]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
translate-all: remove redundant setting of tcg_ctx.code_gen_buffer_size
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
5b6dd868
BS
22#include <sys/mman.h>
23#endif
7b31bbc2 24#include "qemu/osdep.h"
d19893da 25
2054396a 26
5b6dd868 27#include "qemu-common.h"
af5ad107 28#define NO_CPU_IO_DEFS
d3eead2e 29#include "cpu.h"
6db8b538 30#include "trace.h"
76cad711 31#include "disas/disas.h"
57fec1fe 32#include "tcg.h"
5b6dd868
BS
33#if defined(CONFIG_USER_ONLY)
34#include "qemu.h"
35#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36#include <sys/param.h>
37#if __FreeBSD_version >= 700104
38#define HAVE_KINFO_GETVMMAP
39#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
40#include <sys/proc.h>
41#include <machine/profile.h>
42#define _KERNEL
43#include <sys/user.h>
44#undef _KERNEL
45#undef sigqueue
46#include <libutil.h>
47#endif
48#endif
0bc3cd62
PB
49#else
50#include "exec/address-spaces.h"
5b6dd868
BS
51#endif
52
022c62cb 53#include "exec/cputlb.h"
e1b89321 54#include "exec/tb-hash.h"
5b6dd868 55#include "translate-all.h"
510a647f 56#include "qemu/bitmap.h"
0aa09897 57#include "qemu/timer.h"
508127e2 58#include "exec/log.h"
5b6dd868
BS
59
60//#define DEBUG_TB_INVALIDATE
61//#define DEBUG_FLUSH
62/* make various TB consistency checks */
63//#define DEBUG_TB_CHECK
64
65#if !defined(CONFIG_USER_ONLY)
66/* TB consistency checks only implemented for usermode emulation. */
67#undef DEBUG_TB_CHECK
68#endif
69
70#define SMC_BITMAP_USE_THRESHOLD 10
71
5b6dd868
BS
72typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
510a647f 78 unsigned long *code_bitmap;
5b6dd868
BS
79#if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81#endif
82} PageDesc;
83
84/* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86#if !defined(CONFIG_USER_ONLY)
87#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89#else
90# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91#endif
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94#endif
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define V_L2_BITS 10
98#define V_L2_SIZE (1 << V_L2_BITS)
99
5b6dd868
BS
100/* The bits remaining after N lower levels of page tables. */
101#define V_L1_BITS_REM \
03f49957 102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
103
104#if V_L1_BITS_REM < 4
03f49957 105#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
106#else
107#define V_L1_BITS V_L1_BITS_REM
108#endif
109
110#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
5b6dd868 114uintptr_t qemu_host_page_size;
0c2d70c4 115intptr_t qemu_host_page_mask;
5b6dd868 116
d1142fb8 117/* The bottom level has pointers to PageDesc */
5b6dd868
BS
118static void *l1_map[V_L1_SIZE];
119
57fec1fe
FB
120/* code generation context */
121TCGContext tcg_ctx;
d19893da 122
677ef623
FK
123/* translation block context */
124#ifdef CONFIG_USER_ONLY
125__thread int have_tb_lock;
126#endif
127
128void tb_lock(void)
129{
130#ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134#endif
135}
136
137void tb_unlock(void)
138{
139#ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143#endif
144}
145
146void tb_lock_reset(void)
147{
148#ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153#endif
154}
155
5b6dd868
BS
156static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
a8a826a3 158static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 159
57fec1fe
FB
160void cpu_gen_init(void)
161{
162 tcg_context_init(&tcg_ctx);
57fec1fe
FB
163}
164
fca8a500
RH
165/* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167static uint8_t *encode_sleb128(uint8_t *p, target_long val)
168{
169 int more, byte;
170
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
178 }
179 *p++ = byte;
180 } while (more);
181
182 return p;
183}
184
185/* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187static target_long decode_sleb128(uint8_t **pp)
188{
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
192
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
200 }
201
202 *pp = p;
203 return val;
204}
205
206/* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
208
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
212
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
217
218static int encode_search(TranslationBlock *tb, uint8_t *block)
219{
b125f9dc 220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
221 uint8_t *p = block;
222 int i, j, n;
223
224 tb->tc_search = block;
225
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
228
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
234 }
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
236 }
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
239
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
246 }
fca8a500
RH
247 }
248
249 return p - block;
250}
251
fec88f64 252/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 253static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 254 uintptr_t searched_pc)
d19893da 255{
fca8a500
RH
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 258 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
57fec1fe 261#ifdef CONFIG_PROFILER
fca8a500 262 int64_t ti = profile_getclock();
57fec1fe
FB
263#endif
264
fca8a500
RH
265 if (searched_pc < host_pc) {
266 return -1;
267 }
d19893da 268
fca8a500
RH
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
3b46e624 281
fca8a500 282 found:
bd79255d 283 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 284 assert(use_icount);
2e70f6ef 285 /* Reset the cycle counter to the start of the block. */
fca8a500 286 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 287 /* Clear the IO flag. */
99df7dce 288 cpu->can_do_io = 0;
2e70f6ef 289 }
fca8a500
RH
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
57fec1fe
FB
292
293#ifdef CONFIG_PROFILER
fca8a500
RH
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
57fec1fe 296#endif
d19893da
FB
297 return 0;
298}
5b6dd868 299
3f38f309 300bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
301{
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
74f10515 306 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
312 }
a8a826a3
BS
313 return true;
314 }
315 return false;
316}
317
47c16ed5 318void page_size_init(void)
5b6dd868
BS
319{
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
5b6dd868 322 qemu_real_host_page_size = getpagesize();
0c2d70c4 323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
326 }
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
329 }
0c2d70c4 330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 331}
5b6dd868 332
47c16ed5
AK
333static void page_init(void)
334{
335 page_size_init();
5b6dd868
BS
336#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
337 {
338#ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
341
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
347
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
352
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360#endif
361 }
362 }
363 }
364 free(freep);
365 mmap_unlock();
366 }
367#else
368 FILE *f;
369
370 last_brk = (unsigned long)sbrk(0);
371
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
375
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
379
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
381
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
384
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
389 }
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
391 }
392 } while (!feof(f));
393
394 fclose(f);
395 mmap_unlock();
396 }
397#endif
398 }
399#endif
400}
401
75692087
PB
402/* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
404 */
5b6dd868
BS
