]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
tcg-mips: Adjust qemu_ld/st for mips64
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
5b6dd868 21#endif
7b31bbc2 22#include "qemu/osdep.h"
d19893da 23
2054396a 24
5b6dd868 25#include "qemu-common.h"
af5ad107 26#define NO_CPU_IO_DEFS
d3eead2e 27#include "cpu.h"
6db8b538 28#include "trace.h"
76cad711 29#include "disas/disas.h"
63c91552 30#include "exec/exec-all.h"
57fec1fe 31#include "tcg.h"
5b6dd868
BS
32#if defined(CONFIG_USER_ONLY)
33#include "qemu.h"
301e40ed 34#include "exec/exec-all.h"
5b6dd868
BS
35#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36#include <sys/param.h>
37#if __FreeBSD_version >= 700104
38#define HAVE_KINFO_GETVMMAP
39#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
40#include <sys/proc.h>
41#include <machine/profile.h>
42#define _KERNEL
43#include <sys/user.h>
44#undef _KERNEL
45#undef sigqueue
46#include <libutil.h>
47#endif
48#endif
0bc3cd62
PB
49#else
50#include "exec/address-spaces.h"
5b6dd868
BS
51#endif
52
022c62cb 53#include "exec/cputlb.h"
e1b89321 54#include "exec/tb-hash.h"
5b6dd868 55#include "translate-all.h"
510a647f 56#include "qemu/bitmap.h"
0aa09897 57#include "qemu/timer.h"
508127e2 58#include "exec/log.h"
5b6dd868 59
955939a2
AB
60/* #define DEBUG_TB_INVALIDATE */
61/* #define DEBUG_TB_FLUSH */
301e40ed 62/* #define DEBUG_LOCKING */
5b6dd868 63/* make various TB consistency checks */
955939a2 64/* #define DEBUG_TB_CHECK */
5b6dd868
BS
65
66#if !defined(CONFIG_USER_ONLY)
67/* TB consistency checks only implemented for usermode emulation. */
68#undef DEBUG_TB_CHECK
69#endif
70
301e40ed
AB
71/* Access to the various translations structures need to be serialised via locks
72 * for consistency. This is automatic for SoftMMU based system
73 * emulation due to its single threaded nature. In user-mode emulation
74 * access to the memory related structures are protected with the
75 * mmap_lock.
76 */
77#ifdef DEBUG_LOCKING
78#define DEBUG_MEM_LOCKS 1
79#else
80#define DEBUG_MEM_LOCKS 0
81#endif
82
83#ifdef CONFIG_SOFTMMU
84#define assert_memory_lock() do { /* nothing */ } while (0)
85#else
86#define assert_memory_lock() do { \
87 if (DEBUG_MEM_LOCKS) { \
88 g_assert(have_mmap_lock()); \
89 } \
90 } while (0)
91#endif
92
5b6dd868
BS
93#define SMC_BITMAP_USE_THRESHOLD 10
94
5b6dd868
BS
95typedef struct PageDesc {
96 /* list of TBs intersecting this ram page */
97 TranslationBlock *first_tb;
6fad459c 98#ifdef CONFIG_SOFTMMU
5b6dd868
BS
99 /* in order to optimize self modifying code, we count the number
100 of lookups we do to a given page to use a bitmap */
101 unsigned int code_write_count;
510a647f 102 unsigned long *code_bitmap;
6fad459c 103#else
5b6dd868
BS
104 unsigned long flags;
105#endif
106} PageDesc;
107
108/* In system mode we want L1_MAP to be based on ram offsets,
109 while in user mode we want it to be based on virtual addresses. */
110#if !defined(CONFIG_USER_ONLY)
111#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
112# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
113#else
114# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
115#endif
116#else
117# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
118#endif
119
03f49957
PB
120/* Size of the L2 (and L3, etc) page tables. */
121#define V_L2_BITS 10
122#define V_L2_SIZE (1 << V_L2_BITS)
123
5b6dd868 124uintptr_t qemu_host_page_size;
0c2d70c4 125intptr_t qemu_host_page_mask;
5b6dd868 126
66ec9f49
VK
127/*
128 * L1 Mapping properties
129 */
130static int v_l1_size;
131static int v_l1_shift;
132static int v_l2_levels;
133
134/* The bottom level has pointers to PageDesc, and is indexed by
135 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
136 */
137#define V_L1_MIN_BITS 4
138#define V_L1_MAX_BITS (V_L2_BITS + 3)
139#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
140
141static void *l1_map[V_L1_MAX_SIZE];
5b6dd868 142
57fec1fe
FB
143/* code generation context */
144TCGContext tcg_ctx;
fdbc2b57 145bool parallel_cpus;
d19893da 146
677ef623
FK
147/* translation block context */
148#ifdef CONFIG_USER_ONLY
149__thread int have_tb_lock;
150#endif
151
66ec9f49
VK
152static void page_table_config_init(void)
153{
154 uint32_t v_l1_bits;
155
156 assert(TARGET_PAGE_BITS);
157 /* The bits remaining after N lower levels of page tables. */
158 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
159 if (v_l1_bits < V_L1_MIN_BITS) {
160 v_l1_bits += V_L2_BITS;
161 }
162
163 v_l1_size = 1 << v_l1_bits;
164 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
165 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
166
167 assert(v_l1_bits <= V_L1_MAX_BITS);
168 assert(v_l1_shift % V_L2_BITS == 0);
169 assert(v_l2_levels >= 0);
170}
171
677ef623
FK
172void tb_lock(void)
173{
174#ifdef CONFIG_USER_ONLY
175 assert(!have_tb_lock);
176 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
177 have_tb_lock++;
178#endif
179}
180
181void tb_unlock(void)
182{
183#ifdef CONFIG_USER_ONLY
184 assert(have_tb_lock);
185 have_tb_lock--;
186 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
187#endif
188}
189
190void tb_lock_reset(void)
191{
192#ifdef CONFIG_USER_ONLY
193 if (have_tb_lock) {
194 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
195 have_tb_lock = 0;
196 }
197#endif
198}
199
301e40ed
AB
200#ifdef DEBUG_LOCKING
201#define DEBUG_TB_LOCKS 1
202#else
203#define DEBUG_TB_LOCKS 0
204#endif
205
206#ifdef CONFIG_SOFTMMU
207#define assert_tb_lock() do { /* nothing */ } while (0)
208#else
209#define assert_tb_lock() do { \
210 if (DEBUG_TB_LOCKS) { \
211 g_assert(have_tb_lock); \
212 } \
213 } while (0)
214#endif
215
216
a8a826a3 217static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 218
57fec1fe
FB
219void cpu_gen_init(void)
220{
221 tcg_context_init(&tcg_ctx);
57fec1fe
FB
222}
223
fca8a500
RH
224/* Encode VAL as a signed leb128 sequence at P.
225 Return P incremented past the encoded value. */
226static uint8_t *encode_sleb128(uint8_t *p, target_long val)
227{
228 int more, byte;
229
230 do {
231 byte = val & 0x7f;
232 val >>= 7;
233 more = !((val == 0 && (byte & 0x40) == 0)
234 || (val == -1 && (byte & 0x40) != 0));
235 if (more) {
236 byte |= 0x80;
237 }
238 *p++ = byte;
239 } while (more);
240
241 return p;
242}
243
244/* Decode a signed leb128 sequence at *PP; increment *PP past the
245 decoded value. Return the decoded value. */
246static target_long decode_sleb128(uint8_t **pp)
247{
248 uint8_t *p = *pp;
249 target_long val = 0;
250 int byte, shift = 0;
251
252 do {
253 byte = *p++;
254 val |= (target_ulong)(byte & 0x7f) << shift;
255 shift += 7;
256 } while (byte & 0x80);
257 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
258 val |= -(target_ulong)1 << shift;
259 }
260
261 *pp = p;
262 return val;
263}
264
265/* Encode the data collected about the instructions while compiling TB.
266 Place the data at BLOCK, and return the number of bytes consumed.
267
268 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
269 which come from the target's insn_start data, followed by a uintptr_t
270 which comes from the host pc of the end of the code implementing the insn.
271
272 Each line of the table is encoded as sleb128 deltas from the previous
273 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
274 That is, the first column is seeded with the guest pc, the last column
275 with the host pc, and the middle columns with zeros. */
276
277static int encode_search(TranslationBlock *tb, uint8_t *block)
278{
b125f9dc 279 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
280 uint8_t *p = block;
281 int i, j, n;
282
283 tb->tc_search = block;
284
285 for (i = 0, n = tb->icount; i < n; ++i) {
286 target_ulong prev;
287
288 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
289 if (i == 0) {
290 prev = (j == 0 ? tb->pc : 0);
291 } else {
292 prev = tcg_ctx.gen_insn_data[i - 1][j];
293 }
294 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
295 }
296 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
297 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
298
299 /* Test for (pending) buffer overflow. The assumption is that any
300 one row beginning below the high water mark cannot overrun
301 the buffer completely. Thus we can test for overflow after
302 encoding a row without having to check during encoding. */
303 if (unlikely(p > highwater)) {
304 return -1;
305 }
fca8a500
RH
306 }
307
308 return p - block;
309}
310
7d7500d9
PB
311/* The cpu state corresponding to 'searched_pc' is restored.
