]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
tcg/aarch64: Use softmmu fast path for unaligned accesses
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
e1b89321 61#include "exec/tb-hash.h"
5b6dd868 62#include "translate-all.h"
510a647f 63#include "qemu/bitmap.h"
0aa09897 64#include "qemu/timer.h"
5b6dd868
BS
65
66//#define DEBUG_TB_INVALIDATE
67//#define DEBUG_FLUSH
68/* make various TB consistency checks */
69//#define DEBUG_TB_CHECK
70
71#if !defined(CONFIG_USER_ONLY)
72/* TB consistency checks only implemented for usermode emulation. */
73#undef DEBUG_TB_CHECK
74#endif
75
76#define SMC_BITMAP_USE_THRESHOLD 10
77
5b6dd868
BS
78typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
510a647f 84 unsigned long *code_bitmap;
5b6dd868
BS
85#if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87#endif
88} PageDesc;
89
90/* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92#if !defined(CONFIG_USER_ONLY)
93#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97#endif
98#else
99# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100#endif
101
03f49957
PB
102/* Size of the L2 (and L3, etc) page tables. */
103#define V_L2_BITS 10
104#define V_L2_SIZE (1 << V_L2_BITS)
105
5b6dd868
BS
106/* The bits remaining after N lower levels of page tables. */
107#define V_L1_BITS_REM \
03f49957 108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
109
110#if V_L1_BITS_REM < 4
03f49957 111#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
112#else
113#define V_L1_BITS V_L1_BITS_REM
114#endif
115
116#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
120uintptr_t qemu_real_host_page_size;
4e51361d 121uintptr_t qemu_real_host_page_mask;
5b6dd868
BS
122uintptr_t qemu_host_page_size;
123uintptr_t qemu_host_page_mask;
124
125/* This is a multi-level map on the virtual address space.
126 The bottom level has pointers to PageDesc. */
127static void *l1_map[V_L1_SIZE];
128
57fec1fe
FB
129/* code generation context */
130TCGContext tcg_ctx;
d19893da 131
5b6dd868
BS
132static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
133 tb_page_addr_t phys_page2);
a8a826a3 134static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 135
57fec1fe
FB
136void cpu_gen_init(void)
137{
138 tcg_context_init(&tcg_ctx);
57fec1fe
FB
139}
140
d19893da 141/* return non zero if the very first instruction is invalid so that
5fafdf24 142 the virtual CPU can trigger an exception.
d19893da
FB
143
144 '*gen_code_size_ptr' contains the size of the generated code (host
145 code).
146*/
9349b4f9 147int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 148{
57fec1fe 149 TCGContext *s = &tcg_ctx;
1813e175 150 tcg_insn_unit *gen_code_buf;
d19893da 151 int gen_code_size;
57fec1fe
FB
152#ifdef CONFIG_PROFILER
153 int64_t ti;
154#endif
155
156#ifdef CONFIG_PROFILER
b67d9a52
FB
157 s->tb_count1++; /* includes aborted translations because of
158 exceptions */
57fec1fe
FB
159 ti = profile_getclock();
160#endif
161 tcg_func_start(s);
d19893da 162
2cfc5f17
TS
163 gen_intermediate_code(env, tb);
164
6db8b538
AB
165 trace_translate_block(tb, tb->pc, tb->tc_ptr);
166
ec6338ba 167 /* generate machine code */
57fec1fe 168 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
169 tb->tb_next_offset[0] = 0xffff;
170 tb->tb_next_offset[1] = 0xffff;
57fec1fe 171 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 172#ifdef USE_DIRECT_JUMP
57fec1fe
FB
173 s->tb_jmp_offset = tb->tb_jmp_offset;
174 s->tb_next = NULL;
d19893da 175#else
57fec1fe
FB
176 s->tb_jmp_offset = NULL;
177 s->tb_next = tb->tb_next;
d19893da 178#endif
57fec1fe
FB
179
180#ifdef CONFIG_PROFILER
b67d9a52
FB
181 s->tb_count++;
182 s->interm_time += profile_getclock() - ti;
183 s->code_time -= profile_getclock();
57fec1fe 184#endif
54604f74 185 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 186 *gen_code_size_ptr = gen_code_size;
57fec1fe 187#ifdef CONFIG_PROFILER
b67d9a52
FB
188 s->code_time += profile_getclock();
189 s->code_in_len += tb->size;
190 s->code_out_len += gen_code_size;
57fec1fe
FB
191#endif
192
d19893da 193#ifdef DEBUG_DISAS
8fec2b8c 194 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
195 qemu_log("OUT: [size=%d]\n", gen_code_size);
196 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 197 qemu_log("\n");
31b1a7b4 198 qemu_log_flush();
d19893da
FB
199 }
200#endif
201 return 0;
202}
203
5fafdf24 204/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 205 */
74f10515 206static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 207 uintptr_t searched_pc)
d19893da 208{
74f10515 209 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
210 TCGContext *s = &tcg_ctx;
211 int j;
6375e09e 212 uintptr_t tc_ptr;
57fec1fe
FB
213#ifdef CONFIG_PROFILER
214 int64_t ti;
215#endif
216
217#ifdef CONFIG_PROFILER
218 ti = profile_getclock();
219#endif
220 tcg_func_start(s);
d19893da 221
2cfc5f17 222 gen_intermediate_code_pc(env, tb);
3b46e624 223
bd79255d 224 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 225 assert(use_icount);
2e70f6ef 226 /* Reset the cycle counter to the start of the block. */
28ecfd7a 227 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 228 /* Clear the IO flag. */
99df7dce 229 cpu->can_do_io = 0;
2e70f6ef
PB
230 }
231
d19893da 232 /* find opc index corresponding to search_pc */
6375e09e 233 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
234 if (searched_pc < tc_ptr)
235 return -1;
57fec1fe
FB
236
237 s->tb_next_offset = tb->tb_next_offset;
238#ifdef USE_DIRECT_JUMP
239 s->tb_jmp_offset = tb->tb_jmp_offset;
240 s->tb_next = NULL;
241#else
242 s->tb_jmp_offset = NULL;
243 s->tb_next = tb->tb_next;
244#endif
1813e175
RH
245 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
246 searched_pc - tc_ptr);
57fec1fe
FB
247 if (j < 0)
248 return -1;
d19893da 249 /* now find start of instruction before */
ab1103de 250 while (s->gen_opc_instr_start[j] == 0) {
d19893da 251 j--;
ab1103de 252 }
28ecfd7a 253 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 254
e87b7cb0 255 restore_state_to_opc(env, tb, j);
57fec1fe
FB
256
257#ifdef CONFIG_PROFILER
b67d9a52
FB
258 s->restore_time += profile_getclock() - ti;
259 s->restore_count++;
57fec1fe 260#endif
d19893da
FB
261 return 0;
262}
5b6dd868 263
3f38f309 264bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
265{
266 TranslationBlock *tb;
267
268 tb = tb_find_pc(retaddr);
269 if (tb) {
74f10515 270 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
271 if (tb->cflags & CF_NOCACHE) {
272 /* one-shot translation, invalidate it immediately */
273 cpu->current_tb = NULL;
274 tb_phys_invalidate(tb, -1);
275 tb_free(tb);
276 }
a8a826a3
BS
277 return true;
278 }
279 return false;
280}
281
5b6dd868 282#ifdef _WIN32