405static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
406{
407 PageDesc *pd;
408 void **lp;
409 int i;
410
5b6dd868
BS
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
413
414 /* Level 2..N-1. */
03f49957 415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 416 void **p = atomic_rcu_read(lp);
5b6dd868
BS
417
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
421 }
e3a0abfd 422 p = g_new0(void *, V_L2_SIZE);
6940fab8 423 atomic_rcu_set(lp, p);
5b6dd868
BS
424 }
425
03f49957 426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
427 }
428
6940fab8 429 pd = atomic_rcu_read(lp);
5b6dd868
BS
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
433 }
e3a0abfd 434 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 435 atomic_rcu_set(lp, pd);
5b6dd868
BS
436 }
437
03f49957 438 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
439}
440
441static inline PageDesc *page_find(tb_page_addr_t index)
442{
443 return page_find_alloc(index, 0);
444}
445
5b6dd868
BS
446#if defined(CONFIG_USER_ONLY)
447/* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449/* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451#define USE_STATIC_CODE_GEN_BUFFER
452#endif
453
5b6dd868
BS
454/* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457
458/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461#if defined(__x86_64__)
462# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463#elif defined(__sparc__)
464# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
465#elif defined(__powerpc64__)
466# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
467#elif defined(__powerpc__)
468# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
469#elif defined(__aarch64__)
470# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
471#elif defined(__arm__)
472# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
473#elif defined(__s390x__)
474 /* We have a +- 4GB range on the branches; leave some slop. */
475# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
476#elif defined(__mips__)
477 /* We have a 256MB branch region, but leave room to make sure the
478 main executable is also within that region. */
479# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
480#else
481# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
482#endif
483
484#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
485
486#define DEFAULT_CODE_GEN_BUFFER_SIZE \
487 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
488 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
489
490static inline size_t size_code_gen_buffer(size_t tb_size)
491{
492 /* Size the buffer. */
493 if (tb_size == 0) {
494#ifdef USE_STATIC_CODE_GEN_BUFFER
495 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
496#else
497 /* ??? Needs adjustments. */
498 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
499 static buffer, we could size this on RESERVED_VA, on the text
500 segment size of the executable, or continue to use the default. */
501 tb_size = (unsigned long)(ram_size / 4);
502#endif
503 }
504 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
506 }
507 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
508 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
509 }
5b6dd868
BS
510 return tb_size;
511}
512
483c76e1
RH
513#ifdef __mips__
514/* In order to use J and JAL within the code_gen_buffer, we require
515 that the buffer not cross a 256MB boundary. */
516static inline bool cross_256mb(void *addr, size_t size)
517{
518 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
519}
520
521/* We weren't able to allocate a buffer without crossing that boundary,
522 so make do with the larger portion of the buffer that doesn't cross.
523 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
524static inline void *split_cross_256mb(void *buf1, size_t size1)
525{
526 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
527 size_t size2 = buf1 + size1 - buf2;
528
529 size1 = buf2 - buf1;
530 if (size1 < size2) {
531 size1 = size2;
532 buf1 = buf2;
533 }
534
535 tcg_ctx.code_gen_buffer_size = size1;
536 return buf1;
537}
538#endif
539
5b6dd868
BS
540#ifdef USE_STATIC_CODE_GEN_BUFFER
541static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
542 __attribute__((aligned(CODE_GEN_ALIGN)));
543
f293709c
RH
544# ifdef _WIN32
545static inline void do_protect(void *addr, long size, int prot)
546{
547 DWORD old_protect;
548 VirtualProtect(addr, size, prot, &old_protect);
549}
550
551static inline void map_exec(void *addr, long size)
552{
553 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
554}
555
556static inline void map_none(void *addr, long size)
557{
558 do_protect(addr, size, PAGE_NOACCESS);
559}
560# else
561static inline void do_protect(void *addr, long size, int prot)
562{
563 uintptr_t start, end;
564
565 start = (uintptr_t)addr;
566 start &= qemu_real_host_page_mask;
567
568 end = (uintptr_t)addr + size;
569 end = ROUND_UP(end, qemu_real_host_page_size);
570
571 mprotect((void *)start, end - start, prot);
572}
573
574static inline void map_exec(void *addr, long size)
575{
576 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
577}
578
579static inline void map_none(void *addr, long size)
580{
581 do_protect(addr, size, PROT_NONE);
582}
583# endif /* WIN32 */
584
5b6dd868
BS
585static inline void *alloc_code_gen_buffer(void)
586{
483c76e1 587 void *buf = static_code_gen_buffer;
f293709c
RH
588 size_t full_size, size;
589
590 /* The size of the buffer, rounded down to end on a page boundary. */
591 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
592 & qemu_real_host_page_mask) - (uintptr_t)buf;
593
594 /* Reserve a guard page. */
595 size = full_size - qemu_real_host_page_size;
596
597 /* Honor a command-line option limiting the size of the buffer. */
598 if (size > tcg_ctx.code_gen_buffer_size) {
599 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
600 & qemu_real_host_page_mask) - (uintptr_t)buf;
601 }
602 tcg_ctx.code_gen_buffer_size = size;
603
483c76e1 604#ifdef __mips__
f293709c
RH
605 if (cross_256mb(buf, size)) {
606 buf = split_cross_256mb(buf, size);
607 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
608 }
609#endif
f293709c
RH
610
611 map_exec(buf, size);
612 map_none(buf + size, qemu_real_host_page_size);
613 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
614
483c76e1 615 return buf;
5b6dd868 616}
f293709c
RH
617#elif defined(_WIN32)
618static inline void *alloc_code_gen_buffer(void)
619{
620 size_t size = tcg_ctx.code_gen_buffer_size;
621 void *buf1, *buf2;
622
623 /* Perform the allocation in two steps, so that the guard page
624 is reserved but uncommitted. */
625 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
626 MEM_RESERVE, PAGE_NOACCESS);
627 if (buf1 != NULL) {
628 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
629 assert(buf1 == buf2);
630 }
631
632 return buf1;
633}
634#else
5b6dd868
BS
635static inline void *alloc_code_gen_buffer(void)
636{
637 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
638 uintptr_t start = 0;
f293709c 639 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
640 void *buf;
641
642 /* Constrain the position of the buffer based on the host cpu.
643 Note that these addresses are chosen in concert with the
644 addresses assigned in the relevant linker script file. */
645# if defined(__PIE__) || defined(__PIC__)
646 /* Don't bother setting a preferred location if we're building
647 a position-independent executable. We're more likely to get
648 an address near the main executable if we let the kernel
649 choose the address. */
650# elif defined(__x86_64__) && defined(MAP_32BIT)
651 /* Force the memory down into low memory with the executable.
