]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
tcg: Clean up direct block chaining data fields
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
5b6dd868
BS
22#include <sys/mman.h>
23#endif
7b31bbc2 24#include "qemu/osdep.h"
d19893da 25
2054396a 26
5b6dd868 27#include "qemu-common.h"
af5ad107 28#define NO_CPU_IO_DEFS
d3eead2e 29#include "cpu.h"
6db8b538 30#include "trace.h"
76cad711 31#include "disas/disas.h"
57fec1fe 32#include "tcg.h"
5b6dd868
BS
33#if defined(CONFIG_USER_ONLY)
34#include "qemu.h"
35#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36#include <sys/param.h>
37#if __FreeBSD_version >= 700104
38#define HAVE_KINFO_GETVMMAP
39#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
40#include <sys/proc.h>
41#include <machine/profile.h>
42#define _KERNEL
43#include <sys/user.h>
44#undef _KERNEL
45#undef sigqueue
46#include <libutil.h>
47#endif
48#endif
0bc3cd62
PB
49#else
50#include "exec/address-spaces.h"
5b6dd868
BS
51#endif
52
022c62cb 53#include "exec/cputlb.h"
e1b89321 54#include "exec/tb-hash.h"
5b6dd868 55#include "translate-all.h"
510a647f 56#include "qemu/bitmap.h"
0aa09897 57#include "qemu/timer.h"
508127e2 58#include "exec/log.h"
5b6dd868
BS
59
60//#define DEBUG_TB_INVALIDATE
61//#define DEBUG_FLUSH
62/* make various TB consistency checks */
63//#define DEBUG_TB_CHECK
64
65#if !defined(CONFIG_USER_ONLY)
66/* TB consistency checks only implemented for usermode emulation. */
67#undef DEBUG_TB_CHECK
68#endif
69
70#define SMC_BITMAP_USE_THRESHOLD 10
71
5b6dd868
BS
72typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
510a647f 78 unsigned long *code_bitmap;
5b6dd868
BS
79#if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81#endif
82} PageDesc;
83
84/* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86#if !defined(CONFIG_USER_ONLY)
87#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89#else
90# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91#endif
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94#endif
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define V_L2_BITS 10
98#define V_L2_SIZE (1 << V_L2_BITS)
99
5b6dd868
BS
100/* The bits remaining after N lower levels of page tables. */
101#define V_L1_BITS_REM \
03f49957 102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
103
104#if V_L1_BITS_REM < 4
03f49957 105#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
106#else
107#define V_L1_BITS V_L1_BITS_REM
108#endif
109
110#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
5b6dd868 114uintptr_t qemu_host_page_size;
0c2d70c4 115intptr_t qemu_host_page_mask;
5b6dd868 116
d1142fb8 117/* The bottom level has pointers to PageDesc */
5b6dd868
BS
118static void *l1_map[V_L1_SIZE];
119
57fec1fe
FB
120/* code generation context */
121TCGContext tcg_ctx;
d19893da 122
677ef623
FK
123/* translation block context */
124#ifdef CONFIG_USER_ONLY
125__thread int have_tb_lock;
126#endif
127
128void tb_lock(void)
129{
130#ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134#endif
135}
136
137void tb_unlock(void)
138{
139#ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143#endif
144}
145
146void tb_lock_reset(void)
147{
148#ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153#endif
154}
155
5b6dd868
BS
156static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
a8a826a3 158static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 159
57fec1fe
FB
160void cpu_gen_init(void)
161{
162 tcg_context_init(&tcg_ctx);
57fec1fe
FB
163}
164
fca8a500
RH
165/* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167static uint8_t *encode_sleb128(uint8_t *p, target_long val)
168{
169 int more, byte;
170
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
178 }
179 *p++ = byte;
180 } while (more);
181
182 return p;
183}
184
185/* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187static target_long decode_sleb128(uint8_t **pp)
188{
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
192
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
200 }
201
202 *pp = p;
203 return val;
204}
205
206/* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
208
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
212
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
217
218static int encode_search(TranslationBlock *tb, uint8_t *block)
219{
b125f9dc 220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
221 uint8_t *p = block;
222 int i, j, n;
223
224 tb->tc_search = block;
225
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
228
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
234 }
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
236 }
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
239
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
246 }
fca8a500
RH
247 }
248
249 return p - block;
250}
251
fec88f64 252/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 253static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 254 uintptr_t searched_pc)
d19893da 255{
fca8a500
RH
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 258 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
57fec1fe 261#ifdef CONFIG_PROFILER
fca8a500 262 int64_t ti = profile_getclock();
57fec1fe
FB
263#endif
264
fca8a500
RH
265 if (searched_pc < host_pc) {
266 return -1;
267 }
d19893da 268
fca8a500
RH
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
3b46e624 281
fca8a500 282 found:
bd79255d 283 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 284 assert(use_icount);
2e70f6ef 285 /* Reset the cycle counter to the start of the block. */
fca8a500 286 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 287 /* Clear the IO flag. */
99df7dce 288 cpu->can_do_io = 0;
2e70f6ef 289 }
fca8a500
RH
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
57fec1fe
FB
292
293#ifdef CONFIG_PROFILER
fca8a500
RH
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
57fec1fe 296#endif
d19893da
FB
297 return 0;
298}
5b6dd868 299
3f38f309 300bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
301{
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
74f10515 306 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
312 }
a8a826a3
BS
313 return true;
314 }
315 return false;
316}
317
47c16ed5 318void page_size_init(void)
5b6dd868
BS
319{
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
5b6dd868 322 qemu_real_host_page_size = getpagesize();
0c2d70c4 323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
326 }
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
329 }
0c2d70c4 330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 331}
5b6dd868 332
47c16ed5
AK
333static void page_init(void)
334{
335 page_size_init();
5b6dd868
BS
336#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
337 {
338#ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
341
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
347
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
352
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360#endif
361 }
362 }
363 }
364 free(freep);
365 mmap_unlock();
366 }
367#else
368 FILE *f;
369
370 last_brk = (unsigned long)sbrk(0);
371
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
375
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
379
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
381
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
384
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
389 }
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
391 }
392 } while (!feof(f));
393
394 fclose(f);
395 mmap_unlock();
396 }
397#endif
398 }
399#endif
400}
401
75692087
PB
402/* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
404 */
5b6dd868
BS
405static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