2d8ac5eb 283static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
284{
285 DWORD old_protect;
286 VirtualProtect(addr, size,
287 PAGE_EXECUTE_READWRITE, &old_protect);
288}
289#else
2d8ac5eb 290static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
291{
292 unsigned long start, end, page_size;
293
294 page_size = getpagesize();
295 start = (unsigned long)addr;
296 start &= ~(page_size - 1);
297
298 end = (unsigned long)addr + size;
299 end += page_size - 1;
300 end &= ~(page_size - 1);
301
302 mprotect((void *)start, end - start,
303 PROT_READ | PROT_WRITE | PROT_EXEC);
304}
305#endif
306
47c16ed5 307void page_size_init(void)
5b6dd868
BS
308{
309 /* NOTE: we can always suppose that qemu_host_page_size >=
310 TARGET_PAGE_SIZE */
5b6dd868 311 qemu_real_host_page_size = getpagesize();
4e51361d 312 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
5b6dd868
BS
313 if (qemu_host_page_size == 0) {
314 qemu_host_page_size = qemu_real_host_page_size;
315 }
316 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
317 qemu_host_page_size = TARGET_PAGE_SIZE;
318 }
319 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 320}
5b6dd868 321
47c16ed5
AK
322static void page_init(void)
323{
324 page_size_init();
5b6dd868
BS
325#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
326 {
327#ifdef HAVE_KINFO_GETVMMAP
328 struct kinfo_vmentry *freep;
329 int i, cnt;
330
331 freep = kinfo_getvmmap(getpid(), &cnt);
332 if (freep) {
333 mmap_lock();
334 for (i = 0; i < cnt; i++) {
335 unsigned long startaddr, endaddr;
336
337 startaddr = freep[i].kve_start;
338 endaddr = freep[i].kve_end;
339 if (h2g_valid(startaddr)) {
340 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
341
342 if (h2g_valid(endaddr)) {
343 endaddr = h2g(endaddr);
344 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
345 } else {
346#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
347 endaddr = ~0ul;
348 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
349#endif
350 }
351 }
352 }
353 free(freep);
354 mmap_unlock();
355 }
356#else
357 FILE *f;
358
359 last_brk = (unsigned long)sbrk(0);
360
361 f = fopen("/compat/linux/proc/self/maps", "r");
362 if (f) {
363 mmap_lock();
364
365 do {
366 unsigned long startaddr, endaddr;
367 int n;
368
369 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
370
371 if (n == 2 && h2g_valid(startaddr)) {
372 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
373
374 if (h2g_valid(endaddr)) {
375 endaddr = h2g(endaddr);
376 } else {
377 endaddr = ~0ul;
378 }
379 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
380 }
381 } while (!feof(f));
382
383 fclose(f);
384 mmap_unlock();
385 }
386#endif
387 }
388#endif
389}
390
391static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
392{
393 PageDesc *pd;
394 void **lp;
395 int i;
396
5b6dd868
BS
397 /* Level 1. Always allocated. */
398 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
399
400 /* Level 2..N-1. */
03f49957 401 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
402 void **p = *lp;
403
404 if (p == NULL) {
405 if (!alloc) {
406 return NULL;
407 }
e3a0abfd 408 p = g_new0(void *, V_L2_SIZE);
5b6dd868
BS
409 *lp = p;
410 }
411
03f49957 412 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
413 }
414
415 pd = *lp;
416 if (pd == NULL) {
417 if (!alloc) {
418 return NULL;
419 }
e3a0abfd 420 pd = g_new0(PageDesc, V_L2_SIZE);
5b6dd868
BS
421 *lp = pd;
422 }
423
03f49957 424 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
425}
426
427static inline PageDesc *page_find(tb_page_addr_t index)
428{
429 return page_find_alloc(index, 0);
430}
431
432#if !defined(CONFIG_USER_ONLY)
433#define mmap_lock() do { } while (0)
434#define mmap_unlock() do { } while (0)
435#endif
436
437#if defined(CONFIG_USER_ONLY)
438/* Currently it is not recommended to allocate big chunks of data in
439 user mode. It will change when a dedicated libc will be used. */
440/* ??? 64-bit hosts ought to have no problem mmaping data outside the
441 region in which the guest needs to run. Revisit this. */
442#define USE_STATIC_CODE_GEN_BUFFER
443#endif
444
445/* ??? Should configure for this, not list operating systems here. */
446#if (defined(__linux__) \
447 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
448 || defined(__DragonFly__) || defined(__OpenBSD__) \
449 || defined(__NetBSD__))
450# define USE_MMAP
451#endif
452
453/* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
456
457/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460#if defined(__x86_64__)
461# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462#elif defined(__sparc__)
463# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
464#elif defined(__aarch64__)
465# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
466#elif defined(__arm__)
467# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
468#elif defined(__s390x__)
469 /* We have a +- 4GB range on the branches; leave some slop. */
470# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
471#elif defined(__mips__)
472 /* We have a 256MB branch region, but leave room to make sure the
473 main executable is also within that region. */
474# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
475#else
476# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
477#endif
478
479#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
480
481#define DEFAULT_CODE_GEN_BUFFER_SIZE \
482 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
483 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
484
485static inline size_t size_code_gen_buffer(size_t tb_size)
486{
487 /* Size the buffer. */
488 if (tb_size == 0) {
489#ifdef USE_STATIC_CODE_GEN_BUFFER
490 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
491#else
492 /* ??? Needs adjustments. */
493 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
494 static buffer, we could size this on RESERVED_VA, on the text
495 segment size of the executable, or continue to use the default. */
496 tb_size = (unsigned long)(ram_size / 4);
497#endif
498 }
499 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
500 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
501 }
502 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
504 }
0b0d3320 505 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
506 return tb_size;
507}
508
483c76e1
RH
509#ifdef __mips__
510/* In order to use J and JAL within the code_gen_buffer, we require
511 that the buffer not cross a 256MB boundary. */
512static inline bool cross_256mb(void *addr, size_t size)
513{
514 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
515}
516
517/* We weren't able to allocate a buffer without crossing that boundary,
518 so make do with the larger portion of the buffer that doesn't cross.
