]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
exec: Change memory_region_section_get_iotlb() argument to CPUState
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
76cad711 36#include "disas/disas.h"
57fec1fe 37#include "tcg.h"
5b6dd868
BS
38#if defined(CONFIG_USER_ONLY)
39#include "qemu.h"
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
0bc3cd62
PB
55#else
56#include "exec/address-spaces.h"
5b6dd868
BS
57#endif
58
022c62cb 59#include "exec/cputlb.h"
5b6dd868 60#include "translate-all.h"
0aa09897 61#include "qemu/timer.h"
5b6dd868
BS
62
63//#define DEBUG_TB_INVALIDATE
64//#define DEBUG_FLUSH
65/* make various TB consistency checks */
66//#define DEBUG_TB_CHECK
67
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
73#define SMC_BITMAP_USE_THRESHOLD 10
74
5b6dd868
BS
75typedef struct PageDesc {
76 /* list of TBs intersecting this ram page */
77 TranslationBlock *first_tb;
78 /* in order to optimize self modifying code, we count the number
79 of lookups we do to a given page to use a bitmap */
80 unsigned int code_write_count;
81 uint8_t *code_bitmap;
82#if defined(CONFIG_USER_ONLY)
83 unsigned long flags;
84#endif
85} PageDesc;
86
87/* In system mode we want L1_MAP to be based on ram offsets,
88 while in user mode we want it to be based on virtual addresses. */
89#if !defined(CONFIG_USER_ONLY)
90#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
91# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
94#endif
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
97#endif
98
03f49957
PB
99/* Size of the L2 (and L3, etc) page tables. */
100#define V_L2_BITS 10
101#define V_L2_SIZE (1 << V_L2_BITS)
102
5b6dd868
BS
103/* The bits remaining after N lower levels of page tables. */
104#define V_L1_BITS_REM \
03f49957 105 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
106
107#if V_L1_BITS_REM < 4
03f49957 108#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
109#else
110#define V_L1_BITS V_L1_BITS_REM
111#endif
112
113#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
114
115#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
116
117uintptr_t qemu_real_host_page_size;
118uintptr_t qemu_host_page_size;
119uintptr_t qemu_host_page_mask;
120
121/* This is a multi-level map on the virtual address space.
122 The bottom level has pointers to PageDesc. */
123static void *l1_map[V_L1_SIZE];
124
57fec1fe
FB
125/* code generation context */
126TCGContext tcg_ctx;
d19893da 127
5b6dd868
BS
128static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
129 tb_page_addr_t phys_page2);
a8a826a3 130static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 131
57fec1fe
FB
132void cpu_gen_init(void)
133{
134 tcg_context_init(&tcg_ctx);
57fec1fe
FB
135}
136
d19893da 137/* return non zero if the very first instruction is invalid so that
5fafdf24 138 the virtual CPU can trigger an exception.
d19893da
FB
139
140 '*gen_code_size_ptr' contains the size of the generated code (host
141 code).
142*/
9349b4f9 143int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 144{
57fec1fe 145 TCGContext *s = &tcg_ctx;
d19893da
FB
146 uint8_t *gen_code_buf;
147 int gen_code_size;
57fec1fe
FB
148#ifdef CONFIG_PROFILER
149 int64_t ti;
150#endif
151
152#ifdef CONFIG_PROFILER
b67d9a52
FB
153 s->tb_count1++; /* includes aborted translations because of
154 exceptions */
57fec1fe
FB
155 ti = profile_getclock();
156#endif
157 tcg_func_start(s);
d19893da 158
2cfc5f17
TS
159 gen_intermediate_code(env, tb);
160
ec6338ba 161 /* generate machine code */
57fec1fe 162 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
163 tb->tb_next_offset[0] = 0xffff;
164 tb->tb_next_offset[1] = 0xffff;
57fec1fe 165 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 166#ifdef USE_DIRECT_JUMP
57fec1fe
FB
167 s->tb_jmp_offset = tb->tb_jmp_offset;
168 s->tb_next = NULL;
d19893da 169#else
57fec1fe
FB
170 s->tb_jmp_offset = NULL;
171 s->tb_next = tb->tb_next;
d19893da 172#endif
57fec1fe
FB
173
174#ifdef CONFIG_PROFILER
b67d9a52
FB
175 s->tb_count++;
176 s->interm_time += profile_getclock() - ti;
177 s->code_time -= profile_getclock();
57fec1fe 178#endif
54604f74 179 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 180 *gen_code_size_ptr = gen_code_size;
57fec1fe 181#ifdef CONFIG_PROFILER
b67d9a52
FB
182 s->code_time += profile_getclock();
183 s->code_in_len += tb->size;
184 s->code_out_len += gen_code_size;
57fec1fe
FB
185#endif
186
d19893da 187#ifdef DEBUG_DISAS
8fec2b8c 188 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
93fcfe39
AL
189 qemu_log("OUT: [size=%d]\n", *gen_code_size_ptr);
190 log_disas(tb->tc_ptr, *gen_code_size_ptr);
191 qemu_log("\n");
31b1a7b4 192 qemu_log_flush();
d19893da
FB
193 }
194#endif
195 return 0;
196}
197
5fafdf24 198/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 199 */
74f10515 200static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 201 uintptr_t searched_pc)
d19893da 202{
74f10515 203 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
204 TCGContext *s = &tcg_ctx;
205 int j;
6375e09e 206 uintptr_t tc_ptr;
57fec1fe
FB
207#ifdef CONFIG_PROFILER
208 int64_t ti;
209#endif
210
211#ifdef CONFIG_PROFILER
212 ti = profile_getclock();
213#endif
214 tcg_func_start(s);
d19893da 215
2cfc5f17 216 gen_intermediate_code_pc(env, tb);
3b46e624 217
2e70f6ef
PB
218 if (use_icount) {
219 /* Reset the cycle counter to the start of the block. */
28ecfd7a 220 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 221 /* Clear the IO flag. */
99df7dce 222 cpu->can_do_io = 0;
2e70f6ef
PB
223 }
224
d19893da 225 /* find opc index corresponding to search_pc */
6375e09e 226 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
227 if (searched_pc < tc_ptr)
228 return -1;
57fec1fe
FB
229
230 s->tb_next_offset = tb->tb_next_offset;
231#ifdef USE_DIRECT_JUMP
232 s->tb_jmp_offset = tb->tb_jmp_offset;
233 s->tb_next = NULL;
234#else
235 s->tb_jmp_offset = NULL;
236 s->tb_next = tb->tb_next;
237#endif
54604f74 238 j = tcg_gen_code_search_pc(s, (uint8_t *)tc_ptr, searched_pc - tc_ptr);
57fec1fe
FB
239 if (j < 0)
240 return -1;
d19893da 241 /* now find start of instruction before */
ab1103de 242 while (s->gen_opc_instr_start[j] == 0) {
d19893da 243 j--;
ab1103de 244 }
28ecfd7a 245 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 246
e87b7cb0 247 restore_state_to_opc(env, tb, j);
57fec1fe
FB
248
249#ifdef CONFIG_PROFILER
b67d9a52
FB
250 s->restore_time += profile_getclock() - ti;
251 s->restore_count++;
57fec1fe 252#endif
d19893da
FB
253 return 0;
254}
5b6dd868 255
3f38f309 256bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
257{
258 TranslationBlock *tb;
259
260 tb = tb_find_pc(retaddr);
261 if (tb) {
74f10515 262 cpu_restore_state_from_tb(cpu, tb, retaddr);
a8a826a3
BS
263 return true;
264 }
265 return false;
266}
267
5b6dd868
BS
268#ifdef _WIN32
269static inline void map_exec(void *addr, long size)
270{
271 DWORD old_protect;
272 VirtualProtect(addr, size,
273 PAGE_EXECUTE_READWRITE, &old_protect);
274}
275#else
276static inline void map_exec(void *addr, long size)
277{
278 unsigned long start, end, page_size;
279