312 * Called with tb_lock held.
313 */
74f10515 314static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 315 uintptr_t searched_pc)
d19893da 316{
fca8a500
RH
317 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
318 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 319 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
320 uint8_t *p = tb->tc_search;
321 int i, j, num_insns = tb->icount;
57fec1fe 322#ifdef CONFIG_PROFILER
fca8a500 323 int64_t ti = profile_getclock();
57fec1fe
FB
324#endif
325
01ecaf43
RH
326 searched_pc -= GETPC_ADJ;
327
fca8a500
RH
328 if (searched_pc < host_pc) {
329 return -1;
330 }
d19893da 331
fca8a500
RH
332 /* Reconstruct the stored insn data while looking for the point at
333 which the end of the insn exceeds the searched_pc. */
334 for (i = 0; i < num_insns; ++i) {
335 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
336 data[j] += decode_sleb128(&p);
337 }
338 host_pc += decode_sleb128(&p);
339 if (host_pc > searched_pc) {
340 goto found;
341 }
342 }
343 return -1;
3b46e624 344
fca8a500 345 found:
bd79255d 346 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 347 assert(use_icount);
2e70f6ef 348 /* Reset the cycle counter to the start of the block. */
fca8a500 349 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 350 /* Clear the IO flag. */
99df7dce 351 cpu->can_do_io = 0;
2e70f6ef 352 }
fca8a500
RH
353 cpu->icount_decr.u16.low -= i;
354 restore_state_to_opc(env, tb, data);
57fec1fe
FB
355
356#ifdef CONFIG_PROFILER
fca8a500
RH
357 tcg_ctx.restore_time += profile_getclock() - ti;
358 tcg_ctx.restore_count++;
57fec1fe 359#endif
d19893da
FB
360 return 0;
361}
5b6dd868 362
3f38f309 363bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
364{
365 TranslationBlock *tb;
a5e99826 366 bool r = false;
a8a826a3 367
a5e99826 368 tb_lock();
a8a826a3
BS
369 tb = tb_find_pc(retaddr);
370 if (tb) {
74f10515 371 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
372 if (tb->cflags & CF_NOCACHE) {
373 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
374 tb_phys_invalidate(tb, -1);
375 tb_free(tb);
376 }
a5e99826 377 r = true;
a8a826a3 378 }
a5e99826
FK
379 tb_unlock();
380
381 return r;
a8a826a3
BS
382}
383
47c16ed5 384void page_size_init(void)
5b6dd868
BS
385{
386 /* NOTE: we can always suppose that qemu_host_page_size >=
387 TARGET_PAGE_SIZE */
5b6dd868 388 qemu_real_host_page_size = getpagesize();
0c2d70c4 389 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
390 if (qemu_host_page_size == 0) {
391 qemu_host_page_size = qemu_real_host_page_size;
392 }
393 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
394 qemu_host_page_size = TARGET_PAGE_SIZE;
395 }
0c2d70c4 396 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 397}
5b6dd868 398
47c16ed5
AK
399static void page_init(void)
400{
401 page_size_init();
66ec9f49
VK
402 page_table_config_init();
403
5b6dd868
BS
404#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
405 {
406#ifdef HAVE_KINFO_GETVMMAP
407 struct kinfo_vmentry *freep;
408 int i, cnt;
409
410 freep = kinfo_getvmmap(getpid(), &cnt);
411 if (freep) {
412 mmap_lock();
413 for (i = 0; i < cnt; i++) {
414 unsigned long startaddr, endaddr;
415
416 startaddr = freep[i].kve_start;
417 endaddr = freep[i].kve_end;
418 if (h2g_valid(startaddr)) {
419 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
420
421 if (h2g_valid(endaddr)) {
422 endaddr = h2g(endaddr);
423 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
424 } else {
425#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
426 endaddr = ~0ul;
427 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
428#endif
429 }
430 }
431 }
432 free(freep);
433 mmap_unlock();
434 }
435#else
436 FILE *f;
437
438 last_brk = (unsigned long)sbrk(0);
439
440 f = fopen("/compat/linux/proc/self/maps", "r");
441 if (f) {
442 mmap_lock();
443
444 do {
445 unsigned long startaddr, endaddr;
446 int n;
447
448 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
449
450 if (n == 2 && h2g_valid(startaddr)) {
451 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
452
453 if (h2g_valid(endaddr)) {
454 endaddr = h2g(endaddr);
455 } else {
456 endaddr = ~0ul;
457 }
458 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
459 }
460 } while (!feof(f));
461
462 fclose(f);
463 mmap_unlock();
464 }
465#endif
466 }
467#endif
468}
469
75692087 470/* If alloc=1:
7d7500d9 471 * Called with tb_lock held for system emulation.
75692087
PB
472 * Called with mmap_lock held for user-mode emulation.
473 */
5b6dd868
BS
474static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
475{
476 PageDesc *pd;
477 void **lp;
478 int i;
479
e505a063
AB
480 if (alloc) {
481 assert_memory_lock();
482 }
483
5b6dd868 484 /* Level 1. Always allocated. */
66ec9f49 485 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
5b6dd868
BS
486
487 /* Level 2..N-1. */
66ec9f49 488 for (i = v_l2_levels; i > 0; i--) {
6940fab8 489 void **p = atomic_rcu_read(lp);
5b6dd868
BS
490
491 if (p == NULL) {
492 if (!alloc) {
493 return NULL;
494 }
e3a0abfd 495 p = g_new0(void *, V_L2_SIZE);
6940fab8 496 atomic_rcu_set(lp, p);
5b6dd868
BS
497 }
498
03f49957 499 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
500 }
501
6940fab8 502 pd = atomic_rcu_read(lp);
5b6dd868
BS
503 if (pd == NULL) {
504 if (!alloc) {
505 return NULL;
506 }
e3a0abfd 507 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 508 atomic_rcu_set(lp, pd);
5b6dd868
BS
509 }
510
03f49957 511 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
512}
513
514static inline PageDesc *page_find(tb_page_addr_t index)
515{
516 return page_find_alloc(index, 0);
517}
518
5b6dd868
BS
519#if defined(CONFIG_USER_ONLY)
520/* Currently it is not recommended to allocate big chunks of data in
521 user mode. It will change when a dedicated libc will be used. */
522/* ??? 64-bit hosts ought to have no problem mmaping data outside the
523 region in which the guest needs to run. Revisit this. */
524#define USE_STATIC_CODE_GEN_BUFFER
525#endif
526
5b6dd868
BS
527/* Minimum size of the code gen buffer. This number is randomly chosen,
528 but not so small that we can't have a fair number of TB's live. */
529#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
530
531/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
532 indicated, this is constrained by the range of direct branches on the
533 host cpu, as used by the TCG implementation of goto_tb. */
534#if defined(__x86_64__)
535# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
536#elif defined(__sparc__)
537# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
538#elif defined(__powerpc64__)
539# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
540#elif defined(__powerpc__)
541# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
542#elif defined(__aarch64__)
543# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
544#elif defined(__arm__)
545# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
546#elif defined(__s390x__)
547 /* We have a +- 4GB range on the branches; leave some slop. */
548# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
549#elif defined(__mips__)
550 /* We have a 256MB branch region, but leave room to make sure the
551 main executable is also within that region. */
552# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
553#else
554# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
555#endif
556
557#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
558
559#define DEFAULT_CODE_GEN_BUFFER_SIZE \
560 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
561 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
562
563static inline size_t size_code_gen_buffer(size_t tb_size)
564{
565 /* Size the buffer. */
566 if (tb_size == 0) {
567#ifdef USE_STATIC_CODE_GEN_BUFFER
568 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
569#else
570 /* ??? Needs adjustments. */
571 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
572 static buffer, we could size this on RESERVED_VA, on the text
573 segment size of the executable, or continue to use the default. */
574 tb_size = (unsigned long)(ram_size / 4);
575#endif
576 }
577 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
578 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
579 }
580 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
581 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
582 }
5b6dd868
BS
583 return tb_size;
584}
585
483c76e1
RH
586#ifdef __mips__
587/* In order to use J and JAL within the code_gen_buffer, we require
588 that the buffer not cross a 256MB boundary. */
589static inline bool cross_256mb(void *addr, size_t size)
590{
7ba6a512 591 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
592}
593
594/* We weren't able to allocate a buffer without crossing that boundary,
595 so make do with the larger portion of the buffer that doesn't cross.
