]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
Merge remote-tracking branch 'remotes/spice/tags/pull-spice-20141216-1' into staging
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
5b6dd868 61#include "translate-all.h"
0aa09897 62#include "qemu/timer.h"
5b6dd868
BS
63
64//#define DEBUG_TB_INVALIDATE
65//#define DEBUG_FLUSH
66/* make various TB consistency checks */
67//#define DEBUG_TB_CHECK
68
69#if !defined(CONFIG_USER_ONLY)
70/* TB consistency checks only implemented for usermode emulation. */
71#undef DEBUG_TB_CHECK
72#endif
73
74#define SMC_BITMAP_USE_THRESHOLD 10
75
5b6dd868
BS
76typedef struct PageDesc {
77 /* list of TBs intersecting this ram page */
78 TranslationBlock *first_tb;
79 /* in order to optimize self modifying code, we count the number
80 of lookups we do to a given page to use a bitmap */
81 unsigned int code_write_count;
82 uint8_t *code_bitmap;
83#if defined(CONFIG_USER_ONLY)
84 unsigned long flags;
85#endif
86} PageDesc;
87
88/* In system mode we want L1_MAP to be based on ram offsets,
89 while in user mode we want it to be based on virtual addresses. */
90#if !defined(CONFIG_USER_ONLY)
91#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
92# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
93#else
94# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
95#endif
96#else
97# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
98#endif
99
03f49957
PB
100/* Size of the L2 (and L3, etc) page tables. */
101#define V_L2_BITS 10
102#define V_L2_SIZE (1 << V_L2_BITS)
103
5b6dd868
BS
104/* The bits remaining after N lower levels of page tables. */
105#define V_L1_BITS_REM \
03f49957 106 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
107
108#if V_L1_BITS_REM < 4
03f49957 109#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
110#else
111#define V_L1_BITS V_L1_BITS_REM
112#endif
113
114#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
115
116#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
117
118uintptr_t qemu_real_host_page_size;
119uintptr_t qemu_host_page_size;
120uintptr_t qemu_host_page_mask;
121
122/* This is a multi-level map on the virtual address space.
123 The bottom level has pointers to PageDesc. */
124static void *l1_map[V_L1_SIZE];
125
57fec1fe
FB
126/* code generation context */
127TCGContext tcg_ctx;
d19893da 128
5b6dd868
BS
129static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
130 tb_page_addr_t phys_page2);
a8a826a3 131static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 132
57fec1fe
FB
133void cpu_gen_init(void)
134{
135 tcg_context_init(&tcg_ctx);
57fec1fe
FB
136}
137
d19893da 138/* return non zero if the very first instruction is invalid so that
5fafdf24 139 the virtual CPU can trigger an exception.
d19893da
FB
140
141 '*gen_code_size_ptr' contains the size of the generated code (host
142 code).
143*/
9349b4f9 144int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 145{
57fec1fe 146 TCGContext *s = &tcg_ctx;
1813e175 147 tcg_insn_unit *gen_code_buf;
d19893da 148 int gen_code_size;
57fec1fe
FB
149#ifdef CONFIG_PROFILER
150 int64_t ti;
151#endif
152
153#ifdef CONFIG_PROFILER
b67d9a52
FB
154 s->tb_count1++; /* includes aborted translations because of
155 exceptions */
57fec1fe
FB
156 ti = profile_getclock();
157#endif
158 tcg_func_start(s);
d19893da 159
2cfc5f17
TS
160 gen_intermediate_code(env, tb);
161
6db8b538
AB
162 trace_translate_block(tb, tb->pc, tb->tc_ptr);
163
ec6338ba 164 /* generate machine code */
57fec1fe 165 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
166 tb->tb_next_offset[0] = 0xffff;
167 tb->tb_next_offset[1] = 0xffff;
57fec1fe 168 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 169#ifdef USE_DIRECT_JUMP
57fec1fe
FB
170 s->tb_jmp_offset = tb->tb_jmp_offset;
171 s->tb_next = NULL;
d19893da 172#else
57fec1fe
FB
173 s->tb_jmp_offset = NULL;
174 s->tb_next = tb->tb_next;
d19893da 175#endif
57fec1fe
FB
176
177#ifdef CONFIG_PROFILER
b67d9a52
FB
178 s->tb_count++;
179 s->interm_time += profile_getclock() - ti;
180 s->code_time -= profile_getclock();
57fec1fe 181#endif
54604f74 182 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 183 *gen_code_size_ptr = gen_code_size;
57fec1fe 184#ifdef CONFIG_PROFILER
b67d9a52
FB
185 s->code_time += profile_getclock();
186 s->code_in_len += tb->size;
187 s->code_out_len += gen_code_size;
57fec1fe
FB
188#endif
189
d19893da 190#ifdef DEBUG_DISAS
8fec2b8c 191 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
192 qemu_log("OUT: [size=%d]\n", gen_code_size);
193 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 194 qemu_log("\n");
31b1a7b4 195 qemu_log_flush();
d19893da
FB
196 }
197#endif
198 return 0;
199}
200
5fafdf24 201/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 202 */
74f10515 203static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 204 uintptr_t searched_pc)
d19893da 205{
74f10515 206 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
207 TCGContext *s = &tcg_ctx;
208 int j;
6375e09e 209 uintptr_t tc_ptr;
57fec1fe
FB
210#ifdef CONFIG_PROFILER
211 int64_t ti;
212#endif
213
214#ifdef CONFIG_PROFILER
215 ti = profile_getclock();
216#endif
217 tcg_func_start(s);
d19893da 218
2cfc5f17 219 gen_intermediate_code_pc(env, tb);
3b46e624 220
2e70f6ef
PB
221 if (use_icount) {
222 /* Reset the cycle counter to the start of the block. */
28ecfd7a 223 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 224 /* Clear the IO flag. */
99df7dce 225 cpu->can_do_io = 0;
2e70f6ef
PB
226 }
227
d19893da 228 /* find opc index corresponding to search_pc */
6375e09e 229 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
230 if (searched_pc < tc_ptr)
231 return -1;
57fec1fe
FB
232
233 s->tb_next_offset = tb->tb_next_offset;
234#ifdef USE_DIRECT_JUMP
235 s->tb_jmp_offset = tb->tb_jmp_offset;
236 s->tb_next = NULL;
237#else
238 s->tb_jmp_offset = NULL;
239 s->tb_next = tb->tb_next;
240#endif
1813e175
RH
241 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
242 searched_pc - tc_ptr);
57fec1fe
FB
243 if (j < 0)
244 return -1;
d19893da 245 /* now find start of instruction before */
ab1103de 246 while (s->gen_opc_instr_start[j] == 0) {
d19893da 247 j--;
ab1103de 248 }
28ecfd7a 249 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 250
e87b7cb0 251 restore_state_to_opc(env, tb, j);
57fec1fe
FB
252
253#ifdef CONFIG_PROFILER
b67d9a52
FB
254 s->restore_time += profile_getclock() - ti;
255 s->restore_count++;
57fec1fe 256#endif
d19893da
FB
257 return 0;
258}
5b6dd868 259
3f38f309 260bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
261{
262 TranslationBlock *tb;
263
264 tb = tb_find_pc(retaddr);
265 if (tb) {
74f10515 266 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
267 if (tb->cflags & CF_NOCACHE) {
268 /* one-shot translation, invalidate it immediately */
269 cpu->current_tb = NULL;
270 tb_phys_invalidate(tb, -1);
271 tb_free(tb);
272 }
a8a826a3
BS
273 return true;
274 }
275 return false;
276}
277
5b6dd868
BS
278#ifdef _WIN32
279static inline void map_exec(void *addr, long size)
280{
281 DWORD old_protect;
282 VirtualProtect(addr, size,
283 PAGE_EXECUTE_READWRITE, &old_protect);
