]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
cpus: remove tcg_halt_cond and tcg_cpu_thread globals
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
e1b89321 61#include "exec/tb-hash.h"
5b6dd868 62#include "translate-all.h"
510a647f 63#include "qemu/bitmap.h"
0aa09897 64#include "qemu/timer.h"
5b6dd868
BS
65
66//#define DEBUG_TB_INVALIDATE
67//#define DEBUG_FLUSH
68/* make various TB consistency checks */
69//#define DEBUG_TB_CHECK
70
71#if !defined(CONFIG_USER_ONLY)
72/* TB consistency checks only implemented for usermode emulation. */
73#undef DEBUG_TB_CHECK
74#endif
75
76#define SMC_BITMAP_USE_THRESHOLD 10
77
5b6dd868
BS
78typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
510a647f 84 unsigned long *code_bitmap;
5b6dd868
BS
85#if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87#endif
88} PageDesc;
89
90/* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92#if !defined(CONFIG_USER_ONLY)
93#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97#endif
98#else
99# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100#endif
101
03f49957
PB
102/* Size of the L2 (and L3, etc) page tables. */
103#define V_L2_BITS 10
104#define V_L2_SIZE (1 << V_L2_BITS)
105
5b6dd868
BS
106/* The bits remaining after N lower levels of page tables. */
107#define V_L1_BITS_REM \
03f49957 108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
109
110#if V_L1_BITS_REM < 4
03f49957 111#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
112#else
113#define V_L1_BITS V_L1_BITS_REM
114#endif
115
116#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
120uintptr_t qemu_real_host_page_size;
4e51361d 121uintptr_t qemu_real_host_page_mask;
5b6dd868
BS
122uintptr_t qemu_host_page_size;
123uintptr_t qemu_host_page_mask;
124
d1142fb8 125/* The bottom level has pointers to PageDesc */
5b6dd868
BS
126static void *l1_map[V_L1_SIZE];
127
57fec1fe
FB
128/* code generation context */
129TCGContext tcg_ctx;
d19893da 130
5b6dd868
BS
131static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
132 tb_page_addr_t phys_page2);
a8a826a3 133static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 134
57fec1fe
FB
135void cpu_gen_init(void)
136{
137 tcg_context_init(&tcg_ctx);
57fec1fe
FB
138}
139
d19893da 140/* return non zero if the very first instruction is invalid so that
5fafdf24 141 the virtual CPU can trigger an exception.
d19893da
FB
142
143 '*gen_code_size_ptr' contains the size of the generated code (host
144 code).
145*/
9349b4f9 146int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 147{
57fec1fe 148 TCGContext *s = &tcg_ctx;
1813e175 149 tcg_insn_unit *gen_code_buf;
d19893da 150 int gen_code_size;
57fec1fe
FB
151#ifdef CONFIG_PROFILER
152 int64_t ti;
153#endif
154
155#ifdef CONFIG_PROFILER
b67d9a52
FB
156 s->tb_count1++; /* includes aborted translations because of
157 exceptions */
57fec1fe
FB
158 ti = profile_getclock();
159#endif
160 tcg_func_start(s);
d19893da 161
2cfc5f17
TS
162 gen_intermediate_code(env, tb);
163
6db8b538
AB
164 trace_translate_block(tb, tb->pc, tb->tc_ptr);
165
ec6338ba 166 /* generate machine code */
57fec1fe 167 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
168 tb->tb_next_offset[0] = 0xffff;
169 tb->tb_next_offset[1] = 0xffff;
57fec1fe 170 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 171#ifdef USE_DIRECT_JUMP
57fec1fe
FB
172 s->tb_jmp_offset = tb->tb_jmp_offset;
173 s->tb_next = NULL;
d19893da 174#else
57fec1fe
FB
175 s->tb_jmp_offset = NULL;
176 s->tb_next = tb->tb_next;
d19893da 177#endif
57fec1fe
FB
178
179#ifdef CONFIG_PROFILER
b67d9a52
FB
180 s->tb_count++;
181 s->interm_time += profile_getclock() - ti;
182 s->code_time -= profile_getclock();
57fec1fe 183#endif
54604f74 184 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 185 *gen_code_size_ptr = gen_code_size;
57fec1fe 186#ifdef CONFIG_PROFILER
b67d9a52
FB
187 s->code_time += profile_getclock();
188 s->code_in_len += tb->size;
189 s->code_out_len += gen_code_size;
57fec1fe
FB
190#endif
191
d19893da 192#ifdef DEBUG_DISAS
8fec2b8c 193 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
194 qemu_log("OUT: [size=%d]\n", gen_code_size);
195 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 196 qemu_log("\n");
31b1a7b4 197 qemu_log_flush();
d19893da
FB
198 }
199#endif
200 return 0;
201}
202
5fafdf24 203/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 204 */
74f10515 205static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 206 uintptr_t searched_pc)
d19893da 207{
74f10515 208 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
209 TCGContext *s = &tcg_ctx;
210 int j;
6375e09e 211 uintptr_t tc_ptr;
57fec1fe
FB
212#ifdef CONFIG_PROFILER
213 int64_t ti;
214#endif
215
216#ifdef CONFIG_PROFILER
217 ti = profile_getclock();
218#endif
219 tcg_func_start(s);
d19893da 220
2cfc5f17 221 gen_intermediate_code_pc(env, tb);
3b46e624 222
bd79255d 223 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 224 assert(use_icount);
2e70f6ef 225 /* Reset the cycle counter to the start of the block. */
28ecfd7a 226 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 227 /* Clear the IO flag. */
99df7dce 228 cpu->can_do_io = 0;
2e70f6ef
PB
229 }
230
d19893da 231 /* find opc index corresponding to search_pc */
6375e09e 232 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
233 if (searched_pc < tc_ptr)
234 return -1;
57fec1fe
FB
235
236 s->tb_next_offset = tb->tb_next_offset;
237#ifdef USE_DIRECT_JUMP
238 s->tb_jmp_offset = tb->tb_jmp_offset;
239 s->tb_next = NULL;
240#else
241 s->tb_jmp_offset = NULL;
242 s->tb_next = tb->tb_next;
243#endif
1813e175
RH
244 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
245 searched_pc - tc_ptr);
57fec1fe
FB
246 if (j < 0)
247 return -1;
d19893da 248 /* now find start of instruction before */
ab1103de 249 while (s->gen_opc_instr_start[j] == 0) {
d19893da 250 j--;
ab1103de 251 }
28ecfd7a 252 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 253
e87b7cb0 254 restore_state_to_opc(env, tb, j);
57fec1fe
FB
255
256#ifdef CONFIG_PROFILER
b67d9a52
FB
257 s->restore_time += profile_getclock() - ti;
258 s->restore_count++;
57fec1fe 259#endif
d19893da
FB
260 return 0;
261}
5b6dd868 262
3f38f309 263bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
264{
265 TranslationBlock *tb;
266
267 tb = tb_find_pc(retaddr);
268 if (tb) {
74f10515 269 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
270 if (tb->cflags & CF_NOCACHE) {
271 /* one-shot translation, invalidate it immediately */
272 cpu->current_tb = NULL;
273 tb_phys_invalidate(tb, -1);
274 tb_free(tb);
275 }
a8a826a3
BS
276 return true;
277 }
278 return false;
279}
280
5b6dd868 281#ifdef _WIN32
2d8ac5eb 282static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
283{
284 DWORD old_protect;
285 VirtualProtect(addr, size,
286 PAGE_EXECUTE_READWRITE, &old_protect);
287}
288#else