596 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
597static inline void *split_cross_256mb(void *buf1, size_t size1)
598{
7ba6a512 599 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
600 size_t size2 = buf1 + size1 - buf2;
601
602 size1 = buf2 - buf1;
603 if (size1 < size2) {
604 size1 = size2;
605 buf1 = buf2;
606 }
607
608 tcg_ctx.code_gen_buffer_size = size1;
609 return buf1;
610}
611#endif
612
5b6dd868
BS
613#ifdef USE_STATIC_CODE_GEN_BUFFER
614static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
615 __attribute__((aligned(CODE_GEN_ALIGN)));
616
f293709c
RH
617# ifdef _WIN32
618static inline void do_protect(void *addr, long size, int prot)
619{
620 DWORD old_protect;
621 VirtualProtect(addr, size, prot, &old_protect);
622}
623
624static inline void map_exec(void *addr, long size)
625{
626 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
627}
628
629static inline void map_none(void *addr, long size)
630{
631 do_protect(addr, size, PAGE_NOACCESS);
632}
633# else
634static inline void do_protect(void *addr, long size, int prot)
635{
636 uintptr_t start, end;
637
638 start = (uintptr_t)addr;
639 start &= qemu_real_host_page_mask;
640
641 end = (uintptr_t)addr + size;
642 end = ROUND_UP(end, qemu_real_host_page_size);
643
644 mprotect((void *)start, end - start, prot);
645}
646
647static inline void map_exec(void *addr, long size)
648{
649 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
650}
651
652static inline void map_none(void *addr, long size)
653{
654 do_protect(addr, size, PROT_NONE);
655}
656# endif /* WIN32 */
657
5b6dd868
BS
658static inline void *alloc_code_gen_buffer(void)
659{
483c76e1 660 void *buf = static_code_gen_buffer;
f293709c
RH
661 size_t full_size, size;
662
663 /* The size of the buffer, rounded down to end on a page boundary. */
664 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
665 & qemu_real_host_page_mask) - (uintptr_t)buf;
666
667 /* Reserve a guard page. */
668 size = full_size - qemu_real_host_page_size;
669
670 /* Honor a command-line option limiting the size of the buffer. */
671 if (size > tcg_ctx.code_gen_buffer_size) {
672 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
673 & qemu_real_host_page_mask) - (uintptr_t)buf;
674 }
675 tcg_ctx.code_gen_buffer_size = size;
676
483c76e1 677#ifdef __mips__
f293709c
RH
678 if (cross_256mb(buf, size)) {
679 buf = split_cross_256mb(buf, size);
680 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
681 }
682#endif
f293709c
RH
683
684 map_exec(buf, size);
685 map_none(buf + size, qemu_real_host_page_size);
686 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
687
483c76e1 688 return buf;
5b6dd868 689}
f293709c
RH
690#elif defined(_WIN32)
691static inline void *alloc_code_gen_buffer(void)
692{
693 size_t size = tcg_ctx.code_gen_buffer_size;
694 void *buf1, *buf2;
695
696 /* Perform the allocation in two steps, so that the guard page
697 is reserved but uncommitted. */
698 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
699 MEM_RESERVE, PAGE_NOACCESS);
700 if (buf1 != NULL) {
701 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
702 assert(buf1 == buf2);
703 }
704
705 return buf1;
706}
707#else
5b6dd868
BS
708static inline void *alloc_code_gen_buffer(void)
709{
710 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
711 uintptr_t start = 0;
f293709c 712 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
713 void *buf;
714
715 /* Constrain the position of the buffer based on the host cpu.
716 Note that these addresses are chosen in concert with the
717 addresses assigned in the relevant linker script file. */
718# if defined(__PIE__) || defined(__PIC__)
719 /* Don't bother setting a preferred location if we're building
720 a position-independent executable. We're more likely to get
721 an address near the main executable if we let the kernel
722 choose the address. */
723# elif defined(__x86_64__) && defined(MAP_32BIT)
724 /* Force the memory down into low memory with the executable.
725 Leave the choice of exact location with the kernel. */
726 flags |= MAP_32BIT;
727 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
728 if (size > 800u * 1024 * 1024) {
729 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
730 }
731# elif defined(__sparc__)
732 start = 0x40000000ul;
733# elif defined(__s390x__)
734 start = 0x90000000ul;
479eb121 735# elif defined(__mips__)
f293709c 736# if _MIPS_SIM == _ABI64
479eb121
RH
737 start = 0x128000000ul;
738# else
739 start = 0x08000000ul;
740# endif
5b6dd868
BS
741# endif
742
f293709c
RH
743 buf = mmap((void *)start, size + qemu_real_host_page_size,
744 PROT_NONE, flags, -1, 0);
483c76e1
RH
745 if (buf == MAP_FAILED) {
746 return NULL;
747 }
748
749#ifdef __mips__
f293709c 750 if (cross_256mb(buf, size)) {
5d831be2 751 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 752 that 256mb crossing. This time don't specify an address. */
f293709c
RH
753 size_t size2;
754 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
755 PROT_NONE, flags, -1, 0);
756 switch (buf2 != MAP_FAILED) {
757 case 1:
758 if (!cross_256mb(buf2, size)) {
483c76e1 759 /* Success! Use the new buffer. */
8bdf4997 760 munmap(buf, size + qemu_real_host_page_size);
f293709c 761 break;
483c76e1
RH
762 }
763 /* Failure. Work with what we had. */
8bdf4997 764 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
765 /* fallthru */
766 default:
767 /* Split the original buffer. Free the smaller half. */
768 buf2 = split_cross_256mb(buf, size);
769 size2 = tcg_ctx.code_gen_buffer_size;
770 if (buf == buf2) {
771 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
772 } else {
773 munmap(buf, size - size2);
774 }
775 size = size2;
776 break;
483c76e1 777 }
f293709c 778 buf = buf2;
483c76e1
RH
779 }
780#endif
781
f293709c
RH
782 /* Make the final buffer accessible. The guard page at the end
783 will remain inaccessible with PROT_NONE. */
784 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 785
f293709c
RH
786 /* Request large pages for the buffer. */
787 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 788
5b6dd868
BS
789 return buf;
790}
f293709c 791#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
792
793static inline void code_gen_alloc(size_t tb_size)
794{
0b0d3320
EV
795 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
796 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
797 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
798 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
799 exit(1);
800 }
801
8163b749
RH
802 /* Estimate a good size for the number of TBs we can support. We
803 still haven't deducted the prologue from the buffer size here,
804 but that's minimal and won't affect the estimate much. */
805 tcg_ctx.code_gen_max_blocks
806 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
807 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
808
677ef623 809 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
810}
811
909eaac9
EC
812static void tb_htable_init(void)
813{
814 unsigned int mode = QHT_MODE_AUTO_RESIZE;
815
816 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
817}
818
5b6dd868
BS
819/* Must be called before using the QEMU cpus. 'tb_size' is the size
820 (in bytes) allocated to the translation buffer. Zero means default
821 size. */
822void tcg_exec_init(unsigned long tb_size)
823{
824 cpu_gen_init();
5b6dd868 825 page_init();
909eaac9 826 tb_htable_init();
f293709c 827 code_gen_alloc(tb_size);
4cbea598 828#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
829 /* There's no guest base to take into account, so go ahead and
830 initialize the prologue now. */
831 tcg_prologue_init(&tcg_ctx);
832#endif
833}
834
835bool tcg_enabled(void)
836{
0b0d3320 837 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
838}
839
7d7500d9
PB
840/*
841 * Allocate a new translation block. Flush the translation buffer if
842 * too many translation blocks or too much generated code.
843 *
844 * Called with tb_lock held.
845 */
5b6dd868
BS
846static TranslationBlock *tb_alloc(target_ulong pc)
847{
848 TranslationBlock *tb;
849
e505a063
AB
850 assert_tb_lock();
851
b125f9dc 852 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
853 return NULL;
854 }
5e5f07e0 855 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
856 tb->pc = pc;
857 tb->cflags = 0;
6d21e420 858 tb->invalid = false;
5b6dd868
BS
859 return tb;
860}
861
7d7500d9 862/* Called with tb_lock held. */
5b6dd868
BS
863void tb_free(TranslationBlock *tb)
864{
e505a063
AB
865 assert_tb_lock();
866
5b6dd868
BS
867 /* In practice this is mostly used for single use temporary TB
868 Ignore the hard cases and just back up if this TB happens to
869 be the last one generated. */
5e5f07e0
EV
870 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
871 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 872 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 873 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
874 }
875}
876
877static inline void invalidate_page_bitmap(PageDesc *p)
878{
6fad459c 879#ifdef CONFIG_SOFTMMU
012aef07
MA
880 g_free(p->code_bitmap);
881 p->code_bitmap = NULL;
5b6dd868 882 p->code_write_count = 0;
6fad459c 883#endif
5b6dd868
BS
884}
885
886/* Set to NULL all the 'first_tb' fields in all PageDescs. */
887static void page_flush_tb_1(int level, void **lp)
888{
889 int i;
890
891 if (*lp == NULL) {
892 return;
893 }
894 if (level == 0) {
895 PageDesc *pd = *lp;
896
03f49957 897 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
898 pd[i].first_tb = NULL;
899 invalidate_page_bitmap(pd + i);
900 }
901 } else {
902 void **pp = *lp;
903
03f49957 904 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
905 page_flush_tb_1(level - 1, pp + i);
906 }
907 }
908}
909
910static void page_flush_tb(void)
911{
66ec9f49 912 int i, l1_sz = v_l1_size;
5b6dd868 913
66ec9f49
VK
914 for (i = 0; i < l1_sz; i++) {
915 page_flush_tb_1(v_l2_levels, l1_map + i);
5b6dd868
BS
916 }
917}
918
919/* flush all the translation blocks */
14e6fe12 920static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
5b6dd868 921{
3359baad
SF
922 tb_lock();
923
14e6fe12 924 /* If it is already been done on request of another CPU,
3359baad
SF
925 * just retry.