284}
285#else
286static inline void map_exec(void *addr, long size)
287{
288 unsigned long start, end, page_size;
289
290 page_size = getpagesize();
291 start = (unsigned long)addr;
292 start &= ~(page_size - 1);
293
294 end = (unsigned long)addr + size;
295 end += page_size - 1;
296 end &= ~(page_size - 1);
297
298 mprotect((void *)start, end - start,
299 PROT_READ | PROT_WRITE | PROT_EXEC);
300}
301#endif
302
47c16ed5 303void page_size_init(void)
5b6dd868
BS
304{
305 /* NOTE: we can always suppose that qemu_host_page_size >=
306 TARGET_PAGE_SIZE */
5b6dd868 307 qemu_real_host_page_size = getpagesize();
5b6dd868
BS
308 if (qemu_host_page_size == 0) {
309 qemu_host_page_size = qemu_real_host_page_size;
310 }
311 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
312 qemu_host_page_size = TARGET_PAGE_SIZE;
313 }
314 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 315}
5b6dd868 316
47c16ed5
AK
317static void page_init(void)
318{
319 page_size_init();
5b6dd868
BS
320#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
321 {
322#ifdef HAVE_KINFO_GETVMMAP
323 struct kinfo_vmentry *freep;
324 int i, cnt;
325
326 freep = kinfo_getvmmap(getpid(), &cnt);
327 if (freep) {
328 mmap_lock();
329 for (i = 0; i < cnt; i++) {
330 unsigned long startaddr, endaddr;
331
332 startaddr = freep[i].kve_start;
333 endaddr = freep[i].kve_end;
334 if (h2g_valid(startaddr)) {
335 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
336
337 if (h2g_valid(endaddr)) {
338 endaddr = h2g(endaddr);
339 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
340 } else {
341#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
342 endaddr = ~0ul;
343 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
344#endif
345 }
346 }
347 }
348 free(freep);
349 mmap_unlock();
350 }
351#else
352 FILE *f;
353
354 last_brk = (unsigned long)sbrk(0);
355
356 f = fopen("/compat/linux/proc/self/maps", "r");
357 if (f) {
358 mmap_lock();
359
360 do {
361 unsigned long startaddr, endaddr;
362 int n;
363
364 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
365
366 if (n == 2 && h2g_valid(startaddr)) {
367 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
368
369 if (h2g_valid(endaddr)) {
370 endaddr = h2g(endaddr);
371 } else {
372 endaddr = ~0ul;
373 }
374 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
375 }
376 } while (!feof(f));
377
378 fclose(f);
379 mmap_unlock();
380 }
381#endif
382 }
383#endif
384}
385
386static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
387{
388 PageDesc *pd;
389 void **lp;
390 int i;
391
392#if defined(CONFIG_USER_ONLY)
393 /* We can't use g_malloc because it may recurse into a locked mutex. */
394# define ALLOC(P, SIZE) \
395 do { \
396 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
397 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
398 } while (0)
399#else
400# define ALLOC(P, SIZE) \
401 do { P = g_malloc0(SIZE); } while (0)
402#endif
403
404 /* Level 1. Always allocated. */
405 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
406
407 /* Level 2..N-1. */
03f49957 408 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
409 void **p = *lp;
410
411 if (p == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
03f49957 415 ALLOC(p, sizeof(void *) * V_L2_SIZE);
5b6dd868
BS
416 *lp = p;
417 }
418
03f49957 419 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
420 }
421
422 pd = *lp;
423 if (pd == NULL) {
424 if (!alloc) {
425 return NULL;
426 }
03f49957 427 ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE);
5b6dd868
BS
428 *lp = pd;
429 }
430
431#undef ALLOC
432
03f49957 433 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
434}
435
436static inline PageDesc *page_find(tb_page_addr_t index)
437{
438 return page_find_alloc(index, 0);
439}
440
441#if !defined(CONFIG_USER_ONLY)
442#define mmap_lock() do { } while (0)
443#define mmap_unlock() do { } while (0)
444#endif
445
446#if defined(CONFIG_USER_ONLY)
447/* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449/* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451#define USE_STATIC_CODE_GEN_BUFFER
452#endif
453
454/* ??? Should configure for this, not list operating systems here. */
455#if (defined(__linux__) \
456 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
457 || defined(__DragonFly__) || defined(__OpenBSD__) \
458 || defined(__NetBSD__))
459# define USE_MMAP
460#endif
461
462/* Minimum size of the code gen buffer. This number is randomly chosen,
463 but not so small that we can't have a fair number of TB's live. */
464#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
465
466/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
467 indicated, this is constrained by the range of direct branches on the
468 host cpu, as used by the TCG implementation of goto_tb. */
469#if defined(__x86_64__)
470# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
471#elif defined(__sparc__)
472# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
473#elif defined(__aarch64__)
474# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
475#elif defined(__arm__)
476# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
477#elif defined(__s390x__)
478 /* We have a +- 4GB range on the branches; leave some slop. */
479# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
480#elif defined(__mips__)
481 /* We have a 256MB branch region, but leave room to make sure the
482 main executable is also within that region. */
483# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
484#else
485# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
486#endif
487
488#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
489
490#define DEFAULT_CODE_GEN_BUFFER_SIZE \
491 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
492 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
493
494static inline size_t size_code_gen_buffer(size_t tb_size)
495{
496 /* Size the buffer. */
497 if (tb_size == 0) {
498#ifdef USE_STATIC_CODE_GEN_BUFFER
499 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
500#else
501 /* ??? Needs adjustments. */
502 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
503 static buffer, we could size this on RESERVED_VA, on the text
504 segment size of the executable, or continue to use the default. */
505 tb_size = (unsigned long)(ram_size / 4);
506#endif
507 }
508 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
509 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
510 }
511 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
512 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
513 }
0b0d3320 514 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
515 return tb_size;
516}
517
483c76e1
RH
518#ifdef __mips__
519/* In order to use J and JAL within the code_gen_buffer, we require
520 that the buffer not cross a 256MB boundary. */
521static inline bool cross_256mb(void *addr, size_t size)
522{
523 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
524}
525
526/* We weren't able to allocate a buffer without crossing that boundary,
527 so make do with the larger portion of the buffer that doesn't cross.