2d8ac5eb 289static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
290{
291 unsigned long start, end, page_size;
292
293 page_size = getpagesize();
294 start = (unsigned long)addr;
295 start &= ~(page_size - 1);
296
297 end = (unsigned long)addr + size;
298 end += page_size - 1;
299 end &= ~(page_size - 1);
300
301 mprotect((void *)start, end - start,
302 PROT_READ | PROT_WRITE | PROT_EXEC);
303}
304#endif
305
47c16ed5 306void page_size_init(void)
5b6dd868
BS
307{
308 /* NOTE: we can always suppose that qemu_host_page_size >=
309 TARGET_PAGE_SIZE */
5b6dd868 310 qemu_real_host_page_size = getpagesize();
4e51361d 311 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
5b6dd868
BS
312 if (qemu_host_page_size == 0) {
313 qemu_host_page_size = qemu_real_host_page_size;
314 }
315 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
316 qemu_host_page_size = TARGET_PAGE_SIZE;
317 }
318 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 319}
5b6dd868 320
47c16ed5
AK
321static void page_init(void)
322{
323 page_size_init();
5b6dd868
BS
324#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
325 {
326#ifdef HAVE_KINFO_GETVMMAP
327 struct kinfo_vmentry *freep;
328 int i, cnt;
329
330 freep = kinfo_getvmmap(getpid(), &cnt);
331 if (freep) {
332 mmap_lock();
333 for (i = 0; i < cnt; i++) {
334 unsigned long startaddr, endaddr;
335
336 startaddr = freep[i].kve_start;
337 endaddr = freep[i].kve_end;
338 if (h2g_valid(startaddr)) {
339 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
340
341 if (h2g_valid(endaddr)) {
342 endaddr = h2g(endaddr);
343 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
344 } else {
345#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
346 endaddr = ~0ul;
347 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
348#endif
349 }
350 }
351 }
352 free(freep);
353 mmap_unlock();
354 }
355#else
356 FILE *f;
357
358 last_brk = (unsigned long)sbrk(0);
359
360 f = fopen("/compat/linux/proc/self/maps", "r");
361 if (f) {
362 mmap_lock();
363
364 do {
365 unsigned long startaddr, endaddr;
366 int n;
367
368 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
369
370 if (n == 2 && h2g_valid(startaddr)) {
371 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
372
373 if (h2g_valid(endaddr)) {
374 endaddr = h2g(endaddr);
375 } else {
376 endaddr = ~0ul;
377 }
378 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
379 }
380 } while (!feof(f));
381
382 fclose(f);
383 mmap_unlock();
384 }
385#endif
386 }
387#endif
388}
389
390static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
391{
392 PageDesc *pd;
393 void **lp;
394 int i;
395
5b6dd868
BS
396 /* Level 1. Always allocated. */
397 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
398
399 /* Level 2..N-1. */
03f49957 400 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
401 void **p = *lp;
402
403 if (p == NULL) {
404 if (!alloc) {
405 return NULL;
406 }
e3a0abfd 407 p = g_new0(void *, V_L2_SIZE);
5b6dd868
BS
408 *lp = p;
409 }
410
03f49957 411 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
412 }
413
414 pd = *lp;
415 if (pd == NULL) {
416 if (!alloc) {
417 return NULL;
418 }
e3a0abfd 419 pd = g_new0(PageDesc, V_L2_SIZE);
5b6dd868
BS
420 *lp = pd;
421 }
422
03f49957 423 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
424}
425
426static inline PageDesc *page_find(tb_page_addr_t index)
427{
428 return page_find_alloc(index, 0);
429}
430
431#if !defined(CONFIG_USER_ONLY)
432#define mmap_lock() do { } while (0)
433#define mmap_unlock() do { } while (0)
434#endif
435
436#if defined(CONFIG_USER_ONLY)
437/* Currently it is not recommended to allocate big chunks of data in
438 user mode. It will change when a dedicated libc will be used. */
439/* ??? 64-bit hosts ought to have no problem mmaping data outside the
440 region in which the guest needs to run. Revisit this. */
441#define USE_STATIC_CODE_GEN_BUFFER
442#endif
443
444/* ??? Should configure for this, not list operating systems here. */
445#if (defined(__linux__) \
446 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
447 || defined(__DragonFly__) || defined(__OpenBSD__) \
448 || defined(__NetBSD__))
449# define USE_MMAP
450#endif
451
452/* Minimum size of the code gen buffer. This number is randomly chosen,
453 but not so small that we can't have a fair number of TB's live. */
454#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
455
456/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
457 indicated, this is constrained by the range of direct branches on the
458 host cpu, as used by the TCG implementation of goto_tb. */
459#if defined(__x86_64__)
460# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
461#elif defined(__sparc__)
462# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
463#elif defined(__aarch64__)
464# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
465#elif defined(__arm__)
466# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
467#elif defined(__s390x__)
468 /* We have a +- 4GB range on the branches; leave some slop. */
469# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
470#elif defined(__mips__)
471 /* We have a 256MB branch region, but leave room to make sure the
472 main executable is also within that region. */
473# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
474#else
475# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
476#endif
477
478#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
479
480#define DEFAULT_CODE_GEN_BUFFER_SIZE \
481 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
482 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
483
484static inline size_t size_code_gen_buffer(size_t tb_size)
485{
486 /* Size the buffer. */
487 if (tb_size == 0) {
488#ifdef USE_STATIC_CODE_GEN_BUFFER
489 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
490#else
491 /* ??? Needs adjustments. */
492 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
493 static buffer, we could size this on RESERVED_VA, on the text
494 segment size of the executable, or continue to use the default. */
495 tb_size = (unsigned long)(ram_size / 4);
496#endif
497 }
498 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
499 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
500 }
501 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
502 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
503 }
0b0d3320 504 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
505 return tb_size;
506}
507
483c76e1
RH
508#ifdef __mips__
509/* In order to use J and JAL within the code_gen_buffer, we require
510 that the buffer not cross a 256MB boundary. */
511static inline bool cross_256mb(void *addr, size_t size)
512{
513 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
514}
515
516/* We weren't able to allocate a buffer without crossing that boundary,
517 so make do with the larger portion of the buffer that doesn't cross.
