]> git.proxmox.com Git - rustc.git/blame - vendor/smallvec/src/lib.rs
New upstream version 1.76.0+dfsg1
[rustc.git] / vendor / smallvec / src / lib.rs
CommitLineData
8faf50e0
XL
1// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
2// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
3// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
4// option. This file may not be copied, modified, or distributed
5// except according to those terms.
83c7162d
XL
6
7//! Small vectors in various sizes. These store a certain number of elements inline, and fall back
8//! to the heap for larger allocations. This can be a useful optimization for improving cache
9//! locality and reducing allocator traffic for workloads that fit within the inline buffer.
10//!
60c5eb7d 11//! ## `no_std` support
83c7162d 12//!
60c5eb7d
XL
13//! By default, `smallvec` does not depend on `std`. However, the optional
14//! `write` feature implements the `std::io::Write` trait for vectors of `u8`.
15//! When this feature is enabled, `smallvec` depends on `std`.
83c7162d 16//!
f9f354fc 17//! ## Optional features
8faf50e0 18//!
3dfed10e
XL
19//! ### `serde`
20//!
21//! When this optional dependency is enabled, `SmallVec` implements the `serde::Serialize` and
22//! `serde::Deserialize` traits.
23//!
f9f354fc
XL
24//! ### `write`
25//!
26//! When this feature is enabled, `SmallVec<[u8; _]>` implements the `std::io::Write` trait.
27//! This feature is not compatible with `#![no_std]` programs.
28//!
29//! ### `union`
30//!
5869c6ff 31//! **This feature requires Rust 1.49.**
8faf50e0
XL
32//!
33//! When the `union` feature is enabled `smallvec` will track its state (inline or spilled)
34//! without the use of an enum tag, reducing the size of the `smallvec` by one machine word.
35//! This means that there is potentially no space overhead compared to `Vec`.
36//! Note that `smallvec` can still be larger than `Vec` if the inline buffer is larger than two
37//! machine words.
38//!
39//! To use this feature add `features = ["union"]` in the `smallvec` section of Cargo.toml.
5869c6ff 40//! Note that this feature requires Rust 1.49.
f9f354fc 41//!
3dfed10e
XL
42//! Tracking issue: [rust-lang/rust#55149](https://github.com/rust-lang/rust/issues/55149)
43//!
f9f354fc
XL
44//! ### `const_generics`
45//!
c295e0f8 46//! **This feature requires Rust 1.51.**
f9f354fc
XL
47//!
48//! When this feature is enabled, `SmallVec` works with any arrays of any size, not just a fixed
49//! list of sizes.
50//!
c295e0f8
XL
51//! ### `const_new`
52//!
53//! **This feature requires Rust 1.51.**
54//!
55//! This feature exposes the functions [`SmallVec::new_const`], [`SmallVec::from_const`], and [`smallvec_inline`] which enables the `SmallVec` to be initialized from a const context.
56//! For details, see the
57//! [Rust Reference](https://doc.rust-lang.org/reference/const_eval.html#const-functions).
3dfed10e 58//!
add651ee
FG
59//! ### `drain_filter`
60//!
61//! **This feature is unstable.** It may change to match the unstable `drain_filter` method in libstd.
62//!
63//! Enables the `drain_filter` method, which produces an iterator that calls a user-provided
64//! closure to determine which elements of the vector to remove and yield from the iterator.
65//!
66//! ### `drain_keep_rest`
67//!
68//! **This feature is unstable.** It may change to match the unstable `drain_keep_rest` method in libstd.
69//!
70//! Enables the `DrainFilter::keep_rest` method.
71//!
f9f354fc
XL
72//! ### `specialization`
73//!
74//! **This feature is unstable and requires a nightly build of the Rust toolchain.**
75//!
76//! When this feature is enabled, `SmallVec::from(slice)` has improved performance for slices
77//! of `Copy` types. (Without this feature, you can use `SmallVec::from_slice` to get optimal
78//! performance for `Copy` types.)
79//!
3dfed10e
XL
80//! Tracking issue: [rust-lang/rust#31844](https://github.com/rust-lang/rust/issues/31844)
81//!
f9f354fc
XL
82//! ### `may_dangle`
83//!
84//! **This feature is unstable and requires a nightly build of the Rust toolchain.**
85//!