528 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
529static inline void *split_cross_256mb(void *buf1, size_t size1)
530{
531 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
532 size_t size2 = buf1 + size1 - buf2;
533
534 size1 = buf2 - buf1;
535 if (size1 < size2) {
536 size1 = size2;
537 buf1 = buf2;
538 }
539
540 tcg_ctx.code_gen_buffer_size = size1;
541 return buf1;
542}
543#endif
544
5b6dd868
BS
545#ifdef USE_STATIC_CODE_GEN_BUFFER
546static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
547 __attribute__((aligned(CODE_GEN_ALIGN)));
548
549static inline void *alloc_code_gen_buffer(void)
550{
483c76e1
RH
551 void *buf = static_code_gen_buffer;
552#ifdef __mips__
553 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
554 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
555 }
556#endif
557 map_exec(buf, tcg_ctx.code_gen_buffer_size);
558 return buf;
5b6dd868
BS
559}
560#elif defined(USE_MMAP)
561static inline void *alloc_code_gen_buffer(void)
562{
563 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
564 uintptr_t start = 0;
565 void *buf;
566
567 /* Constrain the position of the buffer based on the host cpu.
568 Note that these addresses are chosen in concert with the
569 addresses assigned in the relevant linker script file. */
570# if defined(__PIE__) || defined(__PIC__)
571 /* Don't bother setting a preferred location if we're building
572 a position-independent executable. We're more likely to get
573 an address near the main executable if we let the kernel
574 choose the address. */
575# elif defined(__x86_64__) && defined(MAP_32BIT)
576 /* Force the memory down into low memory with the executable.
577 Leave the choice of exact location with the kernel. */
578 flags |= MAP_32BIT;
579 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
580 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
581 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
582 }
583# elif defined(__sparc__)
584 start = 0x40000000ul;
585# elif defined(__s390x__)
586 start = 0x90000000ul;
479eb121
RH
587# elif defined(__mips__)
588 /* ??? We ought to more explicitly manage layout for softmmu too. */
589# ifdef CONFIG_USER_ONLY
590 start = 0x68000000ul;
591# elif _MIPS_SIM == _ABI64
592 start = 0x128000000ul;
593# else
594 start = 0x08000000ul;
595# endif
5b6dd868
BS
596# endif
597
0b0d3320 598 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868 599 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
483c76e1
RH
600 if (buf == MAP_FAILED) {
601 return NULL;
602 }
603
604#ifdef __mips__
605 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
5d831be2 606 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1
RH
607 that 256mb crossing. This time don't specify an address. */
608 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
609 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
610 flags, -1, 0);
611 if (buf2 != MAP_FAILED) {
612 if (!cross_256mb(buf2, size1)) {
613 /* Success! Use the new buffer. */
614 munmap(buf, size1);
615 return buf2;
616 }
617 /* Failure. Work with what we had. */
618 munmap(buf2, size1);
619 }
620
621 /* Split the original buffer. Free the smaller half. */
622 buf2 = split_cross_256mb(buf, size1);
623 size2 = tcg_ctx.code_gen_buffer_size;
624 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
625 return buf2;
626 }
627#endif
628
629 return buf;
5b6dd868
BS
630}
631#else
632static inline void *alloc_code_gen_buffer(void)
633{
0b0d3320 634 void *buf = g_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868 635
483c76e1
RH
636 if (buf == NULL) {
637 return NULL;
638 }
639
640#ifdef __mips__
641 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
642 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
643 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
644 /* Success! Use the new buffer. */
645 free(buf);
646 buf = buf2;
647 } else {
648 /* Failure. Work with what we had. Since this is malloc
649 and not mmap, we can't free the other half. */
650 free(buf2);
651 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
652 }
5b6dd868 653 }
483c76e1
RH
654#endif
655
656 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
657 return buf;
658}
659#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
660
661static inline void code_gen_alloc(size_t tb_size)
662{
0b0d3320
EV
663 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
664 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
665 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
666 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
667 exit(1);
668 }
669
0b0d3320
EV
670 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
671 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
672
673 /* Steal room for the prologue at the end of the buffer. This ensures
674 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
675 from TB's to the prologue are going to be in range. It also means
676 that we don't need to mark (additional) portions of the data segment
677 as executable. */
0b0d3320
EV
678 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
679 tcg_ctx.code_gen_buffer_size - 1024;
680 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 681
0b0d3320 682 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 683 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
684 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
685 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
686 tcg_ctx.tb_ctx.tbs =
687 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
688}
689
690/* Must be called before using the QEMU cpus. 'tb_size' is the size
691 (in bytes) allocated to the translation buffer. Zero means default
692 size. */
693void tcg_exec_init(unsigned long tb_size)
694{
695 cpu_gen_init();
696 code_gen_alloc(tb_size);
0b0d3320
EV
697 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
698 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
699 page_init();
700#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
701 /* There's no guest base to take into account, so go ahead and
702 initialize the prologue now. */
703 tcg_prologue_init(&tcg_ctx);
704#endif
705}
706
707bool tcg_enabled(void)
708{
0b0d3320 709 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
710}
711
712/* Allocate a new translation block. Flush the translation buffer if
713 too many translation blocks or too much generated code. */
714static TranslationBlock *tb_alloc(target_ulong pc)
715{
716 TranslationBlock *tb;
717
5e5f07e0 718 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
719 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
720 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
721 return NULL;
722 }
5e5f07e0 723 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
724 tb->pc = pc;
725 tb->cflags = 0;
726 return tb;
727}
728
729void tb_free(TranslationBlock *tb)
730{
731 /* In practice this is mostly used for single use temporary TB
732 Ignore the hard cases and just back up if this TB happens to
733 be the last one generated. */
5e5f07e0
EV
734 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
735 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 736 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 737 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
738 }
739}
740
741static inline void invalidate_page_bitmap(PageDesc *p)
742{
743 if (p->code_bitmap) {
744 g_free(p->code_bitmap);
745 p->code_bitmap = NULL;
746 }
747 p->code_write_count = 0;
748}
749
750/* Set to NULL all the 'first_tb' fields in all PageDescs. */
751static void page_flush_tb_1(int level, void **lp)
752{
753 int i;
754
755 if (*lp == NULL) {
756 return;
757 }
758 if (level == 0) {
759 PageDesc *pd = *lp;
760
03f49957 761 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
762 pd[i].first_tb = NULL;
763 invalidate_page_bitmap(pd + i);
764 }
765 } else {
766 void **pp = *lp;
767
03f49957 768 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
769 page_flush_tb_1(level - 1, pp + i);
770 }
771 }
772}
773
774static void page_flush_tb(void)
775{
776 int i;
777
778 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 779 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
780 }
781}
782
783/* flush all the translation blocks */
784/* XXX: tb_flush is currently not thread safe */
785void tb_flush(CPUArchState *env1)
786{
a47dddd7 787 CPUState *cpu = ENV_GET_CPU(env1);