926 */
14e6fe12 927 if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
3359baad 928 goto done;
135a972b 929 }
3359baad 930
955939a2 931#if defined(DEBUG_TB_FLUSH)
5b6dd868 932 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 933 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 934 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 935 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 936 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 937#endif
0b0d3320
EV
938 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
939 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 940 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 941 }
5b6dd868 942
bdc44640 943 CPU_FOREACH(cpu) {
89a16b1e
SF
944 int i;
945
946 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
947 atomic_set(&cpu->tb_jmp_cache[i], NULL);
948 }
5b6dd868
BS
949 }
950
118b0730 951 tcg_ctx.tb_ctx.nb_tbs = 0;
909eaac9 952 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
5b6dd868
BS
953 page_flush_tb();
954
0b0d3320 955 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
956 /* XXX: flush processor icache at this point if cache flush is
957 expensive */
3359baad
SF
958 atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
959 tcg_ctx.tb_ctx.tb_flush_count + 1);
960
961done:
962 tb_unlock();
963}
964
965void tb_flush(CPUState *cpu)
966{
967 if (tcg_enabled()) {
14e6fe12
PB
968 unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
969 async_safe_run_on_cpu(cpu, do_tb_flush,
970 RUN_ON_CPU_HOST_INT(tb_flush_count));
3359baad 971 }
5b6dd868
BS
972}
973
974#ifdef DEBUG_TB_CHECK
975
909eaac9
EC
976static void
977do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
5b6dd868 978{
909eaac9
EC
979 TranslationBlock *tb = p;
980 target_ulong addr = *(target_ulong *)userp;
981
982 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
983 printf("ERROR invalidate: address=" TARGET_FMT_lx
984 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
985 }
986}
5b6dd868 987
7d7500d9
PB
988/* verify that all the pages have correct rights for code
989 *
990 * Called with tb_lock held.
991 */
909eaac9
EC
992static void tb_invalidate_check(target_ulong address)
993{
5b6dd868 994 address &= TARGET_PAGE_MASK;
909eaac9
EC
995 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
996}
997
998static void
999do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1000{
1001 TranslationBlock *tb = p;
1002 int flags1, flags2;
1003
1004 flags1 = page_get_flags(tb->pc);
1005 flags2 = page_get_flags(tb->pc + tb->size - 1);
1006 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1007 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1008 (long)tb->pc, tb->size, flags1, flags2);
5b6dd868
BS
1009 }
1010}
1011
1012/* verify that all the pages have correct rights for code */
1013static void tb_page_check(void)
1014{
909eaac9 1015 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
5b6dd868
BS
1016}
1017
1018#endif
1019
5b6dd868
BS
1020static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
1021{
1022 TranslationBlock *tb1;
1023 unsigned int n1;
1024
1025 for (;;) {
1026 tb1 = *ptb;
1027 n1 = (uintptr_t)tb1 & 3;
1028 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1029 if (tb1 == tb) {
1030 *ptb = tb1->page_next[n1];
1031 break;
1032 }
1033 ptb = &tb1->page_next[n1];
1034 }
1035}
1036
13362678
SF
1037/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
1038static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 1039{
c37e6d7e
SF
1040 TranslationBlock *tb1;
1041 uintptr_t *ptb, ntb;
5b6dd868
BS
1042 unsigned int n1;
1043
f309101c 1044 ptb = &tb->jmp_list_next[n];
c37e6d7e 1045 if (*ptb) {
5b6dd868
BS
1046 /* find tb(n) in circular list */
1047 for (;;) {
c37e6d7e
SF
1048 ntb = *ptb;
1049 n1 = ntb & 3;
1050 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
1051 if (n1 == n && tb1 == tb) {
1052 break;
1053 }
1054 if (n1 == 2) {
f309101c 1055 ptb = &tb1->jmp_list_first;
5b6dd868 1056 } else {
f309101c 1057 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
1058 }
1059 }
1060 /* now we can suppress tb(n) from the list */
f309101c 1061 *ptb = tb->jmp_list_next[n];
5b6dd868 1062
c37e6d7e 1063 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
1064 }
1065}
1066
1067/* reset the jump entry 'n' of a TB so that it is not chained to
1068 another TB */
1069static inline void tb_reset_jump(TranslationBlock *tb, int n)
1070{
f309101c
SF
1071 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
1072 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
1073}
1074
89bba496
SF
1075/* remove any jumps to the TB */
1076static inline void tb_jmp_unlink(TranslationBlock *tb)
1077{
f9c5b66f
SF
1078 TranslationBlock *tb1;
1079 uintptr_t *ptb, ntb;
89bba496
SF
1080 unsigned int n1;
1081
f9c5b66f 1082 ptb = &tb->jmp_list_first;
89bba496 1083 for (;;) {
f9c5b66f
SF
1084 ntb = *ptb;
1085 n1 = ntb & 3;
1086 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
1087 if (n1 == 2) {
1088 break;
1089 }
f9c5b66f
SF
1090 tb_reset_jump(tb1, n1);
1091 *ptb = tb1->jmp_list_next[n1];
1092 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 1093 }
89bba496
SF
1094}
1095
7d7500d9
PB
1096/* invalidate one TB
1097 *
1098 * Called with tb_lock held.
1099 */
5b6dd868
BS
1100void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1101{
182735ef 1102 CPUState *cpu;
5b6dd868 1103 PageDesc *p;
42bd3228 1104 uint32_t h;
5b6dd868 1105 tb_page_addr_t phys_pc;
5b6dd868 1106
e505a063
AB
1107 assert_tb_lock();
1108
6d21e420
PB
1109 atomic_set(&tb->invalid, true);
1110
5b6dd868
BS
1111 /* remove the TB from the hash list */
1112 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
42bd3228 1113 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 1114 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
5b6dd868
BS
1115
1116 /* remove the TB from the page list */
1117 if (tb->page_addr[0] != page_addr) {
1118 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1119 tb_page_remove(&p->first_tb, tb);
1120 invalidate_page_bitmap(p);
1121 }
1122 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1123 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1124 tb_page_remove(&p->first_tb, tb);
1125 invalidate_page_bitmap(p);
1126 }
1127
5b6dd868
BS
1128 /* remove the TB from the hash list */
1129 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1130 CPU_FOREACH(cpu) {
89a16b1e
SF
1131 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1132 atomic_set(&cpu->tb_jmp_cache[h], NULL);
5b6dd868
BS
1133 }
1134 }
1135
1136 /* suppress this TB from the two jump lists */
13362678
SF
1137 tb_remove_from_jmp_list(tb, 0);
1138 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1139
1140 /* suppress any remaining jumps to this TB */
89bba496 1141 tb_jmp_unlink(tb);
5b6dd868 1142
5e5f07e0 1143 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1144}
1145
6fad459c 1146#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1147static void build_page_bitmap(PageDesc *p)
1148{
1149 int n, tb_start, tb_end;
1150 TranslationBlock *tb;
1151
510a647f 1152 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1153
1154 tb = p->first_tb;
1155 while (tb != NULL) {
1156 n = (uintptr_t)tb & 3;
1157 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1158 /* NOTE: this is subtle as a TB may span two physical pages */
1159 if (n == 0) {
1160 /* NOTE: tb_end may be after the end of the page, but
1161 it is not a problem */
1162 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1163 tb_end = tb_start + tb->size;
1164 if (tb_end > TARGET_PAGE_SIZE) {
1165 tb_end = TARGET_PAGE_SIZE;
e505a063 1166 }
5b6dd868
BS
1167 } else {
1168 tb_start = 0;
1169 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1170 }
510a647f 1171 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1172 tb = tb->page_next[n];
1173 }
1174}
6fad459c 1175#endif
5b6dd868 1176
e90d96b1
SF
1177/* add the tb in the target page and protect it if necessary
1178 *
1179 * Called with mmap_lock held for user-mode emulation.