406{
407 PageDesc *pd;
408 void **lp;
409 int i;
410
5b6dd868
BS
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
413
414 /* Level 2..N-1. */
03f49957 415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 416 void **p = atomic_rcu_read(lp);
5b6dd868
BS
417
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
421 }
e3a0abfd 422 p = g_new0(void *, V_L2_SIZE);
6940fab8 423 atomic_rcu_set(lp, p);
5b6dd868
BS
424 }
425
03f49957 426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
427 }
428
6940fab8 429 pd = atomic_rcu_read(lp);
5b6dd868
BS
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
433 }
e3a0abfd 434 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 435 atomic_rcu_set(lp, pd);
5b6dd868
BS
436 }
437
03f49957 438 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
439}
440
441static inline PageDesc *page_find(tb_page_addr_t index)
442{
443 return page_find_alloc(index, 0);
444}
445
5b6dd868
BS
446#if defined(CONFIG_USER_ONLY)
447/* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449/* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451#define USE_STATIC_CODE_GEN_BUFFER
452#endif
453
5b6dd868
BS
454/* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457
458/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461#if defined(__x86_64__)
462# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463#elif defined(__sparc__)
464# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
465#elif defined(__powerpc64__)
466# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
467#elif defined(__powerpc__)
468# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
469#elif defined(__aarch64__)
470# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
471#elif defined(__arm__)
472# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
473#elif defined(__s390x__)
474 /* We have a +- 4GB range on the branches; leave some slop. */
475# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
476#elif defined(__mips__)
477 /* We have a 256MB branch region, but leave room to make sure the
478 main executable is also within that region. */
479# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
480#else
481# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
482#endif
483
484#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
485
486#define DEFAULT_CODE_GEN_BUFFER_SIZE \
487 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
488 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
489
490static inline size_t size_code_gen_buffer(size_t tb_size)
491{
492 /* Size the buffer. */
493 if (tb_size == 0) {
494#ifdef USE_STATIC_CODE_GEN_BUFFER
495 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
496#else
497 /* ??? Needs adjustments. */
498 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
499 static buffer, we could size this on RESERVED_VA, on the text
500 segment size of the executable, or continue to use the default. */
501 tb_size = (unsigned long)(ram_size / 4);
502#endif
503 }
504 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
506 }
507 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
508 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
509 }
5b6dd868
BS
510 return tb_size;
511}
512
483c76e1
RH
513#ifdef __mips__
514/* In order to use J and JAL within the code_gen_buffer, we require
515 that the buffer not cross a 256MB boundary. */
516static inline bool cross_256mb(void *addr, size_t size)
517{
7ba6a512 518 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
519}
520
521/* We weren't able to allocate a buffer without crossing that boundary,
522 so make do with the larger portion of the buffer that doesn't cross.
523 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
524static inline void *split_cross_256mb(void *buf1, size_t size1)
525{
7ba6a512 526 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
527 size_t size2 = buf1 + size1 - buf2;
528
529 size1 = buf2 - buf1;
530 if (size1 < size2) {
531 size1 = size2;
532 buf1 = buf2;
533 }
534
535 tcg_ctx.code_gen_buffer_size = size1;
536 return buf1;
537}
538#endif
539
5b6dd868
BS
540#ifdef USE_STATIC_CODE_GEN_BUFFER
541static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
542 __attribute__((aligned(CODE_GEN_ALIGN)));
543
f293709c
RH
544# ifdef _WIN32
545static inline void do_protect(void *addr, long size, int prot)
546{
547 DWORD old_protect;
548 VirtualProtect(addr, size, prot, &old_protect);
549}
550
551static inline void map_exec(void *addr, long size)
552{
553 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
554}
555
556static inline void map_none(void *addr, long size)
557{
558 do_protect(addr, size, PAGE_NOACCESS);
559}
560# else
561static inline void do_protect(void *addr, long size, int prot)
562{
563 uintptr_t start, end;
564
565 start = (uintptr_t)addr;
566 start &= qemu_real_host_page_mask;
567
568 end = (uintptr_t)addr + size;
569 end = ROUND_UP(end, qemu_real_host_page_size);
570
571 mprotect((void *)start, end - start, prot);
572}
573
574static inline void map_exec(void *addr, long size)
575{
576 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
577}
578
579static inline void map_none(void *addr, long size)
580{
581 do_protect(addr, size, PROT_NONE);
582}
583# endif /* WIN32 */
584
5b6dd868
BS
585static inline void *alloc_code_gen_buffer(void)
586{
483c76e1 587 void *buf = static_code_gen_buffer;
f293709c
RH
588 size_t full_size, size;
589
590 /* The size of the buffer, rounded down to end on a page boundary. */
591 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
592 & qemu_real_host_page_mask) - (uintptr_t)buf;
593
594 /* Reserve a guard page. */
595 size = full_size - qemu_real_host_page_size;
596
597 /* Honor a command-line option limiting the size of the buffer. */
598 if (size > tcg_ctx.code_gen_buffer_size) {
599 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
600 & qemu_real_host_page_mask) - (uintptr_t)buf;
601 }
602 tcg_ctx.code_gen_buffer_size = size;
603
483c76e1 604#ifdef __mips__
f293709c
RH
605 if (cross_256mb(buf, size)) {
606 buf = split_cross_256mb(buf, size);
607 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
608 }
609#endif
f293709c
RH
610
611 map_exec(buf, size);
612 map_none(buf + size, qemu_real_host_page_size);
613 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
614
483c76e1 615 return buf;
5b6dd868 616}
f293709c
RH
617#elif defined(_WIN32)
618static inline void *alloc_code_gen_buffer(void)
619{
620 size_t size = tcg_ctx.code_gen_buffer_size;
621 void *buf1, *buf2;
622
623 /* Perform the allocation in two steps, so that the guard page
624 is reserved but uncommitted. */
625 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
626 MEM_RESERVE, PAGE_NOACCESS);
627 if (buf1 != NULL) {
628 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
629 assert(buf1 == buf2);
630 }
631
632 return buf1;
633}
634#else
5b6dd868
BS
635static inline void *alloc_code_gen_buffer(void)
636{
637 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
638 uintptr_t start = 0;
f293709c 639 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
640 void *buf;
641
642 /* Constrain the position of the buffer based on the host cpu.
643 Note that these addresses are chosen in concert with the
644 addresses assigned in the relevant linker script file. */
645# if defined(__PIE__) || defined(__PIC__)
646 /* Don't bother setting a preferred location if we're building
647 a position-independent executable. We're more likely to get
648 an address near the main executable if we let the kernel
649 choose the address. */
650# elif defined(__x86_64__) && defined(MAP_32BIT)
651 /* Force the memory down into low memory with the executable.
