]> git.proxmox.com Git - mirror_qemu.git/blame - util/hbitmap.c
virtio-blk: Use blk_drain() to drain IO requests
[mirror_qemu.git] / util / hbitmap.c
CommitLineData
e7c033c3
PB
1/*
2 * Hierarchical Bitmap Data Type
3 *
4 * Copyright Red Hat, Inc., 2012
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or
9 * later. See the COPYING file in the top-level directory.
10 */
11
12#include <string.h>
13#include <glib.h>
14#include <assert.h>
15#include "qemu/osdep.h"
16#include "qemu/hbitmap.h"
17#include "qemu/host-utils.h"
18#include "trace.h"
19
20/* HBitmaps provides an array of bits. The bits are stored as usual in an
21 * array of unsigned longs, but HBitmap is also optimized to provide fast
22 * iteration over set bits; going from one bit to the next is O(logB n)
23 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
24 * that the number of levels is in fact fixed.
25 *
26 * In order to do this, it stacks multiple bitmaps with progressively coarser
27 * granularity; in all levels except the last, bit N is set iff the N-th
28 * unsigned long is nonzero in the immediately next level. When iteration
29 * completes on the last level it can examine the 2nd-last level to quickly
30 * skip entire words, and even do so recursively to skip blocks of 64 words or
31 * powers thereof (32 on 32-bit machines).
32 *
33 * Given an index in the bitmap, it can be split in group of bits like
34 * this (for the 64-bit case):
35 *
36 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
37 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
38 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
39 *
40 * So it is easy to move up simply by shifting the index right by
41 * log2(BITS_PER_LONG) bits. To move down, you shift the index left
42 * similarly, and add the word index within the group. Iteration uses
43 * ffs (find first set bit) to find the next word to examine; this
44 * operation can be done in constant time in most current architectures.
45 *
46 * Setting or clearing a range of m bits on all levels, the work to perform
47 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
48 *
49 * When iterating on a bitmap, each bit (on any level) is only visited
50 * once. Hence, The total cost of visiting a bitmap with m bits in it is
51 * the number of bits that are set in all bitmaps. Unless the bitmap is
52 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
53 * cost of advancing from one bit to the next is usually constant (worst case
54 * O(logB n) as in the non-amortized complexity).
55 */
56
57struct HBitmap {
58 /* Number of total bits in the bottom level. */
59 uint64_t size;
60
61 /* Number of set bits in the bottom level. */
62 uint64_t count;
63
64 /* A scaling factor. Given a granularity of G, each bit in the bitmap will
65 * will actually represent a group of 2^G elements. Each operation on a
66 * range of bits first rounds the bits to determine which group they land
67 * in, and then affect the entire page; iteration will only visit the first
68 * bit of each group. Here is an example of operations in a size-16,
69 * granularity-1 HBitmap:
70 *
71 * initial state 00000000
72 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
73 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
74 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
75 * reset(start=5, count=5) 00000000
76 *
77 * From an implementation point of view, when setting or resetting bits,
78 * the bitmap will scale bit numbers right by this amount of bits. When
79 * iterating, the bitmap will scale bit numbers left by this amount of
80 * bits.
81 */
82 int granularity;
83
84 /* A number of progressively less coarse bitmaps (i.e. level 0 is the
85 * coarsest). Each bit in level N represents a word in level N+1 that
86 * has a set bit, except the last level where each bit represents the
87 * actual bitmap.
88 *
89 * Note that all bitmaps have the same number of levels. Even a 1-bit
90 * bitmap will still allocate HBITMAP_LEVELS arrays.
91 */
92 unsigned long *levels[HBITMAP_LEVELS];
8515efbe
JS
93
94 /* The length of each levels[] array. */
95 uint64_t sizes[HBITMAP_LEVELS];
e7c033c3
PB
96};
97
e7c033c3
PB
98/* Advance hbi to the next nonzero word and return it. hbi->pos
99 * is updated. Returns zero if we reach the end of the bitmap.
100 */
101unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
102{
103 size_t pos = hbi->pos;
104 const HBitmap *hb = hbi->hb;
105 unsigned i = HBITMAP_LEVELS - 1;
106
107 unsigned long cur;
108 do {
109 cur = hbi->cur[--i];
110 pos >>= BITS_PER_LEVEL;
111 } while (cur == 0);
112
113 /* Check for end of iteration. We always use fewer than BITS_PER_LONG
114 * bits in the level 0 bitmap; thus we can repurpose the most significant
115 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
116 * that the above loop ends even without an explicit check on i.
117 */
118
119 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
120 return 0;
121 }
122 for (; i < HBITMAP_LEVELS - 1; i++) {
123 /* Shift back pos to the left, matching the right shifts above.
124 * The index of this word's least significant set bit provides
125 * the low-order bits.