518 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
519static inline void *split_cross_256mb(void *buf1, size_t size1)
520{
521 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
522 size_t size2 = buf1 + size1 - buf2;
523
524 size1 = buf2 - buf1;
525 if (size1 < size2) {
526 size1 = size2;
527 buf1 = buf2;
528 }
529
530 tcg_ctx.code_gen_buffer_size = size1;
531 return buf1;
532}
533#endif
534
5b6dd868
BS
535#ifdef USE_STATIC_CODE_GEN_BUFFER
536static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
537 __attribute__((aligned(CODE_GEN_ALIGN)));
538
539static inline void *alloc_code_gen_buffer(void)
540{
483c76e1
RH
541 void *buf = static_code_gen_buffer;
542#ifdef __mips__
543 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
544 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
545 }
546#endif
547 map_exec(buf, tcg_ctx.code_gen_buffer_size);
548 return buf;
5b6dd868
BS
549}
550#elif defined(USE_MMAP)
551static inline void *alloc_code_gen_buffer(void)
552{
553 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
554 uintptr_t start = 0;
555 void *buf;
556
557 /* Constrain the position of the buffer based on the host cpu.
558 Note that these addresses are chosen in concert with the
559 addresses assigned in the relevant linker script file. */
560# if defined(__PIE__) || defined(__PIC__)
561 /* Don't bother setting a preferred location if we're building
562 a position-independent executable. We're more likely to get
563 an address near the main executable if we let the kernel
564 choose the address. */
565# elif defined(__x86_64__) && defined(MAP_32BIT)
566 /* Force the memory down into low memory with the executable.
567 Leave the choice of exact location with the kernel. */
568 flags |= MAP_32BIT;
569 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
570 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
571 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
572 }
573# elif defined(__sparc__)
574 start = 0x40000000ul;
575# elif defined(__s390x__)
576 start = 0x90000000ul;
479eb121
RH
577# elif defined(__mips__)
578 /* ??? We ought to more explicitly manage layout for softmmu too. */
579# ifdef CONFIG_USER_ONLY
580 start = 0x68000000ul;
581# elif _MIPS_SIM == _ABI64
582 start = 0x128000000ul;
583# else
584 start = 0x08000000ul;
585# endif
5b6dd868
BS
586# endif
587
0b0d3320 588 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868 589 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
483c76e1
RH
590 if (buf == MAP_FAILED) {
591 return NULL;
592 }
593
594#ifdef __mips__
595 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
5d831be2 596 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1
RH
597 that 256mb crossing. This time don't specify an address. */
598 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
599 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
600 flags, -1, 0);
601 if (buf2 != MAP_FAILED) {
602 if (!cross_256mb(buf2, size1)) {
603 /* Success! Use the new buffer. */
604 munmap(buf, size1);
605 return buf2;
606 }
607 /* Failure. Work with what we had. */
608 munmap(buf2, size1);
609 }
610
611 /* Split the original buffer. Free the smaller half. */
612 buf2 = split_cross_256mb(buf, size1);
613 size2 = tcg_ctx.code_gen_buffer_size;
614 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
615 return buf2;
616 }
617#endif
618
619 return buf;
5b6dd868
BS
620}
621#else
622static inline void *alloc_code_gen_buffer(void)
623{
8b98ade3 624 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868 625
483c76e1
RH
626 if (buf == NULL) {
627 return NULL;
628 }
629
630#ifdef __mips__
631 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
632 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
633 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
634 /* Success! Use the new buffer. */
635 free(buf);
636 buf = buf2;
637 } else {
638 /* Failure. Work with what we had. Since this is malloc
639 and not mmap, we can't free the other half. */
640 free(buf2);
641 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
642 }
5b6dd868 643 }
483c76e1
RH
644#endif
645
646 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
647 return buf;
648}
649#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
650
651static inline void code_gen_alloc(size_t tb_size)
652{
0b0d3320
EV
653 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
654 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
655 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
656 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
657 exit(1);
658 }
659
0b0d3320
EV
660 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
661 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
662
663 /* Steal room for the prologue at the end of the buffer. This ensures
664 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
665 from TB's to the prologue are going to be in range. It also means
666 that we don't need to mark (additional) portions of the data segment
667 as executable. */
0b0d3320
EV
668 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
669 tcg_ctx.code_gen_buffer_size - 1024;
670 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 671
0b0d3320 672 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 673 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
674 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
675 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
676 tcg_ctx.tb_ctx.tbs =
677 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
678}
679
680/* Must be called before using the QEMU cpus. 'tb_size' is the size
681 (in bytes) allocated to the translation buffer. Zero means default
682 size. */
683void tcg_exec_init(unsigned long tb_size)
684{
685 cpu_gen_init();
686 code_gen_alloc(tb_size);
0b0d3320
EV
687 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
688 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868 689 page_init();
4cbea598 690#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
691 /* There's no guest base to take into account, so go ahead and
692 initialize the prologue now. */
693 tcg_prologue_init(&tcg_ctx);
694#endif
695}
696
697bool tcg_enabled(void)
698{
0b0d3320 699 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
700}
701
702/* Allocate a new translation block. Flush the translation buffer if
703 too many translation blocks or too much generated code. */
704static TranslationBlock *tb_alloc(target_ulong pc)
705{
706 TranslationBlock *tb;
707
5e5f07e0 708 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
709 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
710 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
711 return NULL;
712 }
5e5f07e0 713 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
714 tb->pc = pc;
715 tb->cflags = 0;
716 return tb;
717}
718
719void tb_free(TranslationBlock *tb)
720{
721 /* In practice this is mostly used for single use temporary TB
722 Ignore the hard cases and just back up if this TB happens to
723 be the last one generated. */
5e5f07e0
EV
724 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
725 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 726 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 727 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
728 }
729}
730
731static inline void invalidate_page_bitmap(PageDesc *p)
732{
733 if (p->code_bitmap) {
734 g_free(p->code_bitmap);
735 p->code_bitmap = NULL;
736 }
737 p->code_write_count = 0;
738}
739
740/* Set to NULL all the 'first_tb' fields in all PageDescs. */
741static void page_flush_tb_1(int level, void **lp)
742{
743 int i;
744
745 if (*lp == NULL) {
746 return;
747 }
748 if (level == 0) {
749 PageDesc *pd = *lp;
750
03f49957 751 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
752 pd[i].first_tb = NULL;
753 invalidate_page_bitmap(pd + i);
754 }
755 } else {
756 void **pp = *lp;
757
03f49957 758 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
759 page_flush_tb_1(level - 1, pp + i);
760 }
761 }
762}
763
764static void page_flush_tb(void)
765{
766 int i;
767
768 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 769 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
770 }
771}