652 Leave the choice of exact location with the kernel. */
653 flags |= MAP_32BIT;
654 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
655 if (size > 800u * 1024 * 1024) {
656 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
657 }
658# elif defined(__sparc__)
659 start = 0x40000000ul;
660# elif defined(__s390x__)
661 start = 0x90000000ul;
479eb121 662# elif defined(__mips__)
f293709c 663# if _MIPS_SIM == _ABI64
479eb121
RH
664 start = 0x128000000ul;
665# else
666 start = 0x08000000ul;
667# endif
5b6dd868
BS
668# endif
669
f293709c
RH
670 buf = mmap((void *)start, size + qemu_real_host_page_size,
671 PROT_NONE, flags, -1, 0);
483c76e1
RH
672 if (buf == MAP_FAILED) {
673 return NULL;
674 }
675
676#ifdef __mips__
f293709c 677 if (cross_256mb(buf, size)) {
5d831be2 678 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 679 that 256mb crossing. This time don't specify an address. */
f293709c
RH
680 size_t size2;
681 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
682 PROT_NONE, flags, -1, 0);
683 switch (buf2 != MAP_FAILED) {
684 case 1:
685 if (!cross_256mb(buf2, size)) {
483c76e1 686 /* Success! Use the new buffer. */
8bdf4997 687 munmap(buf, size + qemu_real_host_page_size);
f293709c 688 break;
483c76e1
RH
689 }
690 /* Failure. Work with what we had. */
8bdf4997 691 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
692 /* fallthru */
693 default:
694 /* Split the original buffer. Free the smaller half. */
695 buf2 = split_cross_256mb(buf, size);
696 size2 = tcg_ctx.code_gen_buffer_size;
697 if (buf == buf2) {
698 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
699 } else {
700 munmap(buf, size - size2);
701 }
702 size = size2;
703 break;
483c76e1 704 }
f293709c 705 buf = buf2;
483c76e1
RH
706 }
707#endif
708
f293709c
RH
709 /* Make the final buffer accessible. The guard page at the end
710 will remain inaccessible with PROT_NONE. */
711 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 712
f293709c
RH
713 /* Request large pages for the buffer. */
714 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 715
5b6dd868
BS
716 return buf;
717}
f293709c 718#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
719
720static inline void code_gen_alloc(size_t tb_size)
721{
0b0d3320
EV
722 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
723 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
724 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
725 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
726 exit(1);
727 }
728
8163b749
RH
729 /* Estimate a good size for the number of TBs we can support. We
730 still haven't deducted the prologue from the buffer size here,
731 but that's minimal and won't affect the estimate much. */
732 tcg_ctx.code_gen_max_blocks
733 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
734 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
735
677ef623 736 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
737}
738
739/* Must be called before using the QEMU cpus. 'tb_size' is the size
740 (in bytes) allocated to the translation buffer. Zero means default
741 size. */
742void tcg_exec_init(unsigned long tb_size)
743{
744 cpu_gen_init();
5b6dd868 745 page_init();
f293709c 746 code_gen_alloc(tb_size);
4cbea598 747#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
748 /* There's no guest base to take into account, so go ahead and
749 initialize the prologue now. */
750 tcg_prologue_init(&tcg_ctx);
751#endif
752}
753
754bool tcg_enabled(void)
755{
0b0d3320 756 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
757}
758
759/* Allocate a new translation block. Flush the translation buffer if
760 too many translation blocks or too much generated code. */
761static TranslationBlock *tb_alloc(target_ulong pc)
762{
763 TranslationBlock *tb;
764
b125f9dc 765 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
766 return NULL;
767 }
5e5f07e0 768 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
769 tb->pc = pc;
770 tb->cflags = 0;
771 return tb;
772}
773
774void tb_free(TranslationBlock *tb)
775{
776 /* In practice this is mostly used for single use temporary TB
777 Ignore the hard cases and just back up if this TB happens to
778 be the last one generated. */
5e5f07e0
EV
779 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
780 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 781 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 782 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
783 }
784}
785
786static inline void invalidate_page_bitmap(PageDesc *p)
787{
012aef07
MA
788 g_free(p->code_bitmap);
789 p->code_bitmap = NULL;
5b6dd868
BS
790 p->code_write_count = 0;
791}
792
793/* Set to NULL all the 'first_tb' fields in all PageDescs. */
794static void page_flush_tb_1(int level, void **lp)
795{
796 int i;
797
798 if (*lp == NULL) {
799 return;
800 }
801 if (level == 0) {
802 PageDesc *pd = *lp;
803
03f49957 804 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
805 pd[i].first_tb = NULL;
806 invalidate_page_bitmap(pd + i);
807 }
808 } else {
809 void **pp = *lp;
810
03f49957 811 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
812 page_flush_tb_1(level - 1, pp + i);
813 }
814 }
815}
816
817static void page_flush_tb(void)
818{
819 int i;
820
821 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 822 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
823 }
824}
825
826/* flush all the translation blocks */
827/* XXX: tb_flush is currently not thread safe */
bbd77c18 828void tb_flush(CPUState *cpu)
5b6dd868 829{
5b6dd868
BS
830#if defined(DEBUG_FLUSH)
831 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 832 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 833 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 834 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 835 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 836#endif
0b0d3320
EV
837 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
838 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 839 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 840 }
5e5f07e0 841 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 842
bdc44640 843 CPU_FOREACH(cpu) {
8cd70437 844 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
845 }
846
eb2535f4 847 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
848 page_flush_tb();
849
0b0d3320 850 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
851 /* XXX: flush processor icache at this point if cache flush is
852 expensive */
5e5f07e0 853 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
854}
855
856#ifdef DEBUG_TB_CHECK
857
858static void tb_invalidate_check(target_ulong address)
859{
860 TranslationBlock *tb;
861 int i;
862
863 address &= TARGET_PAGE_MASK;
864 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
7e6bd36d
EC
865 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
866 tb = tb->phys_hash_next) {
5b6dd868
BS
867 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
868 address >= tb->pc + tb->size)) {
869 printf("ERROR invalidate: address=" TARGET_FMT_lx
870 " PC=%08lx size=%04x\n",
871 address, (long)tb->pc, tb->size);
872 }
873 }
874 }
875}
876
877/* verify that all the pages have correct rights for code */
878static void tb_page_check(void)
879{
880 TranslationBlock *tb;
881 int i, flags1, flags2;
882
883 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
884 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
885 tb = tb->phys_hash_next) {
5b6dd868
BS
886 flags1 = page_get_flags(tb->pc);
887 flags2 = page_get_flags(tb->pc + tb->size - 1);
888 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
889 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
890 (long)tb->pc, tb->size, flags1, flags2);
891 }
892 }
893 }
894}
895
896#endif
897
0c884d16 898static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
899{
900 TranslationBlock *tb1;
901
902 for (;;) {
903 tb1 = *ptb;
904 if (tb1 == tb) {
0c884d16 905 *ptb = tb1->phys_hash_next;
5b6dd868
BS
906 break;
907 }
0c884d16 908 ptb = &tb1->phys_hash_next;
5b6dd868
BS
909 }
910}
911
912static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
913{
914 TranslationBlock *tb1;
915 unsigned int n1;
916
917 for (;;) {
918 tb1 = *ptb;
919 n1 = (uintptr_t)tb1 & 3;
920 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