126 */
18331e7c
RH
127 assert(cur);
128 pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
e7c033c3
PB
129 hbi->cur[i] = cur & (cur - 1);
130
131 /* Set up next level for iteration. */
132 cur = hb->levels[i + 1][pos];
133 }
134
135 hbi->pos = pos;
136 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
137
138 assert(cur);
139 return cur;
140}
141
142void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
143{
144 unsigned i, bit;
145 uint64_t pos;
146
147 hbi->hb = hb;
148 pos = first >> hb->granularity;
1b095244 149 assert(pos < hb->size);
e7c033c3
PB
150 hbi->pos = pos >> BITS_PER_LEVEL;
151 hbi->granularity = hb->granularity;
152
153 for (i = HBITMAP_LEVELS; i-- > 0; ) {
154 bit = pos & (BITS_PER_LONG - 1);
155 pos >>= BITS_PER_LEVEL;
156
157 /* Drop bits representing items before first. */
158 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
159
160 /* We have already added level i+1, so the lowest set bit has
161 * been processed. Clear it.
162 */
163 if (i != HBITMAP_LEVELS - 1) {
164 hbi->cur[i] &= ~(1UL << bit);
165 }
166 }
167}
168
169bool hbitmap_empty(const HBitmap *hb)
170{
171 return hb->count == 0;
172}
173
174int hbitmap_granularity(const HBitmap *hb)
175{
176 return hb->granularity;
177}
178
179uint64_t hbitmap_count(const HBitmap *hb)
180{
181 return hb->count << hb->granularity;
182}
183
184/* Count the number of set bits between start and end, not accounting for
185 * the granularity. Also an example of how to use hbitmap_iter_next_word.
186 */
187static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
188{
189 HBitmapIter hbi;
190 uint64_t count = 0;
191 uint64_t end = last + 1;
192 unsigned long cur;
193 size_t pos;
194
195 hbitmap_iter_init(&hbi, hb, start << hb->granularity);
196 for (;;) {
197 pos = hbitmap_iter_next_word(&hbi, &cur);
198 if (pos >= (end >> BITS_PER_LEVEL)) {
199 break;
200 }
591b320a 201 count += ctpopl(cur);
e7c033c3
PB
202 }
203
204 if (pos == (end >> BITS_PER_LEVEL)) {
205 /* Drop bits representing the END-th and subsequent items. */
206 int bit = end & (BITS_PER_LONG - 1);
207 cur &= (1UL << bit) - 1;
591b320a 208 count += ctpopl(cur);
e7c033c3
PB
209 }
210
211 return count;
212}
213
214/* Setting starts at the last layer and propagates up if an element
215 * changes from zero to non-zero.
216 */
217static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
218{
219 unsigned long mask;
220 bool changed;
221
222 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
223 assert(start <= last);
224
225 mask = 2UL << (last & (BITS_PER_LONG - 1));
226 mask -= 1UL << (start & (BITS_PER_LONG - 1));
227 changed = (*elem == 0);
228 *elem |= mask;
229 return changed;
230}
231
232/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
233static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
234{
235 size_t pos = start >> BITS_PER_LEVEL;
236 size_t lastpos = last >> BITS_PER_LEVEL;
237 bool changed = false;
238 size_t i;
239
240 i = pos;
241 if (i < lastpos) {
242 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
243 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
244 for (;;) {
245 start = next;
246 next += BITS_PER_LONG;
247 if (++i == lastpos) {
248 break;
249 }
250 changed |= (hb->levels[level][i] == 0);
251 hb->levels[level][i] = ~0UL;
252 }
253 }
254 changed |= hb_set_elem(&hb->levels[level][i], start, last);
255
256 /* If there was any change in this layer, we may have to update
257 * the one above.
258 */
259 if (level > 0 && changed) {
260 hb_set_between(hb, level - 1, pos, lastpos);
261 }
262}
263
264void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
265{
266 /* Compute range in the last layer. */
267 uint64_t last = start + count - 1;
268
269 trace_hbitmap_set(hb, start, count,
270 start >> hb->granularity, last >> hb->granularity);
271
272 start >>= hb->granularity;
273 last >>= hb->granularity;
274 count = last - start + 1;
275
276 hb->count += count - hb_count_between(hb, start, last);
277 hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
278}
279
280/* Resetting works the other way round: propagate up if the new
281 * value is zero.
282 */
283static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
284{
285 unsigned long mask;
286 bool blanked;
287
288 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
289 assert(start <= last);
290
291 mask = 2UL << (last & (BITS_PER_LONG - 1));
292 mask -= 1UL << (start & (BITS_PER_LONG - 1));
293 blanked = *elem != 0 && ((*elem & ~mask) == 0);
294 *elem &= ~mask;
295 return blanked;
296}
297
298/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
299static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
300{
301 size_t pos = start >> BITS_PER_LEVEL;
302 size_t lastpos = last >> BITS_PER_LEVEL;
303 bool changed = false;
304 size_t i;
305
306 i = pos;
307 if (i < lastpos) {
308 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
309
310 /* Here we need a more complex test than when setting bits. Even if
311 * something was changed, we must not blank bits in the upper level
312 * unless the lower-level word became entirely zero. So, remove pos
313 * from the upper-level range if bits remain set.