5b6dd868
BS
788
789#if defined(DEBUG_FLUSH)
790 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 791 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 792 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 793 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 794 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 795#endif
0b0d3320
EV
796 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
797 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 798 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 799 }
5e5f07e0 800 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 801
bdc44640 802 CPU_FOREACH(cpu) {
8cd70437 803 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
804 }
805
eb2535f4 806 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
807 page_flush_tb();
808
0b0d3320 809 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
810 /* XXX: flush processor icache at this point if cache flush is
811 expensive */
5e5f07e0 812 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
813}
814
815#ifdef DEBUG_TB_CHECK
816
817static void tb_invalidate_check(target_ulong address)
818{
819 TranslationBlock *tb;
820 int i;
821
822 address &= TARGET_PAGE_MASK;
823 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 824 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
825 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
826 address >= tb->pc + tb->size)) {
827 printf("ERROR invalidate: address=" TARGET_FMT_lx
828 " PC=%08lx size=%04x\n",
829 address, (long)tb->pc, tb->size);
830 }
831 }
832 }
833}
834
835/* verify that all the pages have correct rights for code */
836static void tb_page_check(void)
837{
838 TranslationBlock *tb;
839 int i, flags1, flags2;
840
841 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
842 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
843 tb = tb->phys_hash_next) {
5b6dd868
BS
844 flags1 = page_get_flags(tb->pc);
845 flags2 = page_get_flags(tb->pc + tb->size - 1);
846 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
847 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
848 (long)tb->pc, tb->size, flags1, flags2);
849 }
850 }
851 }
852}
853
854#endif
855
0c884d16 856static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
857{
858 TranslationBlock *tb1;
859
860 for (;;) {
861 tb1 = *ptb;
862 if (tb1 == tb) {
0c884d16 863 *ptb = tb1->phys_hash_next;
5b6dd868
BS
864 break;
865 }
0c884d16 866 ptb = &tb1->phys_hash_next;
5b6dd868
BS
867 }
868}
869
870static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
871{
872 TranslationBlock *tb1;
873 unsigned int n1;
874
875 for (;;) {
876 tb1 = *ptb;
877 n1 = (uintptr_t)tb1 & 3;
878 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
879 if (tb1 == tb) {
880 *ptb = tb1->page_next[n1];
881 break;
882 }
883 ptb = &tb1->page_next[n1];
884 }
885}
886
887static inline void tb_jmp_remove(TranslationBlock *tb, int n)
888{
889 TranslationBlock *tb1, **ptb;
890 unsigned int n1;
891
892 ptb = &tb->jmp_next[n];
893 tb1 = *ptb;
894 if (tb1) {
895 /* find tb(n) in circular list */
896 for (;;) {
897 tb1 = *ptb;
898 n1 = (uintptr_t)tb1 & 3;
899 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
900 if (n1 == n && tb1 == tb) {
901 break;
902 }
903 if (n1 == 2) {
904 ptb = &tb1->jmp_first;
905 } else {
906 ptb = &tb1->jmp_next[n1];
907 }
908 }
909 /* now we can suppress tb(n) from the list */
910 *ptb = tb->jmp_next[n];
911
912 tb->jmp_next[n] = NULL;
913 }
914}
915
916/* reset the jump entry 'n' of a TB so that it is not chained to
917 another TB */
918static inline void tb_reset_jump(TranslationBlock *tb, int n)
919{
920 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
921}
922
0c884d16 923/* invalidate one TB */
5b6dd868
BS
924void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
925{
182735ef 926 CPUState *cpu;
5b6dd868
BS
927 PageDesc *p;
928 unsigned int h, n1;
929 tb_page_addr_t phys_pc;
930 TranslationBlock *tb1, *tb2;
931
932 /* remove the TB from the hash list */
933 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
934 h = tb_phys_hash_func(phys_pc);
5e5f07e0 935 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
936
937 /* remove the TB from the page list */
938 if (tb->page_addr[0] != page_addr) {
939 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
944 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
945 tb_page_remove(&p->first_tb, tb);
946 invalidate_page_bitmap(p);
947 }
948
5e5f07e0 949 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
950
951 /* remove the TB from the hash list */
952 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 953 CPU_FOREACH(cpu) {
8cd70437
AF
954 if (cpu->tb_jmp_cache[h] == tb) {
955 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
956 }
957 }
958
959 /* suppress this TB from the two jump lists */
960 tb_jmp_remove(tb, 0);
961 tb_jmp_remove(tb, 1);
962
963 /* suppress any remaining jumps to this TB */
964 tb1 = tb->jmp_first;
965 for (;;) {
966 n1 = (uintptr_t)tb1 & 3;
967 if (n1 == 2) {
968 break;
969 }
970 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
971 tb2 = tb1->jmp_next[n1];
972 tb_reset_jump(tb1, n1);
973 tb1->jmp_next[n1] = NULL;
974 tb1 = tb2;
975 }
976 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
977
5e5f07e0 978 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
979}
980
981static inline void set_bits(uint8_t *tab, int start, int len)
982{
983 int end, mask, end1;
984
985 end = start + len;
986 tab += start >> 3;
987 mask = 0xff << (start & 7);
988 if ((start & ~7) == (end & ~7)) {
989 if (start < end) {
990 mask &= ~(0xff << (end & 7));
991 *tab |= mask;
992 }
993 } else {
994 *tab++ |= mask;
995 start = (start + 8) & ~7;
996 end1 = end & ~7;
997 while (start < end1) {
998 *tab++ = 0xff;
999 start += 8;
1000 }
1001 if (start < end) {
1002 mask = ~(0xff << (end & 7));
1003 *tab |= mask;
1004 }
1005 }
1006}
1007
1008static void build_page_bitmap(PageDesc *p)
1009{
1010 int n, tb_start, tb_end;
1011 TranslationBlock *tb;
1012
1013 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1014
1015 tb = p->first_tb;
1016 while (tb != NULL) {
1017 n = (uintptr_t)tb & 3;
1018 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1019 /* NOTE: this is subtle as a TB may span two physical pages */
1020 if (n == 0) {
1021 /* NOTE: tb_end may be after the end of the page, but
1022 it is not a problem */
1023 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1024 tb_end = tb_start + tb->size;
1025 if (tb_end > TARGET_PAGE_SIZE) {
1026 tb_end = TARGET_PAGE_SIZE;
1027 }
1028 } else {
1029 tb_start = 0;
1030 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1031 }
1032 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1033 tb = tb->page_next[n];
1034 }
1035}
1036
648f034c 1037TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
1038 target_ulong pc, target_ulong cs_base,
1039 int flags, int cflags)
1040{
648f034c 1041 CPUArchState *env = cpu->env_ptr;
5b6dd868 1042 TranslationBlock *tb;
5b6dd868
BS
1043 tb_page_addr_t phys_pc, phys_page2;
1044 target_ulong virt_page2;
1045 int code_gen_size;
1046
1047 phys_pc = get_page_addr_code(env, pc);
1048 tb = tb_alloc(pc);
1049 if (!tb) {
1050 /* flush must be done */
1051 tb_flush(env);
1052 /* cannot fail at this point */
1053 tb = tb_alloc(pc);
1054 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1055 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1056 }
1813e175 1057 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
1058 tb->cs_base = cs_base;
1059 tb->flags = flags;
1060 tb->cflags = cflags;
1061 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
1062 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1063 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
1064
1065 /* check next page if needed */
1066 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1067 phys_page2 = -1;
1068 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1069 phys_page2 = get_page_addr_code(env, virt_page2);
1070 }
1071 tb_link_page(tb, phys_pc, phys_page2);
1072 return tb;
1073}
1074
1075/*
1076 * Invalidate all TBs which intersect with the target physical address range
1077 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1078 * 'is_cpu_write_access' should be true if called from a real cpu write
1079 * access: the virtual CPU will exit the current TB if code is modified inside
1080 * this TB.