652 Leave the choice of exact location with the kernel. */
653 flags |= MAP_32BIT;
654 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
655 if (size > 800u * 1024 * 1024) {
656 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
657 }
658# elif defined(__sparc__)
659 start = 0x40000000ul;
660# elif defined(__s390x__)
661 start = 0x90000000ul;
479eb121 662# elif defined(__mips__)
f293709c 663# if _MIPS_SIM == _ABI64
479eb121
RH
664 start = 0x128000000ul;
665# else
666 start = 0x08000000ul;
667# endif
5b6dd868
BS
668# endif
669
f293709c
RH
670 buf = mmap((void *)start, size + qemu_real_host_page_size,
671 PROT_NONE, flags, -1, 0);
483c76e1
RH
672 if (buf == MAP_FAILED) {
673 return NULL;
674 }
675
676#ifdef __mips__
f293709c 677 if (cross_256mb(buf, size)) {
5d831be2 678 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 679 that 256mb crossing. This time don't specify an address. */
f293709c
RH
680 size_t size2;
681 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
682 PROT_NONE, flags, -1, 0);
683 switch (buf2 != MAP_FAILED) {
684 case 1:
685 if (!cross_256mb(buf2, size)) {
483c76e1 686 /* Success! Use the new buffer. */
f293709c
RH
687 munmap(buf, size);
688 break;
483c76e1
RH
689 }
690 /* Failure. Work with what we had. */
f293709c
RH
691 munmap(buf2, size);
692 /* fallthru */
693 default:
694 /* Split the original buffer. Free the smaller half. */
695 buf2 = split_cross_256mb(buf, size);
696 size2 = tcg_ctx.code_gen_buffer_size;
697 if (buf == buf2) {
698 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
699 } else {
700 munmap(buf, size - size2);
701 }
702 size = size2;
703 break;
483c76e1 704 }
f293709c 705 buf = buf2;
483c76e1
RH
706 }
707#endif
708
f293709c
RH
709 /* Make the final buffer accessible. The guard page at the end
710 will remain inaccessible with PROT_NONE. */
711 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 712
f293709c
RH
713 /* Request large pages for the buffer. */
714 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 715
5b6dd868
BS
716 return buf;
717}
f293709c 718#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
719
720static inline void code_gen_alloc(size_t tb_size)
721{
0b0d3320
EV
722 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
723 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
724 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
725 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
726 exit(1);
727 }
728
8163b749
RH
729 /* Estimate a good size for the number of TBs we can support. We
730 still haven't deducted the prologue from the buffer size here,
731 but that's minimal and won't affect the estimate much. */
732 tcg_ctx.code_gen_max_blocks
733 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
734 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
735
677ef623 736 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
737}
738
739/* Must be called before using the QEMU cpus. 'tb_size' is the size
740 (in bytes) allocated to the translation buffer. Zero means default
741 size. */
742void tcg_exec_init(unsigned long tb_size)
743{
744 cpu_gen_init();
5b6dd868 745 page_init();
f293709c 746 code_gen_alloc(tb_size);
4cbea598 747#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
748 /* There's no guest base to take into account, so go ahead and
749 initialize the prologue now. */
750 tcg_prologue_init(&tcg_ctx);
751#endif
752}
753
754bool tcg_enabled(void)
755{
0b0d3320 756 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
757}
758
759/* Allocate a new translation block. Flush the translation buffer if
760 too many translation blocks or too much generated code. */
761static TranslationBlock *tb_alloc(target_ulong pc)
762{
763 TranslationBlock *tb;
764
b125f9dc 765 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
766 return NULL;
767 }
5e5f07e0 768 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
769 tb->pc = pc;
770 tb->cflags = 0;
771 return tb;
772}
773
774void tb_free(TranslationBlock *tb)
775{
776 /* In practice this is mostly used for single use temporary TB
777 Ignore the hard cases and just back up if this TB happens to
778 be the last one generated. */
5e5f07e0
EV
779 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
780 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 781 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 782 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
783 }
784}
785
786static inline void invalidate_page_bitmap(PageDesc *p)
787{
012aef07
MA
788 g_free(p->code_bitmap);
789 p->code_bitmap = NULL;
5b6dd868
BS
790 p->code_write_count = 0;
791}
792
793/* Set to NULL all the 'first_tb' fields in all PageDescs. */
794static void page_flush_tb_1(int level, void **lp)
795{
796 int i;
797
798 if (*lp == NULL) {
799 return;
800 }
801 if (level == 0) {
802 PageDesc *pd = *lp;
803
03f49957 804 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
805 pd[i].first_tb = NULL;
806 invalidate_page_bitmap(pd + i);
807 }
808 } else {
809 void **pp = *lp;
810
03f49957 811 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
812 page_flush_tb_1(level - 1, pp + i);
813 }
814 }
815}
816
817static void page_flush_tb(void)
818{
819 int i;
820
821 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 822 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
823 }
824}
825
826/* flush all the translation blocks */
827/* XXX: tb_flush is currently not thread safe */
bbd77c18 828void tb_flush(CPUState *cpu)
5b6dd868 829{
5b6dd868
BS
830#if defined(DEBUG_FLUSH)
831 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 832 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 833 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 834 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 835 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 836#endif
0b0d3320
EV
837 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
838 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 839 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 840 }
5e5f07e0 841 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 842
bdc44640 843 CPU_FOREACH(cpu) {
8cd70437 844 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
845 }
846
eb2535f4 847 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
848 page_flush_tb();
849
0b0d3320 850 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
851 /* XXX: flush processor icache at this point if cache flush is
852 expensive */
5e5f07e0 853 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
854}
855
856#ifdef DEBUG_TB_CHECK
857
858static void tb_invalidate_check(target_ulong address)
859{
860 TranslationBlock *tb;
861 int i;
862
863 address &= TARGET_PAGE_MASK;
864 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
7e6bd36d
EC
865 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
866 tb = tb->phys_hash_next) {
5b6dd868
BS
867 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
868 address >= tb->pc + tb->size)) {
869 printf("ERROR invalidate: address=" TARGET_FMT_lx
870 " PC=%08lx size=%04x\n",
871 address, (long)tb->pc, tb->size);
872 }
873 }
874 }
875}
876
877/* verify that all the pages have correct rights for code */
878static void tb_page_check(void)
879{
880 TranslationBlock *tb;
881 int i, flags1, flags2;
882
883 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
884 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
885 tb = tb->phys_hash_next) {
5b6dd868
BS
886 flags1 = page_get_flags(tb->pc);
887 flags2 = page_get_flags(tb->pc + tb->size - 1);
888 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
889 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
890 (long)tb->pc, tb->size, flags1, flags2);
891 }
892 }
893 }
894}
895
896#endif
897
0c884d16 898static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
899{
900 TranslationBlock *tb1;
901
902 for (;;) {
903 tb1 = *ptb;
904 if (tb1 == tb) {
0c884d16 905 *ptb = tb1->phys_hash_next;
5b6dd868
BS
906 break;
907 }
0c884d16 908 ptb = &tb1->phys_hash_next;
5b6dd868
BS
909 }
910}
911