280 page_size = getpagesize();
281 start = (unsigned long)addr;
282 start &= ~(page_size - 1);
283
284 end = (unsigned long)addr + size;
285 end += page_size - 1;
286 end &= ~(page_size - 1);
287
288 mprotect((void *)start, end - start,
289 PROT_READ | PROT_WRITE | PROT_EXEC);
290}
291#endif
292
47c16ed5 293void page_size_init(void)
5b6dd868
BS
294{
295 /* NOTE: we can always suppose that qemu_host_page_size >=
296 TARGET_PAGE_SIZE */
297#ifdef _WIN32
47c16ed5 298 SYSTEM_INFO system_info;
5b6dd868 299
47c16ed5
AK
300 GetSystemInfo(&system_info);
301 qemu_real_host_page_size = system_info.dwPageSize;
5b6dd868
BS
302#else
303 qemu_real_host_page_size = getpagesize();
304#endif
305 if (qemu_host_page_size == 0) {
306 qemu_host_page_size = qemu_real_host_page_size;
307 }
308 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
309 qemu_host_page_size = TARGET_PAGE_SIZE;
310 }
311 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 312}
5b6dd868 313
47c16ed5
AK
314static void page_init(void)
315{
316 page_size_init();
5b6dd868
BS
317#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
318 {
319#ifdef HAVE_KINFO_GETVMMAP
320 struct kinfo_vmentry *freep;
321 int i, cnt;
322
323 freep = kinfo_getvmmap(getpid(), &cnt);
324 if (freep) {
325 mmap_lock();
326 for (i = 0; i < cnt; i++) {
327 unsigned long startaddr, endaddr;
328
329 startaddr = freep[i].kve_start;
330 endaddr = freep[i].kve_end;
331 if (h2g_valid(startaddr)) {
332 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
333
334 if (h2g_valid(endaddr)) {
335 endaddr = h2g(endaddr);
336 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
337 } else {
338#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
339 endaddr = ~0ul;
340 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
341#endif
342 }
343 }
344 }
345 free(freep);
346 mmap_unlock();
347 }
348#else
349 FILE *f;
350
351 last_brk = (unsigned long)sbrk(0);
352
353 f = fopen("/compat/linux/proc/self/maps", "r");
354 if (f) {
355 mmap_lock();
356
357 do {
358 unsigned long startaddr, endaddr;
359 int n;
360
361 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
362
363 if (n == 2 && h2g_valid(startaddr)) {
364 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
365
366 if (h2g_valid(endaddr)) {
367 endaddr = h2g(endaddr);
368 } else {
369 endaddr = ~0ul;
370 }
371 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
372 }
373 } while (!feof(f));
374
375 fclose(f);
376 mmap_unlock();
377 }
378#endif
379 }
380#endif
381}
382
383static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
384{
385 PageDesc *pd;
386 void **lp;
387 int i;
388
389#if defined(CONFIG_USER_ONLY)
390 /* We can't use g_malloc because it may recurse into a locked mutex. */
391# define ALLOC(P, SIZE) \
392 do { \
393 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
394 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
395 } while (0)
396#else
397# define ALLOC(P, SIZE) \
398 do { P = g_malloc0(SIZE); } while (0)
399#endif
400
401 /* Level 1. Always allocated. */
402 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
403
404 /* Level 2..N-1. */
03f49957 405 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
406 void **p = *lp;
407
408 if (p == NULL) {
409 if (!alloc) {
410 return NULL;
411 }
03f49957 412 ALLOC(p, sizeof(void *) * V_L2_SIZE);
5b6dd868
BS
413 *lp = p;
414 }
415
03f49957 416 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
417 }
418
419 pd = *lp;
420 if (pd == NULL) {
421 if (!alloc) {
422 return NULL;
423 }
03f49957 424 ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE);
5b6dd868
BS
425 *lp = pd;
426 }
427
428#undef ALLOC
429
03f49957 430 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
431}
432
433static inline PageDesc *page_find(tb_page_addr_t index)
434{
435 return page_find_alloc(index, 0);
436}
437
438#if !defined(CONFIG_USER_ONLY)
439#define mmap_lock() do { } while (0)
440#define mmap_unlock() do { } while (0)
441#endif
442
443#if defined(CONFIG_USER_ONLY)
444/* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used. */
446/* ??? 64-bit hosts ought to have no problem mmaping data outside the
447 region in which the guest needs to run. Revisit this. */
448#define USE_STATIC_CODE_GEN_BUFFER
449#endif
450
451/* ??? Should configure for this, not list operating systems here. */
452#if (defined(__linux__) \
453 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
454 || defined(__DragonFly__) || defined(__OpenBSD__) \
455 || defined(__NetBSD__))
456# define USE_MMAP
457#endif
458
459/* Minimum size of the code gen buffer. This number is randomly chosen,
460 but not so small that we can't have a fair number of TB's live. */
461#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
462
463/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
464 indicated, this is constrained by the range of direct branches on the
465 host cpu, as used by the TCG implementation of goto_tb. */
466#if defined(__x86_64__)
467# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
468#elif defined(__sparc__)
469# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
470#elif defined(__aarch64__)
471# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
472#elif defined(__arm__)
473# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
474#elif defined(__s390x__)
475 /* We have a +- 4GB range on the branches; leave some slop. */
476# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
477#else
478# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
479#endif
480
481#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
482
483#define DEFAULT_CODE_GEN_BUFFER_SIZE \
484 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
485 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
486
487static inline size_t size_code_gen_buffer(size_t tb_size)
488{
489 /* Size the buffer. */
490 if (tb_size == 0) {
491#ifdef USE_STATIC_CODE_GEN_BUFFER
492 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
493#else
494 /* ??? Needs adjustments. */
495 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
496 static buffer, we could size this on RESERVED_VA, on the text
497 segment size of the executable, or continue to use the default. */
498 tb_size = (unsigned long)(ram_size / 4);
499#endif
500 }
501 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
502 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
503 }
504 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
506 }
0b0d3320 507 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
508 return tb_size;
509}
510
511#ifdef USE_STATIC_CODE_GEN_BUFFER
512static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
513 __attribute__((aligned(CODE_GEN_ALIGN)));
514
515static inline void *alloc_code_gen_buffer(void)
516{
0b0d3320 517 map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
518 return static_code_gen_buffer;
519}
520#elif defined(USE_MMAP)
521static inline void *alloc_code_gen_buffer(void)
522{
523 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
524 uintptr_t start = 0;
525 void *buf;
526
527 /* Constrain the position of the buffer based on the host cpu.