921 if (tb1 == tb) {
922 *ptb = tb1->page_next[n1];
923 break;
924 }
925 ptb = &tb1->page_next[n1];
926 }
927}
928
929static inline void tb_jmp_remove(TranslationBlock *tb, int n)
930{
931 TranslationBlock *tb1, **ptb;
932 unsigned int n1;
933
f309101c 934 ptb = &tb->jmp_list_next[n];
5b6dd868
BS
935 tb1 = *ptb;
936 if (tb1) {
937 /* find tb(n) in circular list */
938 for (;;) {
939 tb1 = *ptb;
940 n1 = (uintptr_t)tb1 & 3;
941 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
942 if (n1 == n && tb1 == tb) {
943 break;
944 }
945 if (n1 == 2) {
f309101c 946 ptb = &tb1->jmp_list_first;
5b6dd868 947 } else {
f309101c 948 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
949 }
950 }
951 /* now we can suppress tb(n) from the list */
f309101c 952 *ptb = tb->jmp_list_next[n];
5b6dd868 953
f309101c 954 tb->jmp_list_next[n] = NULL;
5b6dd868
BS
955 }
956}
957
958/* reset the jump entry 'n' of a TB so that it is not chained to
959 another TB */
960static inline void tb_reset_jump(TranslationBlock *tb, int n)
961{
f309101c
SF
962 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
963 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
964}
965
0c884d16 966/* invalidate one TB */
5b6dd868
BS
967void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
968{
182735ef 969 CPUState *cpu;
5b6dd868
BS
970 PageDesc *p;
971 unsigned int h, n1;
972 tb_page_addr_t phys_pc;
973 TranslationBlock *tb1, *tb2;
974
975 /* remove the TB from the hash list */
976 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
977 h = tb_phys_hash_func(phys_pc);
5e5f07e0 978 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
979
980 /* remove the TB from the page list */
981 if (tb->page_addr[0] != page_addr) {
982 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
983 tb_page_remove(&p->first_tb, tb);
984 invalidate_page_bitmap(p);
985 }
986 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
987 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
988 tb_page_remove(&p->first_tb, tb);
989 invalidate_page_bitmap(p);
990 }
991
5e5f07e0 992 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
993
994 /* remove the TB from the hash list */
995 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 996 CPU_FOREACH(cpu) {
8cd70437
AF
997 if (cpu->tb_jmp_cache[h] == tb) {
998 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
999 }
1000 }
1001
1002 /* suppress this TB from the two jump lists */
1003 tb_jmp_remove(tb, 0);
1004 tb_jmp_remove(tb, 1);
1005
1006 /* suppress any remaining jumps to this TB */
f309101c 1007 tb1 = tb->jmp_list_first;
5b6dd868
BS
1008 for (;;) {
1009 n1 = (uintptr_t)tb1 & 3;
1010 if (n1 == 2) {
1011 break;
1012 }
1013 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
f309101c 1014 tb2 = tb1->jmp_list_next[n1];
5b6dd868 1015 tb_reset_jump(tb1, n1);
f309101c 1016 tb1->jmp_list_next[n1] = NULL;
5b6dd868
BS
1017 tb1 = tb2;
1018 }
f309101c
SF
1019
1020 /* fail safe */
1021 tb->jmp_list_first = (TranslationBlock *)((uintptr_t)tb | 2);
5b6dd868 1022
5e5f07e0 1023 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1024}
1025
5b6dd868
BS
1026static void build_page_bitmap(PageDesc *p)
1027{
1028 int n, tb_start, tb_end;
1029 TranslationBlock *tb;
1030
510a647f 1031 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1032
1033 tb = p->first_tb;
1034 while (tb != NULL) {
1035 n = (uintptr_t)tb & 3;
1036 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1037 /* NOTE: this is subtle as a TB may span two physical pages */
1038 if (n == 0) {
1039 /* NOTE: tb_end may be after the end of the page, but
1040 it is not a problem */
1041 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1042 tb_end = tb_start + tb->size;
1043 if (tb_end > TARGET_PAGE_SIZE) {
1044 tb_end = TARGET_PAGE_SIZE;
1045 }
1046 } else {
1047 tb_start = 0;
1048 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1049 }
510a647f 1050 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1051 tb = tb->page_next[n];
1052 }
1053}
1054
75692087 1055/* Called with mmap_lock held for user mode emulation. */
648f034c 1056TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1057 target_ulong pc, target_ulong cs_base,
89fee74a 1058 uint32_t flags, int cflags)
5b6dd868 1059{
648f034c 1060 CPUArchState *env = cpu->env_ptr;
5b6dd868 1061 TranslationBlock *tb;
5b6dd868
BS
1062 tb_page_addr_t phys_pc, phys_page2;
1063 target_ulong virt_page2;
fec88f64 1064 tcg_insn_unit *gen_code_buf;
fca8a500 1065 int gen_code_size, search_size;
fec88f64
RH
1066#ifdef CONFIG_PROFILER
1067 int64_t ti;
1068#endif
5b6dd868
BS
1069
1070 phys_pc = get_page_addr_code(env, pc);
56c0269a 1071 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1072 cflags |= CF_USE_ICOUNT;
1073 }
b125f9dc 1074
5b6dd868 1075 tb = tb_alloc(pc);
b125f9dc
RH
1076 if (unlikely(!tb)) {
1077 buffer_overflow:
5b6dd868 1078 /* flush must be done */
bbd77c18 1079 tb_flush(cpu);
5b6dd868
BS
1080 /* cannot fail at this point */
1081 tb = tb_alloc(pc);
b125f9dc 1082 assert(tb != NULL);
5b6dd868 1083 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1084 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1085 }
fec88f64
RH
1086
1087 gen_code_buf = tcg_ctx.code_gen_ptr;
1088 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1089 tb->cs_base = cs_base;
1090 tb->flags = flags;
1091 tb->cflags = cflags;
fec88f64
RH
1092
1093#ifdef CONFIG_PROFILER
1094 tcg_ctx.tb_count1++; /* includes aborted translations because of
1095 exceptions */
1096 ti = profile_getclock();
1097#endif
1098
1099 tcg_func_start(&tcg_ctx);
1100
1101 gen_intermediate_code(env, tb);
1102
1103 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1104
1105 /* generate machine code */
f309101c
SF
1106 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1107 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1108 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1109#ifdef USE_DIRECT_JUMP
f309101c
SF
1110 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1111 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1112#else
f309101c
SF
1113 tcg_ctx.tb_jmp_insn_offset = NULL;
1114 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1115#endif
1116
1117#ifdef CONFIG_PROFILER
1118 tcg_ctx.tb_count++;
1119 tcg_ctx.interm_time += profile_getclock() - ti;
1120 tcg_ctx.code_time -= profile_getclock();
1121#endif
1122
b125f9dc
RH
1123 /* ??? Overflow could be handled better here. In particular, we
1124 don't need to re-do gen_intermediate_code, nor should we re-do
1125 the tcg optimization currently hidden inside tcg_gen_code. All
1126 that should be required is to flush the TBs, allocate a new TB,
1127 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1128 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1129 if (unlikely(gen_code_size < 0)) {
1130 goto buffer_overflow;
1131 }
fca8a500 1132 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1133 if (unlikely(search_size < 0)) {
1134 goto buffer_overflow;
1135 }
fec88f64
RH
1136
1137#ifdef CONFIG_PROFILER
1138 tcg_ctx.code_time += profile_getclock();
1139 tcg_ctx.code_in_len += tb->size;
1140 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1141 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1142#endif
1143
1144#ifdef DEBUG_DISAS
d977e1c2
AB
1145 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1146 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1147 qemu_log("OUT: [size=%d]\n", gen_code_size);
1148 log_disas(tb->tc_ptr, gen_code_size);
1149 qemu_log("\n");
1150 qemu_log_flush();
1151 }
1152#endif
1153
fca8a500
RH
1154 tcg_ctx.code_gen_ptr = (void *)
1155 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1156 CODE_GEN_ALIGN);
5b6dd868
BS
1157
1158 /* check next page if needed */
1159 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1160 phys_page2 = -1;
1161 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1162 phys_page2 = get_page_addr_code(env, virt_page2);
1163 }
1164 tb_link_page(tb, phys_pc, phys_page2);
1165 return tb;
1166}
1167
1168/*
1169 * Invalidate all TBs which intersect with the target physical address range
1170 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1171 * 'is_cpu_write_access' should be true if called from a real cpu write
1172 * access: the virtual CPU will exit the current TB if code is modified inside
1173 * this TB.