912static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
913{
914 TranslationBlock *tb1;
915 unsigned int n1;
916
917 for (;;) {
918 tb1 = *ptb;
919 n1 = (uintptr_t)tb1 & 3;
920 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
921 if (tb1 == tb) {
922 *ptb = tb1->page_next[n1];
923 break;
924 }
925 ptb = &tb1->page_next[n1];
926 }
927}
928
929static inline void tb_jmp_remove(TranslationBlock *tb, int n)
930{
931 TranslationBlock *tb1, **ptb;
932 unsigned int n1;
933
934 ptb = &tb->jmp_next[n];
935 tb1 = *ptb;
936 if (tb1) {
937 /* find tb(n) in circular list */
938 for (;;) {
939 tb1 = *ptb;
940 n1 = (uintptr_t)tb1 & 3;
941 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
942 if (n1 == n && tb1 == tb) {
943 break;
944 }
945 if (n1 == 2) {
946 ptb = &tb1->jmp_first;
947 } else {
948 ptb = &tb1->jmp_next[n1];
949 }
950 }
951 /* now we can suppress tb(n) from the list */
952 *ptb = tb->jmp_next[n];
953
954 tb->jmp_next[n] = NULL;
955 }
956}
957
958/* reset the jump entry 'n' of a TB so that it is not chained to
959 another TB */
960static inline void tb_reset_jump(TranslationBlock *tb, int n)
961{
962 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
963}
964
0c884d16 965/* invalidate one TB */
5b6dd868
BS
966void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
967{
182735ef 968 CPUState *cpu;
5b6dd868
BS
969 PageDesc *p;
970 unsigned int h, n1;
971 tb_page_addr_t phys_pc;
972 TranslationBlock *tb1, *tb2;
973
974 /* remove the TB from the hash list */
975 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
976 h = tb_phys_hash_func(phys_pc);
5e5f07e0 977 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
978
979 /* remove the TB from the page list */
980 if (tb->page_addr[0] != page_addr) {
981 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
982 tb_page_remove(&p->first_tb, tb);
983 invalidate_page_bitmap(p);
984 }
985 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
986 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
987 tb_page_remove(&p->first_tb, tb);
988 invalidate_page_bitmap(p);
989 }
990
5e5f07e0 991 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
992
993 /* remove the TB from the hash list */
994 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 995 CPU_FOREACH(cpu) {
8cd70437
AF
996 if (cpu->tb_jmp_cache[h] == tb) {
997 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
998 }
999 }
1000
1001 /* suppress this TB from the two jump lists */
1002 tb_jmp_remove(tb, 0);
1003 tb_jmp_remove(tb, 1);
1004
1005 /* suppress any remaining jumps to this TB */
1006 tb1 = tb->jmp_first;
1007 for (;;) {
1008 n1 = (uintptr_t)tb1 & 3;
1009 if (n1 == 2) {
1010 break;
1011 }
1012 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1013 tb2 = tb1->jmp_next[n1];
1014 tb_reset_jump(tb1, n1);
1015 tb1->jmp_next[n1] = NULL;
1016 tb1 = tb2;
1017 }
1018 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1019
5e5f07e0 1020 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1021}
1022
5b6dd868
BS
1023static void build_page_bitmap(PageDesc *p)
1024{
1025 int n, tb_start, tb_end;
1026 TranslationBlock *tb;
1027
510a647f 1028 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1029
1030 tb = p->first_tb;
1031 while (tb != NULL) {
1032 n = (uintptr_t)tb & 3;
1033 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1034 /* NOTE: this is subtle as a TB may span two physical pages */
1035 if (n == 0) {
1036 /* NOTE: tb_end may be after the end of the page, but
1037 it is not a problem */
1038 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1039 tb_end = tb_start + tb->size;
1040 if (tb_end > TARGET_PAGE_SIZE) {
1041 tb_end = TARGET_PAGE_SIZE;
1042 }
1043 } else {
1044 tb_start = 0;
1045 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1046 }
510a647f 1047 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1048 tb = tb->page_next[n];
1049 }
1050}
1051
75692087 1052/* Called with mmap_lock held for user mode emulation. */
648f034c 1053TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1054 target_ulong pc, target_ulong cs_base,
89fee74a 1055 uint32_t flags, int cflags)
5b6dd868 1056{
648f034c 1057 CPUArchState *env = cpu->env_ptr;
5b6dd868 1058 TranslationBlock *tb;
5b6dd868
BS
1059 tb_page_addr_t phys_pc, phys_page2;
1060 target_ulong virt_page2;
fec88f64 1061 tcg_insn_unit *gen_code_buf;
fca8a500 1062 int gen_code_size, search_size;
fec88f64
RH
1063#ifdef CONFIG_PROFILER
1064 int64_t ti;
1065#endif
5b6dd868
BS
1066
1067 phys_pc = get_page_addr_code(env, pc);
56c0269a 1068 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1069 cflags |= CF_USE_ICOUNT;
1070 }
b125f9dc 1071
5b6dd868 1072 tb = tb_alloc(pc);
b125f9dc
RH
1073 if (unlikely(!tb)) {
1074 buffer_overflow:
5b6dd868 1075 /* flush must be done */
bbd77c18 1076 tb_flush(cpu);
5b6dd868
BS
1077 /* cannot fail at this point */
1078 tb = tb_alloc(pc);
b125f9dc 1079 assert(tb != NULL);
5b6dd868 1080 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1081 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1082 }
fec88f64
RH
1083
1084 gen_code_buf = tcg_ctx.code_gen_ptr;
1085 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1086 tb->cs_base = cs_base;
1087 tb->flags = flags;
1088 tb->cflags = cflags;
fec88f64
RH
1089
1090#ifdef CONFIG_PROFILER
1091 tcg_ctx.tb_count1++; /* includes aborted translations because of
1092 exceptions */
1093 ti = profile_getclock();
1094#endif
1095
1096 tcg_func_start(&tcg_ctx);
1097
1098 gen_intermediate_code(env, tb);
1099
1100 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1101
1102 /* generate machine code */
1103 tb->tb_next_offset[0] = 0xffff;
1104 tb->tb_next_offset[1] = 0xffff;
1105 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1106#ifdef USE_DIRECT_JUMP
1107 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1108 tcg_ctx.tb_next = NULL;
1109#else
1110 tcg_ctx.tb_jmp_offset = NULL;
1111 tcg_ctx.tb_next = tb->tb_next;
1112#endif
1113
1114#ifdef CONFIG_PROFILER
1115 tcg_ctx.tb_count++;
1116 tcg_ctx.interm_time += profile_getclock() - ti;
1117 tcg_ctx.code_time -= profile_getclock();
1118#endif
1119
b125f9dc
RH
1120 /* ??? Overflow could be handled better here. In particular, we
1121 don't need to re-do gen_intermediate_code, nor should we re-do
1122 the tcg optimization currently hidden inside tcg_gen_code. All
1123 that should be required is to flush the TBs, allocate a new TB,
1124 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1125 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1126 if (unlikely(gen_code_size < 0)) {
1127 goto buffer_overflow;
1128 }
fca8a500 1129 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1130 if (unlikely(search_size < 0)) {
1131 goto buffer_overflow;
1132 }
fec88f64
RH
1133
1134#ifdef CONFIG_PROFILER
1135 tcg_ctx.code_time += profile_getclock();
1136 tcg_ctx.code_in_len += tb->size;
1137 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1138 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1139#endif
1140
1141#ifdef DEBUG_DISAS
d977e1c2
AB
1142 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1143 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1144 qemu_log("OUT: [size=%d]\n", gen_code_size);
1145 log_disas(tb->tc_ptr, gen_code_size);
1146 qemu_log("\n");
1147 qemu_log_flush();
1148 }
1149#endif
1150
fca8a500
RH
1151 tcg_ctx.code_gen_ptr = (void *)
1152 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1153 CODE_GEN_ALIGN);
5b6dd868
BS
1154
1155 /* check next page if needed */
1156 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1157 phys_page2 = -1;
1158 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1159 phys_page2 = get_page_addr_code(env, virt_page2);
1160 }
1161 tb_link_page(tb, phys_pc, phys_page2);
1162 return tb;
1163}
1164
1165/*
1166 * Invalidate all TBs which intersect with the target physical address range
1167 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1168 * 'is_cpu_write_access' should be true if called from a real cpu write
1169 * access: the virtual CPU will exit the current TB if code is modified inside
1170 * this TB.