528 Note that these addresses are chosen in concert with the
529 addresses assigned in the relevant linker script file. */
530# if defined(__PIE__) || defined(__PIC__)
531 /* Don't bother setting a preferred location if we're building
532 a position-independent executable. We're more likely to get
533 an address near the main executable if we let the kernel
534 choose the address. */
535# elif defined(__x86_64__) && defined(MAP_32BIT)
536 /* Force the memory down into low memory with the executable.
537 Leave the choice of exact location with the kernel. */
538 flags |= MAP_32BIT;
539 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
540 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
541 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
542 }
543# elif defined(__sparc__)
544 start = 0x40000000ul;
545# elif defined(__s390x__)
546 start = 0x90000000ul;
547# endif
548
0b0d3320 549 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868
BS
550 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
551 return buf == MAP_FAILED ? NULL : buf;
552}
553#else
554static inline void *alloc_code_gen_buffer(void)
555{
0b0d3320 556 void *buf = g_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
557
558 if (buf) {
0b0d3320 559 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
560 }
561 return buf;
562}
563#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
564
565static inline void code_gen_alloc(size_t tb_size)
566{
0b0d3320
EV
567 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
568 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
569 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
570 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
571 exit(1);
572 }
573
0b0d3320
EV
574 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
575 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
576
577 /* Steal room for the prologue at the end of the buffer. This ensures
578 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
579 from TB's to the prologue are going to be in range. It also means
580 that we don't need to mark (additional) portions of the data segment
581 as executable. */
0b0d3320
EV
582 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
583 tcg_ctx.code_gen_buffer_size - 1024;
584 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 585
0b0d3320 586 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 587 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
588 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
589 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
590 tcg_ctx.tb_ctx.tbs =
591 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
592}
593
594/* Must be called before using the QEMU cpus. 'tb_size' is the size
595 (in bytes) allocated to the translation buffer. Zero means default
596 size. */
597void tcg_exec_init(unsigned long tb_size)
598{
599 cpu_gen_init();
600 code_gen_alloc(tb_size);
0b0d3320
EV
601 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
602 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
603 page_init();
604#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
605 /* There's no guest base to take into account, so go ahead and
606 initialize the prologue now. */
607 tcg_prologue_init(&tcg_ctx);
608#endif
609}
610
611bool tcg_enabled(void)
612{
0b0d3320 613 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
614}
615
616/* Allocate a new translation block. Flush the translation buffer if
617 too many translation blocks or too much generated code. */
618static TranslationBlock *tb_alloc(target_ulong pc)
619{
620 TranslationBlock *tb;
621
5e5f07e0 622 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
623 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
624 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
625 return NULL;
626 }
5e5f07e0 627 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
628 tb->pc = pc;
629 tb->cflags = 0;
630 return tb;
631}
632
633void tb_free(TranslationBlock *tb)
634{
635 /* In practice this is mostly used for single use temporary TB
636 Ignore the hard cases and just back up if this TB happens to
637 be the last one generated. */
5e5f07e0
EV
638 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
639 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 640 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 641 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
642 }
643}
644
645static inline void invalidate_page_bitmap(PageDesc *p)
646{
647 if (p->code_bitmap) {
648 g_free(p->code_bitmap);
649 p->code_bitmap = NULL;
650 }
651 p->code_write_count = 0;
652}
653
654/* Set to NULL all the 'first_tb' fields in all PageDescs. */
655static void page_flush_tb_1(int level, void **lp)
656{
657 int i;
658
659 if (*lp == NULL) {
660 return;
661 }
662 if (level == 0) {
663 PageDesc *pd = *lp;
664
03f49957 665 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
666 pd[i].first_tb = NULL;
667 invalidate_page_bitmap(pd + i);
668 }
669 } else {
670 void **pp = *lp;
671
03f49957 672 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
673 page_flush_tb_1(level - 1, pp + i);
674 }
675 }
676}
677
678static void page_flush_tb(void)
679{
680 int i;
681
682 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 683 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
684 }
685}
686
687/* flush all the translation blocks */
688/* XXX: tb_flush is currently not thread safe */
689void tb_flush(CPUArchState *env1)
690{
182735ef 691 CPUState *cpu;
5b6dd868
BS
692
693#if defined(DEBUG_FLUSH)
694 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 695 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 696 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 697 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 698 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 699#endif
0b0d3320
EV
700 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
701 > tcg_ctx.code_gen_buffer_size) {
5b6dd868
BS
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
703 }
5e5f07e0 704 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 705
bdc44640 706 CPU_FOREACH(cpu) {
8cd70437 707 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
708 }
709
eb2535f4 710 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
711 page_flush_tb();
712
0b0d3320 713 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
5e5f07e0 716 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
717}
718
719#ifdef DEBUG_TB_CHECK
720
721static void tb_invalidate_check(target_ulong address)
722{
723 TranslationBlock *tb;
724 int i;
725
726 address &= TARGET_PAGE_MASK;
727 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 728 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
729 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
730 address >= tb->pc + tb->size)) {
731 printf("ERROR invalidate: address=" TARGET_FMT_lx