75692087
PB
1174 *
1175 * Called with mmap_lock held for user-mode emulation
5b6dd868 1176 */
35865339 1177void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1178{
1179 while (start < end) {
35865339 1180 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1181 start &= TARGET_PAGE_MASK;
1182 start += TARGET_PAGE_SIZE;
1183 }
1184}
1185
1186/*
1187 * Invalidate all TBs which intersect with the target physical address range
1188 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1189 * 'is_cpu_write_access' should be true if called from a real cpu write
1190 * access: the virtual CPU will exit the current TB if code is modified inside
1191 * this TB.
75692087
PB
1192 *
1193 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1194 */
1195void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1196 int is_cpu_write_access)
1197{
1198 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1199 CPUState *cpu = current_cpu;
baea4fae 1200#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1201 CPUArchState *env = NULL;
1202#endif
5b6dd868
BS
1203 tb_page_addr_t tb_start, tb_end;
1204 PageDesc *p;
1205 int n;
1206#ifdef TARGET_HAS_PRECISE_SMC
1207 int current_tb_not_found = is_cpu_write_access;
1208 TranslationBlock *current_tb = NULL;
1209 int current_tb_modified = 0;
1210 target_ulong current_pc = 0;
1211 target_ulong current_cs_base = 0;
89fee74a 1212 uint32_t current_flags = 0;
5b6dd868
BS
1213#endif /* TARGET_HAS_PRECISE_SMC */
1214
1215 p = page_find(start >> TARGET_PAGE_BITS);
1216 if (!p) {
1217 return;
1218 }
baea4fae 1219#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1220 if (cpu != NULL) {
1221 env = cpu->env_ptr;
d77953b9 1222 }
4917cf44 1223#endif
5b6dd868
BS
1224
1225 /* we remove all the TBs in the range [start, end[ */
1226 /* XXX: see if in some cases it could be faster to invalidate all
1227 the code */
1228 tb = p->first_tb;
1229 while (tb != NULL) {
1230 n = (uintptr_t)tb & 3;
1231 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1232 tb_next = tb->page_next[n];
1233 /* NOTE: this is subtle as a TB may span two physical pages */
1234 if (n == 0) {
1235 /* NOTE: tb_end may be after the end of the page, but
1236 it is not a problem */
1237 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1238 tb_end = tb_start + tb->size;
1239 } else {
1240 tb_start = tb->page_addr[1];
1241 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1242 }
1243 if (!(tb_end <= start || tb_start >= end)) {
1244#ifdef TARGET_HAS_PRECISE_SMC
1245 if (current_tb_not_found) {
1246 current_tb_not_found = 0;
1247 current_tb = NULL;
93afeade 1248 if (cpu->mem_io_pc) {
5b6dd868 1249 /* now we have a real cpu fault */
93afeade 1250 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1251 }
1252 }
1253 if (current_tb == tb &&
1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
1260
1261 current_tb_modified = 1;
74f10515 1262 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
1265 }
1266#endif /* TARGET_HAS_PRECISE_SMC */
1267 /* we need to do that to handle the case where a signal
1268 occurs while doing tb_phys_invalidate() */
1269 saved_tb = NULL;
d77953b9
AF
1270 if (cpu != NULL) {
1271 saved_tb = cpu->current_tb;
1272 cpu->current_tb = NULL;
5b6dd868
BS
1273 }
1274 tb_phys_invalidate(tb, -1);
d77953b9
AF
1275 if (cpu != NULL) {
1276 cpu->current_tb = saved_tb;
c3affe56
AF
1277 if (cpu->interrupt_request && cpu->current_tb) {
1278 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1279 }
1280 }
1281 }
1282 tb = tb_next;
1283 }
1284#if !defined(CONFIG_USER_ONLY)
1285 /* if no code remaining, no need to continue to use slow writes */
1286 if (!p->first_tb) {
1287 invalidate_page_bitmap(p);
fc377bcf 1288 tlb_unprotect_code(start);
5b6dd868
BS
1289 }
1290#endif
1291#ifdef TARGET_HAS_PRECISE_SMC
1292 if (current_tb_modified) {
1293 /* we generate a block containing just the instruction
1294 modifying the memory. It will ensure that it cannot modify
1295 itself */
d77953b9 1296 cpu->current_tb = NULL;
648f034c 1297 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1298 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1299 }
1300#endif
1301}
1302
1303/* len must be <= 8 and start must be a multiple of len */
1304void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1305{
1306 PageDesc *p;
5b6dd868
BS
1307
1308#if 0
1309 if (1) {
1310 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1311 cpu_single_env->mem_io_vaddr, len,
1312 cpu_single_env->eip,
1313 cpu_single_env->eip +
1314 (intptr_t)cpu_single_env->segs[R_CS].base);
1315 }
1316#endif
1317 p = page_find(start >> TARGET_PAGE_BITS);
1318 if (!p) {
1319 return;
1320 }
fc377bcf
PB
1321 if (!p->code_bitmap &&
1322 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1323 /* build code bitmap */
1324 build_page_bitmap(p);
1325 }
5b6dd868 1326 if (p->code_bitmap) {
510a647f
EC
1327 unsigned int nr;
1328 unsigned long b;
1329
1330 nr = start & ~TARGET_PAGE_MASK;
1331 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1332 if (b & ((1 << len) - 1)) {
1333 goto do_invalidate;
1334 }
1335 } else {
1336 do_invalidate:
1337 tb_invalidate_phys_page_range(start, start + len, 1);
1338 }
1339}
1340
1341#if !defined(CONFIG_SOFTMMU)
75692087 1342/* Called with mmap_lock held. */
5b6dd868 1343static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1344 uintptr_t pc, void *puc,
1345 bool locked)
5b6dd868
BS
1346{
1347 TranslationBlock *tb;
1348 PageDesc *p;
1349 int n;
1350#ifdef TARGET_HAS_PRECISE_SMC
1351 TranslationBlock *current_tb = NULL;
4917cf44
AF
1352 CPUState *cpu = current_cpu;
1353 CPUArchState *env = NULL;
5b6dd868
BS
1354 int current_tb_modified = 0;
1355 target_ulong current_pc = 0;
1356 target_ulong current_cs_base = 0;
89fee74a 1357 uint32_t current_flags = 0;
5b6dd868
BS
1358#endif
1359
1360 addr &= TARGET_PAGE_MASK;
1361 p = page_find(addr >> TARGET_PAGE_BITS);
1362 if (!p) {
1363 return;
1364 }
1365 tb = p->first_tb;
1366#ifdef TARGET_HAS_PRECISE_SMC
1367 if (tb && pc != 0) {
1368 current_tb = tb_find_pc(pc);
1369 }
4917cf44
AF
1370 if (cpu != NULL) {
1371 env = cpu->env_ptr;
d77953b9 1372 }
5b6dd868
BS
1373#endif
1374 while (tb != NULL) {
1375 n = (uintptr_t)tb & 3;
1376 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1377#ifdef TARGET_HAS_PRECISE_SMC
1378 if (current_tb == tb &&
1379 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1380 /* If we are modifying the current TB, we must stop
1381 its execution. We could be more precise by checking
1382 that the modification is after the current PC, but it