519 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
520static inline void *split_cross_256mb(void *buf1, size_t size1)
521{
522 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
523 size_t size2 = buf1 + size1 - buf2;
524
525 size1 = buf2 - buf1;
526 if (size1 < size2) {
527 size1 = size2;
528 buf1 = buf2;
529 }
530
531 tcg_ctx.code_gen_buffer_size = size1;
532 return buf1;
533}
534#endif
535
5b6dd868
BS
536#ifdef USE_STATIC_CODE_GEN_BUFFER
537static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
538 __attribute__((aligned(CODE_GEN_ALIGN)));
539
540static inline void *alloc_code_gen_buffer(void)
541{
483c76e1
RH
542 void *buf = static_code_gen_buffer;
543#ifdef __mips__
544 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
545 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
546 }
547#endif
548 map_exec(buf, tcg_ctx.code_gen_buffer_size);
549 return buf;
5b6dd868
BS
550}
551#elif defined(USE_MMAP)
552static inline void *alloc_code_gen_buffer(void)
553{
554 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
555 uintptr_t start = 0;
556 void *buf;
557
558 /* Constrain the position of the buffer based on the host cpu.
559 Note that these addresses are chosen in concert with the
560 addresses assigned in the relevant linker script file. */
561# if defined(__PIE__) || defined(__PIC__)
562 /* Don't bother setting a preferred location if we're building
563 a position-independent executable. We're more likely to get
564 an address near the main executable if we let the kernel
565 choose the address. */
566# elif defined(__x86_64__) && defined(MAP_32BIT)
567 /* Force the memory down into low memory with the executable.
568 Leave the choice of exact location with the kernel. */
569 flags |= MAP_32BIT;
570 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
571 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
572 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
573 }
574# elif defined(__sparc__)
575 start = 0x40000000ul;
576# elif defined(__s390x__)
577 start = 0x90000000ul;
479eb121
RH
578# elif defined(__mips__)
579 /* ??? We ought to more explicitly manage layout for softmmu too. */
580# ifdef CONFIG_USER_ONLY
581 start = 0x68000000ul;
582# elif _MIPS_SIM == _ABI64
583 start = 0x128000000ul;
584# else
585 start = 0x08000000ul;
586# endif
5b6dd868
BS
587# endif
588
0b0d3320 589 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868 590 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
483c76e1
RH
591 if (buf == MAP_FAILED) {
592 return NULL;
593 }
594
595#ifdef __mips__
596 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
5d831be2 597 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1
RH
598 that 256mb crossing. This time don't specify an address. */
599 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
600 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
601 flags, -1, 0);
602 if (buf2 != MAP_FAILED) {
603 if (!cross_256mb(buf2, size1)) {
604 /* Success! Use the new buffer. */
605 munmap(buf, size1);
606 return buf2;
607 }
608 /* Failure. Work with what we had. */
609 munmap(buf2, size1);
610 }
611
612 /* Split the original buffer. Free the smaller half. */
613 buf2 = split_cross_256mb(buf, size1);
614 size2 = tcg_ctx.code_gen_buffer_size;
615 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
616 return buf2;
617 }
618#endif
619
620 return buf;
5b6dd868
BS
621}
622#else
623static inline void *alloc_code_gen_buffer(void)
624{
8b98ade3 625 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868 626
483c76e1
RH
627 if (buf == NULL) {
628 return NULL;
629 }
630
631#ifdef __mips__
632 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
633 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
634 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
635 /* Success! Use the new buffer. */
636 free(buf);
637 buf = buf2;
638 } else {
639 /* Failure. Work with what we had. Since this is malloc
640 and not mmap, we can't free the other half. */
641 free(buf2);
642 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
643 }
5b6dd868 644 }
483c76e1
RH
645#endif
646
647 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
648 return buf;
649}
650#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
651
652static inline void code_gen_alloc(size_t tb_size)
653{
0b0d3320
EV
654 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
655 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
656 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
657 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
658 exit(1);
659 }
660
0b0d3320
EV
661 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
662 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
663
664 /* Steal room for the prologue at the end of the buffer. This ensures
665 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
666 from TB's to the prologue are going to be in range. It also means
667 that we don't need to mark (additional) portions of the data segment
668 as executable. */
0b0d3320
EV
669 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
670 tcg_ctx.code_gen_buffer_size - 1024;
671 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 672
0b0d3320 673 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 674 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
675 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
676 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
677 tcg_ctx.tb_ctx.tbs =
678 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
679}
680
681/* Must be called before using the QEMU cpus. 'tb_size' is the size
682 (in bytes) allocated to the translation buffer. Zero means default
683 size. */
684void tcg_exec_init(unsigned long tb_size)
685{
686 cpu_gen_init();
687 code_gen_alloc(tb_size);
0b0d3320
EV
688 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
689 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
690 page_init();
691#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
692 /* There's no guest base to take into account, so go ahead and
693 initialize the prologue now. */
694 tcg_prologue_init(&tcg_ctx);
695#endif
696}
697
698bool tcg_enabled(void)
699{
0b0d3320 700 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
701}
702
703/* Allocate a new translation block. Flush the translation buffer if
704 too many translation blocks or too much generated code. */
705static TranslationBlock *tb_alloc(target_ulong pc)
706{
707 TranslationBlock *tb;
708
5e5f07e0 709 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
710 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
711 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
712 return NULL;
713 }
5e5f07e0 714 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
715 tb->pc = pc;
716 tb->cflags = 0;
717 return tb;
718}
719
720void tb_free(TranslationBlock *tb)
721{
722 /* In practice this is mostly used for single use temporary TB
723 Ignore the hard cases and just back up if this TB happens to
724 be the last one generated. */
5e5f07e0
EV
725 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
726 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 727 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 728 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
729 }
730}
731
732static inline void invalidate_page_bitmap(PageDesc *p)
733{
734 if (p->code_bitmap) {
735 g_free(p->code_bitmap);
736 p->code_bitmap = NULL;
737 }
738 p->code_write_count = 0;
739}
740
741/* Set to NULL all the 'first_tb' fields in all PageDescs. */
742static void page_flush_tb_1(int level, void **lp)
743{
744 int i;
745
746 if (*lp == NULL) {
747 return;
748 }
749 if (level == 0) {
750 PageDesc *pd = *lp;
751
03f49957 752 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
753 pd[i].first_tb = NULL;
754 invalidate_page_bitmap(pd + i);
755 }
756 } else {
757 void **pp = *lp;
758
03f49957 759 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
760 page_flush_tb_1(level - 1, pp + i);
761 }
762 }
763}
764
765static void page_flush_tb(void)
766{
767 int i;
768
769 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 770 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
771 }
772}
773