772
773/* flush all the translation blocks */
774/* XXX: tb_flush is currently not thread safe */
bbd77c18 775void tb_flush(CPUState *cpu)
5b6dd868 776{
5b6dd868
BS
777#if defined(DEBUG_FLUSH)
778 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 779 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 780 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 781 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 782 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 783#endif
0b0d3320
EV
784 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
785 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 786 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 787 }
5e5f07e0 788 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 789
bdc44640 790 CPU_FOREACH(cpu) {
8cd70437 791 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
792 }
793
eb2535f4 794 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
795 page_flush_tb();
796
0b0d3320 797 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
798 /* XXX: flush processor icache at this point if cache flush is
799 expensive */
5e5f07e0 800 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
801}
802
803#ifdef DEBUG_TB_CHECK
804
805static void tb_invalidate_check(target_ulong address)
806{
807 TranslationBlock *tb;
808 int i;
809
810 address &= TARGET_PAGE_MASK;
811 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 812 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
813 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
814 address >= tb->pc + tb->size)) {
815 printf("ERROR invalidate: address=" TARGET_FMT_lx
816 " PC=%08lx size=%04x\n",
817 address, (long)tb->pc, tb->size);
818 }
819 }
820 }
821}
822
823/* verify that all the pages have correct rights for code */
824static void tb_page_check(void)
825{
826 TranslationBlock *tb;
827 int i, flags1, flags2;
828
829 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
830 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
831 tb = tb->phys_hash_next) {
5b6dd868
BS
832 flags1 = page_get_flags(tb->pc);
833 flags2 = page_get_flags(tb->pc + tb->size - 1);
834 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
835 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
836 (long)tb->pc, tb->size, flags1, flags2);
837 }
838 }
839 }
840}
841
842#endif
843
0c884d16 844static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
845{
846 TranslationBlock *tb1;
847
848 for (;;) {
849 tb1 = *ptb;
850 if (tb1 == tb) {
0c884d16 851 *ptb = tb1->phys_hash_next;
5b6dd868
BS
852 break;
853 }
0c884d16 854 ptb = &tb1->phys_hash_next;
5b6dd868
BS
855 }
856}
857
858static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
859{
860 TranslationBlock *tb1;
861 unsigned int n1;
862
863 for (;;) {
864 tb1 = *ptb;
865 n1 = (uintptr_t)tb1 & 3;
866 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
867 if (tb1 == tb) {
868 *ptb = tb1->page_next[n1];
869 break;
870 }
871 ptb = &tb1->page_next[n1];
872 }
873}
874
875static inline void tb_jmp_remove(TranslationBlock *tb, int n)
876{
877 TranslationBlock *tb1, **ptb;
878 unsigned int n1;
879
880 ptb = &tb->jmp_next[n];
881 tb1 = *ptb;
882 if (tb1) {
883 /* find tb(n) in circular list */
884 for (;;) {
885 tb1 = *ptb;
886 n1 = (uintptr_t)tb1 & 3;
887 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
888 if (n1 == n && tb1 == tb) {
889 break;
890 }
891 if (n1 == 2) {
892 ptb = &tb1->jmp_first;
893 } else {
894 ptb = &tb1->jmp_next[n1];
895 }
896 }
897 /* now we can suppress tb(n) from the list */
898 *ptb = tb->jmp_next[n];
899
900 tb->jmp_next[n] = NULL;
901 }
902}
903
904/* reset the jump entry 'n' of a TB so that it is not chained to
905 another TB */
906static inline void tb_reset_jump(TranslationBlock *tb, int n)
907{
908 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
909}
910
0c884d16 911/* invalidate one TB */
5b6dd868
BS
912void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
913{
182735ef 914 CPUState *cpu;
5b6dd868
BS
915 PageDesc *p;
916 unsigned int h, n1;
917 tb_page_addr_t phys_pc;
918 TranslationBlock *tb1, *tb2;
919
920 /* remove the TB from the hash list */
921 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
922 h = tb_phys_hash_func(phys_pc);
5e5f07e0 923 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
924
925 /* remove the TB from the page list */
926 if (tb->page_addr[0] != page_addr) {
927 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
928 tb_page_remove(&p->first_tb, tb);
929 invalidate_page_bitmap(p);
930 }
931 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
932 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
933 tb_page_remove(&p->first_tb, tb);
934 invalidate_page_bitmap(p);
935 }
936
5e5f07e0 937 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
938
939 /* remove the TB from the hash list */
940 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 941 CPU_FOREACH(cpu) {
8cd70437
AF
942 if (cpu->tb_jmp_cache[h] == tb) {
943 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
944 }
945 }
946
947 /* suppress this TB from the two jump lists */
948 tb_jmp_remove(tb, 0);
949 tb_jmp_remove(tb, 1);
950
951 /* suppress any remaining jumps to this TB */
952 tb1 = tb->jmp_first;
953 for (;;) {
954 n1 = (uintptr_t)tb1 & 3;
955 if (n1 == 2) {
956 break;
957 }
958 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
959 tb2 = tb1->jmp_next[n1];
960 tb_reset_jump(tb1, n1);
961 tb1->jmp_next[n1] = NULL;
962 tb1 = tb2;
963 }
964 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
965
5e5f07e0 966 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
967}
968
5b6dd868
BS
969static void build_page_bitmap(PageDesc *p)
970{
971 int n, tb_start, tb_end;
972 TranslationBlock *tb;
973
510a647f 974 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
975
976 tb = p->first_tb;
977 while (tb != NULL) {
978 n = (uintptr_t)tb & 3;
979 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
980 /* NOTE: this is subtle as a TB may span two physical pages */
981 if (n == 0) {
982 /* NOTE: tb_end may be after the end of the page, but
983 it is not a problem */
984 tb_start = tb->pc & ~TARGET_PAGE_MASK;
985 tb_end = tb_start + tb->size;
986 if (tb_end > TARGET_PAGE_SIZE) {
987 tb_end = TARGET_PAGE_SIZE;
988 }
989 } else {
990 tb_start = 0;
991 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
992 }
510a647f 993 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
994 tb = tb->page_next[n];
995 }
996}
997
648f034c 998TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
999 target_ulong pc, target_ulong cs_base,
1000 int flags, int cflags)
1001{
648f034c 1002 CPUArchState *env = cpu->env_ptr;
5b6dd868 1003 TranslationBlock *tb;
5b6dd868
BS
1004 tb_page_addr_t phys_pc, phys_page2;
1005 target_ulong virt_page2;
1006 int code_gen_size;
1007
1008 phys_pc = get_page_addr_code(env, pc);
0266359e
PB
1009 if (use_icount) {
1010 cflags |= CF_USE_ICOUNT;
1011 }
5b6dd868
BS
1012 tb = tb_alloc(pc);
1013 if (!tb) {
1014 /* flush must be done */
bbd77c18 1015 tb_flush(cpu);
5b6dd868
BS
1016 /* cannot fail at this point */
1017 tb = tb_alloc(pc);
1018 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1019 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1020 }
1813e175 1021 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
1022 tb->cs_base = cs_base;
1023 tb->flags = flags;
1024 tb->cflags = cflags;
1025 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
1026 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1027 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
1028
1029 /* check next page if needed */
1030 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1031 phys_page2 = -1;
1032 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1033 phys_page2 = get_page_addr_code(env, virt_page2);
1034 }
1035 tb_link_page(tb, phys_pc, phys_page2);
1036 return tb;
1037}
1038
1039/*
1040 * Invalidate all TBs which intersect with the target physical address range
1041 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1042 * 'is_cpu_write_access' should be true if called from a real cpu write
1043 * access: the virtual CPU will exit the current TB if code is modified inside
1044 * this TB.