1383 would require a specialized function to partially
1384 restore the CPU state */
1385
1386 current_tb_modified = 1;
74f10515 1387 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1388 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1389 &current_flags);
1390 }
1391#endif /* TARGET_HAS_PRECISE_SMC */
1392 tb_phys_invalidate(tb, addr);
1393 tb = tb->page_next[n];
1394 }
1395 p->first_tb = NULL;
1396#ifdef TARGET_HAS_PRECISE_SMC
1397 if (current_tb_modified) {
1398 /* we generate a block containing just the instruction
1399 modifying the memory. It will ensure that it cannot modify
1400 itself */
d77953b9 1401 cpu->current_tb = NULL;
648f034c 1402 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1403 if (locked) {
1404 mmap_unlock();
1405 }
0ea8cb88 1406 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1407 }
1408#endif
1409}
1410#endif
1411
75692087
PB
1412/* add the tb in the target page and protect it if necessary
1413 *
1414 * Called with mmap_lock held for user-mode emulation.
1415 */
5b6dd868
BS
1416static inline void tb_alloc_page(TranslationBlock *tb,
1417 unsigned int n, tb_page_addr_t page_addr)
1418{
1419 PageDesc *p;
1420#ifndef CONFIG_USER_ONLY
1421 bool page_already_protected;
1422#endif
1423
1424 tb->page_addr[n] = page_addr;
1425 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1426 tb->page_next[n] = p->first_tb;
1427#ifndef CONFIG_USER_ONLY
1428 page_already_protected = p->first_tb != NULL;
1429#endif
1430 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1431 invalidate_page_bitmap(p);
1432
5b6dd868
BS
1433#if defined(CONFIG_USER_ONLY)
1434 if (p->flags & PAGE_WRITE) {
1435 target_ulong addr;
1436 PageDesc *p2;
1437 int prot;
1438
1439 /* force the host page as non writable (writes will have a
1440 page fault + mprotect overhead) */
1441 page_addr &= qemu_host_page_mask;
1442 prot = 0;
1443 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1444 addr += TARGET_PAGE_SIZE) {
1445
1446 p2 = page_find(addr >> TARGET_PAGE_BITS);
1447 if (!p2) {
1448 continue;
1449 }
1450 prot |= p2->flags;
1451 p2->flags &= ~PAGE_WRITE;
1452 }
1453 mprotect(g2h(page_addr), qemu_host_page_size,
1454 (prot & PAGE_BITS) & ~PAGE_WRITE);
1455#ifdef DEBUG_TB_INVALIDATE
1456 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1457 page_addr);
1458#endif
1459 }
1460#else
1461 /* if some code is already present, then the pages are already
1462 protected. So we handle the case where only the first TB is
1463 allocated in a physical page */
1464 if (!page_already_protected) {
1465 tlb_protect_code(page_addr);
1466 }
1467#endif
5b6dd868
BS
1468}
1469
1470/* add a new TB and link it to the physical page tables. phys_page2 is
75692087 1471 * (-1) to indicate that only one page contains the TB.
9fd1a948
PB
1472 *
1473 * Called with mmap_lock held for user-mode emulation.
75692087 1474 */
5b6dd868
BS
1475static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1476 tb_page_addr_t phys_page2)
1477{
1478 unsigned int h;
1479 TranslationBlock **ptb;
1480
5b6dd868
BS
1481 /* add in the physical hash table */
1482 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1483 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1484 tb->phys_hash_next = *ptb;
1485 *ptb = tb;
1486
1487 /* add in the page list */
1488 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1489 if (phys_page2 != -1) {
1490 tb_alloc_page(tb, 1, phys_page2);
1491 } else {
1492 tb->page_addr[1] = -1;
1493 }
1494
f309101c
SF
1495 tb->jmp_list_first = (TranslationBlock *)((uintptr_t)tb | 2);
1496 tb->jmp_list_next[0] = NULL;
1497 tb->jmp_list_next[1] = NULL;
5b6dd868
BS
1498
1499 /* init original jump addresses */
f309101c 1500 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1501 tb_reset_jump(tb, 0);
1502 }
f309101c 1503 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1504 tb_reset_jump(tb, 1);
1505 }
1506
1507#ifdef DEBUG_TB_CHECK
1508 tb_page_check();
1509#endif
5b6dd868
BS
1510}
1511
5b6dd868
BS
1512/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1513 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1514static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1515{
1516 int m_min, m_max, m;
1517 uintptr_t v;
1518 TranslationBlock *tb;
1519
5e5f07e0 1520 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1521 return NULL;
1522 }
0b0d3320
EV
1523 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1524 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1525 return NULL;
1526 }
1527 /* binary search (cf Knuth) */
1528 m_min = 0;
5e5f07e0 1529 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1530 while (m_min <= m_max) {
1531 m = (m_min + m_max) >> 1;
5e5f07e0 1532 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1533 v = (uintptr_t)tb->tc_ptr;
1534 if (v == tc_ptr) {
1535 return tb;
1536 } else if (tc_ptr < v) {
1537 m_max = m - 1;
1538 } else {
1539 m_min = m + 1;
1540 }
1541 }
5e5f07e0 1542 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1543}
1544
ec53b45b 1545#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1546void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1547{
1548 ram_addr_t ram_addr;
5c8a00ce 1549 MemoryRegion *mr;
149f54b5 1550 hwaddr l = 1;
5b6dd868 1551
41063e1e 1552 rcu_read_lock();
29d8ec7b 1553 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1554 if (!(memory_region_is_ram(mr)
1555 || memory_region_is_romd(mr))) {
41063e1e 1556 rcu_read_unlock();
5b6dd868
BS
1557 return;
1558 }
5c8a00ce 1559 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1560 + addr;
5b6dd868 1561 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1562 rcu_read_unlock();
5b6dd868 1563}
ec53b45b 1564#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1565
239c51a5 1566void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1567{
1568 TranslationBlock *tb;
1569
93afeade 1570 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1571 if (tb) {
1572 /* We can use retranslation to find the PC. */
1573 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1574 tb_phys_invalidate(tb, -1);
1575 } else {
1576 /* The exception probably happened in a helper. The CPU state should
1577 have been saved before calling it. Fetch the PC from there. */
1578 CPUArchState *env = cpu->env_ptr;
1579 target_ulong pc, cs_base;
1580 tb_page_addr_t addr;
89fee74a 1581 uint32_t flags;
8d302e76
AJ
1582
1583 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1584 addr = get_page_addr_code(env, pc);
1585 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1586 }