774/* flush all the translation blocks */
775/* XXX: tb_flush is currently not thread safe */
bbd77c18 776void tb_flush(CPUState *cpu)
5b6dd868 777{
5b6dd868
BS
778#if defined(DEBUG_FLUSH)
779 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 780 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 781 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 782 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 783 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 784#endif
0b0d3320
EV
785 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
786 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 787 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 788 }
5e5f07e0 789 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 790
bdc44640 791 CPU_FOREACH(cpu) {
8cd70437 792 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
793 }
794
eb2535f4 795 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
796 page_flush_tb();
797
0b0d3320 798 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
799 /* XXX: flush processor icache at this point if cache flush is
800 expensive */
5e5f07e0 801 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
802}
803
804#ifdef DEBUG_TB_CHECK
805
806static void tb_invalidate_check(target_ulong address)
807{
808 TranslationBlock *tb;
809 int i;
810
811 address &= TARGET_PAGE_MASK;
812 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 813 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
814 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
815 address >= tb->pc + tb->size)) {
816 printf("ERROR invalidate: address=" TARGET_FMT_lx
817 " PC=%08lx size=%04x\n",
818 address, (long)tb->pc, tb->size);
819 }
820 }
821 }
822}
823
824/* verify that all the pages have correct rights for code */
825static void tb_page_check(void)
826{
827 TranslationBlock *tb;
828 int i, flags1, flags2;
829
830 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
831 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
832 tb = tb->phys_hash_next) {
5b6dd868
BS
833 flags1 = page_get_flags(tb->pc);
834 flags2 = page_get_flags(tb->pc + tb->size - 1);
835 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
836 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
837 (long)tb->pc, tb->size, flags1, flags2);
838 }
839 }
840 }
841}
842
843#endif
844
0c884d16 845static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
846{
847 TranslationBlock *tb1;
848
849 for (;;) {
850 tb1 = *ptb;
851 if (tb1 == tb) {
0c884d16 852 *ptb = tb1->phys_hash_next;
5b6dd868
BS
853 break;
854 }
0c884d16 855 ptb = &tb1->phys_hash_next;
5b6dd868
BS
856 }
857}
858
859static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
860{
861 TranslationBlock *tb1;
862 unsigned int n1;
863
864 for (;;) {
865 tb1 = *ptb;
866 n1 = (uintptr_t)tb1 & 3;
867 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
868 if (tb1 == tb) {
869 *ptb = tb1->page_next[n1];
870 break;
871 }
872 ptb = &tb1->page_next[n1];
873 }
874}
875
876static inline void tb_jmp_remove(TranslationBlock *tb, int n)
877{
878 TranslationBlock *tb1, **ptb;
879 unsigned int n1;
880
881 ptb = &tb->jmp_next[n];
882 tb1 = *ptb;
883 if (tb1) {
884 /* find tb(n) in circular list */
885 for (;;) {
886 tb1 = *ptb;
887 n1 = (uintptr_t)tb1 & 3;
888 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
889 if (n1 == n && tb1 == tb) {
890 break;
891 }
892 if (n1 == 2) {
893 ptb = &tb1->jmp_first;
894 } else {
895 ptb = &tb1->jmp_next[n1];
896 }
897 }
898 /* now we can suppress tb(n) from the list */
899 *ptb = tb->jmp_next[n];
900
901 tb->jmp_next[n] = NULL;
902 }
903}
904
905/* reset the jump entry 'n' of a TB so that it is not chained to
906 another TB */
907static inline void tb_reset_jump(TranslationBlock *tb, int n)
908{
909 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
910}
911
0c884d16 912/* invalidate one TB */
5b6dd868
BS
913void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
914{
182735ef 915 CPUState *cpu;
5b6dd868
BS
916 PageDesc *p;
917 unsigned int h, n1;
918 tb_page_addr_t phys_pc;
919 TranslationBlock *tb1, *tb2;
920
921 /* remove the TB from the hash list */
922 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
923 h = tb_phys_hash_func(phys_pc);
5e5f07e0 924 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
925
926 /* remove the TB from the page list */
927 if (tb->page_addr[0] != page_addr) {
928 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
929 tb_page_remove(&p->first_tb, tb);
930 invalidate_page_bitmap(p);
931 }
932 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
933 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
934 tb_page_remove(&p->first_tb, tb);
935 invalidate_page_bitmap(p);
936 }
937
5e5f07e0 938 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
939
940 /* remove the TB from the hash list */
941 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 942 CPU_FOREACH(cpu) {
8cd70437
AF
943 if (cpu->tb_jmp_cache[h] == tb) {
944 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
945 }
946 }
947
948 /* suppress this TB from the two jump lists */
949 tb_jmp_remove(tb, 0);
950 tb_jmp_remove(tb, 1);
951
952 /* suppress any remaining jumps to this TB */
953 tb1 = tb->jmp_first;
954 for (;;) {
955 n1 = (uintptr_t)tb1 & 3;
956 if (n1 == 2) {
957 break;
958 }
959 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
960 tb2 = tb1->jmp_next[n1];
961 tb_reset_jump(tb1, n1);
962 tb1->jmp_next[n1] = NULL;
963 tb1 = tb2;
964 }
965 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
966
5e5f07e0 967 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
968}
969
5b6dd868
BS
970static void build_page_bitmap(PageDesc *p)
971{
972 int n, tb_start, tb_end;
973 TranslationBlock *tb;
974
510a647f 975 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
976
977 tb = p->first_tb;
978 while (tb != NULL) {
979 n = (uintptr_t)tb & 3;
980 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
981 /* NOTE: this is subtle as a TB may span two physical pages */
982 if (n == 0) {
983 /* NOTE: tb_end may be after the end of the page, but
984 it is not a problem */
985 tb_start = tb->pc & ~TARGET_PAGE_MASK;
986 tb_end = tb_start + tb->size;
987 if (tb_end > TARGET_PAGE_SIZE) {
988 tb_end = TARGET_PAGE_SIZE;
989 }
990 } else {
991 tb_start = 0;
992 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
993 }
510a647f 994 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
995 tb = tb->page_next[n];
996 }
997}
998
648f034c 999TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
1000 target_ulong pc, target_ulong cs_base,
1001 int flags, int cflags)
1002{
648f034c 1003 CPUArchState *env = cpu->env_ptr;
5b6dd868 1004 TranslationBlock *tb;
5b6dd868
BS
1005 tb_page_addr_t phys_pc, phys_page2;
1006 target_ulong virt_page2;
1007 int code_gen_size;
1008
1009 phys_pc = get_page_addr_code(env, pc);
0266359e
PB
1010 if (use_icount) {
1011 cflags |= CF_USE_ICOUNT;
1012 }
5b6dd868
BS
1013 tb = tb_alloc(pc);
1014 if (!tb) {
1015 /* flush must be done */
bbd77c18 1016 tb_flush(cpu);
5b6dd868
BS
1017 /* cannot fail at this point */
1018 tb = tb_alloc(pc);
1019 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1020 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1021 }
1813e175 1022 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
1023 tb->cs_base = cs_base;
1024 tb->flags = flags;
1025 tb->cflags = cflags;
1026 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
1027 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1028 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
1029
1030 /* check next page if needed */
1031 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1032 phys_page2 = -1;
1033 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1034 phys_page2 = get_page_addr_code(env, virt_page2);
1035 }
1036 tb_link_page(tb, phys_pc, phys_page2);
1037 return tb;
1038}
1039
1040/*
1041 * Invalidate all TBs which intersect with the target physical address range
1042 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1043 * 'is_cpu_write_access' should be true if called from a real cpu write
1044 * access: the virtual CPU will exit the current TB if code is modified inside
1045 * this TB.
