a1c4db9 1806 target_ulong pa;
5b6dd868
BS
1807 int i, rc;
1808
1809 if (*lp == NULL) {
1810 return walk_memory_regions_end(data, base, 0);
1811 }
1812
1813 if (level == 0) {
1814 PageDesc *pd = *lp;
1815
03f49957 1816 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1817 int prot = pd[i].flags;
1818
1819 pa = base | (i << TARGET_PAGE_BITS);
1820 if (prot != data->prot) {
1821 rc = walk_memory_regions_end(data, pa, prot);
1822 if (rc != 0) {
1823 return rc;
1824 }
1825 }
1826 }
1827 } else {
1828 void **pp = *lp;
1829
03f49957 1830 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1831 pa = base | ((target_ulong)i <<
03f49957 1832 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1833 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1834 if (rc != 0) {
1835 return rc;
1836 }
1837 }
1838 }
1839
1840 return 0;
1841}
1842
1843int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1844{
1845 struct walk_memory_regions_data data;
1846 uintptr_t i;
1847
1848 data.fn = fn;
1849 data.priv = priv;
1a1c4db9 1850 data.start = -1u;
5b6dd868
BS
1851 data.prot = 0;
1852
1853 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1854 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1855 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1856 if (rc != 0) {
1857 return rc;
1858 }
1859 }
1860
1861 return walk_memory_regions_end(&data, 0, 0);
1862}
1863
1a1c4db9
MI
1864static int dump_region(void *priv, target_ulong start,
1865 target_ulong end, unsigned long prot)
5b6dd868
BS
1866{
1867 FILE *f = (FILE *)priv;
1868
1a1c4db9
MI
1869 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1870 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1871 start, end, end - start,
1872 ((prot & PAGE_READ) ? 'r' : '-'),
1873 ((prot & PAGE_WRITE) ? 'w' : '-'),
1874 ((prot & PAGE_EXEC) ? 'x' : '-'));
1875
1876 return 0;
1877}
1878
1879/* dump memory mappings */
1880void page_dump(FILE *f)
1881{
1a1c4db9 1882 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1883 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1884 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1885 walk_memory_regions(f, dump_region);
1886}
1887
1888int page_get_flags(target_ulong address)
1889{
1890 PageDesc *p;
1891
1892 p = page_find(address >> TARGET_PAGE_BITS);
1893 if (!p) {
1894 return 0;
1895 }
1896 return p->flags;
1897}
1898
1899/* Modify the flags of a page and invalidate the code if necessary.
1900 The flag PAGE_WRITE_ORG is positioned automatically depending
1901 on PAGE_WRITE. The mmap_lock should already be held. */
1902void page_set_flags(target_ulong start, target_ulong end, int flags)
1903{
1904 target_ulong addr, len;
1905
1906 /* This function should never be called with addresses outside the
1907 guest address space. If this assert fires, it probably indicates
1908 a missing call to h2g_valid. */
1909#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1910 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1911#endif
1912 assert(start < end);
1913
1914 start = start & TARGET_PAGE_MASK;
1915 end = TARGET_PAGE_ALIGN(end);
1916
1917 if (flags & PAGE_WRITE) {
1918 flags |= PAGE_WRITE_ORG;
1919 }
1920
1921 for (addr = start, len = end - start;
1922 len != 0;
1923 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1924 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1925
1926 /* If the write protection bit is set, then we invalidate
1927 the code inside. */
1928 if (!(p->flags & PAGE_WRITE) &&
1929 (flags & PAGE_WRITE) &&
1930 p->first_tb) {
75809229 1931 tb_invalidate_phys_page(addr, 0);
5b6dd868
BS
1932 }
1933 p->flags = flags;
1934 }
1935}
1936
1937int page_check_range(target_ulong start, target_ulong len, int flags)
1938{
1939 PageDesc *p;
1940 target_ulong end;
1941 target_ulong addr;
1942
1943 /* This function should never be called with addresses outside the
1944 guest address space. If this assert fires, it probably indicates
1945 a missing call to h2g_valid. */
1946#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1947 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1948#endif
1949
1950 if (len == 0) {
1951 return 0;
1952 }
1953 if (start + len - 1 < start) {
1954 /* We've wrapped around. */
1955 return -1;
1956 }
1957
1958 /* must do before we loose bits in the next step */
1959 end = TARGET_PAGE_ALIGN(start + len);
1960 start = start & TARGET_PAGE_MASK;
1961
1962 for (addr = start, len = end - start;
1963 len != 0;
1964 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1965 p = page_find(addr >> TARGET_PAGE_BITS);
1966 if (!p) {
1967 return -1;
1968 }
1969 if (!(p->flags & PAGE_VALID)) {
1970 return -1;
1971 }
1972
1973 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1974 return -1;
1975 }
1976 if (flags & PAGE_WRITE) {
1977 if (!(p->flags & PAGE_WRITE_ORG)) {
1978 return -1;
1979 }
1980 /* unprotect the page if it was put read-only because it
1981 contains translated code */
1982 if (!(p->flags & PAGE_WRITE)) {
f213e72f 1983 if (!page_unprotect(addr, 0)) {
5b6dd868
BS
1984 return -1;
1985 }
1986 }
5b6dd868
BS
1987 }
1988 }
1989 return 0;
1990}
1991
1992/* called from signal handler: invalidate the code and unprotect the
f213e72f
PM
1993 * page. Return 0 if the fault was not handled, 1 if it was handled,
1994 * and 2 if it was handled but the caller must cause the TB to be
1995 * immediately exited. (We can only return 2 if the 'pc' argument is
1996 * non-zero.)
1997 */
1998int page_unprotect(target_ulong address, uintptr_t pc)
5b6dd868
BS
1999{
2000 unsigned int prot;
2001 PageDesc *p;
2002 target_ulong host_start, host_end, addr;
2003
2004 /* Technically this isn't safe inside a signal handler. However we
2005 know this only ever happens in a synchronous SEGV handler, so in
2006 practice it seems to be ok. */
2007 mmap_lock();
2008
2009 p = page_find(address >> TARGET_PAGE_BITS);
2010 if (!p) {
2011 mmap_unlock();
2012 return 0;
2013 }
2014
2015 /* if the page was really writable, then we change its
2016 protection back to writable */
2017 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2018 host_start = address & qemu_host_page_mask;
2019 host_end = host_start + qemu_host_page_size;
2020
2021 prot = 0;
2022 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2023 p = page_find(addr >> TARGET_PAGE_BITS);
2024 p->flags |= PAGE_WRITE;
2025 prot |= p->flags;
2026
2027 /* and since the content will be modified, we must invalidate
2028 the corresponding translated code. */
75809229
PM
2029 if (tb_invalidate_phys_page(addr, pc)) {
2030 mmap_unlock();
f213e72f 2031 return 2;
75809229 2032 }
5b6dd868
BS
2033#ifdef DEBUG_TB_CHECK
2034 tb_invalidate_check(addr);
2035#endif
2036 }
2037 mprotect((void *)g2h(host_start), qemu_host_page_size,
2038 prot & PAGE_BITS);
2039
2040 mmap_unlock();
2041 return 1;
2042 }
2043 mmap_unlock();
2044 return 0;
2045}
2046#endif /* CONFIG_USER_ONLY */