1180 */
1181static inline void tb_alloc_page(TranslationBlock *tb,
1182 unsigned int n, tb_page_addr_t page_addr)
1183{
1184 PageDesc *p;
1185#ifndef CONFIG_USER_ONLY
1186 bool page_already_protected;
1187#endif
1188
e505a063
AB
1189 assert_memory_lock();
1190
e90d96b1
SF
1191 tb->page_addr[n] = page_addr;
1192 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1193 tb->page_next[n] = p->first_tb;
1194#ifndef CONFIG_USER_ONLY
1195 page_already_protected = p->first_tb != NULL;
1196#endif
1197 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1198 invalidate_page_bitmap(p);
1199
1200#if defined(CONFIG_USER_ONLY)
1201 if (p->flags & PAGE_WRITE) {
1202 target_ulong addr;
1203 PageDesc *p2;
1204 int prot;
1205
1206 /* force the host page as non writable (writes will have a
1207 page fault + mprotect overhead) */
1208 page_addr &= qemu_host_page_mask;
1209 prot = 0;
1210 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1211 addr += TARGET_PAGE_SIZE) {
1212
1213 p2 = page_find(addr >> TARGET_PAGE_BITS);
1214 if (!p2) {
1215 continue;
1216 }
1217 prot |= p2->flags;
1218 p2->flags &= ~PAGE_WRITE;
1219 }
1220 mprotect(g2h(page_addr), qemu_host_page_size,
1221 (prot & PAGE_BITS) & ~PAGE_WRITE);
1222#ifdef DEBUG_TB_INVALIDATE
1223 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1224 page_addr);
1225#endif
1226 }
1227#else
1228 /* if some code is already present, then the pages are already
1229 protected. So we handle the case where only the first TB is
1230 allocated in a physical page */
1231 if (!page_already_protected) {
1232 tlb_protect_code(page_addr);
1233 }
1234#endif
1235}
1236
1237/* add a new TB and link it to the physical page tables. phys_page2 is
1238 * (-1) to indicate that only one page contains the TB.
1239 *
1240 * Called with mmap_lock held for user-mode emulation.
1241 */
1242static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1243 tb_page_addr_t phys_page2)
1244{
42bd3228 1245 uint32_t h;
e90d96b1 1246
e505a063
AB
1247 assert_memory_lock();
1248
e90d96b1
SF
1249 /* add in the page list */
1250 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1251 if (phys_page2 != -1) {
1252 tb_alloc_page(tb, 1, phys_page2);
1253 } else {
1254 tb->page_addr[1] = -1;
1255 }
1256
2e1ae44a
AB
1257 /* add in the hash table */
1258 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1259 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1260
e90d96b1
SF
1261#ifdef DEBUG_TB_CHECK
1262 tb_page_check();
1263#endif
1264}
1265
75692087 1266/* Called with mmap_lock held for user mode emulation. */
648f034c 1267TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1268 target_ulong pc, target_ulong cs_base,
89fee74a 1269 uint32_t flags, int cflags)
5b6dd868 1270{
648f034c 1271 CPUArchState *env = cpu->env_ptr;
5b6dd868 1272 TranslationBlock *tb;
5b6dd868
BS
1273 tb_page_addr_t phys_pc, phys_page2;
1274 target_ulong virt_page2;
fec88f64 1275 tcg_insn_unit *gen_code_buf;
fca8a500 1276 int gen_code_size, search_size;
fec88f64
RH
1277#ifdef CONFIG_PROFILER
1278 int64_t ti;
1279#endif
e505a063 1280 assert_memory_lock();
5b6dd868
BS
1281
1282 phys_pc = get_page_addr_code(env, pc);
56c0269a 1283 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1284 cflags |= CF_USE_ICOUNT;
1285 }
b125f9dc 1286
5b6dd868 1287 tb = tb_alloc(pc);
b125f9dc
RH
1288 if (unlikely(!tb)) {
1289 buffer_overflow:
5b6dd868 1290 /* flush must be done */
bbd77c18 1291 tb_flush(cpu);
3359baad
SF
1292 mmap_unlock();
1293 cpu_loop_exit(cpu);
5b6dd868 1294 }
fec88f64
RH
1295
1296 gen_code_buf = tcg_ctx.code_gen_ptr;
1297 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1298 tb->cs_base = cs_base;
1299 tb->flags = flags;
1300 tb->cflags = cflags;
fec88f64
RH
1301
1302#ifdef CONFIG_PROFILER
1303 tcg_ctx.tb_count1++; /* includes aborted translations because of
1304 exceptions */
1305 ti = profile_getclock();
1306#endif
1307
1308 tcg_func_start(&tcg_ctx);
1309
7c255043 1310 tcg_ctx.cpu = ENV_GET_CPU(env);
fec88f64 1311 gen_intermediate_code(env, tb);
7c255043 1312 tcg_ctx.cpu = NULL;
fec88f64
RH
1313
1314 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1315
1316 /* generate machine code */
f309101c
SF
1317 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1318 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1319 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1320#ifdef USE_DIRECT_JUMP
f309101c
SF
1321 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1322 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1323#else
f309101c
SF
1324 tcg_ctx.tb_jmp_insn_offset = NULL;
1325 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1326#endif
1327
1328#ifdef CONFIG_PROFILER
1329 tcg_ctx.tb_count++;
1330 tcg_ctx.interm_time += profile_getclock() - ti;
1331 tcg_ctx.code_time -= profile_getclock();
1332#endif
1333
b125f9dc
RH
1334 /* ??? Overflow could be handled better here. In particular, we
1335 don't need to re-do gen_intermediate_code, nor should we re-do
1336 the tcg optimization currently hidden inside tcg_gen_code. All
1337 that should be required is to flush the TBs, allocate a new TB,
1338 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1339 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1340 if (unlikely(gen_code_size < 0)) {
1341 goto buffer_overflow;
1342 }
fca8a500 1343 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1344 if (unlikely(search_size < 0)) {
1345 goto buffer_overflow;
1346 }
fec88f64
RH
1347
1348#ifdef CONFIG_PROFILER
1349 tcg_ctx.code_time += profile_getclock();
1350 tcg_ctx.code_in_len += tb->size;
1351 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1352 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1353#endif
1354
1355#ifdef DEBUG_DISAS
d977e1c2
AB
1356 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1357 qemu_log_in_addr_range(tb->pc)) {
1ee73216 1358 qemu_log_lock();
fec88f64
RH
1359 qemu_log("OUT: [size=%d]\n", gen_code_size);
1360 log_disas(tb->tc_ptr, gen_code_size);
1361 qemu_log("\n");
1362 qemu_log_flush();
1ee73216 1363 qemu_log_unlock();
fec88f64
RH
1364 }
1365#endif
1366
fca8a500
RH
1367 tcg_ctx.code_gen_ptr = (void *)
1368 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1369 CODE_GEN_ALIGN);
5b6dd868 1370
901bc3de
SF
1371 /* init jump list */
1372 assert(((uintptr_t)tb & 3) == 0);
1373 tb->jmp_list_first = (uintptr_t)tb | 2;
1374 tb->jmp_list_next[0] = (uintptr_t)NULL;
1375 tb->jmp_list_next[1] = (uintptr_t)NULL;
1376
1377 /* init original jump addresses wich has been set during tcg_gen_code() */
1378 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1379 tb_reset_jump(tb, 0);
1380 }
1381 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1382 tb_reset_jump(tb, 1);
1383 }
1384
5b6dd868
BS
1385 /* check next page if needed */
1386 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1387 phys_page2 = -1;
1388 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1389 phys_page2 = get_page_addr_code(env, virt_page2);
1390 }
901bc3de
SF
1391 /* As long as consistency of the TB stuff is provided by tb_lock in user
1392 * mode and is implicit in single-threaded softmmu emulation, no explicit
1393 * memory barrier is required before tb_link_page() makes the TB visible
1394 * through the physical hash table and physical page list.
1395 */
5b6dd868
BS
1396 tb_link_page(tb, phys_pc, phys_page2);
1397 return tb;
1398}
1399
1400/*
1401 * Invalidate all TBs which intersect with the target physical address range
1402 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1403 * 'is_cpu_write_access' should be true if called from a real cpu write
1404 * access: the virtual CPU will exit the current TB if code is modified inside
1405 * this TB.
75692087 1406 *
ba051fb5
AB
1407 * Called with mmap_lock held for user-mode emulation, grabs tb_lock
1408 * Called with tb_lock held for system-mode emulation
5b6dd868 1409 */
ba051fb5 1410static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1411{
1412 while (start < end) {
35865339 1413 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1414 start &= TARGET_PAGE_MASK;
1415 start += TARGET_PAGE_SIZE;
1416 }
1417}
1418
ba051fb5
AB
1419#ifdef CONFIG_SOFTMMU
1420void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1421{
1422 assert_tb_lock();
1423 tb_invalidate_phys_range_1(start, end);
1424}
1425#else
1426void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1427{
1428 assert_memory_lock();
1429 tb_lock();
1430 tb_invalidate_phys_range_1(start, end);
1431 tb_unlock();
1432}
1433#endif
5b6dd868
BS
1434/*
1435 * Invalidate all TBs which intersect with the target physical address range
1436 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1437 * 'is_cpu_write_access' should be true if called from a real cpu write
1438 * access: the virtual CPU will exit the current TB if code is modified inside
1439 * this TB.