1046 */
35865339 1047void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1048{
1049 while (start < end) {
35865339 1050 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1051 start &= TARGET_PAGE_MASK;
1052 start += TARGET_PAGE_SIZE;
1053 }
1054}
1055
1056/*
1057 * Invalidate all TBs which intersect with the target physical address range
1058 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1059 * 'is_cpu_write_access' should be true if called from a real cpu write
1060 * access: the virtual CPU will exit the current TB if code is modified inside
1061 * this TB.
1062 */
1063void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1064 int is_cpu_write_access)
1065{
1066 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1067 CPUState *cpu = current_cpu;
baea4fae 1068#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1069 CPUArchState *env = NULL;
1070#endif
5b6dd868
BS
1071 tb_page_addr_t tb_start, tb_end;
1072 PageDesc *p;
1073 int n;
1074#ifdef TARGET_HAS_PRECISE_SMC
1075 int current_tb_not_found = is_cpu_write_access;
1076 TranslationBlock *current_tb = NULL;
1077 int current_tb_modified = 0;
1078 target_ulong current_pc = 0;
1079 target_ulong current_cs_base = 0;
1080 int current_flags = 0;
1081#endif /* TARGET_HAS_PRECISE_SMC */
1082
1083 p = page_find(start >> TARGET_PAGE_BITS);
1084 if (!p) {
1085 return;
1086 }
baea4fae 1087#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1088 if (cpu != NULL) {
1089 env = cpu->env_ptr;
d77953b9 1090 }
4917cf44 1091#endif
5b6dd868
BS
1092
1093 /* we remove all the TBs in the range [start, end[ */
1094 /* XXX: see if in some cases it could be faster to invalidate all
1095 the code */
1096 tb = p->first_tb;
1097 while (tb != NULL) {
1098 n = (uintptr_t)tb & 3;
1099 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1100 tb_next = tb->page_next[n];
1101 /* NOTE: this is subtle as a TB may span two physical pages */
1102 if (n == 0) {
1103 /* NOTE: tb_end may be after the end of the page, but
1104 it is not a problem */
1105 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1106 tb_end = tb_start + tb->size;
1107 } else {
1108 tb_start = tb->page_addr[1];
1109 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1110 }
1111 if (!(tb_end <= start || tb_start >= end)) {
1112#ifdef TARGET_HAS_PRECISE_SMC
1113 if (current_tb_not_found) {
1114 current_tb_not_found = 0;
1115 current_tb = NULL;
93afeade 1116 if (cpu->mem_io_pc) {
5b6dd868 1117 /* now we have a real cpu fault */
93afeade 1118 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1119 }
1120 }
1121 if (current_tb == tb &&
1122 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1123 /* If we are modifying the current TB, we must stop
1124 its execution. We could be more precise by checking
1125 that the modification is after the current PC, but it
1126 would require a specialized function to partially
1127 restore the CPU state */
1128
1129 current_tb_modified = 1;
74f10515 1130 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1131 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1132 &current_flags);
1133 }
1134#endif /* TARGET_HAS_PRECISE_SMC */
1135 /* we need to do that to handle the case where a signal
1136 occurs while doing tb_phys_invalidate() */
1137 saved_tb = NULL;
d77953b9
AF
1138 if (cpu != NULL) {
1139 saved_tb = cpu->current_tb;
1140 cpu->current_tb = NULL;
5b6dd868
BS
1141 }
1142 tb_phys_invalidate(tb, -1);
d77953b9
AF
1143 if (cpu != NULL) {
1144 cpu->current_tb = saved_tb;
c3affe56
AF
1145 if (cpu->interrupt_request && cpu->current_tb) {
1146 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1147 }
1148 }
1149 }
1150 tb = tb_next;
1151 }
1152#if !defined(CONFIG_USER_ONLY)
1153 /* if no code remaining, no need to continue to use slow writes */
1154 if (!p->first_tb) {
1155 invalidate_page_bitmap(p);
fc377bcf 1156 tlb_unprotect_code(start);
5b6dd868
BS
1157 }
1158#endif
1159#ifdef TARGET_HAS_PRECISE_SMC
1160 if (current_tb_modified) {
1161 /* we generate a block containing just the instruction
1162 modifying the memory. It will ensure that it cannot modify
1163 itself */
d77953b9 1164 cpu->current_tb = NULL;
648f034c 1165 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1166 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1167 }
1168#endif
1169}
1170
1171/* len must be <= 8 and start must be a multiple of len */
1172void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1173{
1174 PageDesc *p;
5b6dd868
BS
1175
1176#if 0
1177 if (1) {
1178 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1179 cpu_single_env->mem_io_vaddr, len,
1180 cpu_single_env->eip,
1181 cpu_single_env->eip +
1182 (intptr_t)cpu_single_env->segs[R_CS].base);
1183 }
1184#endif
1185 p = page_find(start >> TARGET_PAGE_BITS);
1186 if (!p) {
1187 return;
1188 }
fc377bcf
PB
1189 if (!p->code_bitmap &&
1190 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1191 /* build code bitmap */
1192 build_page_bitmap(p);
1193 }
5b6dd868 1194 if (p->code_bitmap) {
510a647f
EC
1195 unsigned int nr;
1196 unsigned long b;
1197
1198 nr = start & ~TARGET_PAGE_MASK;
1199 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1200 if (b & ((1 << len) - 1)) {
1201 goto do_invalidate;
1202 }
1203 } else {
1204 do_invalidate:
1205 tb_invalidate_phys_page_range(start, start + len, 1);
1206 }
1207}
1208
1209#if !defined(CONFIG_SOFTMMU)
1210static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1211 uintptr_t pc, void *puc,
1212 bool locked)
5b6dd868
BS
1213{
1214 TranslationBlock *tb;
1215 PageDesc *p;
1216 int n;
1217#ifdef TARGET_HAS_PRECISE_SMC
1218 TranslationBlock *current_tb = NULL;
4917cf44
AF
1219 CPUState *cpu = current_cpu;
1220 CPUArchState *env = NULL;
5b6dd868
BS
1221 int current_tb_modified = 0;
1222 target_ulong current_pc = 0;
1223 target_ulong current_cs_base = 0;
1224 int current_flags = 0;
1225#endif
1226
1227 addr &= TARGET_PAGE_MASK;
1228 p = page_find(addr >> TARGET_PAGE_BITS);
1229 if (!p) {
1230 return;
1231 }
1232 tb = p->first_tb;
1233#ifdef TARGET_HAS_PRECISE_SMC
1234 if (tb && pc != 0) {
1235 current_tb = tb_find_pc(pc);
1236 }
4917cf44
AF
1237 if (cpu != NULL) {
1238 env = cpu->env_ptr;
d77953b9 1239 }
5b6dd868
BS
1240#endif
1241 while (tb != NULL) {
1242 n = (uintptr_t)tb & 3;
1243 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1244#ifdef TARGET_HAS_PRECISE_SMC
1245 if (current_tb == tb &&
1246 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1247 /* If we are modifying the current TB, we must stop
1248 its execution. We could be more precise by checking
1249 that the modification is after the current PC, but it
1250 would require a specialized function to partially