1081 */
1082void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1083 int is_cpu_write_access)
1084{
1085 while (start < end) {
1086 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1087 start &= TARGET_PAGE_MASK;
1088 start += TARGET_PAGE_SIZE;
1089 }
1090}
1091
1092/*
1093 * Invalidate all TBs which intersect with the target physical address range
1094 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1095 * 'is_cpu_write_access' should be true if called from a real cpu write
1096 * access: the virtual CPU will exit the current TB if code is modified inside
1097 * this TB.
1098 */
1099void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1100 int is_cpu_write_access)
1101{
1102 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1103 CPUState *cpu = current_cpu;
baea4fae 1104#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1105 CPUArchState *env = NULL;
1106#endif
5b6dd868
BS
1107 tb_page_addr_t tb_start, tb_end;
1108 PageDesc *p;
1109 int n;
1110#ifdef TARGET_HAS_PRECISE_SMC
1111 int current_tb_not_found = is_cpu_write_access;
1112 TranslationBlock *current_tb = NULL;
1113 int current_tb_modified = 0;
1114 target_ulong current_pc = 0;
1115 target_ulong current_cs_base = 0;
1116 int current_flags = 0;
1117#endif /* TARGET_HAS_PRECISE_SMC */
1118
1119 p = page_find(start >> TARGET_PAGE_BITS);
1120 if (!p) {
1121 return;
1122 }
1123 if (!p->code_bitmap &&
1124 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1125 is_cpu_write_access) {
1126 /* build code bitmap */
1127 build_page_bitmap(p);
1128 }
baea4fae 1129#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1130 if (cpu != NULL) {
1131 env = cpu->env_ptr;
d77953b9 1132 }
4917cf44 1133#endif
5b6dd868
BS
1134
1135 /* we remove all the TBs in the range [start, end[ */
1136 /* XXX: see if in some cases it could be faster to invalidate all
1137 the code */
1138 tb = p->first_tb;
1139 while (tb != NULL) {
1140 n = (uintptr_t)tb & 3;
1141 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1142 tb_next = tb->page_next[n];
1143 /* NOTE: this is subtle as a TB may span two physical pages */
1144 if (n == 0) {
1145 /* NOTE: tb_end may be after the end of the page, but
1146 it is not a problem */
1147 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1148 tb_end = tb_start + tb->size;
1149 } else {
1150 tb_start = tb->page_addr[1];
1151 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1152 }
1153 if (!(tb_end <= start || tb_start >= end)) {
1154#ifdef TARGET_HAS_PRECISE_SMC
1155 if (current_tb_not_found) {
1156 current_tb_not_found = 0;
1157 current_tb = NULL;
93afeade 1158 if (cpu->mem_io_pc) {
5b6dd868 1159 /* now we have a real cpu fault */
93afeade 1160 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1161 }
1162 }
1163 if (current_tb == tb &&
1164 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1165 /* If we are modifying the current TB, we must stop
1166 its execution. We could be more precise by checking
1167 that the modification is after the current PC, but it
1168 would require a specialized function to partially
1169 restore the CPU state */
1170
1171 current_tb_modified = 1;
74f10515 1172 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1173 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1174 &current_flags);
1175 }
1176#endif /* TARGET_HAS_PRECISE_SMC */
1177 /* we need to do that to handle the case where a signal
1178 occurs while doing tb_phys_invalidate() */
1179 saved_tb = NULL;
d77953b9
AF
1180 if (cpu != NULL) {
1181 saved_tb = cpu->current_tb;
1182 cpu->current_tb = NULL;
5b6dd868
BS
1183 }
1184 tb_phys_invalidate(tb, -1);
d77953b9
AF
1185 if (cpu != NULL) {
1186 cpu->current_tb = saved_tb;
c3affe56
AF
1187 if (cpu->interrupt_request && cpu->current_tb) {
1188 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1189 }
1190 }
1191 }
1192 tb = tb_next;
1193 }
1194#if !defined(CONFIG_USER_ONLY)
1195 /* if no code remaining, no need to continue to use slow writes */
1196 if (!p->first_tb) {
1197 invalidate_page_bitmap(p);
1198 if (is_cpu_write_access) {
baea4fae 1199 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
5b6dd868
BS
1200 }
1201 }
1202#endif
1203#ifdef TARGET_HAS_PRECISE_SMC
1204 if (current_tb_modified) {
1205 /* we generate a block containing just the instruction
1206 modifying the memory. It will ensure that it cannot modify
1207 itself */
d77953b9 1208 cpu->current_tb = NULL;
648f034c 1209 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1210 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1211 }
1212#endif
1213}
1214
1215/* len must be <= 8 and start must be a multiple of len */
1216void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1217{
1218 PageDesc *p;
1219 int offset, b;
1220
1221#if 0
1222 if (1) {
1223 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1224 cpu_single_env->mem_io_vaddr, len,
1225 cpu_single_env->eip,
1226 cpu_single_env->eip +
1227 (intptr_t)cpu_single_env->segs[R_CS].base);
1228 }
1229#endif
1230 p = page_find(start >> TARGET_PAGE_BITS);
1231 if (!p) {
1232 return;
1233 }
1234 if (p->code_bitmap) {
1235 offset = start & ~TARGET_PAGE_MASK;
1236 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1237 if (b & ((1 << len) - 1)) {
1238 goto do_invalidate;
1239 }
1240 } else {
1241 do_invalidate:
1242 tb_invalidate_phys_page_range(start, start + len, 1);
1243 }
1244}
1245
1246#if !defined(CONFIG_SOFTMMU)
1247static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1248 uintptr_t pc, void *puc,
1249 bool locked)
5b6dd868
BS
1250{
1251 TranslationBlock *tb;
1252 PageDesc *p;
1253 int n;
1254#ifdef TARGET_HAS_PRECISE_SMC
1255 TranslationBlock *current_tb = NULL;
4917cf44
AF
1256 CPUState *cpu = current_cpu;
1257 CPUArchState *env = NULL;
5b6dd868
BS
1258 int current_tb_modified = 0;
1259 target_ulong current_pc = 0;
1260 target_ulong current_cs_base = 0;
1261 int current_flags = 0;
1262#endif
1263
1264 addr &= TARGET_PAGE_MASK;
1265 p = page_find(addr >> TARGET_PAGE_BITS);
1266 if (!p) {
1267 return;
1268 }
1269 tb = p->first_tb;
1270#ifdef TARGET_HAS_PRECISE_SMC
1271 if (tb && pc != 0) {
1272 current_tb = tb_find_pc(pc);
1273 }
4917cf44
AF
1274 if (cpu != NULL) {
1275 env = cpu->env_ptr;
d77953b9 1276 }
5b6dd868
BS
1277#endif
1278 while (tb != NULL) {
1279 n = (uintptr_t)tb & 3;
1280 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1281#ifdef TARGET_HAS_PRECISE_SMC
1282 if (current_tb == tb &&
1283 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1284 /* If we are modifying the current TB, we must stop