732 " PC=%08lx size=%04x\n",
733 address, (long)tb->pc, tb->size);
734 }
735 }
736 }
737}
738
739/* verify that all the pages have correct rights for code */
740static void tb_page_check(void)
741{
742 TranslationBlock *tb;
743 int i, flags1, flags2;
744
745 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
746 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
747 tb = tb->phys_hash_next) {
5b6dd868
BS
748 flags1 = page_get_flags(tb->pc);
749 flags2 = page_get_flags(tb->pc + tb->size - 1);
750 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
751 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
752 (long)tb->pc, tb->size, flags1, flags2);
753 }
754 }
755 }
756}
757
758#endif
759
0c884d16 760static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
761{
762 TranslationBlock *tb1;
763
764 for (;;) {
765 tb1 = *ptb;
766 if (tb1 == tb) {
0c884d16 767 *ptb = tb1->phys_hash_next;
5b6dd868
BS
768 break;
769 }
0c884d16 770 ptb = &tb1->phys_hash_next;
5b6dd868
BS
771 }
772}
773
774static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
775{
776 TranslationBlock *tb1;
777 unsigned int n1;
778
779 for (;;) {
780 tb1 = *ptb;
781 n1 = (uintptr_t)tb1 & 3;
782 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
783 if (tb1 == tb) {
784 *ptb = tb1->page_next[n1];
785 break;
786 }
787 ptb = &tb1->page_next[n1];
788 }
789}
790
791static inline void tb_jmp_remove(TranslationBlock *tb, int n)
792{
793 TranslationBlock *tb1, **ptb;
794 unsigned int n1;
795
796 ptb = &tb->jmp_next[n];
797 tb1 = *ptb;
798 if (tb1) {
799 /* find tb(n) in circular list */
800 for (;;) {
801 tb1 = *ptb;
802 n1 = (uintptr_t)tb1 & 3;
803 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
804 if (n1 == n && tb1 == tb) {
805 break;
806 }
807 if (n1 == 2) {
808 ptb = &tb1->jmp_first;
809 } else {
810 ptb = &tb1->jmp_next[n1];
811 }
812 }
813 /* now we can suppress tb(n) from the list */
814 *ptb = tb->jmp_next[n];
815
816 tb->jmp_next[n] = NULL;
817 }
818}
819
820/* reset the jump entry 'n' of a TB so that it is not chained to
821 another TB */
822static inline void tb_reset_jump(TranslationBlock *tb, int n)
823{
824 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
825}
826
0c884d16 827/* invalidate one TB */
5b6dd868
BS
828void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
829{
182735ef 830 CPUState *cpu;
5b6dd868
BS
831 PageDesc *p;
832 unsigned int h, n1;
833 tb_page_addr_t phys_pc;
834 TranslationBlock *tb1, *tb2;
835
836 /* remove the TB from the hash list */
837 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
838 h = tb_phys_hash_func(phys_pc);
5e5f07e0 839 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
840
841 /* remove the TB from the page list */
842 if (tb->page_addr[0] != page_addr) {
843 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
844 tb_page_remove(&p->first_tb, tb);
845 invalidate_page_bitmap(p);
846 }
847 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
848 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
849 tb_page_remove(&p->first_tb, tb);
850 invalidate_page_bitmap(p);
851 }
852
5e5f07e0 853 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
854
855 /* remove the TB from the hash list */
856 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 857 CPU_FOREACH(cpu) {
8cd70437
AF
858 if (cpu->tb_jmp_cache[h] == tb) {
859 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
860 }
861 }
862
863 /* suppress this TB from the two jump lists */
864 tb_jmp_remove(tb, 0);
865 tb_jmp_remove(tb, 1);
866
867 /* suppress any remaining jumps to this TB */
868 tb1 = tb->jmp_first;
869 for (;;) {
870 n1 = (uintptr_t)tb1 & 3;
871 if (n1 == 2) {
872 break;
873 }
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
875 tb2 = tb1->jmp_next[n1];
876 tb_reset_jump(tb1, n1);
877 tb1->jmp_next[n1] = NULL;
878 tb1 = tb2;
879 }
880 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
881
5e5f07e0 882 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
883}
884
885static inline void set_bits(uint8_t *tab, int start, int len)
886{
887 int end, mask, end1;
888
889 end = start + len;
890 tab += start >> 3;
891 mask = 0xff << (start & 7);
892 if ((start & ~7) == (end & ~7)) {
893 if (start < end) {
894 mask &= ~(0xff << (end & 7));
895 *tab |= mask;
896 }
897 } else {
898 *tab++ |= mask;
899 start = (start + 8) & ~7;
900 end1 = end & ~7;
901 while (start < end1) {
902 *tab++ = 0xff;
903 start += 8;
904 }
905 if (start < end) {
906 mask = ~(0xff << (end & 7));
907 *tab |= mask;
908 }
909 }
910}
911
912static void build_page_bitmap(PageDesc *p)
913{
914 int n, tb_start, tb_end;
915 TranslationBlock *tb;
916
917 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
918
919 tb = p->first_tb;
920 while (tb != NULL) {
921 n = (uintptr_t)tb & 3;
922 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
923 /* NOTE: this is subtle as a TB may span two physical pages */
924 if (n == 0) {
925 /* NOTE: tb_end may be after the end of the page, but
926 it is not a problem */
927 tb_start = tb->pc & ~TARGET_PAGE_MASK;
928 tb_end = tb_start + tb->size;
929 if (tb_end > TARGET_PAGE_SIZE) {
930 tb_end = TARGET_PAGE_SIZE;
931 }
932 } else {
933 tb_start = 0;
934 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
935 }
936 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
937 tb = tb->page_next[n];
938 }
939}
940
648f034c 941TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
942 target_ulong pc, target_ulong cs_base,
943 int flags, int cflags)
944{
648f034c 945 CPUArchState *env = cpu->env_ptr;
5b6dd868
BS
946 TranslationBlock *tb;
947 uint8_t *tc_ptr;
948 tb_page_addr_t phys_pc, phys_page2;
949 target_ulong virt_page2;
950 int code_gen_size;
951
952 phys_pc = get_page_addr_code(env, pc);
953 tb = tb_alloc(pc);
954 if (!tb) {
955 /* flush must be done */
956 tb_flush(env);
957 /* cannot fail at this point */
958 tb = tb_alloc(pc);
959 /* Don't forget to invalidate previous TB info. */
5e5f07e0 960 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 961 }
0b0d3320 962 tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
963 tb->tc_ptr = tc_ptr;
964 tb->cs_base = cs_base;
965 tb->flags = flags;
966 tb->cflags = cflags;
967 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
968 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
969 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
970
971 /* check next page if needed */
972 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
973 phys_page2 = -1;
974 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
975 phys_page2 = get_page_addr_code(env, virt_page2);
976 }
977 tb_link_page(tb, phys_pc, phys_page2);
978 return tb;
979}
980
981/*
982 * Invalidate all TBs which intersect with the target physical address range
983 * [start;end[. NOTE: start and end may refer to *different* physical pages.