86//! This feature makes the Rust compiler less strict about use of vectors that contain borrowed
87//! references. For details, see the
88//! [Rustonomicon](https://doc.rust-lang.org/1.42.0/nomicon/dropck.html#an-escape-hatch).
3dfed10e
XL
89//!
90//! Tracking issue: [rust-lang/rust#34761](https://github.com/rust-lang/rust/issues/34761)
83c7162d 91
60c5eb7d 92#![no_std]
c295e0f8 93#![cfg_attr(docsrs, feature(doc_cfg))]
3dfed10e 94#![cfg_attr(feature = "specialization", allow(incomplete_features))]
0731742a
XL
95#![cfg_attr(feature = "specialization", feature(specialization))]
96#![cfg_attr(feature = "may_dangle", feature(dropck_eyepatch))]
2b03887a
FG
97#![cfg_attr(
98 feature = "debugger_visualizer",
99 feature(debugger_visualizer),
100 debugger_visualizer(natvis_file = "../debug_metadata/smallvec.natvis")
101)]
83c7162d
XL
102#![deny(missing_docs)]
103
f9f354fc
XL
104#[doc(hidden)]
105pub extern crate alloc;
83c7162d 106
60c5eb7d
XL
107#[cfg(any(test, feature = "write"))]
108extern crate std;
109
3dfed10e
XL
110#[cfg(test)]
111mod tests;
112
5869c6ff 113#[allow(deprecated)]
f9f354fc
XL
114use alloc::alloc::{Layout, LayoutErr};
115use alloc::boxed::Box;
116use alloc::{vec, vec::Vec};
60c5eb7d
XL
117use core::borrow::{Borrow, BorrowMut};
118use core::cmp;
119use core::fmt;
120use core::hash::{Hash, Hasher};
121use core::hint::unreachable_unchecked;
122use core::iter::{repeat, FromIterator, FusedIterator, IntoIterator};
123use core::mem;
124use core::mem::MaybeUninit;
3dfed10e 125use core::ops::{self, Range, RangeBounds};
60c5eb7d
XL
126use core::ptr::{self, NonNull};
127use core::slice::{self, SliceIndex};
83c7162d
XL
128
129#[cfg(feature = "serde")]
60c5eb7d
XL
130use serde::{
131 de::{Deserialize, Deserializer, SeqAccess, Visitor},
132 ser::{Serialize, SerializeSeq, Serializer},
133};
83c7162d 134
60c5eb7d
XL
135#[cfg(feature = "serde")]
136use core::marker::PhantomData;
83c7162d 137
60c5eb7d 138#[cfg(feature = "write")]
83c7162d 139use std::io;
83c7162d 140
add651ee
FG
141#[cfg(feature = "drain_keep_rest")]
142use core::mem::ManuallyDrop;
143
8faf50e0
XL
144/// Creates a [`SmallVec`] containing the arguments.
145///
146/// `smallvec!` allows `SmallVec`s to be defined with the same syntax as array expressions.
147/// There are two forms of this macro:
148///
149/// - Create a [`SmallVec`] containing a given list of elements:
150///
151/// ```
4b012472 152/// # use smallvec::{smallvec, SmallVec};
8faf50e0
XL
153/// # fn main() {
154/// let v: SmallVec<[_; 128]> = smallvec![1, 2, 3];
155/// assert_eq!(v[0], 1);
156/// assert_eq!(v[1], 2);
157/// assert_eq!(v[2], 3);
158/// # }
159/// ```
160///
161/// - Create a [`SmallVec`] from a given element and size:
162///
163/// ```
4b012472 164/// # use smallvec::{smallvec, SmallVec};
8faf50e0
XL
165/// # fn main() {
166/// let v: SmallVec<[_; 0x8000]> = smallvec![1; 3];
167/// assert_eq!(v, SmallVec::from_buf([1, 1, 1]));
168/// # }
169/// ```
170///
171/// Note that unlike array expressions this syntax supports all elements
172/// which implement [`Clone`] and the number of elements doesn't have to be
173/// a constant.
174///
175/// This will use `clone` to duplicate an expression, so one should be careful
176/// using this with types having a nonstandard `Clone` implementation. For
177/// example, `smallvec![Rc::new(1); 5]` will create a vector of five references
178/// to the same boxed integer value, not five references pointing to independently
179/// boxed integers.