1285 its execution. We could be more precise by checking
1286 that the modification is after the current PC, but it
1287 would require a specialized function to partially
1288 restore the CPU state */
1289
1290 current_tb_modified = 1;
74f10515 1291 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1292 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1293 &current_flags);
1294 }
1295#endif /* TARGET_HAS_PRECISE_SMC */
1296 tb_phys_invalidate(tb, addr);
1297 tb = tb->page_next[n];
1298 }
1299 p->first_tb = NULL;
1300#ifdef TARGET_HAS_PRECISE_SMC
1301 if (current_tb_modified) {
1302 /* we generate a block containing just the instruction
1303 modifying the memory. It will ensure that it cannot modify
1304 itself */
d77953b9 1305 cpu->current_tb = NULL;
648f034c 1306 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1307 if (locked) {
1308 mmap_unlock();
1309 }
0ea8cb88 1310 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1311 }
1312#endif
1313}
1314#endif
1315
1316/* add the tb in the target page and protect it if necessary */
1317static inline void tb_alloc_page(TranslationBlock *tb,
1318 unsigned int n, tb_page_addr_t page_addr)
1319{
1320 PageDesc *p;
1321#ifndef CONFIG_USER_ONLY
1322 bool page_already_protected;
1323#endif
1324
1325 tb->page_addr[n] = page_addr;
1326 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1327 tb->page_next[n] = p->first_tb;
1328#ifndef CONFIG_USER_ONLY
1329 page_already_protected = p->first_tb != NULL;
1330#endif
1331 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1332 invalidate_page_bitmap(p);
1333
1334#if defined(TARGET_HAS_SMC) || 1
1335
1336#if defined(CONFIG_USER_ONLY)
1337 if (p->flags & PAGE_WRITE) {
1338 target_ulong addr;
1339 PageDesc *p2;
1340 int prot;
1341
1342 /* force the host page as non writable (writes will have a
1343 page fault + mprotect overhead) */
1344 page_addr &= qemu_host_page_mask;
1345 prot = 0;
1346 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1347 addr += TARGET_PAGE_SIZE) {
1348
1349 p2 = page_find(addr >> TARGET_PAGE_BITS);
1350 if (!p2) {
1351 continue;
1352 }
1353 prot |= p2->flags;
1354 p2->flags &= ~PAGE_WRITE;
1355 }
1356 mprotect(g2h(page_addr), qemu_host_page_size,
1357 (prot & PAGE_BITS) & ~PAGE_WRITE);
1358#ifdef DEBUG_TB_INVALIDATE
1359 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1360 page_addr);
1361#endif
1362 }
1363#else
1364 /* if some code is already present, then the pages are already
1365 protected. So we handle the case where only the first TB is
1366 allocated in a physical page */
1367 if (!page_already_protected) {
1368 tlb_protect_code(page_addr);
1369 }
1370#endif
1371
1372#endif /* TARGET_HAS_SMC */
1373}
1374
1375/* add a new TB and link it to the physical page tables. phys_page2 is
1376 (-1) to indicate that only one page contains the TB. */
1377static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1378 tb_page_addr_t phys_page2)
1379{
1380 unsigned int h;
1381 TranslationBlock **ptb;
1382
1383 /* Grab the mmap lock to stop another thread invalidating this TB
1384 before we are done. */
1385 mmap_lock();
1386 /* add in the physical hash table */
1387 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1388 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1389 tb->phys_hash_next = *ptb;
1390 *ptb = tb;
1391
1392 /* add in the page list */
1393 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1394 if (phys_page2 != -1) {
1395 tb_alloc_page(tb, 1, phys_page2);
1396 } else {
1397 tb->page_addr[1] = -1;
1398 }
1399
1400 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1401 tb->jmp_next[0] = NULL;
1402 tb->jmp_next[1] = NULL;
1403
1404 /* init original jump addresses */
1405 if (tb->tb_next_offset[0] != 0xffff) {
1406 tb_reset_jump(tb, 0);
1407 }
1408 if (tb->tb_next_offset[1] != 0xffff) {
1409 tb_reset_jump(tb, 1);
1410 }
1411
1412#ifdef DEBUG_TB_CHECK
1413 tb_page_check();
1414#endif
1415 mmap_unlock();
1416}
1417
5b6dd868
BS
1418/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1419 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1420static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1421{
1422 int m_min, m_max, m;
1423 uintptr_t v;
1424 TranslationBlock *tb;
1425
5e5f07e0 1426 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1427 return NULL;
1428 }
0b0d3320
EV
1429 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1430 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1431 return NULL;
1432 }
1433 /* binary search (cf Knuth) */
1434 m_min = 0;
5e5f07e0 1435 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1436 while (m_min <= m_max) {
1437 m = (m_min + m_max) >> 1;
5e5f07e0 1438 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1439 v = (uintptr_t)tb->tc_ptr;
1440 if (v == tc_ptr) {
1441 return tb;
1442 } else if (tc_ptr < v) {
1443 m_max = m - 1;
1444 } else {
1445 m_min = m + 1;
1446 }
1447 }
5e5f07e0 1448 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1449}
1450
5b6dd868 1451#if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
29d8ec7b 1452void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1453{
1454 ram_addr_t ram_addr;
5c8a00ce 1455 MemoryRegion *mr;
149f54b5 1456 hwaddr l = 1;
5b6dd868 1457
29d8ec7b 1458 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1459 if (!(memory_region_is_ram(mr)
1460 || memory_region_is_romd(mr))) {
5b6dd868
BS
1461 return;
1462 }
5c8a00ce 1463 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1464 + addr;
5b6dd868
BS
1465 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1466}
1467#endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1468
239c51a5 1469void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1470{
1471 TranslationBlock *tb;
1472
93afeade 1473 tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868 1474 if (!tb) {
a47dddd7 1475 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
93afeade 1476 (void *)cpu->mem_io_pc);
5b6dd868 1477 }
74f10515 1478 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
5b6dd868
BS
1479 tb_phys_invalidate(tb, -1);
1480}
1481
1482#ifndef CONFIG_USER_ONLY
1483/* mask must never be zero, except for A20 change call */
c3affe56 1484static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1485{
5b6dd868
BS
1486 int old_mask;
1487
259186a7
AF
1488 old_mask = cpu->interrupt_request;
1489 cpu->interrupt_request |= mask;
5b6dd868
BS
1490
1491 /*
1492 * If called from iothread context, wake the target cpu in
1493 * case its halted.