75692087 1440 *
ba051fb5
AB
1441 * Called with tb_lock/mmap_lock held for user-mode emulation
1442 * Called with tb_lock held for system-mode emulation
5b6dd868
BS
1443 */
1444void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1445 int is_cpu_write_access)
1446{
3213525f 1447 TranslationBlock *tb, *tb_next;
baea4fae 1448#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1449 CPUState *cpu = current_cpu;
4917cf44
AF
1450 CPUArchState *env = NULL;
1451#endif
5b6dd868
BS
1452 tb_page_addr_t tb_start, tb_end;
1453 PageDesc *p;
1454 int n;
1455#ifdef TARGET_HAS_PRECISE_SMC
1456 int current_tb_not_found = is_cpu_write_access;
1457 TranslationBlock *current_tb = NULL;
1458 int current_tb_modified = 0;
1459 target_ulong current_pc = 0;
1460 target_ulong current_cs_base = 0;
89fee74a 1461 uint32_t current_flags = 0;
5b6dd868
BS
1462#endif /* TARGET_HAS_PRECISE_SMC */
1463
e505a063 1464 assert_memory_lock();
ba051fb5 1465 assert_tb_lock();
e505a063 1466
5b6dd868
BS
1467 p = page_find(start >> TARGET_PAGE_BITS);
1468 if (!p) {
1469 return;
1470 }
baea4fae 1471#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1472 if (cpu != NULL) {
1473 env = cpu->env_ptr;
d77953b9 1474 }
4917cf44 1475#endif
5b6dd868
BS
1476
1477 /* we remove all the TBs in the range [start, end[ */
1478 /* XXX: see if in some cases it could be faster to invalidate all
1479 the code */
1480 tb = p->first_tb;
1481 while (tb != NULL) {
1482 n = (uintptr_t)tb & 3;
1483 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1484 tb_next = tb->page_next[n];
1485 /* NOTE: this is subtle as a TB may span two physical pages */
1486 if (n == 0) {
1487 /* NOTE: tb_end may be after the end of the page, but
1488 it is not a problem */
1489 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1490 tb_end = tb_start + tb->size;
1491 } else {
1492 tb_start = tb->page_addr[1];
1493 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1494 }
1495 if (!(tb_end <= start || tb_start >= end)) {
1496#ifdef TARGET_HAS_PRECISE_SMC
1497 if (current_tb_not_found) {
1498 current_tb_not_found = 0;
1499 current_tb = NULL;
93afeade 1500 if (cpu->mem_io_pc) {
5b6dd868 1501 /* now we have a real cpu fault */
93afeade 1502 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1503 }
1504 }
1505 if (current_tb == tb &&
1506 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1507 /* If we are modifying the current TB, we must stop
1508 its execution. We could be more precise by checking
1509 that the modification is after the current PC, but it
1510 would require a specialized function to partially
1511 restore the CPU state */
1512
1513 current_tb_modified = 1;
74f10515 1514 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1515 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1516 &current_flags);
1517 }
1518#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1519 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1520 }
1521 tb = tb_next;
1522 }
1523#if !defined(CONFIG_USER_ONLY)
1524 /* if no code remaining, no need to continue to use slow writes */
1525 if (!p->first_tb) {
1526 invalidate_page_bitmap(p);
fc377bcf 1527 tlb_unprotect_code(start);
5b6dd868
BS
1528 }
1529#endif
1530#ifdef TARGET_HAS_PRECISE_SMC
1531 if (current_tb_modified) {
1532 /* we generate a block containing just the instruction
1533 modifying the memory. It will ensure that it cannot modify
1534 itself */
648f034c 1535 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
6886b980 1536 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1537 }
1538#endif
1539}
1540
6fad459c 1541#ifdef CONFIG_SOFTMMU
ba051fb5
AB
1542/* len must be <= 8 and start must be a multiple of len.
1543 * Called via softmmu_template.h when code areas are written to with
1544 * tb_lock held.
1545 */
5b6dd868
BS
1546void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1547{
1548 PageDesc *p;
5b6dd868
BS
1549
1550#if 0
1551 if (1) {
1552 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1553 cpu_single_env->mem_io_vaddr, len,
1554 cpu_single_env->eip,
1555 cpu_single_env->eip +
1556 (intptr_t)cpu_single_env->segs[R_CS].base);
1557 }
1558#endif
ba051fb5
AB
1559 assert_memory_lock();
1560
5b6dd868
BS
1561 p = page_find(start >> TARGET_PAGE_BITS);
1562 if (!p) {
1563 return;
1564 }
fc377bcf
PB
1565 if (!p->code_bitmap &&
1566 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
7d7500d9
PB
1567 /* build code bitmap. FIXME: writes should be protected by
1568 * tb_lock, reads by tb_lock or RCU.
1569 */
fc377bcf
PB
1570 build_page_bitmap(p);
1571 }
5b6dd868 1572 if (p->code_bitmap) {
510a647f
EC
1573 unsigned int nr;
1574 unsigned long b;
1575
1576 nr = start & ~TARGET_PAGE_MASK;
1577 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1578 if (b & ((1 << len) - 1)) {
1579 goto do_invalidate;
1580 }
1581 } else {
1582 do_invalidate:
1583 tb_invalidate_phys_page_range(start, start + len, 1);
1584 }
1585}
6fad459c 1586#else
75809229
PM
1587/* Called with mmap_lock held. If pc is not 0 then it indicates the
1588 * host PC of the faulting store instruction that caused this invalidate.
1589 * Returns true if the caller needs to abort execution of the current
1590 * TB (because it was modified by this store and the guest CPU has
1591 * precise-SMC semantics).
1592 */
1593static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
5b6dd868
BS
1594{
1595 TranslationBlock *tb;
1596 PageDesc *p;
1597 int n;
1598#ifdef TARGET_HAS_PRECISE_SMC
1599 TranslationBlock *current_tb = NULL;
4917cf44
AF
1600 CPUState *cpu = current_cpu;
1601 CPUArchState *env = NULL;
5b6dd868
BS
1602 int current_tb_modified = 0;
1603 target_ulong current_pc = 0;
1604 target_ulong current_cs_base = 0;
89fee74a 1605 uint32_t current_flags = 0;
5b6dd868
BS
1606#endif
1607
ba051fb5
AB
1608 assert_memory_lock();
1609
5b6dd868
BS
1610 addr &= TARGET_PAGE_MASK;
1611 p = page_find(addr >> TARGET_PAGE_BITS);
1612 if (!p) {
75809229 1613 return false;
5b6dd868 1614 }
a5e99826
FK
1615
1616 tb_lock();
5b6dd868
BS
1617 tb = p->first_tb;
1618#ifdef TARGET_HAS_PRECISE_SMC
1619 if (tb && pc != 0) {
1620 current_tb = tb_find_pc(pc);
1621 }
4917cf44
AF
1622 if (cpu != NULL) {
1623 env = cpu->env_ptr;
d77953b9 1624 }
5b6dd868
BS
1625#endif
1626 while (tb != NULL) {
1627 n = (uintptr_t)tb & 3;
1628 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1629#ifdef TARGET_HAS_PRECISE_SMC
1630 if (current_tb == tb &&
1631 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1632 /* If we are modifying the current TB, we must stop
1633 its execution. We could be more precise by checking
1634 that the modification is after the current PC, but it
1635 would require a specialized function to partially
1636 restore the CPU state */
1637
1638 current_tb_modified = 1;
74f10515 1639 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1640 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1641 &current_flags);
1642 }
1643#endif /* TARGET_HAS_PRECISE_SMC */
1644 tb_phys_invalidate(tb, addr);
1645 tb = tb->page_next[n];
1646 }
1647 p->first_tb = NULL;
1648#ifdef TARGET_HAS_PRECISE_SMC
1649 if (current_tb_modified) {
1650 /* we generate a block containing just the instruction
1651 modifying the memory. It will ensure that it cannot modify
1652 itself */
648f034c 1653 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
a5e99826
FK
1654 /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
1655 * back into the cpu_exec loop. */
75809229 1656 return true;
5b6dd868
BS
1657 }
1658#endif
a5e99826
FK
1659 tb_unlock();
1660
75809229 1661 return false;
5b6dd868
BS
1662}
1663#endif
1664
5b6dd868
BS
1665/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1666 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1667static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1668{
1669 int m_min, m_max, m;
1670 uintptr_t v;
1671 TranslationBlock *tb;
1672
5e5f07e0 1673 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1674 return NULL;
1675 }
0b0d3320
EV
1676 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1677 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1678 return NULL;
1679 }
1680 /* binary search (cf Knuth) */
1681 m_min = 0;
5e5f07e0 1682 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1683 while (m_min <= m_max) {
1684 m = (m_min + m_max) >> 1;
5e5f07e0 1685 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1686 v = (uintptr_t)tb->tc_ptr;
1687 if (v == tc_ptr) {
1688 return tb;
1689 } else if (tc_ptr < v) {
1690 m_max = m - 1;
1691 } else {
1692 m_min = m + 1;
1693 }
1694 }
5e5f07e0 1695 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1696}
1697
ec53b45b 1698#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1699void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1700{
1701 ram_addr_t ram_addr;
5c8a00ce 1702 MemoryRegion *mr;
149f54b5 1703 hwaddr l = 1;
5b6dd868 1704
41063e1e 1705 rcu_read_lock();
29d8ec7b 1706 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1707 if (!(memory_region_is_ram(mr)
1708 || memory_region_is_romd(mr))) {
41063e1e 1709 rcu_read_unlock();
5b6dd868
BS
1710 return;
1711 }
e4e69794 1712 ram_addr = memory_region_get_ram_addr(mr) + addr;
ba051fb5 1713 tb_lock();
5b6dd868 1714 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
ba051fb5 1715 tb_unlock();