180
181#[macro_export]
182macro_rules! smallvec {
b7449926
XL
183 // count helper: transform any expression into 1
184 (@one $x:expr) => (1usize);
8faf50e0 185 ($elem:expr; $n:expr) => ({
b7449926 186 $crate::SmallVec::from_elem($elem, $n)
8faf50e0
XL
187 });
188 ($($x:expr),*$(,)*) => ({
3dfed10e
XL
189 let count = 0usize $(+ $crate::smallvec!(@one $x))*;
190 #[allow(unused_mut)]
b7449926
XL
191 let mut vec = $crate::SmallVec::new();
192 if count <= vec.inline_size() {
193 $(vec.push($x);)*
194 vec
195 } else {
f9f354fc 196 $crate::SmallVec::from_vec($crate::alloc::vec![$($x,)*])
b7449926 197 }
8faf50e0
XL
198 });
199}
200
c295e0f8
XL
201/// Creates an inline [`SmallVec`] containing the arguments. This macro is enabled by the feature `const_new`.
202///
203/// `smallvec_inline!` allows `SmallVec`s to be defined with the same syntax as array expressions in `const` contexts.
204/// The inline storage `A` will always be an array of the size specified by the arguments.
205/// There are two forms of this macro:
206///
207/// - Create a [`SmallVec`] containing a given list of elements:
208///
209/// ```
4b012472 210/// # use smallvec::{smallvec_inline, SmallVec};
c295e0f8
XL
211/// # fn main() {
212/// const V: SmallVec<[i32; 3]> = smallvec_inline![1, 2, 3];
213/// assert_eq!(V[0], 1);
214/// assert_eq!(V[1], 2);
215/// assert_eq!(V[2], 3);
216/// # }
217/// ```
218///
219/// - Create a [`SmallVec`] from a given element and size:
220///
221/// ```
4b012472 222/// # use smallvec::{smallvec_inline, SmallVec};
c295e0f8
XL
223/// # fn main() {
224/// const V: SmallVec<[i32; 3]> = smallvec_inline![1; 3];
225/// assert_eq!(V, SmallVec::from_buf([1, 1, 1]));
226/// # }
227/// ```
228///
229/// Note that the behavior mimics that of array expressions, in contrast to [`smallvec`].
230#[cfg(feature = "const_new")]
231#[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
232#[macro_export]
233macro_rules! smallvec_inline {
234 // count helper: transform any expression into 1
235 (@one $x:expr) => (1usize);
236 ($elem:expr; $n:expr) => ({
237 $crate::SmallVec::<[_; $n]>::from_const([$elem; $n])
238 });
239 ($($x:expr),+ $(,)?) => ({
240 const N: usize = 0usize $(+ $crate::smallvec_inline!(@one $x))*;
241 $crate::SmallVec::<[_; N]>::from_const([$($x,)*])
242 });
243}
244
8faf50e0
XL
245/// `panic!()` in debug builds, optimization hint in release.