1251 restore the CPU state */
1252
1253 current_tb_modified = 1;
74f10515 1254 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1255 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1256 &current_flags);
1257 }
1258#endif /* TARGET_HAS_PRECISE_SMC */
1259 tb_phys_invalidate(tb, addr);
1260 tb = tb->page_next[n];
1261 }
1262 p->first_tb = NULL;
1263#ifdef TARGET_HAS_PRECISE_SMC
1264 if (current_tb_modified) {
1265 /* we generate a block containing just the instruction
1266 modifying the memory. It will ensure that it cannot modify
1267 itself */
d77953b9 1268 cpu->current_tb = NULL;
648f034c 1269 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1270 if (locked) {
1271 mmap_unlock();
1272 }
0ea8cb88 1273 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1274 }
1275#endif
1276}
1277#endif
1278
1279/* add the tb in the target page and protect it if necessary */
1280static inline void tb_alloc_page(TranslationBlock *tb,
1281 unsigned int n, tb_page_addr_t page_addr)
1282{
1283 PageDesc *p;
1284#ifndef CONFIG_USER_ONLY
1285 bool page_already_protected;
1286#endif
1287
1288 tb->page_addr[n] = page_addr;
1289 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1290 tb->page_next[n] = p->first_tb;
1291#ifndef CONFIG_USER_ONLY
1292 page_already_protected = p->first_tb != NULL;
1293#endif
1294 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1295 invalidate_page_bitmap(p);
1296
5b6dd868
BS
1297#if defined(CONFIG_USER_ONLY)
1298 if (p->flags & PAGE_WRITE) {
1299 target_ulong addr;
1300 PageDesc *p2;
1301 int prot;
1302
1303 /* force the host page as non writable (writes will have a
1304 page fault + mprotect overhead) */
1305 page_addr &= qemu_host_page_mask;
1306 prot = 0;
1307 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1308 addr += TARGET_PAGE_SIZE) {
1309
1310 p2 = page_find(addr >> TARGET_PAGE_BITS);
1311 if (!p2) {
1312 continue;
1313 }
1314 prot |= p2->flags;
1315 p2->flags &= ~PAGE_WRITE;
1316 }
1317 mprotect(g2h(page_addr), qemu_host_page_size,
1318 (prot & PAGE_BITS) & ~PAGE_WRITE);
1319#ifdef DEBUG_TB_INVALIDATE
1320 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1321 page_addr);
1322#endif
1323 }
1324#else
1325 /* if some code is already present, then the pages are already
1326 protected. So we handle the case where only the first TB is
1327 allocated in a physical page */
1328 if (!page_already_protected) {
1329 tlb_protect_code(page_addr);
1330 }
1331#endif
5b6dd868
BS
1332}
1333
1334/* add a new TB and link it to the physical page tables. phys_page2 is
1335 (-1) to indicate that only one page contains the TB. */
1336static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1337 tb_page_addr_t phys_page2)
1338{
1339 unsigned int h;
1340 TranslationBlock **ptb;
1341
1342 /* Grab the mmap lock to stop another thread invalidating this TB
1343 before we are done. */
1344 mmap_lock();
1345 /* add in the physical hash table */
1346 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1347 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1348 tb->phys_hash_next = *ptb;
1349 *ptb = tb;
1350
1351 /* add in the page list */
1352 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1353 if (phys_page2 != -1) {
1354 tb_alloc_page(tb, 1, phys_page2);
1355 } else {
1356 tb->page_addr[1] = -1;
1357 }
1358
1359 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1360 tb->jmp_next[0] = NULL;
1361 tb->jmp_next[1] = NULL;
1362
1363 /* init original jump addresses */
1364 if (tb->tb_next_offset[0] != 0xffff) {
1365 tb_reset_jump(tb, 0);
1366 }
1367 if (tb->tb_next_offset[1] != 0xffff) {
1368 tb_reset_jump(tb, 1);
1369 }
1370
1371#ifdef DEBUG_TB_CHECK
1372 tb_page_check();
1373#endif
1374 mmap_unlock();
1375}
1376
5b6dd868
BS
1377/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1378 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1379static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1380{
1381 int m_min, m_max, m;
1382 uintptr_t v;
1383 TranslationBlock *tb;
1384
5e5f07e0 1385 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1386 return NULL;
1387 }
0b0d3320
EV
1388 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1389 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1390 return NULL;
1391 }
1392 /* binary search (cf Knuth) */
1393 m_min = 0;
5e5f07e0 1394 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1395 while (m_min <= m_max) {
1396 m = (m_min + m_max) >> 1;
5e5f07e0 1397 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1398 v = (uintptr_t)tb->tc_ptr;
1399 if (v == tc_ptr) {
1400 return tb;
1401 } else if (tc_ptr < v) {
1402 m_max = m - 1;
1403 } else {
1404 m_min = m + 1;
1405 }
1406 }
5e5f07e0 1407 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1408}
1409
ec53b45b 1410#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1411void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1412{
1413 ram_addr_t ram_addr;
5c8a00ce 1414 MemoryRegion *mr;
149f54b5 1415 hwaddr l = 1;
5b6dd868 1416
41063e1e 1417 rcu_read_lock();
29d8ec7b 1418 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1419 if (!(memory_region_is_ram(mr)
1420 || memory_region_is_romd(mr))) {
41063e1e 1421 rcu_read_unlock();
5b6dd868
BS
1422 return;
1423 }
5c8a00ce 1424 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1425 + addr;
5b6dd868 1426 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1427 rcu_read_unlock();
5b6dd868 1428}
ec53b45b 1429#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1430
239c51a5 1431void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1432{
1433 TranslationBlock *tb;
1434
93afeade 1435 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1436 if (tb) {
1437 /* We can use retranslation to find the PC. */
1438 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1439 tb_phys_invalidate(tb, -1);
1440 } else {
1441 /* The exception probably happened in a helper. The CPU state should
1442 have been saved before calling it. Fetch the PC from there. */
1443 CPUArchState *env = cpu->env_ptr;
1444 target_ulong pc, cs_base;
1445 tb_page_addr_t addr;
1446 int flags;
1447
1448 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1449 addr = get_page_addr_code(env, pc);
1450 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1451 }
5b6dd868
BS
1452}
1453
1454#ifndef CONFIG_USER_ONLY
1455/* mask must never be zero, except for A20 change call */
c3affe56 1456static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1457{
5b6dd868
BS
1458 int old_mask;
1459
259186a7
AF
1460 old_mask = cpu->interrupt_request;
1461 cpu->interrupt_request |= mask;
5b6dd868
BS
1462
1463 /*
1464 * If called from iothread context, wake the target cpu in
1465 * case its halted.