1494 */
1495 if (!qemu_cpu_is_self(cpu)) {
1496 qemu_cpu_kick(cpu);
1497 return;
1498 }
1499
1500 if (use_icount) {
28ecfd7a 1501 cpu->icount_decr.u16.high = 0xffff;
99df7dce 1502 if (!cpu_can_do_io(cpu)
5b6dd868 1503 && (mask & ~old_mask) != 0) {
a47dddd7 1504 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1505 }
1506 } else {
378df4b2 1507 cpu->tcg_exit_req = 1;
5b6dd868
BS
1508 }
1509}
1510
1511CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1512
1513/* in deterministic execution mode, instructions doing device I/Os
1514 must be at the end of the TB */
90b40a69 1515void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1516{
a47dddd7 1517#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1518 CPUArchState *env = cpu->env_ptr;
a47dddd7 1519#endif
5b6dd868
BS
1520 TranslationBlock *tb;
1521 uint32_t n, cflags;
1522 target_ulong pc, cs_base;
1523 uint64_t flags;
1524
1525 tb = tb_find_pc(retaddr);
1526 if (!tb) {
a47dddd7 1527 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1528 (void *)retaddr);
1529 }
28ecfd7a 1530 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1531 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1532 /* Calculate how many instructions had been executed before the fault
1533 occurred. */
28ecfd7a 1534 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1535 /* Generate a new TB ending on the I/O insn. */
1536 n++;
1537 /* On MIPS and SH, delay slot instructions can only be restarted if
1538 they were already the first instruction in the TB. If this is not
1539 the first instruction in a TB then re-execute the preceding
1540 branch. */
1541#if defined(TARGET_MIPS)
1542 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1543 env->active_tc.PC -= 4;
28ecfd7a 1544 cpu->icount_decr.u16.low++;
5b6dd868
BS
1545 env->hflags &= ~MIPS_HFLAG_BMASK;
1546 }
1547#elif defined(TARGET_SH4)
1548 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1549 && n > 1) {
1550 env->pc -= 2;
28ecfd7a 1551 cpu->icount_decr.u16.low++;
5b6dd868
BS
1552 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1553 }
1554#endif
1555 /* This should never happen. */
1556 if (n > CF_COUNT_MASK) {
a47dddd7 1557 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1558 }
1559
1560 cflags = n | CF_LAST_IO;
1561 pc = tb->pc;
1562 cs_base = tb->cs_base;
1563 flags = tb->flags;
1564 tb_phys_invalidate(tb, -1);
1565 /* FIXME: In theory this could raise an exception. In practice
1566 we have already translated the block once so it's probably ok. */
648f034c 1567 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1568 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1569 the first in the TB) then we end up generating a whole new TB and
1570 repeating the fault, which is horribly inefficient.
1571 Better would be to execute just this insn uncached, or generate a
1572 second new TB. */
0ea8cb88 1573 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1574}
1575
611d4f99 1576void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1577{
1578 unsigned int i;
1579
1580 /* Discard jump cache entries for any tb which might potentially
1581 overlap the flushed page. */
1582 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1583 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1584 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1585
1586 i = tb_jmp_cache_hash_page(addr);
8cd70437 1587 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1588 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1589}
1590
1591void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1592{
1593 int i, target_code_size, max_target_code_size;
1594 int direct_jmp_count, direct_jmp2_count, cross_page;
1595 TranslationBlock *tb;
1596
1597 target_code_size = 0;
1598 max_target_code_size = 0;
1599 cross_page = 0;
1600 direct_jmp_count = 0;
1601 direct_jmp2_count = 0;
5e5f07e0
EV
1602 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1603 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1604 target_code_size += tb->size;
1605 if (tb->size > max_target_code_size) {
1606 max_target_code_size = tb->size;
1607 }
1608 if (tb->page_addr[1] != -1) {
1609 cross_page++;
1610 }
1611 if (tb->tb_next_offset[0] != 0xffff) {
1612 direct_jmp_count++;
1613 if (tb->tb_next_offset[1] != 0xffff) {
1614 direct_jmp2_count++;
1615 }
1616 }
1617 }
1618 /* XXX: avoid using doubles ? */
1619 cpu_fprintf(f, "Translation buffer state:\n");
1620 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1621 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1622 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1623 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1624 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1625 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1626 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1627 tcg_ctx.tb_ctx.nb_tbs : 0,
1628 max_target_code_size);
5b6dd868 1629 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1630 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1631 tcg_ctx.code_gen_buffer) /
1632 tcg_ctx.tb_ctx.nb_tbs : 0,
1633 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1634 tcg_ctx.code_gen_buffer) /
1635 target_code_size : 0);
1636 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1637 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1638 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1639 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1640 direct_jmp_count,
5e5f07e0
EV
1641 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1642 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1643 direct_jmp2_count,
5e5f07e0
EV
1644 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1645 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1646 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1647 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1648 cpu_fprintf(f, "TB invalidate count %d\n",
1649 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1650 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1651 tcg_dump_info(f, cpu_fprintf);
1652}
1653
1654#else /* CONFIG_USER_ONLY */
1655
c3affe56 1656void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1657{
259186a7 1658 cpu->interrupt_request |= mask;
378df4b2 1659 cpu->tcg_exit_req = 1;
5b6dd868
BS
1660}
1661
1662/*
1663 * Walks guest process memory "regions" one by one
1664 * and calls callback function 'fn' for each region.