984 * 'is_cpu_write_access' should be true if called from a real cpu write
985 * access: the virtual CPU will exit the current TB if code is modified inside
986 * this TB.
987 */
988void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
989 int is_cpu_write_access)
990{
991 while (start < end) {
992 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
993 start &= TARGET_PAGE_MASK;
994 start += TARGET_PAGE_SIZE;
995 }
996}
997
998/*
999 * Invalidate all TBs which intersect with the target physical address range
1000 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1001 * 'is_cpu_write_access' should be true if called from a real cpu write
1002 * access: the virtual CPU will exit the current TB if code is modified inside
1003 * this TB.
1004 */
1005void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1006 int is_cpu_write_access)
1007{
1008 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1009 CPUState *cpu = current_cpu;
baea4fae 1010#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1011 CPUArchState *env = NULL;
1012#endif
5b6dd868
BS
1013 tb_page_addr_t tb_start, tb_end;
1014 PageDesc *p;
1015 int n;
1016#ifdef TARGET_HAS_PRECISE_SMC
1017 int current_tb_not_found = is_cpu_write_access;
1018 TranslationBlock *current_tb = NULL;
1019 int current_tb_modified = 0;
1020 target_ulong current_pc = 0;
1021 target_ulong current_cs_base = 0;
1022 int current_flags = 0;
1023#endif /* TARGET_HAS_PRECISE_SMC */
1024
1025 p = page_find(start >> TARGET_PAGE_BITS);
1026 if (!p) {
1027 return;
1028 }
1029 if (!p->code_bitmap &&
1030 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1031 is_cpu_write_access) {
1032 /* build code bitmap */
1033 build_page_bitmap(p);
1034 }
baea4fae 1035#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1036 if (cpu != NULL) {
1037 env = cpu->env_ptr;
d77953b9 1038 }
4917cf44 1039#endif
5b6dd868
BS
1040
1041 /* we remove all the TBs in the range [start, end[ */
1042 /* XXX: see if in some cases it could be faster to invalidate all
1043 the code */
1044 tb = p->first_tb;
1045 while (tb != NULL) {
1046 n = (uintptr_t)tb & 3;
1047 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1048 tb_next = tb->page_next[n];
1049 /* NOTE: this is subtle as a TB may span two physical pages */
1050 if (n == 0) {
1051 /* NOTE: tb_end may be after the end of the page, but
1052 it is not a problem */
1053 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1054 tb_end = tb_start + tb->size;
1055 } else {
1056 tb_start = tb->page_addr[1];
1057 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1058 }
1059 if (!(tb_end <= start || tb_start >= end)) {
1060#ifdef TARGET_HAS_PRECISE_SMC
1061 if (current_tb_not_found) {
1062 current_tb_not_found = 0;
1063 current_tb = NULL;
93afeade 1064 if (cpu->mem_io_pc) {
5b6dd868 1065 /* now we have a real cpu fault */
93afeade 1066 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1067 }
1068 }
1069 if (current_tb == tb &&
1070 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
1076
1077 current_tb_modified = 1;
74f10515 1078 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1079 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1080 &current_flags);
1081 }
1082#endif /* TARGET_HAS_PRECISE_SMC */
1083 /* we need to do that to handle the case where a signal
1084 occurs while doing tb_phys_invalidate() */
1085 saved_tb = NULL;
d77953b9
AF
1086 if (cpu != NULL) {
1087 saved_tb = cpu->current_tb;
1088 cpu->current_tb = NULL;
5b6dd868
BS
1089 }
1090 tb_phys_invalidate(tb, -1);
d77953b9
AF
1091 if (cpu != NULL) {
1092 cpu->current_tb = saved_tb;
c3affe56
AF
1093 if (cpu->interrupt_request && cpu->current_tb) {
1094 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1095 }
1096 }
1097 }
1098 tb = tb_next;
1099 }
1100#if !defined(CONFIG_USER_ONLY)
1101 /* if no code remaining, no need to continue to use slow writes */
1102 if (!p->first_tb) {
1103 invalidate_page_bitmap(p);
1104 if (is_cpu_write_access) {
baea4fae 1105 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
5b6dd868
BS
1106 }
1107 }
1108#endif
1109#ifdef TARGET_HAS_PRECISE_SMC
1110 if (current_tb_modified) {
1111 /* we generate a block containing just the instruction
1112 modifying the memory. It will ensure that it cannot modify
1113 itself */
d77953b9 1114 cpu->current_tb = NULL;
648f034c 1115 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1116 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1117 }
1118#endif
1119}
1120
1121/* len must be <= 8 and start must be a multiple of len */
1122void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1123{
1124 PageDesc *p;
1125 int offset, b;
1126
1127#if 0
1128 if (1) {
1129 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1130 cpu_single_env->mem_io_vaddr, len,
1131 cpu_single_env->eip,
1132 cpu_single_env->eip +
1133 (intptr_t)cpu_single_env->segs[R_CS].base);
1134 }
1135#endif
1136 p = page_find(start >> TARGET_PAGE_BITS);
1137 if (!p) {
1138 return;
1139 }
1140 if (p->code_bitmap) {
1141 offset = start & ~TARGET_PAGE_MASK;
1142 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1143 if (b & ((1 << len) - 1)) {
1144 goto do_invalidate;
1145 }
1146 } else {
1147 do_invalidate:
1148 tb_invalidate_phys_page_range(start, start + len, 1);
1149 }
1150}
1151
1152#if !defined(CONFIG_SOFTMMU)
1153static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1154 uintptr_t pc, void *puc,
1155 bool locked)
5b6dd868
BS
1156{
1157 TranslationBlock *tb;
1158 PageDesc *p;
1159 int n;
1160#ifdef TARGET_HAS_PRECISE_SMC
1161 TranslationBlock *current_tb = NULL;
4917cf44
AF
1162 CPUState *cpu = current_cpu;
1163 CPUArchState *env = NULL;
5b6dd868
BS
1164 int current_tb_modified = 0;
1165 target_ulong current_pc = 0;
1166 target_ulong current_cs_base = 0;
1167 int current_flags = 0;
1168#endif
1169
1170 addr &= TARGET_PAGE_MASK;
1171 p = page_find(addr >> TARGET_PAGE_BITS);
1172 if (!p) {
1173 return;
1174 }
1175 tb = p->first_tb;
1176#ifdef TARGET_HAS_PRECISE_SMC
1177 if (tb && pc != 0) {
1178 current_tb = tb_find_pc(pc);
1179 }
4917cf44
AF
1180 if (cpu != NULL) {
1181 env = cpu->env_ptr;
d77953b9 1182 }
5b6dd868
BS
1183#endif
1184 while (tb != NULL) {
1185 n = (uintptr_t)tb & 3;
1186 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1187#ifdef TARGET_HAS_PRECISE_SMC
1188 if (current_tb == tb &&
1189 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1190 /* If we are modifying the current TB, we must stop
1191 its execution. We could be more precise by checking