246#[cfg(not(feature = "union"))]
247macro_rules! debug_unreachable {
60c5eb7d
XL
248 () => {
249 debug_unreachable!("entered unreachable code")
250 };
8faf50e0 251 ($e:expr) => {
add651ee 252 if cfg!(debug_assertions) {
8faf50e0 253 panic!($e);
add651ee
FG
254 } else {
255 unreachable_unchecked();
8faf50e0 256 }
60c5eb7d 257 };
83c7162d
XL
258}
259
260/// Trait to be implemented by a collection that can be extended from a slice
261///
262/// ## Example
263///
264/// ```rust
265/// use smallvec::{ExtendFromSlice, SmallVec};
266///
267/// fn initialize<V: ExtendFromSlice<u8>>(v: &mut V) {
268/// v.extend_from_slice(b"Test!");
269/// }
270///
271/// let mut vec = Vec::new();
272/// initialize(&mut vec);
273/// assert_eq!(&vec, b"Test!");
274///
275/// let mut small_vec = SmallVec::<[u8; 8]>::new();
276/// initialize(&mut small_vec);
277/// assert_eq!(&small_vec as &[_], b"Test!");
278/// ```
3dfed10e
XL
279#[doc(hidden)]
280#[deprecated]
83c7162d
XL
281pub trait ExtendFromSlice<T> {
282 /// Extends a collection from a slice of its element type
283 fn extend_from_slice(&mut self, other: &[T]);
284}
285
3dfed10e 286#[allow(deprecated)]
83c7162d
XL
287impl<T: Clone> ExtendFromSlice<T> for Vec<T> {
288 fn extend_from_slice(&mut self, other: &[T]) {
289 Vec::extend_from_slice(self, other)
290 }
291}
292
f9f354fc
XL
293/// Error type for APIs with fallible heap allocation
294#[derive(Debug)]
295pub enum CollectionAllocErr {
296 /// Overflow `usize::MAX` or other error during size computation
297 CapacityOverflow,
298 /// The allocator return an error
299 AllocErr {
300 /// The layout that was passed to the allocator
301 layout: Layout,
302 },
303}
304
5869c6ff
XL
305impl fmt::Display for CollectionAllocErr {
306 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
307 write!(f, "Allocation error: {:?}", self)
308 }
309}
310
311#[allow(deprecated)]
f9f354fc
XL
312impl From<LayoutErr> for CollectionAllocErr {
313 fn from(_: LayoutErr) -> Self {
314 CollectionAllocErr::CapacityOverflow
315 }
316}
317
318fn infallible<T>(result: Result<T, CollectionAllocErr>) -> T {
319 match result {
320 Ok(x) => x,
321 Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"),
322 Err(CollectionAllocErr::AllocErr { layout }) => alloc::alloc::handle_alloc_error(layout),
323 }
324}
325
326/// FIXME: use `Layout::array` when we require a Rust version where it’s stable
4b012472 327/// <https://github.com/rust-lang/rust/issues/55724>
f9f354fc 328fn layout_array<T>(n: usize) -> Result<Layout, CollectionAllocErr> {
3dfed10e
XL
329 let size = mem::size_of::<T>()
330 .checked_mul(n)
f9f354fc
XL
331 .ok_or(CollectionAllocErr::CapacityOverflow)?;
332 let align = mem::align_of::<T>();
3dfed10e 333 Layout::from_size_align(size, align).map_err(|_| CollectionAllocErr::CapacityOverflow)
f9f354fc
XL
334}
335
add651ee 336unsafe fn deallocate<T>(ptr: NonNull<T>, capacity: usize) {
f9f354fc
XL
337 // This unwrap should succeed since the same did when allocating.
338 let layout = layout_array::<T>(capacity).unwrap();
add651ee 339 alloc::alloc::dealloc(ptr.as_ptr() as *mut u8, layout)
83c7162d
XL
340}
341
342/// An iterator that removes the items from a `SmallVec` and yields them by value.
343///
344/// Returned from [`SmallVec::drain`][1].
345///
346/// [1]: struct.SmallVec.html#method.drain
60c5eb7d
XL
347pub struct Drain<'a, T: 'a + Array> {
348 tail_start: usize,
349 tail_len: usize,
350 iter: slice::Iter<'a, T::Item>,
351 vec: NonNull<SmallVec<T>>,
352}
353
354impl<'a, T: 'a + Array> fmt::Debug for Drain<'a, T>
355where
356 T::Item: fmt::Debug,
357{
358 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
359 f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
360 }
83c7162d
XL
361}
362
60c5eb7d
XL
363unsafe impl<'a, T: Sync + Array> Sync for Drain<'a, T> {}
364unsafe impl<'a, T: Send + Array> Send for Drain<'a, T> {}
365
366impl<'a, T: 'a + Array> Iterator for Drain<'a, T> {
367 type Item = T::Item;
83c7162d
XL
368
369 #[inline]
60c5eb7d
XL
370 fn next(&mut self) -> Option<T::Item> {
371 self.iter
372 .next()
373 .map(|reference| unsafe { ptr::read(reference) })
83c7162d
XL
374 }
375
376 #[inline]
377 fn size_hint(&self) -> (usize, Option<usize>) {
378 self.iter.size_hint()
379 }
380}
381
60c5eb7d 382impl<'a, T: 'a + Array> DoubleEndedIterator for Drain<'a, T> {
83c7162d 383 #[inline]
60c5eb7d
XL
384 fn next_back(&mut self) -> Option<T::Item> {
385 self.iter
386 .next_back()
387 .map(|reference| unsafe { ptr::read(reference) })
83c7162d
XL
388 }
389}
390
60c5eb7d
XL
391impl<'a, T: Array> ExactSizeIterator for Drain<'a, T> {
392 #[inline]
393 fn len(&self) -> usize {
394 self.iter.len()
395 }
396}
397
398impl<'a, T: Array> FusedIterator for Drain<'a, T> {}
83c7162d 399
60c5eb7d 400impl<'a, T: 'a + Array> Drop for Drain<'a, T> {
83c7162d 401 fn drop(&mut self) {
60c5eb7d
XL
402 self.for_each(drop);
403
404 if self.tail_len > 0 {
405 unsafe {
406 let source_vec = self.vec.as_mut();
407
408 // memmove back untouched tail, update to new length
409 let start = source_vec.len();
410 let tail = self.tail_start;
411 if tail != start {
923072b8
FG
412 // as_mut_ptr creates a &mut, invalidating other pointers.