41063e1e 1716 rcu_read_unlock();
5b6dd868 1717}
ec53b45b 1718#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1719
7d7500d9 1720/* Called with tb_lock held. */
239c51a5 1721void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1722{
1723 TranslationBlock *tb;
1724
93afeade 1725 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1726 if (tb) {
1727 /* We can use retranslation to find the PC. */
1728 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1729 tb_phys_invalidate(tb, -1);
1730 } else {
1731 /* The exception probably happened in a helper. The CPU state should
1732 have been saved before calling it. Fetch the PC from there. */
1733 CPUArchState *env = cpu->env_ptr;
1734 target_ulong pc, cs_base;
1735 tb_page_addr_t addr;
89fee74a 1736 uint32_t flags;
8d302e76
AJ
1737
1738 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1739 addr = get_page_addr_code(env, pc);
1740 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1741 }
5b6dd868
BS
1742}
1743
1744#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1745/* in deterministic execution mode, instructions doing device I/Os
1746 must be at the end of the TB */
90b40a69 1747void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1748{
a47dddd7 1749#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1750 CPUArchState *env = cpu->env_ptr;
a47dddd7 1751#endif
5b6dd868
BS
1752 TranslationBlock *tb;
1753 uint32_t n, cflags;
1754 target_ulong pc, cs_base;
89fee74a 1755 uint32_t flags;
5b6dd868 1756
a5e99826 1757 tb_lock();
5b6dd868
BS
1758 tb = tb_find_pc(retaddr);
1759 if (!tb) {
a47dddd7 1760 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1761 (void *)retaddr);
1762 }
28ecfd7a 1763 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1764 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1765 /* Calculate how many instructions had been executed before the fault
1766 occurred. */
28ecfd7a 1767 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1768 /* Generate a new TB ending on the I/O insn. */
1769 n++;
1770 /* On MIPS and SH, delay slot instructions can only be restarted if
1771 they were already the first instruction in the TB. If this is not
1772 the first instruction in a TB then re-execute the preceding
1773 branch. */
1774#if defined(TARGET_MIPS)
1775 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1776 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1777 cpu->icount_decr.u16.low++;
5b6dd868
BS
1778 env->hflags &= ~MIPS_HFLAG_BMASK;
1779 }
1780#elif defined(TARGET_SH4)
1781 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1782 && n > 1) {
1783 env->pc -= 2;
28ecfd7a 1784 cpu->icount_decr.u16.low++;
5b6dd868
BS
1785 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1786 }
1787#endif
1788 /* This should never happen. */
1789 if (n > CF_COUNT_MASK) {
a47dddd7 1790 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1791 }
1792
1793 cflags = n | CF_LAST_IO;
1794 pc = tb->pc;
1795 cs_base = tb->cs_base;
1796 flags = tb->flags;
1797 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1798 if (tb->cflags & CF_NOCACHE) {
1799 if (tb->orig_tb) {
1800 /* Invalidate original TB if this TB was generated in
1801 * cpu_exec_nocache() */
1802 tb_phys_invalidate(tb->orig_tb, -1);
1803 }
1804 tb_free(tb);
1805 }
5b6dd868
BS
1806 /* FIXME: In theory this could raise an exception. In practice
1807 we have already translated the block once so it's probably ok. */
648f034c 1808 tb_gen_code(cpu, pc, cs_base, flags, cflags);
a5e99826 1809
5b6dd868 1810 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
a5e99826
FK
1811 * the first in the TB) then we end up generating a whole new TB and
1812 * repeating the fault, which is horribly inefficient.
1813 * Better would be to execute just this insn uncached, or generate a
1814 * second new TB.
1815 *
1816 * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
1817 * tb_lock gets reset.
1818 */
6886b980 1819 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1820}
1821
611d4f99 1822void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1823{
1824 unsigned int i;
1825
1826 /* Discard jump cache entries for any tb which might potentially
1827 overlap the flushed page. */
1828 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1829 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1830 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1831
1832 i = tb_jmp_cache_hash_page(addr);
8cd70437 1833 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1834 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1835}
1836
7266ae91
EC
1837static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1838 struct qht_stats hst)
1839{
1840 uint32_t hgram_opts;
1841 size_t hgram_bins;
1842 char *hgram;
1843
1844 if (!hst.head_buckets) {
1845 return;
1846 }
1847 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1848 hst.used_head_buckets, hst.head_buckets,
1849 (double)hst.used_head_buckets / hst.head_buckets * 100);
1850
1851 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1852 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1853 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1854 hgram_opts |= QDIST_PR_NODECIMAL;
1855 }
1856 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1857 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1858 qdist_avg(&hst.occupancy) * 100, hgram);
1859 g_free(hgram);
1860
1861 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1862 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1863 if (hgram_bins > 10) {
1864 hgram_bins = 10;
1865 } else {
1866 hgram_bins = 0;
1867 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1868 }
1869 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1870 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1871 qdist_avg(&hst.chain), hgram);
1872 g_free(hgram);
1873}
1874
5b6dd868
BS
1875void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1876{
1877 int i, target_code_size, max_target_code_size;
1878 int direct_jmp_count, direct_jmp2_count, cross_page;
1879 TranslationBlock *tb;
329844d4 1880 struct qht_stats hst;
5b6dd868 1881
a5e99826
FK
1882 tb_lock();
1883
5b6dd868
BS
1884 target_code_size = 0;
1885 max_target_code_size = 0;
1886 cross_page = 0;
1887 direct_jmp_count = 0;
1888 direct_jmp2_count = 0;
5e5f07e0
EV
1889 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1890 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1891 target_code_size += tb->size;
1892 if (tb->size > max_target_code_size) {
1893 max_target_code_size = tb->size;
1894 }
1895 if (tb->page_addr[1] != -1) {
1896 cross_page++;
1897 }
f309101c 1898 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1899 direct_jmp_count++;
f309101c 1900 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1901 direct_jmp2_count++;
1902 }
1903 }
1904 }
1905 /* XXX: avoid using doubles ? */
1906 cpu_fprintf(f, "Translation buffer state:\n");
1907 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1908 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1909 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1910 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1911 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1912 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1913 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1914 tcg_ctx.tb_ctx.nb_tbs : 0,
1915 max_target_code_size);
5b6dd868 1916 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1917 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1918 tcg_ctx.code_gen_buffer) /
1919 tcg_ctx.tb_ctx.nb_tbs : 0,
1920 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1921 tcg_ctx.code_gen_buffer) /
1922 target_code_size : 0);
1923 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1924 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1925 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1926 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1927 direct_jmp_count,
5e5f07e0
EV
1928 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1929 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1930 direct_jmp2_count,
5e5f07e0
EV
1931 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1932 tcg_ctx.tb_ctx.nb_tbs : 0);
329844d4
EC
1933
1934 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
7266ae91 1935 print_qht_statistics(f, cpu_fprintf, hst);
329844d4
EC
1936 qht_statistics_destroy(&hst);
1937
5b6dd868 1938 cpu_fprintf(f, "\nStatistics:\n");
3359baad
SF
1939 cpu_fprintf(f, "TB flush count %u\n",
1940 atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
5e5f07e0
EV
1941 cpu_fprintf(f, "TB invalidate count %d\n",
1942 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1943 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1944 tcg_dump_info(f, cpu_fprintf);
a5e99826
FK
1945
1946 tb_unlock();
5b6dd868
BS
1947}
1948
246ae24d
MF
1949void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1950{
1951 tcg_dump_op_count(f, cpu_fprintf);
1952}
1953
5b6dd868
BS
1954#else /* CONFIG_USER_ONLY */
1955
c3affe56 1956void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1957{
259186a7 1958 cpu->interrupt_request |= mask;
378df4b2 1959 cpu->tcg_exit_req = 1;
5b6dd868
BS
1960}
1961
1962/*
1963 * Walks guest process memory "regions" one by one
1964 * and calls callback function 'fn' for each region.