75692087
PB
1171 *
1172 * Called with mmap_lock held for user-mode emulation
5b6dd868 1173 */
35865339 1174void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1175{
1176 while (start < end) {
35865339 1177 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1178 start &= TARGET_PAGE_MASK;
1179 start += TARGET_PAGE_SIZE;
1180 }
1181}
1182
1183/*
1184 * Invalidate all TBs which intersect with the target physical address range
1185 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1186 * 'is_cpu_write_access' should be true if called from a real cpu write
1187 * access: the virtual CPU will exit the current TB if code is modified inside
1188 * this TB.
75692087
PB
1189 *
1190 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1191 */
1192void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1193 int is_cpu_write_access)
1194{
1195 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1196 CPUState *cpu = current_cpu;
baea4fae 1197#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1198 CPUArchState *env = NULL;
1199#endif
5b6dd868
BS
1200 tb_page_addr_t tb_start, tb_end;
1201 PageDesc *p;
1202 int n;
1203#ifdef TARGET_HAS_PRECISE_SMC
1204 int current_tb_not_found = is_cpu_write_access;
1205 TranslationBlock *current_tb = NULL;
1206 int current_tb_modified = 0;
1207 target_ulong current_pc = 0;
1208 target_ulong current_cs_base = 0;
89fee74a 1209 uint32_t current_flags = 0;
5b6dd868
BS
1210#endif /* TARGET_HAS_PRECISE_SMC */
1211
1212 p = page_find(start >> TARGET_PAGE_BITS);
1213 if (!p) {
1214 return;
1215 }
baea4fae 1216#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1217 if (cpu != NULL) {
1218 env = cpu->env_ptr;
d77953b9 1219 }
4917cf44 1220#endif
5b6dd868
BS
1221
1222 /* we remove all the TBs in the range [start, end[ */
1223 /* XXX: see if in some cases it could be faster to invalidate all
1224 the code */
1225 tb = p->first_tb;
1226 while (tb != NULL) {
1227 n = (uintptr_t)tb & 3;
1228 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1229 tb_next = tb->page_next[n];
1230 /* NOTE: this is subtle as a TB may span two physical pages */
1231 if (n == 0) {
1232 /* NOTE: tb_end may be after the end of the page, but
1233 it is not a problem */
1234 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1235 tb_end = tb_start + tb->size;
1236 } else {
1237 tb_start = tb->page_addr[1];
1238 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1239 }
1240 if (!(tb_end <= start || tb_start >= end)) {
1241#ifdef TARGET_HAS_PRECISE_SMC
1242 if (current_tb_not_found) {
1243 current_tb_not_found = 0;
1244 current_tb = NULL;
93afeade 1245 if (cpu->mem_io_pc) {
5b6dd868 1246 /* now we have a real cpu fault */
93afeade 1247 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1248 }
1249 }
1250 if (current_tb == tb &&
1251 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1252 /* If we are modifying the current TB, we must stop
1253 its execution. We could be more precise by checking
1254 that the modification is after the current PC, but it
1255 would require a specialized function to partially
1256 restore the CPU state */
1257
1258 current_tb_modified = 1;
74f10515 1259 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1260 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1261 &current_flags);
1262 }
1263#endif /* TARGET_HAS_PRECISE_SMC */
1264 /* we need to do that to handle the case where a signal
1265 occurs while doing tb_phys_invalidate() */
1266 saved_tb = NULL;
d77953b9
AF
1267 if (cpu != NULL) {
1268 saved_tb = cpu->current_tb;
1269 cpu->current_tb = NULL;
5b6dd868
BS
1270 }
1271 tb_phys_invalidate(tb, -1);
d77953b9
AF
1272 if (cpu != NULL) {
1273 cpu->current_tb = saved_tb;
c3affe56
AF
1274 if (cpu->interrupt_request && cpu->current_tb) {
1275 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1276 }
1277 }
1278 }
1279 tb = tb_next;
1280 }
1281#if !defined(CONFIG_USER_ONLY)
1282 /* if no code remaining, no need to continue to use slow writes */
1283 if (!p->first_tb) {
1284 invalidate_page_bitmap(p);
fc377bcf 1285 tlb_unprotect_code(start);
5b6dd868
BS
1286 }
1287#endif
1288#ifdef TARGET_HAS_PRECISE_SMC
1289 if (current_tb_modified) {
1290 /* we generate a block containing just the instruction
1291 modifying the memory. It will ensure that it cannot modify
1292 itself */
d77953b9 1293 cpu->current_tb = NULL;
648f034c 1294 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1295 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1296 }
1297#endif
1298}
1299
1300/* len must be <= 8 and start must be a multiple of len */
1301void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1302{
1303 PageDesc *p;
5b6dd868
BS
1304
1305#if 0
1306 if (1) {
1307 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1308 cpu_single_env->mem_io_vaddr, len,
1309 cpu_single_env->eip,
1310 cpu_single_env->eip +
1311 (intptr_t)cpu_single_env->segs[R_CS].base);
1312 }
1313#endif
1314 p = page_find(start >> TARGET_PAGE_BITS);
1315 if (!p) {
1316 return;
1317 }
fc377bcf
PB
1318 if (!p->code_bitmap &&
1319 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1320 /* build code bitmap */
1321 build_page_bitmap(p);
1322 }
5b6dd868 1323 if (p->code_bitmap) {
510a647f
EC
1324 unsigned int nr;
1325 unsigned long b;
1326
1327 nr = start & ~TARGET_PAGE_MASK;
1328 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1329 if (b & ((1 << len) - 1)) {
1330 goto do_invalidate;
1331 }
1332 } else {
1333 do_invalidate:
1334 tb_invalidate_phys_page_range(start, start + len, 1);
1335 }
1336}
1337
1338#if !defined(CONFIG_SOFTMMU)
75692087 1339/* Called with mmap_lock held. */
5b6dd868 1340static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1341 uintptr_t pc, void *puc,
1342 bool locked)
5b6dd868
BS
1343{
1344 TranslationBlock *tb;
1345 PageDesc *p;
1346 int n;
1347#ifdef TARGET_HAS_PRECISE_SMC
1348 TranslationBlock *current_tb = NULL;
4917cf44
AF
1349 CPUState *cpu = current_cpu;
1350 CPUArchState *env = NULL;
5b6dd868
BS
1351 int current_tb_modified = 0;
1352 target_ulong current_pc = 0;
1353 target_ulong current_cs_base = 0;
89fee74a 1354 uint32_t current_flags = 0;
5b6dd868
BS
1355#endif
1356
1357 addr &= TARGET_PAGE_MASK;
1358 p = page_find(addr >> TARGET_PAGE_BITS);
1359 if (!p) {
1360 return;
1361 }
1362 tb = p->first_tb;
1363#ifdef TARGET_HAS_PRECISE_SMC
1364 if (tb && pc != 0) {
1365 current_tb = tb_find_pc(pc);
1366 }
4917cf44
AF
1367 if (cpu != NULL) {
1368 env = cpu->env_ptr;
d77953b9 1369 }
5b6dd868
BS
1370#endif
1371 while (tb != NULL) {
1372 n = (uintptr_t)tb & 3;
1373 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1374#ifdef TARGET_HAS_PRECISE_SMC