1045 */
35865339 1046void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1047{
1048 while (start < end) {
35865339 1049 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1050 start &= TARGET_PAGE_MASK;
1051 start += TARGET_PAGE_SIZE;
1052 }
1053}
1054
1055/*
1056 * Invalidate all TBs which intersect with the target physical address range
1057 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1058 * 'is_cpu_write_access' should be true if called from a real cpu write
1059 * access: the virtual CPU will exit the current TB if code is modified inside
1060 * this TB.
1061 */
1062void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1063 int is_cpu_write_access)
1064{
1065 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1066 CPUState *cpu = current_cpu;
baea4fae 1067#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1068 CPUArchState *env = NULL;
1069#endif
5b6dd868
BS
1070 tb_page_addr_t tb_start, tb_end;
1071 PageDesc *p;
1072 int n;
1073#ifdef TARGET_HAS_PRECISE_SMC
1074 int current_tb_not_found = is_cpu_write_access;
1075 TranslationBlock *current_tb = NULL;
1076 int current_tb_modified = 0;
1077 target_ulong current_pc = 0;
1078 target_ulong current_cs_base = 0;
1079 int current_flags = 0;
1080#endif /* TARGET_HAS_PRECISE_SMC */
1081
1082 p = page_find(start >> TARGET_PAGE_BITS);
1083 if (!p) {
1084 return;
1085 }
baea4fae 1086#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1087 if (cpu != NULL) {
1088 env = cpu->env_ptr;
d77953b9 1089 }
4917cf44 1090#endif
5b6dd868
BS
1091
1092 /* we remove all the TBs in the range [start, end[ */
1093 /* XXX: see if in some cases it could be faster to invalidate all
1094 the code */
1095 tb = p->first_tb;
1096 while (tb != NULL) {
1097 n = (uintptr_t)tb & 3;
1098 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1099 tb_next = tb->page_next[n];
1100 /* NOTE: this is subtle as a TB may span two physical pages */
1101 if (n == 0) {
1102 /* NOTE: tb_end may be after the end of the page, but
1103 it is not a problem */
1104 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1105 tb_end = tb_start + tb->size;
1106 } else {
1107 tb_start = tb->page_addr[1];
1108 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1109 }
1110 if (!(tb_end <= start || tb_start >= end)) {
1111#ifdef TARGET_HAS_PRECISE_SMC
1112 if (current_tb_not_found) {
1113 current_tb_not_found = 0;
1114 current_tb = NULL;
93afeade 1115 if (cpu->mem_io_pc) {
5b6dd868 1116 /* now we have a real cpu fault */
93afeade 1117 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1118 }
1119 }
1120 if (current_tb == tb &&
1121 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1122 /* If we are modifying the current TB, we must stop
1123 its execution. We could be more precise by checking
1124 that the modification is after the current PC, but it
1125 would require a specialized function to partially
1126 restore the CPU state */
1127
1128 current_tb_modified = 1;
74f10515 1129 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1130 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1131 &current_flags);
1132 }
1133#endif /* TARGET_HAS_PRECISE_SMC */
1134 /* we need to do that to handle the case where a signal
1135 occurs while doing tb_phys_invalidate() */
1136 saved_tb = NULL;
d77953b9
AF
1137 if (cpu != NULL) {
1138 saved_tb = cpu->current_tb;
1139 cpu->current_tb = NULL;
5b6dd868
BS
1140 }
1141 tb_phys_invalidate(tb, -1);
d77953b9
AF
1142 if (cpu != NULL) {
1143 cpu->current_tb = saved_tb;
c3affe56
AF
1144 if (cpu->interrupt_request && cpu->current_tb) {
1145 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1146 }
1147 }
1148 }
1149 tb = tb_next;
1150 }
1151#if !defined(CONFIG_USER_ONLY)
1152 /* if no code remaining, no need to continue to use slow writes */
1153 if (!p->first_tb) {
1154 invalidate_page_bitmap(p);
fc377bcf 1155 tlb_unprotect_code(start);
5b6dd868
BS
1156 }
1157#endif
1158#ifdef TARGET_HAS_PRECISE_SMC
1159 if (current_tb_modified) {
1160 /* we generate a block containing just the instruction
1161 modifying the memory. It will ensure that it cannot modify
1162 itself */
d77953b9 1163 cpu->current_tb = NULL;
648f034c 1164 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1165 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1166 }
1167#endif
1168}
1169
1170/* len must be <= 8 and start must be a multiple of len */
1171void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1172{
1173 PageDesc *p;
5b6dd868
BS
1174
1175#if 0
1176 if (1) {
1177 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1178 cpu_single_env->mem_io_vaddr, len,
1179 cpu_single_env->eip,
1180 cpu_single_env->eip +
1181 (intptr_t)cpu_single_env->segs[R_CS].base);
1182 }
1183#endif
1184 p = page_find(start >> TARGET_PAGE_BITS);
1185 if (!p) {
1186 return;
1187 }
fc377bcf
PB
1188 if (!p->code_bitmap &&
1189 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1190 /* build code bitmap */
1191 build_page_bitmap(p);
1192 }
5b6dd868 1193 if (p->code_bitmap) {
510a647f
EC
1194 unsigned int nr;
1195 unsigned long b;
1196
1197 nr = start & ~TARGET_PAGE_MASK;
1198 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1199 if (b & ((1 << len) - 1)) {
1200 goto do_invalidate;
1201 }
1202 } else {
1203 do_invalidate:
1204 tb_invalidate_phys_page_range(start, start + len, 1);
1205 }
1206}
1207
1208#if !defined(CONFIG_SOFTMMU)
1209static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1210 uintptr_t pc, void *puc,
1211 bool locked)
5b6dd868
BS
1212{
1213 TranslationBlock *tb;
1214 PageDesc *p;
1215 int n;
1216#ifdef TARGET_HAS_PRECISE_SMC
1217 TranslationBlock *current_tb = NULL;
4917cf44
AF
1218 CPUState *cpu = current_cpu;
1219 CPUArchState *env = NULL;
5b6dd868
BS
1220 int current_tb_modified = 0;
1221 target_ulong current_pc = 0;
1222 target_ulong current_cs_base = 0;
1223 int current_flags = 0;
1224#endif
1225
1226 addr &= TARGET_PAGE_MASK;
1227 p = page_find(addr >> TARGET_PAGE_BITS);
1228 if (!p) {
1229 return;
1230 }
1231 tb = p->first_tb;
1232#ifdef TARGET_HAS_PRECISE_SMC
1233 if (tb && pc != 0) {
1234 current_tb = tb_find_pc(pc);
1235 }
4917cf44
AF
1236 if (cpu != NULL) {
1237 env = cpu->env_ptr;
d77953b9 1238 }
5b6dd868
BS
1239#endif
1240 while (tb != NULL) {
1241 n = (uintptr_t)tb & 3;
1242 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1243#ifdef TARGET_HAS_PRECISE_SMC
1244 if (current_tb == tb &&
1245 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1246 /* If we are modifying the current TB, we must stop
1247 its execution. We could be more precise by checking
1248 that the modification is after the current PC, but it
1249 would require a specialized function to partially