1965 */
1966struct walk_memory_regions_data {
1967 walk_memory_regions_fn fn;
1968 void *priv;
1a1c4db9 1969 target_ulong start;
5b6dd868
BS
1970 int prot;
1971};
1972
1973static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1974 target_ulong end, int new_prot)
5b6dd868 1975{
1a1c4db9 1976 if (data->start != -1u) {
5b6dd868
BS
1977 int rc = data->fn(data->priv, data->start, end, data->prot);
1978 if (rc != 0) {
1979 return rc;
1980 }
1981 }
1982
1a1c4db9 1983 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1984 data->prot = new_prot;
1985
1986 return 0;
1987}
1988
1989static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1990 target_ulong base, int level, void **lp)
5b6dd868 1991{
1a1c4db9 1992 target_ulong pa;
5b6dd868
BS
1993 int i, rc;
1994
1995 if (*lp == NULL) {
1996 return walk_memory_regions_end(data, base, 0);
1997 }
1998
1999 if (level == 0) {
2000 PageDesc *pd = *lp;
2001
03f49957 2002 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
2003 int prot = pd[i].flags;
2004
2005 pa = base | (i << TARGET_PAGE_BITS);
2006 if (prot != data->prot) {
2007 rc = walk_memory_regions_end(data, pa, prot);
2008 if (rc != 0) {
2009 return rc;
2010 }
2011 }
2012 }
2013 } else {
2014 void **pp = *lp;
2015
03f49957 2016 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 2017 pa = base | ((target_ulong)i <<
03f49957 2018 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
2019 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2020 if (rc != 0) {
2021 return rc;
2022 }
2023 }
2024 }
2025
2026 return 0;
2027}
2028
2029int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2030{
2031 struct walk_memory_regions_data data;
66ec9f49 2032 uintptr_t i, l1_sz = v_l1_size;
5b6dd868
BS
2033
2034 data.fn = fn;
2035 data.priv = priv;
1a1c4db9 2036 data.start = -1u;
5b6dd868
BS
2037 data.prot = 0;
2038
66ec9f49
VK
2039 for (i = 0; i < l1_sz; i++) {
2040 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2041 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
5b6dd868
BS
2042 if (rc != 0) {
2043 return rc;
2044 }
2045 }
2046
2047 return walk_memory_regions_end(&data, 0, 0);
2048}
2049
1a1c4db9
MI
2050static int dump_region(void *priv, target_ulong start,
2051 target_ulong end, unsigned long prot)
5b6dd868
BS
2052{
2053 FILE *f = (FILE *)priv;
2054
1a1c4db9
MI
2055 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2056 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
2057 start, end, end - start,
2058 ((prot & PAGE_READ) ? 'r' : '-'),
2059 ((prot & PAGE_WRITE) ? 'w' : '-'),
2060 ((prot & PAGE_EXEC) ? 'x' : '-'));
2061
2062 return 0;
2063}
2064
2065/* dump memory mappings */
2066void page_dump(FILE *f)
2067{
1a1c4db9 2068 const int length = sizeof(target_ulong) * 2;
227b8175
SW
2069 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2070 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
2071 walk_memory_regions(f, dump_region);
2072}
2073
2074int page_get_flags(target_ulong address)
2075{
2076 PageDesc *p;
2077
2078 p = page_find(address >> TARGET_PAGE_BITS);
2079 if (!p) {
2080 return 0;
2081 }
2082 return p->flags;
2083}
2084
2085/* Modify the flags of a page and invalidate the code if necessary.
2086 The flag PAGE_WRITE_ORG is positioned automatically depending
2087 on PAGE_WRITE. The mmap_lock should already be held. */
2088void page_set_flags(target_ulong start, target_ulong end, int flags)
2089{
2090 target_ulong addr, len;
2091
2092 /* This function should never be called with addresses outside the
2093 guest address space. If this assert fires, it probably indicates
2094 a missing call to h2g_valid. */
2095#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 2096 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
2097#endif
2098 assert(start < end);
e505a063 2099 assert_memory_lock();
5b6dd868
BS
2100
2101 start = start & TARGET_PAGE_MASK;
2102 end = TARGET_PAGE_ALIGN(end);
2103
2104 if (flags & PAGE_WRITE) {
2105 flags |= PAGE_WRITE_ORG;
2106 }
2107
2108 for (addr = start, len = end - start;
2109 len != 0;
2110 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2111 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2112
2113 /* If the write protection bit is set, then we invalidate
2114 the code inside. */
2115 if (!(p->flags & PAGE_WRITE) &&
2116 (flags & PAGE_WRITE) &&
2117 p->first_tb) {
75809229 2118 tb_invalidate_phys_page(addr, 0);
5b6dd868
BS
2119 }
2120 p->flags = flags;
2121 }
2122}
2123
2124int page_check_range(target_ulong start, target_ulong len, int flags)
2125{
2126 PageDesc *p;
2127 target_ulong end;
2128 target_ulong addr;
2129
2130 /* This function should never be called with addresses outside the
2131 guest address space. If this assert fires, it probably indicates
2132 a missing call to h2g_valid. */
2133#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 2134 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
2135#endif
2136
2137 if (len == 0) {
2138 return 0;
2139 }
2140 if (start + len - 1 < start) {
2141 /* We've wrapped around. */
2142 return -1;
2143 }
2144
2145 /* must do before we loose bits in the next step */
2146 end = TARGET_PAGE_ALIGN(start + len);
2147 start = start & TARGET_PAGE_MASK;
2148
2149 for (addr = start, len = end - start;
2150 len != 0;
2151 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2152 p = page_find(addr >> TARGET_PAGE_BITS);
2153 if (!p) {
2154 return -1;
2155 }
2156 if (!(p->flags & PAGE_VALID)) {
2157 return -1;
2158 }
2159
2160 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2161 return -1;
2162 }
2163 if (flags & PAGE_WRITE) {
2164 if (!(p->flags & PAGE_WRITE_ORG)) {
2165 return -1;
2166 }
2167 /* unprotect the page if it was put read-only because it
2168 contains translated code */
2169 if (!(p->flags & PAGE_WRITE)) {
f213e72f 2170 if (!page_unprotect(addr, 0)) {
5b6dd868
BS
2171 return -1;
2172 }
2173 }
5b6dd868
BS
2174 }
2175 }
2176 return 0;
2177}
2178
2179/* called from signal handler: invalidate the code and unprotect the
f213e72f
PM
2180 * page. Return 0 if the fault was not handled, 1 if it was handled,
2181 * and 2 if it was handled but the caller must cause the TB to be
2182 * immediately exited. (We can only return 2 if the 'pc' argument is
2183 * non-zero.)
2184 */
2185int page_unprotect(target_ulong address, uintptr_t pc)
5b6dd868
BS
2186{
2187 unsigned int prot;
7399a337 2188 bool current_tb_invalidated;
5b6dd868
BS
2189 PageDesc *p;
2190 target_ulong host_start, host_end, addr;
2191
2192 /* Technically this isn't safe inside a signal handler. However we
2193 know this only ever happens in a synchronous SEGV handler, so in
2194 practice it seems to be ok. */
2195 mmap_lock();
2196
2197 p = page_find(address >> TARGET_PAGE_BITS);
2198 if (!p) {
2199 mmap_unlock();
2200 return 0;
2201 }
2202
2203 /* if the page was really writable, then we change its
2204 protection back to writable */
2205 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2206 host_start = address & qemu_host_page_mask;
2207 host_end = host_start + qemu_host_page_size;
2208
2209 prot = 0;
7399a337 2210 current_tb_invalidated = false;
5b6dd868
BS
2211 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2212 p = page_find(addr >> TARGET_PAGE_BITS);
2213 p->flags |= PAGE_WRITE;
2214 prot |= p->flags;
2215
2216 /* and since the content will be modified, we must invalidate
2217 the corresponding translated code. */
7399a337 2218 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
5b6dd868
BS
2219#ifdef DEBUG_TB_CHECK
2220 tb_invalidate_check(addr);
2221#endif
2222 }
2223 mprotect((void *)g2h(host_start), qemu_host_page_size,
2224 prot & PAGE_BITS);
2225
2226 mmap_unlock();
7399a337
SS
2227 /* If current TB was invalidated return to main loop */
2228 return current_tb_invalidated ? 2 : 1;
5b6dd868
BS
2229 }
2230 mmap_unlock();
2231 return 0;
2232}
2233#endif /* CONFIG_USER_ONLY */