]> git.proxmox.com Git - rustc.git/blame - vendor/rustc-ap-rustc_span/src/span_encoding.rs
Update upstream source from tag 'upstream/1.52.1+dfsg1'
[rustc.git] / vendor / rustc-ap-rustc_span / src / span_encoding.rs
CommitLineData
f20569fa
XL
1// Spans are encoded using 1-bit tag and 2 different encoding formats (one for each tag value).
2// One format is used for keeping span data inline,
3// another contains index into an out-of-line span interner.
4// The encoding format for inline spans were obtained by optimizing over crates in rustc/libstd.
5// See https://internals.rust-lang.org/t/rfc-compiler-refactoring-spans/1357/28
6
7use crate::hygiene::SyntaxContext;
8use crate::SESSION_GLOBALS;
9use crate::{BytePos, SpanData};
10
11use rustc_data_structures::fx::FxIndexSet;
12
13/// A compressed span.
14///
15/// Whereas [`SpanData`] is 12 bytes, which is a bit too big to stick everywhere, `Span`
16/// is a form that only takes up 8 bytes, with less space for the length and
17/// context. The vast majority (99.9%+) of `SpanData` instances will fit within
18/// those 8 bytes; any `SpanData` whose fields don't fit into a `Span` are
19/// stored in a separate interner table, and the `Span` will index into that
20/// table. Interning is rare enough that the cost is low, but common enough
21/// that the code is exercised regularly.
22///
23/// An earlier version of this code used only 4 bytes for `Span`, but that was
24/// slower because only 80--90% of spans could be stored inline (even less in
25/// very large crates) and so the interner was used a lot more.
26///
27/// Inline (compressed) format:
28/// - `span.base_or_index == span_data.lo`
29/// - `span.len_or_tag == len == span_data.hi - span_data.lo` (must be `<= MAX_LEN`)
30/// - `span.ctxt == span_data.ctxt` (must be `<= MAX_CTXT`)
31///
32/// Interned format:
33/// - `span.base_or_index == index` (indexes into the interner table)
34/// - `span.len_or_tag == LEN_TAG` (high bit set, all other bits are zero)
35/// - `span.ctxt == 0`
36///
37/// The inline form uses 0 for the tag value (rather than 1) so that we don't
38/// need to mask out the tag bit when getting the length, and so that the
39/// dummy span can be all zeroes.
40///
41/// Notes about the choice of field sizes:
42/// - `base` is 32 bits in both `Span` and `SpanData`, which means that `base`
43/// values never cause interning. The number of bits needed for `base`
44/// depends on the crate size. 32 bits allows up to 4 GiB of code in a crate.
45/// - `len` is 15 bits in `Span` (a u16, minus 1 bit for the tag) and 32 bits
46/// in `SpanData`, which means that large `len` values will cause interning.
47/// The number of bits needed for `len` does not depend on the crate size.
48/// The most common numbers of bits for `len` are from 0 to 7, with a peak usually
49/// at 3 or 4, and then it drops off quickly from 8 onwards. 15 bits is enough
50/// for 99.99%+ of cases, but larger values (sometimes 20+ bits) might occur
51/// dozens of times in a typical crate.
52/// - `ctxt` is 16 bits in `Span` and 32 bits in `SpanData`, which means that
53/// large `ctxt` values will cause interning. The number of bits needed for
54/// `ctxt` values depend partly on the crate size and partly on the form of
55/// the code. No crates in `rustc-perf` need more than 15 bits for `ctxt`,
56/// but larger crates might need more than 16 bits.
57///
58#[derive(Clone, Copy, Eq, PartialEq, Hash)]
59pub struct Span {
60 base_or_index: u32,
61 len_or_tag: u16,
62 ctxt_or_zero: u16,
63}
64
65const LEN_TAG: u16 = 0b1000_0000_0000_0000;
66const MAX_LEN: u32 = 0b0111_1111_1111_1111;
67const MAX_CTXT: u32 = 0b1111_1111_1111_1111;
68
69/// Dummy span, both position and length are zero, syntax context is zero as well.
70pub const DUMMY_SP: Span = Span { base_or_index: 0, len_or_tag: 0, ctxt_or_zero: 0 };
71
72impl Span {
73 #[inline]
74 pub fn new(mut lo: BytePos, mut hi: BytePos, ctxt: SyntaxContext) -> Self {
75 if lo > hi {
76 std::mem::swap(&mut lo, &mut hi);
77 }
78
79 let (base, len, ctxt2) = (lo.0, hi.0 - lo.0, ctxt.as_u32());
80
81 if len <= MAX_LEN && ctxt2 <= MAX_CTXT {
82 // Inline format.
83 Span { base_or_index: base, len_or_tag: len as u16, ctxt_or_zero: ctxt2 as u16 }
84 } else {
85 // Interned format.
86 let index = with_span_interner(|interner| interner.intern(&SpanData { lo, hi, ctxt }));
87 Span { base_or_index: index, len_or_tag: LEN_TAG, ctxt_or_zero: 0 }
88 }
89 }
90
91 #[inline]
92 pub fn data(self) -> SpanData {
93 if self.len_or_tag != LEN_TAG {
94 // Inline format.
95 debug_assert!(self.len_or_tag as u32 <= MAX_LEN);
96 SpanData {
97 lo: BytePos(self.base_or_index),
98 hi: BytePos(self.base_or_index + self.len_or_tag as u32),
99 ctxt: SyntaxContext::from_u32(self.ctxt_or_zero as u32),
100 }
101 } else {
102 // Interned format.
103 debug_assert!(self.ctxt_or_zero == 0);
104 let index = self.base_or_index;
105 with_span_interner(|interner| *interner.get(index))
106 }
107 }
108}
109
110#[derive(Default)]
111pub struct SpanInterner {
112 spans: FxIndexSet<SpanData>,
113}
114
115impl SpanInterner {
116 fn intern(&mut self, span_data: &SpanData) -> u32 {
117 let (index, _) = self.spans.insert_full(*span_data);
118 index as u32
119 }
120
121 #[inline]
122 fn get(&self, index: u32) -> &SpanData {
123 &self.spans[index as usize]
124 }
125}
126
127// If an interner exists, return it. Otherwise, prepare a fresh one.
128#[inline]
129fn with_span_interner<T, F: FnOnce(&mut SpanInterner) -> T>(f: F) -> T {
130 SESSION_GLOBALS.with(|session_globals| f(&mut *session_globals.span_interner.lock()))
131}