1192 that the modification is after the current PC, but it
1193 would require a specialized function to partially
1194 restore the CPU state */
1195
1196 current_tb_modified = 1;
74f10515 1197 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1198 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1199 &current_flags);
1200 }
1201#endif /* TARGET_HAS_PRECISE_SMC */
1202 tb_phys_invalidate(tb, addr);
1203 tb = tb->page_next[n];
1204 }
1205 p->first_tb = NULL;
1206#ifdef TARGET_HAS_PRECISE_SMC
1207 if (current_tb_modified) {
1208 /* we generate a block containing just the instruction
1209 modifying the memory. It will ensure that it cannot modify
1210 itself */
d77953b9 1211 cpu->current_tb = NULL;
648f034c 1212 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1213 if (locked) {
1214 mmap_unlock();
1215 }
0ea8cb88 1216 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1217 }
1218#endif
1219}
1220#endif
1221
1222/* add the tb in the target page and protect it if necessary */
1223static inline void tb_alloc_page(TranslationBlock *tb,
1224 unsigned int n, tb_page_addr_t page_addr)
1225{
1226 PageDesc *p;
1227#ifndef CONFIG_USER_ONLY
1228 bool page_already_protected;
1229#endif
1230
1231 tb->page_addr[n] = page_addr;
1232 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1233 tb->page_next[n] = p->first_tb;
1234#ifndef CONFIG_USER_ONLY
1235 page_already_protected = p->first_tb != NULL;
1236#endif
1237 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1238 invalidate_page_bitmap(p);
1239
1240#if defined(TARGET_HAS_SMC) || 1
1241
1242#if defined(CONFIG_USER_ONLY)
1243 if (p->flags & PAGE_WRITE) {
1244 target_ulong addr;
1245 PageDesc *p2;
1246 int prot;
1247
1248 /* force the host page as non writable (writes will have a
1249 page fault + mprotect overhead) */
1250 page_addr &= qemu_host_page_mask;
1251 prot = 0;
1252 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1253 addr += TARGET_PAGE_SIZE) {
1254
1255 p2 = page_find(addr >> TARGET_PAGE_BITS);
1256 if (!p2) {
1257 continue;
1258 }
1259 prot |= p2->flags;
1260 p2->flags &= ~PAGE_WRITE;
1261 }
1262 mprotect(g2h(page_addr), qemu_host_page_size,
1263 (prot & PAGE_BITS) & ~PAGE_WRITE);
1264#ifdef DEBUG_TB_INVALIDATE
1265 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1266 page_addr);
1267#endif
1268 }
1269#else
1270 /* if some code is already present, then the pages are already
1271 protected. So we handle the case where only the first TB is
1272 allocated in a physical page */
1273 if (!page_already_protected) {
1274 tlb_protect_code(page_addr);
1275 }
1276#endif
1277
1278#endif /* TARGET_HAS_SMC */
1279}
1280
1281/* add a new TB and link it to the physical page tables. phys_page2 is
1282 (-1) to indicate that only one page contains the TB. */
1283static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1284 tb_page_addr_t phys_page2)
1285{
1286 unsigned int h;
1287 TranslationBlock **ptb;
1288
1289 /* Grab the mmap lock to stop another thread invalidating this TB
1290 before we are done. */
1291 mmap_lock();
1292 /* add in the physical hash table */
1293 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1294 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1295 tb->phys_hash_next = *ptb;
1296 *ptb = tb;
1297
1298 /* add in the page list */
1299 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1300 if (phys_page2 != -1) {
1301 tb_alloc_page(tb, 1, phys_page2);
1302 } else {
1303 tb->page_addr[1] = -1;
1304 }
1305
1306 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1307 tb->jmp_next[0] = NULL;
1308 tb->jmp_next[1] = NULL;
1309
1310 /* init original jump addresses */
1311 if (tb->tb_next_offset[0] != 0xffff) {
1312 tb_reset_jump(tb, 0);
1313 }
1314 if (tb->tb_next_offset[1] != 0xffff) {
1315 tb_reset_jump(tb, 1);
1316 }
1317
1318#ifdef DEBUG_TB_CHECK
1319 tb_page_check();
1320#endif
1321 mmap_unlock();
1322}
1323
5b6dd868
BS
1324/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1325 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1326static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1327{
1328 int m_min, m_max, m;
1329 uintptr_t v;
1330 TranslationBlock *tb;
1331
5e5f07e0 1332 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1333 return NULL;
1334 }
0b0d3320
EV
1335 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1336 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1337 return NULL;
1338 }
1339 /* binary search (cf Knuth) */
1340 m_min = 0;
5e5f07e0 1341 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1342 while (m_min <= m_max) {
1343 m = (m_min + m_max) >> 1;
5e5f07e0 1344 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1345 v = (uintptr_t)tb->tc_ptr;
1346 if (v == tc_ptr) {
1347 return tb;
1348 } else if (tc_ptr < v) {
1349 m_max = m - 1;
1350 } else {
1351 m_min = m + 1;
1352 }
1353 }
5e5f07e0 1354 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1355}
1356
5b6dd868 1357#if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
29d8ec7b 1358void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1359{
1360 ram_addr_t ram_addr;
5c8a00ce 1361 MemoryRegion *mr;
149f54b5 1362 hwaddr l = 1;
5b6dd868 1363
29d8ec7b 1364 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1365 if (!(memory_region_is_ram(mr)
1366 || memory_region_is_romd(mr))) {
5b6dd868
BS
1367 return;
1368 }
5c8a00ce 1369 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1370 + addr;
5b6dd868
BS
1371 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1372}
1373#endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1374
239c51a5 1375void tb_check_watchpoint(CPUState *cpu)
5b6dd868 1376{
239c51a5 1377 CPUArchState *env = cpu->env_ptr;
5b6dd868
BS
1378 TranslationBlock *tb;
1379
93afeade 1380 tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1381 if (!tb) {
1382 cpu_abort(env, "check_watchpoint: could not find TB for pc=%p",
93afeade 1383 (void *)cpu->mem_io_pc);
5b6dd868 1384 }
74f10515 1385 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
5b6dd868
BS
1386 tb_phys_invalidate(tb, -1);
1387}
1388
1389#ifndef CONFIG_USER_ONLY
1390/* mask must never be zero, except for A20 change call */
c3affe56 1391static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1392{
c3affe56 1393 CPUArchState *env = cpu->env_ptr;
5b6dd868
BS
1394 int old_mask;
1395
259186a7
AF
1396 old_mask = cpu->interrupt_request;
1397 cpu->interrupt_request |= mask;
5b6dd868
BS
1398
1399 /*
1400 * If called from iothread context, wake the target cpu in
1401 * case its halted.
