]> git.proxmox.com Git - rustc.git/blame - vendor/ahash-0.7.6/src/fallback_hash.rs
New upstream version 1.72.1+dfsg1
[rustc.git] / vendor / ahash-0.7.6 / src / fallback_hash.rs
CommitLineData
9c376795
FG
1use crate::convert::*;
2use crate::operations::folded_multiply;
3use crate::operations::read_small;
4use crate::random_state::PI;
5use crate::RandomState;
6use core::hash::Hasher;
7
8///This constant come from Kunth's prng (Empirically it works better than those from splitmix32).
9pub(crate) const MULTIPLE: u64 = 6364136223846793005;
10const ROT: u32 = 23; //17
11
12/// A `Hasher` for hashing an arbitrary stream of bytes.
13///
14/// Instances of [`AHasher`] represent state that is updated while hashing data.
15///
16/// Each method updates the internal state based on the new data provided. Once
17/// all of the data has been provided, the resulting hash can be obtained by calling
18/// `finish()`
19///
20/// [Clone] is also provided in case you wish to calculate hashes for two different items that
21/// start with the same data.
22///
23#[derive(Debug, Clone)]
24pub struct AHasher {
25 buffer: u64,
26 pad: u64,
27 extra_keys: [u64; 2],
28}
29
30impl AHasher {
31 /// Creates a new hasher keyed to the provided key.
32 #[inline]
33 #[allow(dead_code)] // Is not called if non-fallback hash is used.
34 pub fn new_with_keys(key1: u128, key2: u128) -> AHasher {
35 let pi: [u128; 2] = PI.convert();
36 let key1: [u64; 2] = (key1 ^ pi[0]).convert();
37 let key2: [u64; 2] = (key2 ^ pi[1]).convert();
38 AHasher {
39 buffer: key1[0],
40 pad: key1[1],
41 extra_keys: key2,
42 }
43 }
44
45 #[allow(unused)] // False positive
46 pub(crate) fn test_with_keys(key1: u128, key2: u128) -> Self {
47 let key1: [u64; 2] = key1.convert();
48 let key2: [u64; 2] = key2.convert();
49 Self {
50 buffer: key1[0],
51 pad: key1[1],
52 extra_keys: key2,
53 }
54 }
55
56 #[inline]
57 #[allow(dead_code)] // Is not called if non-fallback hash is used.
58 pub(crate) fn from_random_state(rand_state: &RandomState) -> AHasher {
59 AHasher {
60 buffer: rand_state.k0,
61 pad: rand_state.k1,
62 extra_keys: [rand_state.k2, rand_state.k3],
63 }
64 }
65
66 /// This update function has the goal of updating the buffer with a single multiply
67 /// FxHash does this but is vulnerable to attack. To avoid this input needs to be masked to with an
68 /// unpredictable value. Other hashes such as murmurhash have taken this approach but were found vulnerable
69 /// to attack. The attack was based on the idea of reversing the pre-mixing (Which is necessarily
70 /// reversible otherwise bits would be lost) then placing a difference in the highest bit before the
71 /// multiply used to mix the data. Because a multiply can never affect the bits to the right of it, a
72 /// subsequent update that also differed in this bit could result in a predictable collision.
73 ///
74 /// This version avoids this vulnerability while still only using a single multiply. It takes advantage
75 /// of the fact that when a 64 bit multiply is performed the upper 64 bits are usually computed and thrown
76 /// away. Instead it creates two 128 bit values where the upper 64 bits are zeros and multiplies them.
77 /// (The compiler is smart enough to turn this into a 64 bit multiplication in the assembly)
78 /// Then the upper bits are xored with the lower bits to produce a single 64 bit result.
79 ///
80 /// To understand why this is a good scrambling function it helps to understand multiply-with-carry PRNGs:
81 /// https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator
82 /// If the multiple is chosen well, this creates a long period, decent quality PRNG.
83 /// Notice that this function is equivalent to this except the `buffer`/`state` is being xored with each
84 /// new block of data. In the event that data is all zeros, it is exactly equivalent to a MWC PRNG.
85 ///
86 /// This is impervious to attack because every bit buffer at the end is dependent on every bit in
87 /// `new_data ^ buffer`. For example suppose two inputs differed in only the 5th bit. Then when the
88 /// multiplication is performed the `result` will differ in bits 5-69. More specifically it will differ by
89 /// 2^5 * MULTIPLE. However in the next step bits 65-128 are turned into a separate 64 bit value. So the
90 /// differing bits will be in the lower 6 bits of this value. The two intermediate values that differ in
91 /// bits 5-63 and in bits 0-5 respectively get added together. Producing an output that differs in every
92 /// bit. The addition carries in the multiplication and at the end additionally mean that the even if an
93 /// attacker somehow knew part of (but not all) the contents of the buffer before hand,
94 /// they would not be able to predict any of the bits in the buffer at the end.