1375 if (current_tb == tb &&
1376 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1377 /* If we are modifying the current TB, we must stop
1378 its execution. We could be more precise by checking
1379 that the modification is after the current PC, but it
1380 would require a specialized function to partially
1381 restore the CPU state */
1382
1383 current_tb_modified = 1;
74f10515 1384 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1385 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1386 &current_flags);
1387 }
1388#endif /* TARGET_HAS_PRECISE_SMC */
1389 tb_phys_invalidate(tb, addr);
1390 tb = tb->page_next[n];
1391 }
1392 p->first_tb = NULL;
1393#ifdef TARGET_HAS_PRECISE_SMC
1394 if (current_tb_modified) {
1395 /* we generate a block containing just the instruction
1396 modifying the memory. It will ensure that it cannot modify
1397 itself */
d77953b9 1398 cpu->current_tb = NULL;
648f034c 1399 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1400 if (locked) {
1401 mmap_unlock();
1402 }
0ea8cb88 1403 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1404 }
1405#endif
1406}
1407#endif
1408
75692087
PB
1409/* add the tb in the target page and protect it if necessary
1410 *
1411 * Called with mmap_lock held for user-mode emulation.
1412 */
5b6dd868
BS
1413static inline void tb_alloc_page(TranslationBlock *tb,
1414 unsigned int n, tb_page_addr_t page_addr)
1415{
1416 PageDesc *p;
1417#ifndef CONFIG_USER_ONLY
1418 bool page_already_protected;
1419#endif
1420
1421 tb->page_addr[n] = page_addr;
1422 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1423 tb->page_next[n] = p->first_tb;
1424#ifndef CONFIG_USER_ONLY
1425 page_already_protected = p->first_tb != NULL;
1426#endif
1427 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1428 invalidate_page_bitmap(p);
1429
5b6dd868
BS
1430#if defined(CONFIG_USER_ONLY)
1431 if (p->flags & PAGE_WRITE) {
1432 target_ulong addr;
1433 PageDesc *p2;
1434 int prot;
1435
1436 /* force the host page as non writable (writes will have a
1437 page fault + mprotect overhead) */
1438 page_addr &= qemu_host_page_mask;
1439 prot = 0;
1440 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1441 addr += TARGET_PAGE_SIZE) {
1442
1443 p2 = page_find(addr >> TARGET_PAGE_BITS);
1444 if (!p2) {
1445 continue;
1446 }
1447 prot |= p2->flags;
1448 p2->flags &= ~PAGE_WRITE;
1449 }
1450 mprotect(g2h(page_addr), qemu_host_page_size,
1451 (prot & PAGE_BITS) & ~PAGE_WRITE);
1452#ifdef DEBUG_TB_INVALIDATE
1453 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1454 page_addr);
1455#endif
1456 }
1457#else
1458 /* if some code is already present, then the pages are already
1459 protected. So we handle the case where only the first TB is
1460 allocated in a physical page */
1461 if (!page_already_protected) {
1462 tlb_protect_code(page_addr);
1463 }
1464#endif
5b6dd868
BS
1465}
1466
1467/* add a new TB and link it to the physical page tables. phys_page2 is
75692087 1468 * (-1) to indicate that only one page contains the TB.
9fd1a948
PB
1469 *
1470 * Called with mmap_lock held for user-mode emulation.
75692087 1471 */
5b6dd868
BS
1472static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1473 tb_page_addr_t phys_page2)
1474{
1475 unsigned int h;
1476 TranslationBlock **ptb;
1477
5b6dd868
BS
1478 /* add in the physical hash table */
1479 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1480 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1481 tb->phys_hash_next = *ptb;
1482 *ptb = tb;
1483
1484 /* add in the page list */
1485 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1486 if (phys_page2 != -1) {
1487 tb_alloc_page(tb, 1, phys_page2);
1488 } else {
1489 tb->page_addr[1] = -1;
1490 }
1491
1492 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1493 tb->jmp_next[0] = NULL;
1494 tb->jmp_next[1] = NULL;
1495
1496 /* init original jump addresses */
1497 if (tb->tb_next_offset[0] != 0xffff) {
1498 tb_reset_jump(tb, 0);
1499 }
1500 if (tb->tb_next_offset[1] != 0xffff) {
1501 tb_reset_jump(tb, 1);
1502 }
1503
1504#ifdef DEBUG_TB_CHECK
1505 tb_page_check();
1506#endif
5b6dd868
BS
1507}
1508
5b6dd868
BS
1509/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1510 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1511static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1512{
1513 int m_min, m_max, m;
1514 uintptr_t v;
1515 TranslationBlock *tb;
1516
5e5f07e0 1517 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1518 return NULL;
1519 }
0b0d3320
EV
1520 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1521 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1522 return NULL;
1523 }
1524 /* binary search (cf Knuth) */
1525 m_min = 0;
5e5f07e0 1526 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1527 while (m_min <= m_max) {
1528 m = (m_min + m_max) >> 1;
5e5f07e0 1529 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1530 v = (uintptr_t)tb->tc_ptr;
1531 if (v == tc_ptr) {
1532 return tb;
1533 } else if (tc_ptr < v) {
1534 m_max = m - 1;
1535 } else {
1536 m_min = m + 1;
1537 }
1538 }
5e5f07e0 1539 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1540}
1541
ec53b45b 1542#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1543void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1544{
1545 ram_addr_t ram_addr;
5c8a00ce 1546 MemoryRegion *mr;
149f54b5 1547 hwaddr l = 1;
5b6dd868 1548
41063e1e 1549 rcu_read_lock();
29d8ec7b 1550 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1551 if (!(memory_region_is_ram(mr)
1552 || memory_region_is_romd(mr))) {
41063e1e 1553 rcu_read_unlock();
5b6dd868
BS
1554 return;
1555 }
5c8a00ce 1556 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1557 + addr;
5b6dd868 1558 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1559 rcu_read_unlock();
5b6dd868 1560}
ec53b45b 1561#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1562
239c51a5 1563void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1564{
1565 TranslationBlock *tb;
1566
93afeade 1567 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1568 if (tb) {
1569 /* We can use retranslation to find the PC. */
1570 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1571 tb_phys_invalidate(tb, -1);
1572 } else {
1573 /* The exception probably happened in a helper. The CPU state should
1574 have been saved before calling it. Fetch the PC from there. */
1575 CPUArchState *env = cpu->env_ptr;
1576 target_ulong pc, cs_base;
1577 tb_page_addr_t addr;
89fee74a 1578 uint32_t flags;
8d302e76
AJ
1579