1250 restore the CPU state */
1251
1252 current_tb_modified = 1;
74f10515 1253 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1254 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1255 &current_flags);
1256 }
1257#endif /* TARGET_HAS_PRECISE_SMC */
1258 tb_phys_invalidate(tb, addr);
1259 tb = tb->page_next[n];
1260 }
1261 p->first_tb = NULL;
1262#ifdef TARGET_HAS_PRECISE_SMC
1263 if (current_tb_modified) {
1264 /* we generate a block containing just the instruction
1265 modifying the memory. It will ensure that it cannot modify
1266 itself */
d77953b9 1267 cpu->current_tb = NULL;
648f034c 1268 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1269 if (locked) {
1270 mmap_unlock();
1271 }
0ea8cb88 1272 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1273 }
1274#endif
1275}
1276#endif
1277
1278/* add the tb in the target page and protect it if necessary */
1279static inline void tb_alloc_page(TranslationBlock *tb,
1280 unsigned int n, tb_page_addr_t page_addr)
1281{
1282 PageDesc *p;
1283#ifndef CONFIG_USER_ONLY
1284 bool page_already_protected;
1285#endif
1286
1287 tb->page_addr[n] = page_addr;
1288 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1289 tb->page_next[n] = p->first_tb;
1290#ifndef CONFIG_USER_ONLY
1291 page_already_protected = p->first_tb != NULL;
1292#endif
1293 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1294 invalidate_page_bitmap(p);
1295
5b6dd868
BS
1296#if defined(CONFIG_USER_ONLY)
1297 if (p->flags & PAGE_WRITE) {
1298 target_ulong addr;
1299 PageDesc *p2;
1300 int prot;
1301
1302 /* force the host page as non writable (writes will have a
1303 page fault + mprotect overhead) */
1304 page_addr &= qemu_host_page_mask;
1305 prot = 0;
1306 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1307 addr += TARGET_PAGE_SIZE) {
1308
1309 p2 = page_find(addr >> TARGET_PAGE_BITS);
1310 if (!p2) {
1311 continue;
1312 }
1313 prot |= p2->flags;
1314 p2->flags &= ~PAGE_WRITE;
1315 }
1316 mprotect(g2h(page_addr), qemu_host_page_size,
1317 (prot & PAGE_BITS) & ~PAGE_WRITE);
1318#ifdef DEBUG_TB_INVALIDATE
1319 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1320 page_addr);
1321#endif
1322 }
1323#else
1324 /* if some code is already present, then the pages are already
1325 protected. So we handle the case where only the first TB is
1326 allocated in a physical page */
1327 if (!page_already_protected) {
1328 tlb_protect_code(page_addr);
1329 }
1330#endif
5b6dd868
BS
1331}
1332
1333/* add a new TB and link it to the physical page tables. phys_page2 is
1334 (-1) to indicate that only one page contains the TB. */
1335static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1336 tb_page_addr_t phys_page2)
1337{
1338 unsigned int h;
1339 TranslationBlock **ptb;
1340
1341 /* Grab the mmap lock to stop another thread invalidating this TB
1342 before we are done. */
1343 mmap_lock();
1344 /* add in the physical hash table */
1345 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1346 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1347 tb->phys_hash_next = *ptb;
1348 *ptb = tb;
1349
1350 /* add in the page list */
1351 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1352 if (phys_page2 != -1) {
1353 tb_alloc_page(tb, 1, phys_page2);
1354 } else {
1355 tb->page_addr[1] = -1;
1356 }
1357
1358 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1359 tb->jmp_next[0] = NULL;
1360 tb->jmp_next[1] = NULL;
1361
1362 /* init original jump addresses */
1363 if (tb->tb_next_offset[0] != 0xffff) {
1364 tb_reset_jump(tb, 0);
1365 }
1366 if (tb->tb_next_offset[1] != 0xffff) {
1367 tb_reset_jump(tb, 1);
1368 }
1369
1370#ifdef DEBUG_TB_CHECK
1371 tb_page_check();
1372#endif
1373 mmap_unlock();
1374}
1375
5b6dd868
BS
1376/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1377 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1378static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1379{
1380 int m_min, m_max, m;
1381 uintptr_t v;
1382 TranslationBlock *tb;
1383
5e5f07e0 1384 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1385 return NULL;
1386 }
0b0d3320
EV
1387 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1388 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1389 return NULL;
1390 }
1391 /* binary search (cf Knuth) */
1392 m_min = 0;
5e5f07e0 1393 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1394 while (m_min <= m_max) {
1395 m = (m_min + m_max) >> 1;
5e5f07e0 1396 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1397 v = (uintptr_t)tb->tc_ptr;
1398 if (v == tc_ptr) {
1399 return tb;
1400 } else if (tc_ptr < v) {
1401 m_max = m - 1;
1402 } else {
1403 m_min = m + 1;
1404 }
1405 }
5e5f07e0 1406 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1407}
1408
ec53b45b 1409#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1410void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1411{
1412 ram_addr_t ram_addr;
5c8a00ce 1413 MemoryRegion *mr;
149f54b5 1414 hwaddr l = 1;
5b6dd868 1415
41063e1e 1416 rcu_read_lock();
29d8ec7b 1417 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1418 if (!(memory_region_is_ram(mr)
1419 || memory_region_is_romd(mr))) {
41063e1e 1420 rcu_read_unlock();
5b6dd868
BS
1421 return;
1422 }
5c8a00ce 1423 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1424 + addr;
5b6dd868 1425 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1426 rcu_read_unlock();
5b6dd868 1427}
ec53b45b 1428#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1429
239c51a5 1430void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1431{
1432 TranslationBlock *tb;
1433
93afeade 1434 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1435 if (tb) {
1436 /* We can use retranslation to find the PC. */
1437 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1438 tb_phys_invalidate(tb, -1);
1439 } else {
1440 /* The exception probably happened in a helper. The CPU state should
1441 have been saved before calling it. Fetch the PC from there. */
1442 CPUArchState *env = cpu->env_ptr;
1443 target_ulong pc, cs_base;
1444 tb_page_addr_t addr;
1445 int flags;
1446
1447 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1448 addr = get_page_addr_code(env, pc);
1449 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1450 }
5b6dd868
BS
1451}
1452
1453#ifndef CONFIG_USER_ONLY
1454/* mask must never be zero, except for A20 change call */
c3affe56 1455static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1456{
5b6dd868
BS
1457 int old_mask;
1458
259186a7
AF
1459 old_mask = cpu->interrupt_request;
1460 cpu->interrupt_request |= mask;
5b6dd868
BS
1461
1462 /*
1463 * If called from iothread context, wake the target cpu in
1464 * case its halted.