413 // This pattern avoids calling it with a pointer already present.
414 let ptr = source_vec.as_mut_ptr();
415 let src = ptr.add(tail);
416 let dst = ptr.add(start);
60c5eb7d
XL
417 ptr::copy(src, dst, self.tail_len);
418 }
419 source_vec.set_len(start + self.tail_len);
420 }
421 }
83c7162d
XL
422 }
423}
424
add651ee
FG
425#[cfg(feature = "drain_filter")]
426/// An iterator which uses a closure to determine if an element should be removed.
427///
428/// Returned from [`SmallVec::drain_filter`][1].
4b012472 429///
add651ee
FG
430/// [1]: struct.SmallVec.html#method.drain_filter
431pub struct DrainFilter<'a, T, F>
432where
433 F: FnMut(&mut T::Item) -> bool,
434 T: Array,
435{
436 vec: &'a mut SmallVec<T>,
437 /// The index of the item that will be inspected by the next call to `next`.
438 idx: usize,
439 /// The number of items that have been drained (removed) thus far.
440 del: usize,
441 /// The original length of `vec` prior to draining.
442 old_len: usize,
443 /// The filter test predicate.
444 pred: F,
445 /// A flag that indicates a panic has occurred in the filter test predicate.
446 /// This is used as a hint in the drop implementation to prevent consumption
447 /// of the remainder of the `DrainFilter`. Any unprocessed items will be
448 /// backshifted in the `vec`, but no further items will be dropped or
449 /// tested by the filter predicate.
450 panic_flag: bool,
451}
452
453#[cfg(feature = "drain_filter")]
454impl <T, F> fmt::Debug for DrainFilter<'_, T, F>
455where
456 F: FnMut(&mut T::Item) -> bool,
457 T: Array,
458 T::Item: fmt::Debug,
459{
460 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
461 f.debug_tuple("DrainFilter").field(&self.vec.as_slice()).finish()
462 }
463}
464
465#[cfg(feature = "drain_filter")]
466impl <T, F> Iterator for DrainFilter<'_, T, F>
467where
468 F: FnMut(&mut T::Item) -> bool,
469 T: Array,
470{
471 type Item = T::Item;
472
473 fn next(&mut self) -> Option<T::Item>
474 {
475 unsafe {
476 while self.idx < self.old_len {
477 let i = self.idx;
478 let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
479 self.panic_flag = true;
480 let drained = (self.pred)(&mut v[i]);
481 self.panic_flag = false;
482 // Update the index *after* the predicate is called. If the index
483 // is updated prior and the predicate panics, the element at this
484 // index would be leaked.