1665 */
1666struct walk_memory_regions_data {
1667 walk_memory_regions_fn fn;
1668 void *priv;
1a1c4db9 1669 target_ulong start;
5b6dd868
BS
1670 int prot;
1671};
1672
1673static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1674 target_ulong end, int new_prot)
5b6dd868 1675{
1a1c4db9 1676 if (data->start != -1u) {
5b6dd868
BS
1677 int rc = data->fn(data->priv, data->start, end, data->prot);
1678 if (rc != 0) {
1679 return rc;
1680 }
1681 }
1682
1a1c4db9 1683 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1684 data->prot = new_prot;
1685
1686 return 0;
1687}
1688
1689static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1690 target_ulong base, int level, void **lp)
5b6dd868 1691{
1a1c4db9 1692 target_ulong pa;
5b6dd868
BS
1693 int i, rc;
1694
1695 if (*lp == NULL) {
1696 return walk_memory_regions_end(data, base, 0);
1697 }
1698
1699 if (level == 0) {
1700 PageDesc *pd = *lp;
1701
03f49957 1702 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1703 int prot = pd[i].flags;
1704
1705 pa = base | (i << TARGET_PAGE_BITS);
1706 if (prot != data->prot) {
1707 rc = walk_memory_regions_end(data, pa, prot);
1708 if (rc != 0) {
1709 return rc;
1710 }
1711 }
1712 }
1713 } else {
1714 void **pp = *lp;
1715
03f49957 1716 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1717 pa = base | ((target_ulong)i <<
03f49957 1718 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1719 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1720 if (rc != 0) {
1721 return rc;
1722 }
1723 }
1724 }
1725
1726 return 0;
1727}
1728
1729int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1730{
1731 struct walk_memory_regions_data data;
1732 uintptr_t i;
1733
1734 data.fn = fn;
1735 data.priv = priv;
1a1c4db9 1736 data.start = -1u;
5b6dd868
BS
1737 data.prot = 0;
1738
1739 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1740 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1741 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1742 if (rc != 0) {
1743 return rc;
1744 }
1745 }
1746
1747 return walk_memory_regions_end(&data, 0, 0);
1748}
1749
1a1c4db9
MI
1750static int dump_region(void *priv, target_ulong start,
1751 target_ulong end, unsigned long prot)
5b6dd868
BS
1752{
1753 FILE *f = (FILE *)priv;
1754
1a1c4db9
MI
1755 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1756 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1757 start, end, end - start,
1758 ((prot & PAGE_READ) ? 'r' : '-'),
1759 ((prot & PAGE_WRITE) ? 'w' : '-'),
1760 ((prot & PAGE_EXEC) ? 'x' : '-'));
1761
1762 return 0;
1763}
1764
1765/* dump memory mappings */
1766void page_dump(FILE *f)
1767{
1a1c4db9 1768 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1769 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1770 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1771 walk_memory_regions(f, dump_region);
1772}
1773
1774int page_get_flags(target_ulong address)
1775{
1776 PageDesc *p;
1777
1778 p = page_find(address >> TARGET_PAGE_BITS);
1779 if (!p) {
1780 return 0;
1781 }
1782 return p->flags;
1783}
1784
1785/* Modify the flags of a page and invalidate the code if necessary.
1786 The flag PAGE_WRITE_ORG is positioned automatically depending
1787 on PAGE_WRITE. The mmap_lock should already be held. */
1788void page_set_flags(target_ulong start, target_ulong end, int flags)
1789{
1790 target_ulong addr, len;
1791
1792 /* This function should never be called with addresses outside the
1793 guest address space. If this assert fires, it probably indicates
1794 a missing call to h2g_valid. */
1795#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1796 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1797#endif
1798 assert(start < end);
1799
1800 start = start & TARGET_PAGE_MASK;
1801 end = TARGET_PAGE_ALIGN(end);
1802
1803 if (flags & PAGE_WRITE) {
1804 flags |= PAGE_WRITE_ORG;
1805 }
1806
1807 for (addr = start, len = end - start;
1808 len != 0;
1809 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1810 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1811
1812 /* If the write protection bit is set, then we invalidate
1813 the code inside. */
1814 if (!(p->flags & PAGE_WRITE) &&
1815 (flags & PAGE_WRITE) &&
1816 p->first_tb) {
d02532f0 1817 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1818 }
1819 p->flags = flags;
1820 }
1821}
1822
1823int page_check_range(target_ulong start, target_ulong len, int flags)
1824{
1825 PageDesc *p;
1826 target_ulong end;
1827 target_ulong addr;
1828
1829 /* This function should never be called with addresses outside the
1830 guest address space. If this assert fires, it probably indicates
1831 a missing call to h2g_valid. */
1832#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1833 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1834#endif
1835
1836 if (len == 0) {
1837 return 0;
1838 }
1839 if (start + len - 1 < start) {
1840 /* We've wrapped around. */
1841 return -1;
1842 }
1843
1844 /* must do before we loose bits in the next step */
1845 end = TARGET_PAGE_ALIGN(start + len);
1846 start = start & TARGET_PAGE_MASK;
1847
1848 for (addr = start, len = end - start;
1849 len != 0;
1850 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1851 p = page_find(addr >> TARGET_PAGE_BITS);
1852 if (!p) {
1853 return -1;
1854 }
1855 if (!(p->flags & PAGE_VALID)) {
1856 return -1;
1857 }
1858
1859 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1860 return -1;
1861 }
1862 if (flags & PAGE_WRITE) {
1863 if (!(p->flags & PAGE_WRITE_ORG)) {
1864 return -1;
1865 }
1866 /* unprotect the page if it was put read-only because it
1867 contains translated code */
1868 if (!(p->flags & PAGE_WRITE)) {
1869 if (!page_unprotect(addr, 0, NULL)) {
1870 return -1;
1871 }
1872 }
5b6dd868
BS
1873 }
1874 }
1875 return 0;
1876}
1877
1878/* called from signal handler: invalidate the code and unprotect the
1879 page. Return TRUE if the fault was successfully handled. */
1880int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1881{
1882 unsigned int prot;
1883 PageDesc *p;
1884 target_ulong host_start, host_end, addr;
1885
1886 /* Technically this isn't safe inside a signal handler. However we
1887 know this only ever happens in a synchronous SEGV handler, so in
1888 practice it seems to be ok. */
1889 mmap_lock();
1890
1891 p = page_find(address >> TARGET_PAGE_BITS);
1892 if (!p) {
1893 mmap_unlock();
1894 return 0;
1895 }
1896
1897 /* if the page was really writable, then we change its
1898 protection back to writable */
1899 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1900 host_start = address & qemu_host_page_mask;
1901 host_end = host_start + qemu_host_page_size;
1902
1903 prot = 0;
1904 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1905 p = page_find(addr >> TARGET_PAGE_BITS);
1906 p->flags |= PAGE_WRITE;
1907 prot |= p->flags;
1908
1909 /* and since the content will be modified, we must invalidate
1910 the corresponding translated code. */
d02532f0 1911 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1912#ifdef DEBUG_TB_CHECK
1913 tb_invalidate_check(addr);
1914#endif
1915 }
1916 mprotect((void *)g2h(host_start), qemu_host_page_size,
1917 prot & PAGE_BITS);
1918
1919 mmap_unlock();
1920 return 1;
1921 }
1922 mmap_unlock();
1923 return 0;
1924}
1925#endif /* CONFIG_USER_ONLY */