5b6dd868
BS
1587}
1588
1589#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1590/* in deterministic execution mode, instructions doing device I/Os
1591 must be at the end of the TB */
90b40a69 1592void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1593{
a47dddd7 1594#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1595 CPUArchState *env = cpu->env_ptr;
a47dddd7 1596#endif
5b6dd868
BS
1597 TranslationBlock *tb;
1598 uint32_t n, cflags;
1599 target_ulong pc, cs_base;
89fee74a 1600 uint32_t flags;
5b6dd868
BS
1601
1602 tb = tb_find_pc(retaddr);
1603 if (!tb) {
a47dddd7 1604 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1605 (void *)retaddr);
1606 }
28ecfd7a 1607 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1608 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1609 /* Calculate how many instructions had been executed before the fault
1610 occurred. */
28ecfd7a 1611 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1612 /* Generate a new TB ending on the I/O insn. */
1613 n++;
1614 /* On MIPS and SH, delay slot instructions can only be restarted if
1615 they were already the first instruction in the TB. If this is not
1616 the first instruction in a TB then re-execute the preceding
1617 branch. */
1618#if defined(TARGET_MIPS)
1619 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1620 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1621 cpu->icount_decr.u16.low++;
5b6dd868
BS
1622 env->hflags &= ~MIPS_HFLAG_BMASK;
1623 }
1624#elif defined(TARGET_SH4)
1625 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1626 && n > 1) {
1627 env->pc -= 2;
28ecfd7a 1628 cpu->icount_decr.u16.low++;
5b6dd868
BS
1629 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1630 }
1631#endif
1632 /* This should never happen. */
1633 if (n > CF_COUNT_MASK) {
a47dddd7 1634 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1635 }
1636
1637 cflags = n | CF_LAST_IO;
1638 pc = tb->pc;
1639 cs_base = tb->cs_base;
1640 flags = tb->flags;
1641 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1642 if (tb->cflags & CF_NOCACHE) {
1643 if (tb->orig_tb) {
1644 /* Invalidate original TB if this TB was generated in
1645 * cpu_exec_nocache() */
1646 tb_phys_invalidate(tb->orig_tb, -1);
1647 }
1648 tb_free(tb);
1649 }
5b6dd868
BS
1650 /* FIXME: In theory this could raise an exception. In practice
1651 we have already translated the block once so it's probably ok. */
648f034c 1652 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1653 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1654 the first in the TB) then we end up generating a whole new TB and
1655 repeating the fault, which is horribly inefficient.
1656 Better would be to execute just this insn uncached, or generate a
1657 second new TB. */
0ea8cb88 1658 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1659}
1660
611d4f99 1661void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1662{
1663 unsigned int i;
1664
1665 /* Discard jump cache entries for any tb which might potentially
1666 overlap the flushed page. */
1667 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1668 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1669 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1670
1671 i = tb_jmp_cache_hash_page(addr);
8cd70437 1672 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1673 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1674}
1675
1676void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1677{
1678 int i, target_code_size, max_target_code_size;
1679 int direct_jmp_count, direct_jmp2_count, cross_page;
1680 TranslationBlock *tb;
1681
1682 target_code_size = 0;
1683 max_target_code_size = 0;
1684 cross_page = 0;
1685 direct_jmp_count = 0;
1686 direct_jmp2_count = 0;
5e5f07e0
EV
1687 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1688 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1689 target_code_size += tb->size;
1690 if (tb->size > max_target_code_size) {
1691 max_target_code_size = tb->size;
1692 }
1693 if (tb->page_addr[1] != -1) {
1694 cross_page++;
1695 }
f309101c 1696 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1697 direct_jmp_count++;
f309101c 1698 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1699 direct_jmp2_count++;
1700 }
1701 }
1702 }
1703 /* XXX: avoid using doubles ? */
1704 cpu_fprintf(f, "Translation buffer state:\n");
1705 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1706 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1707 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1708 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1709 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1710 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1711 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1712 tcg_ctx.tb_ctx.nb_tbs : 0,
1713 max_target_code_size);
5b6dd868 1714 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1715 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1716 tcg_ctx.code_gen_buffer) /
1717 tcg_ctx.tb_ctx.nb_tbs : 0,
1718 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1719 tcg_ctx.code_gen_buffer) /
1720 target_code_size : 0);
1721 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1722 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1723 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1724 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1725 direct_jmp_count,
5e5f07e0
EV
1726 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1727 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1728 direct_jmp2_count,
5e5f07e0
EV
1729 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1730 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1731 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1732 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1733 cpu_fprintf(f, "TB invalidate count %d\n",
1734 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1735 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1736 tcg_dump_info(f, cpu_fprintf);
1737}
1738
246ae24d
MF
1739void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1740{
1741 tcg_dump_op_count(f, cpu_fprintf);
1742}
1743
5b6dd868
BS
1744#else /* CONFIG_USER_ONLY */
1745
c3affe56 1746void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1747{
259186a7 1748 cpu->interrupt_request |= mask;
378df4b2 1749 cpu->tcg_exit_req = 1;
5b6dd868
BS
1750}
1751
1752/*
1753 * Walks guest process memory "regions" one by one
1754 * and calls callback function 'fn' for each region.