95 #[inline(always)]
96 #[cfg(feature = "folded_multiply")]
97 fn update(&mut self, new_data: u64) {
98 self.buffer = folded_multiply(new_data ^ self.buffer, MULTIPLE);
99 }
100
101 #[inline(always)]
102 #[cfg(not(feature = "folded_multiply"))]
103 fn update(&mut self, new_data: u64) {
104 let d1 = (new_data ^ self.buffer).wrapping_mul(MULTIPLE);
105 self.pad = (self.pad ^ d1).rotate_left(8).wrapping_mul(MULTIPLE);
106 self.buffer = (self.buffer ^ self.pad).rotate_left(24);
107 }
108
109 /// Similar to the above this function performs an update using a "folded multiply".
110 /// However it takes in 128 bits of data instead of 64. Both halves must be masked.
111 ///
112 /// This makes it impossible for an attacker to place a single bit difference between
113 /// two blocks so as to cancel each other.
114 ///
115 /// However this is not sufficient. to prevent (a,b) from hashing the same as (b,a) the buffer itself must
116 /// be updated between calls in a way that does not commute. To achieve this XOR and Rotate are used.
117 /// Add followed by xor is not the same as xor followed by add, and rotate ensures that the same out bits
118 /// can't be changed by the same set of input bits. To cancel this sequence with subsequent input would require
119 /// knowing the keys.
120 #[inline(always)]
121 #[cfg(feature = "folded_multiply")]
122 fn large_update(&mut self, new_data: u128) {
123 let block: [u64; 2] = new_data.convert();
124 let combined = folded_multiply(block[0] ^ self.extra_keys[0], block[1] ^ self.extra_keys[1]);
125 self.buffer = (self.buffer.wrapping_add(self.pad) ^ combined).rotate_left(ROT);
126 }
127
128 #[inline(always)]
129 #[cfg(not(feature = "folded_multiply"))]
130 fn large_update(&mut self, new_data: u128) {
131 let block: [u64; 2] = new_data.convert();
132 self.update(block[0] ^ self.extra_keys[0]);
133 self.update(block[1] ^ self.extra_keys[1]);
134 }
135
136 #[inline]
137 #[cfg(feature = "specialize")]
138 fn short_finish(&self) -> u64 {
139 self.buffer.wrapping_add(self.pad)
140 }
141}
142
143/// Provides [Hasher] methods to hash all of the primitive types.
144///
145/// [Hasher]: core::hash::Hasher
146impl Hasher for AHasher {
147 #[inline]
148 fn write_u8(&mut self, i: u8) {
149 self.update(i as u64);
150 }
151
152 #[inline]
153 fn write_u16(&mut self, i: u16) {
154 self.update(i as u64);
155 }
156
157 #[inline]
158 fn write_u32(&mut self, i: u32) {
159 self.update(i as u64);
160 }
161
162 #[inline]
163 fn write_u64(&mut self, i: u64) {
164 self.update(i as u64);
165 }
166
167 #[inline]
168 fn write_u128(&mut self, i: u128) {
169 self.large_update(i);
170 }
171
172 #[inline]
173 #[cfg(any(target_pointer_width = "64", target_pointer_width = "32", target_pointer_width = "16"))]
174 fn write_usize(&mut self, i: usize) {
175 self.write_u64(i as u64);
176 }
177
178 #[inline]
179 #[cfg(target_pointer_width = "128")]
180 fn write_usize(&mut self, i: usize) {
181 self.write_u128(i as u128);
182 }
183
184 #[inline]
185 #[allow(clippy::collapsible_if)]
186 fn write(&mut self, input: &[u8]) {
187 let mut data = input;
188 let length = data.len() as u64;
189 //Needs to be an add rather than an xor because otherwise it could be canceled with carefully formed input.
190 self.buffer = self.buffer.wrapping_add(length).wrapping_mul(MULTIPLE);
191 //A 'binary search' on sizes reduces the number of comparisons.
192 if data.len() > 8 {
193 if data.len() > 16 {
194 let tail = data.read_last_u128();
195 self.large_update(tail);
196 while data.len() > 16 {
197 let (block, rest) = data.read_u128();
198 self.large_update(block);
199 data = rest;
200 }
201 } else {
202 self.large_update([data.read_u64().0, data.read_last_u64()].convert());
203 }
204 } else {
205 let value = read_small(data);
206 self.large_update(value.convert());
207 }
208 }
209
210 #[inline]
211 #[cfg(feature = "folded_multiply")]
212 fn finish(&self) -> u64 {
213 let rot = (self.buffer & 63) as u32;
214 folded_multiply(self.buffer, self.pad).rotate_left(rot)
215 }
216
217 #[inline]
218 #[cfg(not(feature = "folded_multiply"))]
219 fn finish(&self) -> u64 {
220 let rot = (self.buffer & 63) as u32;
221 (self.buffer.wrapping_mul(MULTIPLE) ^ self.pad).rotate_left(rot)
222 }
223}
224
225#[cfg(feature = "specialize")]
226pub(crate) struct AHasherU64 {
227 pub(crate) buffer: u64,
228 pub(crate) pad: u64,
229}
230
231/// A specialized hasher for only primitives under 64 bits.