1466 */
1467 if (!qemu_cpu_is_self(cpu)) {
1468 qemu_cpu_kick(cpu);
1469 return;
1470 }
1471
1472 if (use_icount) {
28ecfd7a 1473 cpu->icount_decr.u16.high = 0xffff;
414b15c9 1474 if (!cpu->can_do_io
5b6dd868 1475 && (mask & ~old_mask) != 0) {
a47dddd7 1476 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1477 }
1478 } else {
378df4b2 1479 cpu->tcg_exit_req = 1;
5b6dd868
BS
1480 }
1481}
1482
1483CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1484
1485/* in deterministic execution mode, instructions doing device I/Os
1486 must be at the end of the TB */
90b40a69 1487void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1488{
a47dddd7 1489#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1490 CPUArchState *env = cpu->env_ptr;
a47dddd7 1491#endif
5b6dd868
BS
1492 TranslationBlock *tb;
1493 uint32_t n, cflags;
1494 target_ulong pc, cs_base;
1495 uint64_t flags;
1496
1497 tb = tb_find_pc(retaddr);
1498 if (!tb) {
a47dddd7 1499 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1500 (void *)retaddr);
1501 }
28ecfd7a 1502 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1503 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1504 /* Calculate how many instructions had been executed before the fault
1505 occurred. */
28ecfd7a 1506 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1507 /* Generate a new TB ending on the I/O insn. */
1508 n++;
1509 /* On MIPS and SH, delay slot instructions can only be restarted if
1510 they were already the first instruction in the TB. If this is not
1511 the first instruction in a TB then re-execute the preceding
1512 branch. */
1513#if defined(TARGET_MIPS)
1514 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1515 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1516 cpu->icount_decr.u16.low++;
5b6dd868
BS
1517 env->hflags &= ~MIPS_HFLAG_BMASK;
1518 }
1519#elif defined(TARGET_SH4)
1520 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1521 && n > 1) {
1522 env->pc -= 2;
28ecfd7a 1523 cpu->icount_decr.u16.low++;
5b6dd868
BS
1524 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1525 }
1526#endif
1527 /* This should never happen. */
1528 if (n > CF_COUNT_MASK) {
a47dddd7 1529 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1530 }
1531
1532 cflags = n | CF_LAST_IO;
1533 pc = tb->pc;
1534 cs_base = tb->cs_base;
1535 flags = tb->flags;
1536 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1537 if (tb->cflags & CF_NOCACHE) {
1538 if (tb->orig_tb) {
1539 /* Invalidate original TB if this TB was generated in
1540 * cpu_exec_nocache() */
1541 tb_phys_invalidate(tb->orig_tb, -1);
1542 }
1543 tb_free(tb);
1544 }
5b6dd868
BS
1545 /* FIXME: In theory this could raise an exception. In practice
1546 we have already translated the block once so it's probably ok. */
648f034c 1547 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1548 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1549 the first in the TB) then we end up generating a whole new TB and
1550 repeating the fault, which is horribly inefficient.
1551 Better would be to execute just this insn uncached, or generate a
1552 second new TB. */
0ea8cb88 1553 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1554}
1555
611d4f99 1556void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1557{
1558 unsigned int i;
1559
1560 /* Discard jump cache entries for any tb which might potentially
1561 overlap the flushed page. */
1562 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1563 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1564 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1565
1566 i = tb_jmp_cache_hash_page(addr);
8cd70437 1567 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1568 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1569}
1570
1571void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1572{
1573 int i, target_code_size, max_target_code_size;
1574 int direct_jmp_count, direct_jmp2_count, cross_page;
1575 TranslationBlock *tb;
1576
1577 target_code_size = 0;
1578 max_target_code_size = 0;
1579 cross_page = 0;
1580 direct_jmp_count = 0;
1581 direct_jmp2_count = 0;
5e5f07e0
EV
1582 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1583 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1584 target_code_size += tb->size;
1585 if (tb->size > max_target_code_size) {
1586 max_target_code_size = tb->size;
1587 }
1588 if (tb->page_addr[1] != -1) {
1589 cross_page++;
1590 }
1591 if (tb->tb_next_offset[0] != 0xffff) {
1592 direct_jmp_count++;
1593 if (tb->tb_next_offset[1] != 0xffff) {
1594 direct_jmp2_count++;
1595 }
1596 }
1597 }
1598 /* XXX: avoid using doubles ? */
1599 cpu_fprintf(f, "Translation buffer state:\n");
1600 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1601 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1602 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1603 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1604 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1605 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1606 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1607 tcg_ctx.tb_ctx.nb_tbs : 0,
1608 max_target_code_size);
5b6dd868 1609 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1610 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1611 tcg_ctx.code_gen_buffer) /
1612 tcg_ctx.tb_ctx.nb_tbs : 0,
1613 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1614 tcg_ctx.code_gen_buffer) /
1615 target_code_size : 0);
1616 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1617 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1618 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1619 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1620 direct_jmp_count,
5e5f07e0
EV
1621 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1622 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1623 direct_jmp2_count,
5e5f07e0
EV
1624 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1625 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1626 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1627 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1628 cpu_fprintf(f, "TB invalidate count %d\n",
1629 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1630 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1631 tcg_dump_info(f, cpu_fprintf);
1632}
1633
246ae24d
MF
1634void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1635{
1636 tcg_dump_op_count(f, cpu_fprintf);
1637}
1638
5b6dd868
BS
1639#else /* CONFIG_USER_ONLY */
1640
c3affe56 1641void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1642{
259186a7 1643 cpu->interrupt_request |= mask;
378df4b2 1644 cpu->tcg_exit_req = 1;
5b6dd868
BS
1645}
1646
1647/*
1648 * Walks guest process memory "regions" one by one
1649 * and calls callback function 'fn' for each region.