485 self.idx += 1;
486 if drained {
487 self.del += 1;
488 return Some(ptr::read(&v[i]));
489 } else if self.del > 0 {
490 let del = self.del;
491 let src: *const Self::Item = &v[i];
492 let dst: *mut Self::Item = &mut v[i - del];
493 ptr::copy_nonoverlapping(src, dst, 1);
494 }
495 }
496 None
497 }
498 }
499
500 fn size_hint(&self) -> (usize, Option<usize>) {
501 (0, Some(self.old_len - self.idx))
502 }
503}
504
505#[cfg(feature = "drain_filter")]
506impl <T, F> Drop for DrainFilter<'_, T, F>
507where
508 F: FnMut(&mut T::Item) -> bool,
509 T: Array,
510{
511 fn drop(&mut self) {
512 struct BackshiftOnDrop<'a, 'b, T, F>
513 where
514 F: FnMut(&mut T::Item) -> bool,
515 T: Array
516 {
517 drain: &'b mut DrainFilter<'a, T, F>,
518 }
519
520 impl<'a, 'b, T, F> Drop for BackshiftOnDrop<'a, 'b, T, F>
521 where
522 F: FnMut(&mut T::Item) -> bool,
523 T: Array
524 {
525 fn drop(&mut self) {
526 unsafe {
527 if self.drain.idx < self.drain.old_len && self.drain.del > 0 {
528 // This is a pretty messed up state, and there isn't really an
529 // obviously right thing to do. We don't want to keep trying
530 // to execute `pred`, so we just backshift all the unprocessed
531 // elements and tell the vec that they still exist. The backshift
532 // is required to prevent a double-drop of the last successfully
533 // drained item prior to a panic in the predicate.
534 let ptr = self.drain.vec.as_mut_ptr();
535 let src = ptr.add(self.drain.idx);
536 let dst = src.sub(self.drain.del);
537 let tail_len = self.drain.old_len - self.drain.idx;
538 src.copy_to(dst, tail_len);
539 }
540 self.drain.vec.set_len(self.drain.old_len - self.drain.del);
541 }
542 }
543 }
544
545 let backshift = BackshiftOnDrop { drain: self };
546
547 // Attempt to consume any remaining elements if the filter predicate
548 // has not yet panicked. We'll backshift any remaining elements
549 // whether we've already panicked or if the consumption here panics.
550 if !backshift.drain.panic_flag {
551 backshift.drain.for_each(drop);
552 }
553 }
554}
555
556#[cfg(feature = "drain_keep_rest")]
557impl <T, F> DrainFilter<'_, T, F>
558where
559 F: FnMut(&mut T::Item) -> bool,
560 T: Array
561{
562 /// Keep unyielded elements in the source `Vec`.
563 ///
564 /// # Examples
565 ///
566 /// ```
567 /// # use smallvec::{smallvec, SmallVec};
568 ///
569 /// let mut vec: SmallVec<[char; 2]> = smallvec!['a', 'b', 'c'];
570 /// let mut drain = vec.drain_filter(|_| true);
571 ///
572 /// assert_eq!(drain.next().unwrap(), 'a');
573 ///
574 /// // This call keeps 'b' and 'c' in the vec.
575 /// drain.keep_rest();
576 ///
577 /// // If we wouldn't call `keep_rest()`,
578 /// // `vec` would be empty.
579 /// assert_eq!(vec, SmallVec::<[char; 2]>::from_slice(&['b', 'c']));
580 /// ```
581 pub fn keep_rest(self)
582 {
583 // At this moment layout looks like this:
584 //
585 // _____________________/-- old_len
586 // / \
587 // [kept] [yielded] [tail]
588 // \_______/ ^-- idx
589 // \-- del
590 //
591 // Normally `Drop` impl would drop [tail] (via .for_each(drop), ie still calling `pred`)
592 //
593 // 1. Move [tail] after [kept]
594 // 2. Update length of the original vec to `old_len - del`
595 // a. In case of ZST, this is the only thing we want to do
596 // 3. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do
597 let mut this = ManuallyDrop::new(self);
598
599 unsafe {
600 // ZSTs have no identity, so we don't need to move them around.