1580 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1581 addr = get_page_addr_code(env, pc);
1582 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1583 }
5b6dd868
BS
1584}
1585
1586#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1587/* in deterministic execution mode, instructions doing device I/Os
1588 must be at the end of the TB */
90b40a69 1589void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1590{
a47dddd7 1591#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1592 CPUArchState *env = cpu->env_ptr;
a47dddd7 1593#endif
5b6dd868
BS
1594 TranslationBlock *tb;
1595 uint32_t n, cflags;
1596 target_ulong pc, cs_base;
89fee74a 1597 uint32_t flags;
5b6dd868
BS
1598
1599 tb = tb_find_pc(retaddr);
1600 if (!tb) {
a47dddd7 1601 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1602 (void *)retaddr);
1603 }
28ecfd7a 1604 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1605 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1606 /* Calculate how many instructions had been executed before the fault
1607 occurred. */
28ecfd7a 1608 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1609 /* Generate a new TB ending on the I/O insn. */
1610 n++;
1611 /* On MIPS and SH, delay slot instructions can only be restarted if
1612 they were already the first instruction in the TB. If this is not
1613 the first instruction in a TB then re-execute the preceding
1614 branch. */
1615#if defined(TARGET_MIPS)
1616 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1617 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1618 cpu->icount_decr.u16.low++;
5b6dd868
BS
1619 env->hflags &= ~MIPS_HFLAG_BMASK;
1620 }
1621#elif defined(TARGET_SH4)
1622 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1623 && n > 1) {
1624 env->pc -= 2;
28ecfd7a 1625 cpu->icount_decr.u16.low++;
5b6dd868
BS
1626 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1627 }
1628#endif
1629 /* This should never happen. */
1630 if (n > CF_COUNT_MASK) {
a47dddd7 1631 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1632 }
1633
1634 cflags = n | CF_LAST_IO;
1635 pc = tb->pc;
1636 cs_base = tb->cs_base;
1637 flags = tb->flags;
1638 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1639 if (tb->cflags & CF_NOCACHE) {
1640 if (tb->orig_tb) {
1641 /* Invalidate original TB if this TB was generated in
1642 * cpu_exec_nocache() */
1643 tb_phys_invalidate(tb->orig_tb, -1);
1644 }
1645 tb_free(tb);
1646 }
5b6dd868
BS
1647 /* FIXME: In theory this could raise an exception. In practice
1648 we have already translated the block once so it's probably ok. */
648f034c 1649 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1650 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1651 the first in the TB) then we end up generating a whole new TB and
1652 repeating the fault, which is horribly inefficient.
1653 Better would be to execute just this insn uncached, or generate a
1654 second new TB. */
0ea8cb88 1655 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1656}
1657
611d4f99 1658void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1659{
1660 unsigned int i;
1661
1662 /* Discard jump cache entries for any tb which might potentially
1663 overlap the flushed page. */
1664 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1665 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1666 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1667
1668 i = tb_jmp_cache_hash_page(addr);
8cd70437 1669 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1670 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1671}
1672
1673void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1674{
1675 int i, target_code_size, max_target_code_size;
1676 int direct_jmp_count, direct_jmp2_count, cross_page;
1677 TranslationBlock *tb;
1678
1679 target_code_size = 0;
1680 max_target_code_size = 0;
1681 cross_page = 0;
1682 direct_jmp_count = 0;
1683 direct_jmp2_count = 0;
5e5f07e0
EV
1684 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1685 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1686 target_code_size += tb->size;
1687 if (tb->size > max_target_code_size) {
1688 max_target_code_size = tb->size;
1689 }
1690 if (tb->page_addr[1] != -1) {
1691 cross_page++;
1692 }
1693 if (tb->tb_next_offset[0] != 0xffff) {
1694 direct_jmp_count++;
1695 if (tb->tb_next_offset[1] != 0xffff) {
1696 direct_jmp2_count++;
1697 }
1698 }
1699 }
1700 /* XXX: avoid using doubles ? */
1701 cpu_fprintf(f, "Translation buffer state:\n");
1702 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1703 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1704 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1705 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1706 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1707 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1708 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1709 tcg_ctx.tb_ctx.nb_tbs : 0,
1710 max_target_code_size);
5b6dd868 1711 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1712 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1713 tcg_ctx.code_gen_buffer) /
1714 tcg_ctx.tb_ctx.nb_tbs : 0,
1715 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1716 tcg_ctx.code_gen_buffer) /
1717 target_code_size : 0);
1718 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1719 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1720 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1721 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1722 direct_jmp_count,
5e5f07e0
EV
1723 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1724 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1725 direct_jmp2_count,
5e5f07e0
EV
1726 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1727 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1728 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1729 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1730 cpu_fprintf(f, "TB invalidate count %d\n",
1731 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1732 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1733 tcg_dump_info(f, cpu_fprintf);
1734}
1735
246ae24d
MF
1736void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1737{
1738 tcg_dump_op_count(f, cpu_fprintf);
1739}
1740
5b6dd868
BS
1741#else /* CONFIG_USER_ONLY */
1742
c3affe56 1743void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1744{
259186a7 1745 cpu->interrupt_request |= mask;
378df4b2 1746 cpu->tcg_exit_req = 1;
5b6dd868
BS
1747}
1748
1749/*
1750 * Walks guest process memory "regions" one by one
1751 * and calls callback function 'fn' for each region.