1465 */
1466 if (!qemu_cpu_is_self(cpu)) {
1467 qemu_cpu_kick(cpu);
1468 return;
1469 }
1470
1471 if (use_icount) {
28ecfd7a 1472 cpu->icount_decr.u16.high = 0xffff;
414b15c9 1473 if (!cpu->can_do_io
5b6dd868 1474 && (mask & ~old_mask) != 0) {
a47dddd7 1475 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1476 }
1477 } else {
378df4b2 1478 cpu->tcg_exit_req = 1;
5b6dd868
BS
1479 }
1480}
1481
1482CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1483
1484/* in deterministic execution mode, instructions doing device I/Os
1485 must be at the end of the TB */
90b40a69 1486void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1487{
a47dddd7 1488#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1489 CPUArchState *env = cpu->env_ptr;
a47dddd7 1490#endif
5b6dd868
BS
1491 TranslationBlock *tb;
1492 uint32_t n, cflags;
1493 target_ulong pc, cs_base;
1494 uint64_t flags;
1495
1496 tb = tb_find_pc(retaddr);
1497 if (!tb) {
a47dddd7 1498 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1499 (void *)retaddr);
1500 }
28ecfd7a 1501 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1502 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1503 /* Calculate how many instructions had been executed before the fault
1504 occurred. */
28ecfd7a 1505 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1506 /* Generate a new TB ending on the I/O insn. */
1507 n++;
1508 /* On MIPS and SH, delay slot instructions can only be restarted if
1509 they were already the first instruction in the TB. If this is not
1510 the first instruction in a TB then re-execute the preceding
1511 branch. */
1512#if defined(TARGET_MIPS)
1513 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1514 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1515 cpu->icount_decr.u16.low++;
5b6dd868
BS
1516 env->hflags &= ~MIPS_HFLAG_BMASK;
1517 }
1518#elif defined(TARGET_SH4)
1519 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1520 && n > 1) {
1521 env->pc -= 2;
28ecfd7a 1522 cpu->icount_decr.u16.low++;
5b6dd868
BS
1523 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1524 }
1525#endif
1526 /* This should never happen. */
1527 if (n > CF_COUNT_MASK) {
a47dddd7 1528 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1529 }
1530
1531 cflags = n | CF_LAST_IO;
1532 pc = tb->pc;
1533 cs_base = tb->cs_base;
1534 flags = tb->flags;
1535 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1536 if (tb->cflags & CF_NOCACHE) {
1537 if (tb->orig_tb) {
1538 /* Invalidate original TB if this TB was generated in
1539 * cpu_exec_nocache() */
1540 tb_phys_invalidate(tb->orig_tb, -1);
1541 }
1542 tb_free(tb);
1543 }
5b6dd868
BS
1544 /* FIXME: In theory this could raise an exception. In practice
1545 we have already translated the block once so it's probably ok. */
648f034c 1546 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1547 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1548 the first in the TB) then we end up generating a whole new TB and
1549 repeating the fault, which is horribly inefficient.
1550 Better would be to execute just this insn uncached, or generate a
1551 second new TB. */
0ea8cb88 1552 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1553}
1554
611d4f99 1555void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1556{
1557 unsigned int i;
1558
1559 /* Discard jump cache entries for any tb which might potentially
1560 overlap the flushed page. */
1561 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1562 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1563 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1564
1565 i = tb_jmp_cache_hash_page(addr);
8cd70437 1566 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1567 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1568}
1569
1570void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1571{
1572 int i, target_code_size, max_target_code_size;
1573 int direct_jmp_count, direct_jmp2_count, cross_page;
1574 TranslationBlock *tb;
1575
1576 target_code_size = 0;
1577 max_target_code_size = 0;
1578 cross_page = 0;
1579 direct_jmp_count = 0;
1580 direct_jmp2_count = 0;
5e5f07e0
EV
1581 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1582 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1583 target_code_size += tb->size;
1584 if (tb->size > max_target_code_size) {
1585 max_target_code_size = tb->size;
1586 }
1587 if (tb->page_addr[1] != -1) {
1588 cross_page++;
1589 }
1590 if (tb->tb_next_offset[0] != 0xffff) {
1591 direct_jmp_count++;
1592 if (tb->tb_next_offset[1] != 0xffff) {
1593 direct_jmp2_count++;
1594 }
1595 }
1596 }
1597 /* XXX: avoid using doubles ? */
1598 cpu_fprintf(f, "Translation buffer state:\n");
1599 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1600 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1601 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1602 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1603 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1604 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1605 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1606 tcg_ctx.tb_ctx.nb_tbs : 0,
1607 max_target_code_size);
5b6dd868 1608 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1609 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1610 tcg_ctx.code_gen_buffer) /
1611 tcg_ctx.tb_ctx.nb_tbs : 0,
1612 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1613 tcg_ctx.code_gen_buffer) /
1614 target_code_size : 0);
1615 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1616 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1617 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1618 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1619 direct_jmp_count,
5e5f07e0
EV
1620 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1621 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1622 direct_jmp2_count,
5e5f07e0
EV
1623 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1624 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1625 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1626 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1627 cpu_fprintf(f, "TB invalidate count %d\n",
1628 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1629 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1630 tcg_dump_info(f, cpu_fprintf);
1631}
1632
246ae24d
MF
1633void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1634{
1635 tcg_dump_op_count(f, cpu_fprintf);
1636}
1637
5b6dd868
BS
1638#else /* CONFIG_USER_ONLY */
1639
c3affe56 1640void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1641{
259186a7 1642 cpu->interrupt_request |= mask;
378df4b2 1643 cpu->tcg_exit_req = 1;
5b6dd868
BS
1644}
1645
1646/*
1647 * Walks guest process memory "regions" one by one
1648 * and calls callback function 'fn' for each region.