232#[cfg(feature = "specialize")]
233impl Hasher for AHasherU64 {
234 #[inline]
235 fn finish(&self) -> u64 {
fe692bf9 236 let rot = (self.pad & 63) as u32;
9c376795
FG
237 self.buffer.rotate_left(rot)
238 }
239
240 #[inline]
241 fn write(&mut self, _bytes: &[u8]) {
fe692bf9 242 unreachable!("Specialized hasher was called with a different type of object")
9c376795
FG
243 }
244
245 #[inline]
246 fn write_u8(&mut self, i: u8) {
247 self.write_u64(i as u64);
248 }
249
250 #[inline]
251 fn write_u16(&mut self, i: u16) {
252 self.write_u64(i as u64);
253 }
254
255 #[inline]
256 fn write_u32(&mut self, i: u32) {
257 self.write_u64(i as u64);
258 }
259
260 #[inline]
261 fn write_u64(&mut self, i: u64) {
262 self.buffer = folded_multiply(i ^ self.buffer, MULTIPLE);
263 }
264
265 #[inline]
266 fn write_u128(&mut self, _i: u128) {
fe692bf9 267 unreachable!("Specialized hasher was called with a different type of object")
9c376795
FG
268 }
269
270 #[inline]
271 fn write_usize(&mut self, _i: usize) {
fe692bf9 272 unreachable!("Specialized hasher was called with a different type of object")
9c376795
FG
273 }
274}
275
276#[cfg(feature = "specialize")]
277pub(crate) struct AHasherFixed(pub AHasher);
278
279/// A specialized hasher for fixed size primitives larger than 64 bits.
280#[cfg(feature = "specialize")]
281impl Hasher for AHasherFixed {
282 #[inline]
283 fn finish(&self) -> u64 {
284 self.0.short_finish()
285 }
286
287 #[inline]
288 fn write(&mut self, bytes: &[u8]) {
289 self.0.write(bytes)
290 }
291
292 #[inline]
293 fn write_u8(&mut self, i: u8) {
294 self.write_u64(i as u64);
295 }
296
297 #[inline]
298 fn write_u16(&mut self, i: u16) {
299 self.write_u64(i as u64);
300 }
301
302 #[inline]
303 fn write_u32(&mut self, i: u32) {
304 self.write_u64(i as u64);
305 }
306
307 #[inline]
308 fn write_u64(&mut self, i: u64) {
309 self.0.write_u64(i);
310 }
311
312 #[inline]
313 fn write_u128(&mut self, i: u128) {
314 self.0.write_u128(i);
315 }
316
317 #[inline]
318 fn write_usize(&mut self, i: usize) {
319 self.0.write_usize(i);
320 }
321}
322
323#[cfg(feature = "specialize")]
324pub(crate) struct AHasherStr(pub AHasher);
325
326/// A specialized hasher for a single string
327/// Note that the other types don't panic because the hash impl for String tacks on an unneeded call. (As does vec)
328#[cfg(feature = "specialize")]
329impl Hasher for AHasherStr {
330 #[inline]
331 fn finish(&self) -> u64 {
332 self.0.finish()
333 }
334
335 #[inline]
336 fn write(&mut self, bytes: &[u8]) {
337 if bytes.len() > 8 {
338 self.0.write(bytes)
339 } else {
340 let value = read_small(bytes);
341 self.0.buffer = folded_multiply(value[0] ^ self.0.buffer,
342 value[1] ^ self.0.extra_keys[1]);
343 self.0.pad = self.0.pad.wrapping_add(bytes.len() as u64);
344 }
345 }
346
347 #[inline]
348 fn write_u8(&mut self, _i: u8) {}
349
350 #[inline]
351 fn write_u16(&mut self, _i: u16) {}
352
353 #[inline]
354 fn write_u32(&mut self, _i: u32) {}
355
356 #[inline]
357 fn write_u64(&mut self, _i: u64) {}
358
359 #[inline]
360 fn write_u128(&mut self, _i: u128) {}
361
362 #[inline]
363 fn write_usize(&mut self, _i: usize) {}
364}
365
366#[cfg(test)]
367mod tests {
368 use crate::convert::Convert;
369 use crate::fallback_hash::*;
370
371 #[test]
372 fn test_hash() {
373 let mut hasher = AHasher::new_with_keys(0, 0);
374 let value: u64 = 1 << 32;
375 hasher.update(value);
376 let result = hasher.buffer;
377 let mut hasher = AHasher::new_with_keys(0, 0);
378 let value2: u64 = 1;
379 hasher.update(value2);
380 let result2 = hasher.buffer;
381 let result: [u8; 8] = result.convert();
382 let result2: [u8; 8] = result2.convert();
383 assert_ne!(hex::encode(result), hex::encode(result2));
384 }
385
386 #[test]
387 fn test_conversion() {
388 let input: &[u8] = "dddddddd".as_bytes();
389 let bytes: u64 = as_array!(input, 8).convert();
390 assert_eq!(bytes, 0x6464646464646464);
391 }
392}