1402 */
1403 if (!qemu_cpu_is_self(cpu)) {
1404 qemu_cpu_kick(cpu);
1405 return;
1406 }
1407
1408 if (use_icount) {
28ecfd7a 1409 cpu->icount_decr.u16.high = 0xffff;
99df7dce 1410 if (!cpu_can_do_io(cpu)
5b6dd868
BS
1411 && (mask & ~old_mask) != 0) {
1412 cpu_abort(env, "Raised interrupt while not in I/O function");
1413 }
1414 } else {
378df4b2 1415 cpu->tcg_exit_req = 1;
5b6dd868
BS
1416 }
1417}
1418
1419CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1420
1421/* in deterministic execution mode, instructions doing device I/Os
1422 must be at the end of the TB */
90b40a69 1423void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1424{
90b40a69 1425 CPUArchState *env = cpu->env_ptr;
5b6dd868
BS
1426 TranslationBlock *tb;
1427 uint32_t n, cflags;
1428 target_ulong pc, cs_base;
1429 uint64_t flags;
1430
1431 tb = tb_find_pc(retaddr);
1432 if (!tb) {
1433 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
1434 (void *)retaddr);
1435 }
28ecfd7a 1436 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1437 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1438 /* Calculate how many instructions had been executed before the fault
1439 occurred. */
28ecfd7a 1440 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1441 /* Generate a new TB ending on the I/O insn. */
1442 n++;
1443 /* On MIPS and SH, delay slot instructions can only be restarted if
1444 they were already the first instruction in the TB. If this is not
1445 the first instruction in a TB then re-execute the preceding
1446 branch. */
1447#if defined(TARGET_MIPS)
1448 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1449 env->active_tc.PC -= 4;
28ecfd7a 1450 cpu->icount_decr.u16.low++;
5b6dd868
BS
1451 env->hflags &= ~MIPS_HFLAG_BMASK;
1452 }
1453#elif defined(TARGET_SH4)
1454 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1455 && n > 1) {
1456 env->pc -= 2;
28ecfd7a 1457 cpu->icount_decr.u16.low++;
5b6dd868
BS
1458 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1459 }
1460#endif
1461 /* This should never happen. */
1462 if (n > CF_COUNT_MASK) {
1463 cpu_abort(env, "TB too big during recompile");
1464 }
1465
1466 cflags = n | CF_LAST_IO;
1467 pc = tb->pc;
1468 cs_base = tb->cs_base;
1469 flags = tb->flags;
1470 tb_phys_invalidate(tb, -1);
1471 /* FIXME: In theory this could raise an exception. In practice
1472 we have already translated the block once so it's probably ok. */
648f034c 1473 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1474 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1475 the first in the TB) then we end up generating a whole new TB and
1476 repeating the fault, which is horribly inefficient.
1477 Better would be to execute just this insn uncached, or generate a
1478 second new TB. */
0ea8cb88 1479 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1480}
1481
611d4f99 1482void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1483{
1484 unsigned int i;
1485
1486 /* Discard jump cache entries for any tb which might potentially
1487 overlap the flushed page. */
1488 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1489 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1490 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1491
1492 i = tb_jmp_cache_hash_page(addr);
8cd70437 1493 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1494 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1495}
1496
1497void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1498{
1499 int i, target_code_size, max_target_code_size;
1500 int direct_jmp_count, direct_jmp2_count, cross_page;
1501 TranslationBlock *tb;
1502
1503 target_code_size = 0;
1504 max_target_code_size = 0;
1505 cross_page = 0;
1506 direct_jmp_count = 0;
1507 direct_jmp2_count = 0;
5e5f07e0
EV
1508 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1509 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1510 target_code_size += tb->size;
1511 if (tb->size > max_target_code_size) {
1512 max_target_code_size = tb->size;
1513 }
1514 if (tb->page_addr[1] != -1) {
1515 cross_page++;
1516 }
1517 if (tb->tb_next_offset[0] != 0xffff) {
1518 direct_jmp_count++;
1519 if (tb->tb_next_offset[1] != 0xffff) {
1520 direct_jmp2_count++;
1521 }
1522 }
1523 }
1524 /* XXX: avoid using doubles ? */
1525 cpu_fprintf(f, "Translation buffer state:\n");
1526 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1527 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1528 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1529 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1530 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1531 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1532 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1533 tcg_ctx.tb_ctx.nb_tbs : 0,
1534 max_target_code_size);
5b6dd868 1535 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1536 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1537 tcg_ctx.code_gen_buffer) /
1538 tcg_ctx.tb_ctx.nb_tbs : 0,
1539 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1540 tcg_ctx.code_gen_buffer) /
1541 target_code_size : 0);
1542 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1543 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1544 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1545 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1546 direct_jmp_count,
5e5f07e0
EV
1547 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1548 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1549 direct_jmp2_count,
5e5f07e0
EV
1550 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1551 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1552 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1553 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1554 cpu_fprintf(f, "TB invalidate count %d\n",
1555 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1556 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1557 tcg_dump_info(f, cpu_fprintf);
1558}
1559
1560#else /* CONFIG_USER_ONLY */
1561
c3affe56 1562void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1563{
259186a7 1564 cpu->interrupt_request |= mask;
378df4b2 1565 cpu->tcg_exit_req = 1;
5b6dd868
BS
1566}
1567
1568/*
1569 * Walks guest process memory "regions" one by one
1570 * and calls callback function 'fn' for each region.