1650 */
1651struct walk_memory_regions_data {
1652 walk_memory_regions_fn fn;
1653 void *priv;
1a1c4db9 1654 target_ulong start;
5b6dd868
BS
1655 int prot;
1656};
1657
1658static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1659 target_ulong end, int new_prot)
5b6dd868 1660{
1a1c4db9 1661 if (data->start != -1u) {
5b6dd868
BS
1662 int rc = data->fn(data->priv, data->start, end, data->prot);
1663 if (rc != 0) {
1664 return rc;
1665 }
1666 }
1667
1a1c4db9 1668 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1669 data->prot = new_prot;
1670
1671 return 0;
1672}
1673
1674static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1675 target_ulong base, int level, void **lp)
5b6dd868 1676{
1a1c4db9 1677 target_ulong pa;
5b6dd868
BS
1678 int i, rc;
1679
1680 if (*lp == NULL) {
1681 return walk_memory_regions_end(data, base, 0);
1682 }
1683
1684 if (level == 0) {
1685 PageDesc *pd = *lp;
1686
03f49957 1687 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1688 int prot = pd[i].flags;
1689
1690 pa = base | (i << TARGET_PAGE_BITS);
1691 if (prot != data->prot) {
1692 rc = walk_memory_regions_end(data, pa, prot);
1693 if (rc != 0) {
1694 return rc;
1695 }
1696 }
1697 }
1698 } else {
1699 void **pp = *lp;
1700
03f49957 1701 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1702 pa = base | ((target_ulong)i <<
03f49957 1703 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1704 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1705 if (rc != 0) {
1706 return rc;
1707 }
1708 }
1709 }
1710
1711 return 0;
1712}
1713
1714int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1715{
1716 struct walk_memory_regions_data data;
1717 uintptr_t i;
1718
1719 data.fn = fn;
1720 data.priv = priv;
1a1c4db9 1721 data.start = -1u;
5b6dd868
BS
1722 data.prot = 0;
1723
1724 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1725 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1726 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1727 if (rc != 0) {
1728 return rc;
1729 }
1730 }
1731
1732 return walk_memory_regions_end(&data, 0, 0);
1733}
1734
1a1c4db9
MI
1735static int dump_region(void *priv, target_ulong start,
1736 target_ulong end, unsigned long prot)
5b6dd868
BS
1737{
1738 FILE *f = (FILE *)priv;
1739
1a1c4db9
MI
1740 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1741 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1742 start, end, end - start,
1743 ((prot & PAGE_READ) ? 'r' : '-'),
1744 ((prot & PAGE_WRITE) ? 'w' : '-'),
1745 ((prot & PAGE_EXEC) ? 'x' : '-'));
1746
1747 return 0;
1748}
1749
1750/* dump memory mappings */
1751void page_dump(FILE *f)
1752{
1a1c4db9 1753 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1754 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1755 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1756 walk_memory_regions(f, dump_region);
1757}
1758
1759int page_get_flags(target_ulong address)
1760{
1761 PageDesc *p;
1762
1763 p = page_find(address >> TARGET_PAGE_BITS);
1764 if (!p) {
1765 return 0;
1766 }
1767 return p->flags;
1768}
1769
1770/* Modify the flags of a page and invalidate the code if necessary.
1771 The flag PAGE_WRITE_ORG is positioned automatically depending
1772 on PAGE_WRITE. The mmap_lock should already be held. */
1773void page_set_flags(target_ulong start, target_ulong end, int flags)
1774{
1775 target_ulong addr, len;
1776
1777 /* This function should never be called with addresses outside the
1778 guest address space. If this assert fires, it probably indicates
1779 a missing call to h2g_valid. */
1780#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1781 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1782#endif
1783 assert(start < end);
1784
1785 start = start & TARGET_PAGE_MASK;
1786 end = TARGET_PAGE_ALIGN(end);
1787
1788 if (flags & PAGE_WRITE) {
1789 flags |= PAGE_WRITE_ORG;
1790 }
1791
1792 for (addr = start, len = end - start;
1793 len != 0;
1794 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1795 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1796
1797 /* If the write protection bit is set, then we invalidate
1798 the code inside. */
1799 if (!(p->flags & PAGE_WRITE) &&
1800 (flags & PAGE_WRITE) &&
1801 p->first_tb) {
d02532f0 1802 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1803 }
1804 p->flags = flags;
1805 }
1806}
1807
1808int page_check_range(target_ulong start, target_ulong len, int flags)
1809{
1810 PageDesc *p;
1811 target_ulong end;
1812 target_ulong addr;
1813
1814 /* This function should never be called with addresses outside the
1815 guest address space. If this assert fires, it probably indicates
1816 a missing call to h2g_valid. */
1817#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1818 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1819#endif
1820
1821 if (len == 0) {
1822 return 0;
1823 }
1824 if (start + len - 1 < start) {
1825 /* We've wrapped around. */
1826 return -1;
1827 }
1828
1829 /* must do before we loose bits in the next step */
1830 end = TARGET_PAGE_ALIGN(start + len);
1831 start = start & TARGET_PAGE_MASK;
1832
1833 for (addr = start, len = end - start;
1834 len != 0;
1835 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1836 p = page_find(addr >> TARGET_PAGE_BITS);
1837 if (!p) {
1838 return -1;
1839 }
1840 if (!(p->flags & PAGE_VALID)) {
1841 return -1;
1842 }
1843
1844 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1845 return -1;
1846 }
1847 if (flags & PAGE_WRITE) {
1848 if (!(p->flags & PAGE_WRITE_ORG)) {
1849 return -1;
1850 }
1851 /* unprotect the page if it was put read-only because it
1852 contains translated code */
1853 if (!(p->flags & PAGE_WRITE)) {
1854 if (!page_unprotect(addr, 0, NULL)) {
1855 return -1;
1856 }
1857 }
5b6dd868
BS
1858 }
1859 }
1860 return 0;
1861}
1862
1863/* called from signal handler: invalidate the code and unprotect the
1864 page. Return TRUE if the fault was successfully handled. */
1865int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1866{
1867 unsigned int prot;
1868 PageDesc *p;
1869 target_ulong host_start, host_end, addr;
1870
1871 /* Technically this isn't safe inside a signal handler. However we
1872 know this only ever happens in a synchronous SEGV handler, so in
1873 practice it seems to be ok. */
1874 mmap_lock();
1875
1876 p = page_find(address >> TARGET_PAGE_BITS);
1877 if (!p) {
1878 mmap_unlock();
1879 return 0;
1880 }
1881
1882 /* if the page was really writable, then we change its
1883 protection back to writable */
1884 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1885 host_start = address & qemu_host_page_mask;
1886 host_end = host_start + qemu_host_page_size;
1887
1888 prot = 0;
1889 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1890 p = page_find(addr >> TARGET_PAGE_BITS);
1891 p->flags |= PAGE_WRITE;
1892 prot |= p->flags;
1893
1894 /* and since the content will be modified, we must invalidate
1895 the corresponding translated code. */
d02532f0 1896 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1897#ifdef DEBUG_TB_CHECK
1898 tb_invalidate_check(addr);
1899#endif
1900 }
1901 mprotect((void *)g2h(host_start), qemu_host_page_size,
1902 prot & PAGE_BITS);
1903
1904 mmap_unlock();
1905 return 1;
1906 }
1907 mmap_unlock();
1908 return 0;
1909}
1910#endif /* CONFIG_USER_ONLY */