1755 */
1756struct walk_memory_regions_data {
1757 walk_memory_regions_fn fn;
1758 void *priv;
1a1c4db9 1759 target_ulong start;
5b6dd868
BS
1760 int prot;
1761};
1762
1763static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1764 target_ulong end, int new_prot)
5b6dd868 1765{
1a1c4db9 1766 if (data->start != -1u) {
5b6dd868
BS
1767 int rc = data->fn(data->priv, data->start, end, data->prot);
1768 if (rc != 0) {
1769 return rc;
1770 }
1771 }
1772
1a1c4db9 1773 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1774 data->prot = new_prot;
1775
1776 return 0;
1777}
1778
1779static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1780 target_ulong base, int level, void **lp)
5b6dd868 1781{
1a1c4db9 1782 target_ulong pa;
5b6dd868
BS
1783 int i, rc;
1784
1785 if (*lp == NULL) {
1786 return walk_memory_regions_end(data, base, 0);
1787 }
1788
1789 if (level == 0) {
1790 PageDesc *pd = *lp;
1791
03f49957 1792 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1793 int prot = pd[i].flags;
1794
1795 pa = base | (i << TARGET_PAGE_BITS);
1796 if (prot != data->prot) {
1797 rc = walk_memory_regions_end(data, pa, prot);
1798 if (rc != 0) {
1799 return rc;
1800 }
1801 }
1802 }
1803 } else {
1804 void **pp = *lp;
1805
03f49957 1806 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1807 pa = base | ((target_ulong)i <<
03f49957 1808 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1809 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1810 if (rc != 0) {
1811 return rc;
1812 }
1813 }
1814 }
1815
1816 return 0;
1817}
1818
1819int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1820{
1821 struct walk_memory_regions_data data;
1822 uintptr_t i;
1823
1824 data.fn = fn;
1825 data.priv = priv;
1a1c4db9 1826 data.start = -1u;
5b6dd868
BS
1827 data.prot = 0;
1828
1829 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1830 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1831 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1832 if (rc != 0) {
1833 return rc;
1834 }
1835 }
1836
1837 return walk_memory_regions_end(&data, 0, 0);
1838}
1839
1a1c4db9
MI
1840static int dump_region(void *priv, target_ulong start,
1841 target_ulong end, unsigned long prot)
5b6dd868
BS
1842{
1843 FILE *f = (FILE *)priv;
1844
1a1c4db9
MI
1845 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1846 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1847 start, end, end - start,
1848 ((prot & PAGE_READ) ? 'r' : '-'),
1849 ((prot & PAGE_WRITE) ? 'w' : '-'),
1850 ((prot & PAGE_EXEC) ? 'x' : '-'));
1851
1852 return 0;
1853}
1854
1855/* dump memory mappings */
1856void page_dump(FILE *f)
1857{
1a1c4db9 1858 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1859 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1860 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1861 walk_memory_regions(f, dump_region);
1862}
1863
1864int page_get_flags(target_ulong address)
1865{
1866 PageDesc *p;
1867
1868 p = page_find(address >> TARGET_PAGE_BITS);
1869 if (!p) {
1870 return 0;
1871 }
1872 return p->flags;
1873}
1874
1875/* Modify the flags of a page and invalidate the code if necessary.
1876 The flag PAGE_WRITE_ORG is positioned automatically depending
1877 on PAGE_WRITE. The mmap_lock should already be held. */
1878void page_set_flags(target_ulong start, target_ulong end, int flags)
1879{
1880 target_ulong addr, len;
1881
1882 /* This function should never be called with addresses outside the
1883 guest address space. If this assert fires, it probably indicates
1884 a missing call to h2g_valid. */
1885#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1886 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1887#endif
1888 assert(start < end);
1889
1890 start = start & TARGET_PAGE_MASK;
1891 end = TARGET_PAGE_ALIGN(end);
1892
1893 if (flags & PAGE_WRITE) {
1894 flags |= PAGE_WRITE_ORG;
1895 }
1896
1897 for (addr = start, len = end - start;
1898 len != 0;
1899 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1900 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1901
1902 /* If the write protection bit is set, then we invalidate
1903 the code inside. */
1904 if (!(p->flags & PAGE_WRITE) &&
1905 (flags & PAGE_WRITE) &&
1906 p->first_tb) {
d02532f0 1907 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1908 }
1909 p->flags = flags;
1910 }
1911}
1912
1913int page_check_range(target_ulong start, target_ulong len, int flags)
1914{
1915 PageDesc *p;
1916 target_ulong end;
1917 target_ulong addr;
1918
1919 /* This function should never be called with addresses outside the
1920 guest address space. If this assert fires, it probably indicates
1921 a missing call to h2g_valid. */
1922#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1923 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1924#endif
1925
1926 if (len == 0) {
1927 return 0;
1928 }
1929 if (start + len - 1 < start) {
1930 /* We've wrapped around. */
1931 return -1;
1932 }
1933
1934 /* must do before we loose bits in the next step */
1935 end = TARGET_PAGE_ALIGN(start + len);
1936 start = start & TARGET_PAGE_MASK;
1937
1938 for (addr = start, len = end - start;
1939 len != 0;
1940 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1941 p = page_find(addr >> TARGET_PAGE_BITS);
1942 if (!p) {
1943 return -1;
1944 }
1945 if (!(p->flags & PAGE_VALID)) {
1946 return -1;
1947 }
1948
1949 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1950 return -1;
1951 }
1952 if (flags & PAGE_WRITE) {
1953 if (!(p->flags & PAGE_WRITE_ORG)) {
1954 return -1;
1955 }
1956 /* unprotect the page if it was put read-only because it
1957 contains translated code */
1958 if (!(p->flags & PAGE_WRITE)) {
1959 if (!page_unprotect(addr, 0, NULL)) {
1960 return -1;
1961 }
1962 }
5b6dd868
BS
1963 }
1964 }
1965 return 0;
1966}
1967
1968/* called from signal handler: invalidate the code and unprotect the
1969 page. Return TRUE if the fault was successfully handled. */
1970int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1971{
1972 unsigned int prot;
1973 PageDesc *p;
1974 target_ulong host_start, host_end, addr;
1975
1976 /* Technically this isn't safe inside a signal handler. However we
1977 know this only ever happens in a synchronous SEGV handler, so in
1978 practice it seems to be ok. */
1979 mmap_lock();
1980
1981 p = page_find(address >> TARGET_PAGE_BITS);
1982 if (!p) {
1983 mmap_unlock();
1984 return 0;
1985 }
1986
1987 /* if the page was really writable, then we change its
1988 protection back to writable */
1989 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1990 host_start = address & qemu_host_page_mask;
1991 host_end = host_start + qemu_host_page_size;
1992
1993 prot = 0;
1994 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1995 p = page_find(addr >> TARGET_PAGE_BITS);
1996 p->flags |= PAGE_WRITE;
1997 prot |= p->flags;
1998
1999 /* and since the content will be modified, we must invalidate
2000 the corresponding translated code. */
d02532f0 2001 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
2002#ifdef DEBUG_TB_CHECK
2003 tb_invalidate_check(addr);
2004#endif
2005 }
2006 mprotect((void *)g2h(host_start), qemu_host_page_size,
2007 prot & PAGE_BITS);
2008
2009 mmap_unlock();
2010 return 1;
2011 }
2012 mmap_unlock();
2013 return 0;
2014}
2015#endif /* CONFIG_USER_ONLY */