1571 */
1572struct walk_memory_regions_data {
1573 walk_memory_regions_fn fn;
1574 void *priv;
1575 uintptr_t start;
1576 int prot;
1577};
1578
1579static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1580 abi_ulong end, int new_prot)
1581{
1582 if (data->start != -1ul) {
1583 int rc = data->fn(data->priv, data->start, end, data->prot);
1584 if (rc != 0) {
1585 return rc;
1586 }
1587 }
1588
1589 data->start = (new_prot ? end : -1ul);
1590 data->prot = new_prot;
1591
1592 return 0;
1593}
1594
1595static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1596 abi_ulong base, int level, void **lp)
1597{
1598 abi_ulong pa;
1599 int i, rc;
1600
1601 if (*lp == NULL) {
1602 return walk_memory_regions_end(data, base, 0);
1603 }
1604
1605 if (level == 0) {
1606 PageDesc *pd = *lp;
1607
03f49957 1608 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1609 int prot = pd[i].flags;
1610
1611 pa = base | (i << TARGET_PAGE_BITS);
1612 if (prot != data->prot) {
1613 rc = walk_memory_regions_end(data, pa, prot);
1614 if (rc != 0) {
1615 return rc;
1616 }
1617 }
1618 }
1619 } else {
1620 void **pp = *lp;
1621
03f49957 1622 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868 1623 pa = base | ((abi_ulong)i <<
03f49957 1624 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1625 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1626 if (rc != 0) {
1627 return rc;
1628 }
1629 }
1630 }
1631
1632 return 0;
1633}
1634
1635int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1636{
1637 struct walk_memory_regions_data data;
1638 uintptr_t i;
1639
1640 data.fn = fn;
1641 data.priv = priv;
1642 data.start = -1ul;
1643 data.prot = 0;
1644
1645 for (i = 0; i < V_L1_SIZE; i++) {
1646 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
03f49957 1647 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1648
1649 if (rc != 0) {
1650 return rc;
1651 }
1652 }
1653
1654 return walk_memory_regions_end(&data, 0, 0);
1655}
1656
1657static int dump_region(void *priv, abi_ulong start,
1658 abi_ulong end, unsigned long prot)
1659{
1660 FILE *f = (FILE *)priv;
1661
1662 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
1663 " "TARGET_ABI_FMT_lx" %c%c%c\n",
1664 start, end, end - start,
1665 ((prot & PAGE_READ) ? 'r' : '-'),
1666 ((prot & PAGE_WRITE) ? 'w' : '-'),
1667 ((prot & PAGE_EXEC) ? 'x' : '-'));
1668
1669 return 0;
1670}
1671
1672/* dump memory mappings */
1673void page_dump(FILE *f)
1674{
227b8175
SW
1675 const int length = sizeof(abi_ulong) * 2;
1676 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1677 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1678 walk_memory_regions(f, dump_region);
1679}
1680
1681int page_get_flags(target_ulong address)
1682{
1683 PageDesc *p;
1684
1685 p = page_find(address >> TARGET_PAGE_BITS);
1686 if (!p) {
1687 return 0;
1688 }
1689 return p->flags;
1690}
1691
1692/* Modify the flags of a page and invalidate the code if necessary.
1693 The flag PAGE_WRITE_ORG is positioned automatically depending
1694 on PAGE_WRITE. The mmap_lock should already be held. */
1695void page_set_flags(target_ulong start, target_ulong end, int flags)
1696{
1697 target_ulong addr, len;
1698
1699 /* This function should never be called with addresses outside the
1700 guest address space. If this assert fires, it probably indicates
1701 a missing call to h2g_valid. */
1702#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1703 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1704#endif
1705 assert(start < end);
1706
1707 start = start & TARGET_PAGE_MASK;
1708 end = TARGET_PAGE_ALIGN(end);
1709
1710 if (flags & PAGE_WRITE) {
1711 flags |= PAGE_WRITE_ORG;
1712 }
1713
1714 for (addr = start, len = end - start;
1715 len != 0;
1716 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1717 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1718
1719 /* If the write protection bit is set, then we invalidate
1720 the code inside. */
1721 if (!(p->flags & PAGE_WRITE) &&
1722 (flags & PAGE_WRITE) &&
1723 p->first_tb) {
d02532f0 1724 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1725 }
1726 p->flags = flags;
1727 }
1728}
1729
1730int page_check_range(target_ulong start, target_ulong len, int flags)
1731{
1732 PageDesc *p;
1733 target_ulong end;
1734 target_ulong addr;
1735
1736 /* This function should never be called with addresses outside the
1737 guest address space. If this assert fires, it probably indicates
1738 a missing call to h2g_valid. */
1739#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1740 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1741#endif
1742
1743 if (len == 0) {
1744 return 0;
1745 }
1746 if (start + len - 1 < start) {
1747 /* We've wrapped around. */
1748 return -1;
1749 }
1750
1751 /* must do before we loose bits in the next step */
1752 end = TARGET_PAGE_ALIGN(start + len);
1753 start = start & TARGET_PAGE_MASK;
1754
1755 for (addr = start, len = end - start;
1756 len != 0;
1757 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1758 p = page_find(addr >> TARGET_PAGE_BITS);
1759 if (!p) {
1760 return -1;
1761 }
1762 if (!(p->flags & PAGE_VALID)) {
1763 return -1;
1764 }
1765
1766 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1767 return -1;
1768 }
1769 if (flags & PAGE_WRITE) {
1770 if (!(p->flags & PAGE_WRITE_ORG)) {
1771 return -1;
1772 }
1773 /* unprotect the page if it was put read-only because it
1774 contains translated code */
1775 if (!(p->flags & PAGE_WRITE)) {
1776 if (!page_unprotect(addr, 0, NULL)) {
1777 return -1;
1778 }
1779 }
1780 return 0;
1781 }
1782 }
1783 return 0;
1784}
1785
1786/* called from signal handler: invalidate the code and unprotect the
1787 page. Return TRUE if the fault was successfully handled. */
1788int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1789{
1790 unsigned int prot;
1791 PageDesc *p;
1792 target_ulong host_start, host_end, addr;
1793
1794 /* Technically this isn't safe inside a signal handler. However we
1795 know this only ever happens in a synchronous SEGV handler, so in
1796 practice it seems to be ok. */
1797 mmap_lock();
1798
1799 p = page_find(address >> TARGET_PAGE_BITS);
1800 if (!p) {
1801 mmap_unlock();
1802 return 0;
1803 }
1804
1805 /* if the page was really writable, then we change its
1806 protection back to writable */
1807 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1808 host_start = address & qemu_host_page_mask;
1809 host_end = host_start + qemu_host_page_size;
1810
1811 prot = 0;
1812 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1813 p = page_find(addr >> TARGET_PAGE_BITS);
1814 p->flags |= PAGE_WRITE;
1815 prot |= p->flags;
1816
1817 /* and since the content will be modified, we must invalidate
1818 the corresponding translated code. */
d02532f0 1819 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1820#ifdef DEBUG_TB_CHECK
1821 tb_invalidate_check(addr);
1822#endif
1823 }
1824 mprotect((void *)g2h(host_start), qemu_host_page_size,
1825 prot & PAGE_BITS);
1826
1827 mmap_unlock();
1828 return 1;
1829 }
1830 mmap_unlock();
1831 return 0;
1832}
1833#endif /* CONFIG_USER_ONLY */