314 */
315 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
316 changed = true;
317 } else {
318 pos++;
319 }
320
321 for (;;) {
322 start = next;
323 next += BITS_PER_LONG;
324 if (++i == lastpos) {
325 break;
326 }
327 changed |= (hb->levels[level][i] != 0);
328 hb->levels[level][i] = 0UL;
329 }
330 }
331
332 /* Same as above, this time for lastpos. */
333 if (hb_reset_elem(&hb->levels[level][i], start, last)) {
334 changed = true;
335 } else {
336 lastpos--;
337 }
338
339 if (level > 0 && changed) {
340 hb_reset_between(hb, level - 1, pos, lastpos);
341 }
342}
343
344void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
345{
346 /* Compute range in the last layer. */
347 uint64_t last = start + count - 1;
348
349 trace_hbitmap_reset(hb, start, count,
350 start >> hb->granularity, last >> hb->granularity);
351
352 start >>= hb->granularity;
353 last >>= hb->granularity;
354
355 hb->count -= hb_count_between(hb, start, last);
356 hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
357}
358
359bool hbitmap_get(const HBitmap *hb, uint64_t item)
360{
361 /* Compute position and bit in the last layer. */
362 uint64_t pos = item >> hb->granularity;
363 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
364
365 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
366}
367
368void hbitmap_free(HBitmap *hb)
369{
370 unsigned i;
371 for (i = HBITMAP_LEVELS; i-- > 0; ) {
372 g_free(hb->levels[i]);
373 }
374 g_free(hb);
375}
376
377HBitmap *hbitmap_alloc(uint64_t size, int granularity)
378{
e1cf5582 379 HBitmap *hb = g_new0(struct HBitmap, 1);
e7c033c3
PB
380 unsigned i;
381
382 assert(granularity >= 0 && granularity < 64);
383 size = (size + (1ULL << granularity) - 1) >> granularity;
384 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
385
386 hb->size = size;
387 hb->granularity = granularity;
388 for (i = HBITMAP_LEVELS; i-- > 0; ) {
389 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
8515efbe 390 hb->sizes[i] = size;
e1cf5582 391 hb->levels[i] = g_new0(unsigned long, size);
e7c033c3
PB
392 }
393
394 /* We necessarily have free bits in level 0 due to the definition
395 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
396 * hbitmap_iter_skip_words.
397 */
398 assert(size == 1);
399 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
400 return hb;
401}
be58721d 402
ce1ffea8
JS
403void hbitmap_truncate(HBitmap *hb, uint64_t size)
404{
405 bool shrink;
406 unsigned i;
407 uint64_t num_elements = size;
408 uint64_t old;
409
410 /* Size comes in as logical elements, adjust for granularity. */
411 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
412 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
413 shrink = size < hb->size;
414
415 /* bit sizes are identical; nothing to do. */
416 if (size == hb->size) {
417 return;
418 }
419
420 /* If we're losing bits, let's clear those bits before we invalidate all of
421 * our invariants. This helps keep the bitcount consistent, and will prevent
422 * us from carrying around garbage bits beyond the end of the map.
423 */
424 if (shrink) {
425 /* Don't clear partial granularity groups;
426 * start at the first full one. */
427 uint64_t start = QEMU_ALIGN_UP(num_elements, 1 << hb->granularity);
428 uint64_t fix_count = (hb->size << hb->granularity) - start;
429
430 assert(fix_count);
431 hbitmap_reset(hb, start, fix_count);
432 }
433
434 hb->size = size;
435 for (i = HBITMAP_LEVELS; i-- > 0; ) {
436 size = MAX(BITS_TO_LONGS(size), 1);
437 if (hb->sizes[i] == size) {
438 break;
439 }
440 old = hb->sizes[i];
441 hb->sizes[i] = size;
442 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
443 if (!shrink) {
444 memset(&hb->levels[i][old], 0x00,
445 (size - old) * sizeof(*hb->levels[i]));
446 }
447 }
448}
449
450
be58721d
JS
451/**
452 * Given HBitmaps A and B, let A := A (BITOR) B.
453 * Bitmap B will not be modified.
454 *
455 * @return true if the merge was successful,
456 * false if it was not attempted.
457 */
458bool hbitmap_merge(HBitmap *a, const HBitmap *b)
459{
460 int i;
461 uint64_t j;
462
463 if ((a->size != b->size) || (a->granularity != b->granularity)) {
464 return false;
465 }
466
467 if (hbitmap_count(b) == 0) {
468 return true;
469 }
470
471 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
472 * It may be possible to improve running times for sparsely populated maps
473 * by using hbitmap_iter_next, but this is suboptimal for dense maps.
474 */
475 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
476 for (j = 0; j < a->sizes[i]; j++) {
477 a->levels[i][j] |= b->levels[i][j];
478 }
479 }
480
481 return true;
482}