1649 */
1650struct walk_memory_regions_data {
1651 walk_memory_regions_fn fn;
1652 void *priv;
1a1c4db9 1653 target_ulong start;
5b6dd868
BS
1654 int prot;
1655};
1656
1657static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1658 target_ulong end, int new_prot)
5b6dd868 1659{
1a1c4db9 1660 if (data->start != -1u) {
5b6dd868
BS
1661 int rc = data->fn(data->priv, data->start, end, data->prot);
1662 if (rc != 0) {
1663 return rc;
1664 }
1665 }
1666
1a1c4db9 1667 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1668 data->prot = new_prot;
1669
1670 return 0;
1671}
1672
1673static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1674 target_ulong base, int level, void **lp)
5b6dd868 1675{
1a1c4db9 1676 target_ulong pa;
5b6dd868
BS
1677 int i, rc;
1678
1679 if (*lp == NULL) {
1680 return walk_memory_regions_end(data, base, 0);
1681 }
1682
1683 if (level == 0) {
1684 PageDesc *pd = *lp;
1685
03f49957 1686 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1687 int prot = pd[i].flags;
1688
1689 pa = base | (i << TARGET_PAGE_BITS);
1690 if (prot != data->prot) {
1691 rc = walk_memory_regions_end(data, pa, prot);
1692 if (rc != 0) {
1693 return rc;
1694 }
1695 }
1696 }
1697 } else {
1698 void **pp = *lp;
1699
03f49957 1700 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1701 pa = base | ((target_ulong)i <<
03f49957 1702 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1703 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1704 if (rc != 0) {
1705 return rc;
1706 }
1707 }
1708 }
1709
1710 return 0;
1711}
1712
1713int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1714{
1715 struct walk_memory_regions_data data;
1716 uintptr_t i;
1717
1718 data.fn = fn;
1719 data.priv = priv;
1a1c4db9 1720 data.start = -1u;
5b6dd868
BS
1721 data.prot = 0;
1722
1723 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1724 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1725 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1726 if (rc != 0) {
1727 return rc;
1728 }
1729 }
1730
1731 return walk_memory_regions_end(&data, 0, 0);
1732}
1733
1a1c4db9
MI
1734static int dump_region(void *priv, target_ulong start,
1735 target_ulong end, unsigned long prot)
5b6dd868
BS
1736{
1737 FILE *f = (FILE *)priv;
1738
1a1c4db9
MI
1739 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1740 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1741 start, end, end - start,
1742 ((prot & PAGE_READ) ? 'r' : '-'),
1743 ((prot & PAGE_WRITE) ? 'w' : '-'),
1744 ((prot & PAGE_EXEC) ? 'x' : '-'));
1745
1746 return 0;
1747}
1748
1749/* dump memory mappings */
1750void page_dump(FILE *f)
1751{
1a1c4db9 1752 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1753 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1754 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1755 walk_memory_regions(f, dump_region);
1756}
1757
1758int page_get_flags(target_ulong address)
1759{
1760 PageDesc *p;
1761
1762 p = page_find(address >> TARGET_PAGE_BITS);
1763 if (!p) {
1764 return 0;
1765 }
1766 return p->flags;
1767}
1768
1769/* Modify the flags of a page and invalidate the code if necessary.
1770 The flag PAGE_WRITE_ORG is positioned automatically depending
1771 on PAGE_WRITE. The mmap_lock should already be held. */
1772void page_set_flags(target_ulong start, target_ulong end, int flags)
1773{
1774 target_ulong addr, len;
1775
1776 /* This function should never be called with addresses outside the
1777 guest address space. If this assert fires, it probably indicates
1778 a missing call to h2g_valid. */
1779#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1780 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1781#endif
1782 assert(start < end);
1783
1784 start = start & TARGET_PAGE_MASK;
1785 end = TARGET_PAGE_ALIGN(end);
1786
1787 if (flags & PAGE_WRITE) {
1788 flags |= PAGE_WRITE_ORG;
1789 }
1790
1791 for (addr = start, len = end - start;
1792 len != 0;
1793 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1794 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1795
1796 /* If the write protection bit is set, then we invalidate
1797 the code inside. */
1798 if (!(p->flags & PAGE_WRITE) &&
1799 (flags & PAGE_WRITE) &&
1800 p->first_tb) {
d02532f0 1801 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1802 }
1803 p->flags = flags;
1804 }
1805}
1806
1807int page_check_range(target_ulong start, target_ulong len, int flags)
1808{
1809 PageDesc *p;
1810 target_ulong end;
1811 target_ulong addr;
1812
1813 /* This function should never be called with addresses outside the
1814 guest address space. If this assert fires, it probably indicates
1815 a missing call to h2g_valid. */
1816#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1817 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1818#endif
1819
1820 if (len == 0) {
1821 return 0;
1822 }
1823 if (start + len - 1 < start) {
1824 /* We've wrapped around. */
1825 return -1;
1826 }
1827
1828 /* must do before we loose bits in the next step */
1829 end = TARGET_PAGE_ALIGN(start + len);
1830 start = start & TARGET_PAGE_MASK;
1831
1832 for (addr = start, len = end - start;
1833 len != 0;
1834 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1835 p = page_find(addr >> TARGET_PAGE_BITS);
1836 if (!p) {
1837 return -1;
1838 }
1839 if (!(p->flags & PAGE_VALID)) {
1840 return -1;
1841 }
1842
1843 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1844 return -1;
1845 }
1846 if (flags & PAGE_WRITE) {
1847 if (!(p->flags & PAGE_WRITE_ORG)) {
1848 return -1;
1849 }
1850 /* unprotect the page if it was put read-only because it
1851 contains translated code */
1852 if (!(p->flags & PAGE_WRITE)) {
1853 if (!page_unprotect(addr, 0, NULL)) {
1854 return -1;
1855 }
1856 }
5b6dd868
BS
1857 }
1858 }
1859 return 0;
1860}
1861
1862/* called from signal handler: invalidate the code and unprotect the
1863 page. Return TRUE if the fault was successfully handled. */
1864int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1865{
1866 unsigned int prot;
1867 PageDesc *p;
1868 target_ulong host_start, host_end, addr;
1869
1870 /* Technically this isn't safe inside a signal handler. However we
1871 know this only ever happens in a synchronous SEGV handler, so in
1872 practice it seems to be ok. */
1873 mmap_lock();
1874
1875 p = page_find(address >> TARGET_PAGE_BITS);
1876 if (!p) {
1877 mmap_unlock();
1878 return 0;
1879 }
1880
1881 /* if the page was really writable, then we change its
1882 protection back to writable */
1883 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1884 host_start = address & qemu_host_page_mask;
1885 host_end = host_start + qemu_host_page_size;
1886
1887 prot = 0;
1888 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1889 p = page_find(addr >> TARGET_PAGE_BITS);
1890 p->flags |= PAGE_WRITE;
1891 prot |= p->flags;
1892
1893 /* and since the content will be modified, we must invalidate
1894 the corresponding translated code. */
d02532f0 1895 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1896#ifdef DEBUG_TB_CHECK
1897 tb_invalidate_check(addr);
1898#endif
1899 }
1900 mprotect((void *)g2h(host_start), qemu_host_page_size,
1901 prot & PAGE_BITS);
1902
1903 mmap_unlock();
1904 return 1;
1905 }
1906 mmap_unlock();
1907 return 0;
1908}
1909#endif /* CONFIG_USER_ONLY */