1752 */
1753struct walk_memory_regions_data {
1754 walk_memory_regions_fn fn;
1755 void *priv;
1a1c4db9 1756 target_ulong start;
5b6dd868
BS
1757 int prot;
1758};
1759
1760static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1761 target_ulong end, int new_prot)
5b6dd868 1762{
1a1c4db9 1763 if (data->start != -1u) {
5b6dd868
BS
1764 int rc = data->fn(data->priv, data->start, end, data->prot);
1765 if (rc != 0) {
1766 return rc;
1767 }
1768 }
1769
1a1c4db9 1770 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1771 data->prot = new_prot;
1772
1773 return 0;
1774}
1775
1776static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1777 target_ulong base, int level, void **lp)
5b6dd868 1778{
1a1c4db9 1779 target_ulong pa;
5b6dd868
BS
1780 int i, rc;
1781
1782 if (*lp == NULL) {
1783 return walk_memory_regions_end(data, base, 0);
1784 }
1785
1786 if (level == 0) {
1787 PageDesc *pd = *lp;
1788
03f49957 1789 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1790 int prot = pd[i].flags;
1791
1792 pa = base | (i << TARGET_PAGE_BITS);
1793 if (prot != data->prot) {
1794 rc = walk_memory_regions_end(data, pa, prot);
1795 if (rc != 0) {
1796 return rc;
1797 }
1798 }
1799 }
1800 } else {
1801 void **pp = *lp;
1802
03f49957 1803 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1804 pa = base | ((target_ulong)i <<
03f49957 1805 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1806 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1807 if (rc != 0) {
1808 return rc;
1809 }
1810 }
1811 }
1812
1813 return 0;
1814}
1815
1816int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1817{
1818 struct walk_memory_regions_data data;
1819 uintptr_t i;
1820
1821 data.fn = fn;
1822 data.priv = priv;
1a1c4db9 1823 data.start = -1u;
5b6dd868
BS
1824 data.prot = 0;
1825
1826 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1827 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1828 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1829 if (rc != 0) {
1830 return rc;
1831 }
1832 }
1833
1834 return walk_memory_regions_end(&data, 0, 0);
1835}
1836
1a1c4db9
MI
1837static int dump_region(void *priv, target_ulong start,
1838 target_ulong end, unsigned long prot)
5b6dd868
BS
1839{
1840 FILE *f = (FILE *)priv;
1841
1a1c4db9
MI
1842 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1843 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1844 start, end, end - start,
1845 ((prot & PAGE_READ) ? 'r' : '-'),
1846 ((prot & PAGE_WRITE) ? 'w' : '-'),
1847 ((prot & PAGE_EXEC) ? 'x' : '-'));
1848
1849 return 0;
1850}
1851
1852/* dump memory mappings */
1853void page_dump(FILE *f)
1854{
1a1c4db9 1855 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1856 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1857 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1858 walk_memory_regions(f, dump_region);
1859}
1860
1861int page_get_flags(target_ulong address)
1862{
1863 PageDesc *p;
1864
1865 p = page_find(address >> TARGET_PAGE_BITS);
1866 if (!p) {
1867 return 0;
1868 }
1869 return p->flags;
1870}
1871
1872/* Modify the flags of a page and invalidate the code if necessary.
1873 The flag PAGE_WRITE_ORG is positioned automatically depending
1874 on PAGE_WRITE. The mmap_lock should already be held. */
1875void page_set_flags(target_ulong start, target_ulong end, int flags)
1876{
1877 target_ulong addr, len;
1878
1879 /* This function should never be called with addresses outside the
1880 guest address space. If this assert fires, it probably indicates
1881 a missing call to h2g_valid. */
1882#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1883 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1884#endif
1885 assert(start < end);
1886
1887 start = start & TARGET_PAGE_MASK;
1888 end = TARGET_PAGE_ALIGN(end);
1889
1890 if (flags & PAGE_WRITE) {
1891 flags |= PAGE_WRITE_ORG;
1892 }
1893
1894 for (addr = start, len = end - start;
1895 len != 0;
1896 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1897 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1898
1899 /* If the write protection bit is set, then we invalidate
1900 the code inside. */
1901 if (!(p->flags & PAGE_WRITE) &&
1902 (flags & PAGE_WRITE) &&
1903 p->first_tb) {
d02532f0 1904 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1905 }
1906 p->flags = flags;
1907 }
1908}
1909
1910int page_check_range(target_ulong start, target_ulong len, int flags)
1911{
1912 PageDesc *p;
1913 target_ulong end;
1914 target_ulong addr;
1915
1916 /* This function should never be called with addresses outside the
1917 guest address space. If this assert fires, it probably indicates
1918 a missing call to h2g_valid. */
1919#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1920 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1921#endif
1922
1923 if (len == 0) {
1924 return 0;
1925 }
1926 if (start + len - 1 < start) {
1927 /* We've wrapped around. */
1928 return -1;
1929 }
1930
1931 /* must do before we loose bits in the next step */
1932 end = TARGET_PAGE_ALIGN(start + len);
1933 start = start & TARGET_PAGE_MASK;
1934
1935 for (addr = start, len = end - start;
1936 len != 0;
1937 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1938 p = page_find(addr >> TARGET_PAGE_BITS);
1939 if (!p) {
1940 return -1;
1941 }
1942 if (!(p->flags & PAGE_VALID)) {
1943 return -1;
1944 }
1945
1946 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1947 return -1;
1948 }
1949 if (flags & PAGE_WRITE) {
1950 if (!(p->flags & PAGE_WRITE_ORG)) {
1951 return -1;
1952 }
1953 /* unprotect the page if it was put read-only because it
1954 contains translated code */
1955 if (!(p->flags & PAGE_WRITE)) {
1956 if (!page_unprotect(addr, 0, NULL)) {
1957 return -1;
1958 }
1959 }
5b6dd868
BS
1960 }
1961 }
1962 return 0;
1963}
1964
1965/* called from signal handler: invalidate the code and unprotect the
1966 page. Return TRUE if the fault was successfully handled. */
1967int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1968{
1969 unsigned int prot;
1970 PageDesc *p;
1971 target_ulong host_start, host_end, addr;
1972
1973 /* Technically this isn't safe inside a signal handler. However we
1974 know this only ever happens in a synchronous SEGV handler, so in
1975 practice it seems to be ok. */
1976 mmap_lock();
1977
1978 p = page_find(address >> TARGET_PAGE_BITS);
1979 if (!p) {
1980 mmap_unlock();
1981 return 0;
1982 }
1983
1984 /* if the page was really writable, then we change its
1985 protection back to writable */
1986 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1987 host_start = address & qemu_host_page_mask;
1988 host_end = host_start + qemu_host_page_size;
1989
1990 prot = 0;
1991 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1992 p = page_find(addr >> TARGET_PAGE_BITS);
1993 p->flags |= PAGE_WRITE;
1994 prot |= p->flags;
1995
1996 /* and since the content will be modified, we must invalidate
1997 the corresponding translated code. */
d02532f0 1998 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1999#ifdef DEBUG_TB_CHECK
2000 tb_invalidate_check(addr);
2001#endif
2002 }
2003 mprotect((void *)g2h(host_start), qemu_host_page_size,
2004 prot & PAGE_BITS);
2005
2006 mmap_unlock();
2007 return 1;
2008 }
2009 mmap_unlock();
2010 return 0;
2011}
2012#endif /* CONFIG_USER_ONLY */