601 let needs_move = mem::size_of::<T>() != 0;
602
603 if needs_move && this.idx < this.old_len && this.del > 0 {
604 let ptr = this.vec.as_mut_ptr();
605 let src = ptr.add(this.idx);
606 let dst = src.sub(this.del);
607 let tail_len = this.old_len - this.idx;
608 src.copy_to(dst, tail_len);
609 }
610
611 let new_len = this.old_len - this.del;
612 this.vec.set_len(new_len);
613 }
614 }
615}
616
8faf50e0 617#[cfg(feature = "union")]
8faf50e0 618union SmallVecData<A: Array> {
5869c6ff 619 inline: core::mem::ManuallyDrop<MaybeUninit<A>>,
add651ee 620 heap: (NonNull<A::Item>, usize),
8faf50e0
XL
621}
622
c295e0f8
XL
623#[cfg(all(feature = "union", feature = "const_new"))]
624impl<T, const N: usize> SmallVecData<[T; N]> {
625 #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
626 #[inline]
627 const fn from_const(inline: MaybeUninit<[T; N]>) -> Self {
628 SmallVecData {
629 inline: core::mem::ManuallyDrop::new(inline),
630 }
631 }
632}
633
8faf50e0
XL
634#[cfg(feature = "union")]
635impl<A: Array> SmallVecData<A> {
636 #[inline]
add651ee
FG
637 unsafe fn inline(&self) -> ConstNonNull<A::Item> {
638 ConstNonNull::new(self.inline.as_ptr() as *const A::Item).unwrap()
8faf50e0
XL
639 }
640 #[inline]
add651ee
FG
641 unsafe fn inline_mut(&mut self) -> NonNull<A::Item> {
642 NonNull::new(self.inline.as_mut_ptr() as *mut A::Item).unwrap()
8faf50e0
XL
643 }
644 #[inline]
60c5eb7d 645 fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> {
5869c6ff
XL
646 SmallVecData {
647 inline: core::mem::ManuallyDrop::new(inline),
648 }
8faf50e0
XL
649 }
650 #[inline]
60c5eb7d 651 unsafe fn into_inline(self) -> MaybeUninit<A> {
5869c6ff 652 core::mem::ManuallyDrop::into_inner(self.inline)
60c5eb7d 653 }
b7449926 654 #[inline]
add651ee
FG
655 unsafe fn heap(&self) -> (ConstNonNull<A::Item>, usize) {
656 (ConstNonNull(self.heap.0), self.heap.1)
8faf50e0
XL
657 }
658 #[inline]
add651ee
FG
659 unsafe fn heap_mut(&mut self) -> (NonNull<A::Item>, &mut usize) {
660 let h = &mut self.heap;
661 (h.0, &mut h.1)
8faf50e0
XL
662 }
663 #[inline]
add651ee 664 fn from_heap(ptr: NonNull<A::Item>, len: usize) -> SmallVecData<A> {
f9f354fc 665 SmallVecData { heap: (ptr, len) }
8faf50e0
XL
666 }
667}
668
669#[cfg(not(feature = "union"))]
83c7162d 670enum SmallVecData<A: Array> {
60c5eb7d 671 Inline(MaybeUninit<A>),
add651ee
FG
672 // Using NonNull and NonZero here allows to reduce size of `SmallVec`.
673 Heap {
674 // Since we never allocate on heap
675 // unless our capacity is bigger than inline capacity
676 // heap capacity cannot be less than 1.
677 // Therefore, pointer cannot be null too.
678 ptr: NonNull<A::Item>,
679 len: usize,
680 },
83c7162d
XL
681}
682
c295e0f8
XL
683#[cfg(all(not(feature = "union"), feature = "const_new"))]
684impl<T, const N: usize> SmallVecData<[T; N]> {
685 #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
686 #[inline]
687 const fn from_const(inline: MaybeUninit<[T; N]>) -> Self {
688 SmallVecData::Inline(inline)
689 }
690}
691
8faf50e0 692#[cfg(not(feature = "union"))]
83c7162d 693impl<A: Array> SmallVecData<A> {
8faf50e0 694 #[inline]
add651ee 695 unsafe fn inline(&self) -> ConstNonNull<A::Item> {
60c5eb7d 696 match self {
add651ee 697 SmallVecData::Inline(a) => ConstNonNull::new(a.as_ptr() as *const A::Item).unwrap(),
8faf50e0
XL
698 _ => debug_unreachable!(),
699 }
700 }
701 #[inline]
add651ee 702 unsafe fn inline_mut(&mut self) -> NonNull<A::Item> {
60c5eb7d 703 match self {
add651ee 704 SmallVecData::Inline(a) => NonNull::new(a.as_mut_ptr() as *mut A::Item).unwrap(),
8faf50e0 705 _ => debug_unreachable!(),
83c7162d
XL
706 }
707 }
8faf50e0 708 #[inline]
60c5eb7d
XL
709 fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> {
710 SmallVecData::Inline(inline)
8faf50e0
XL
711 }
712 #[inline]
60c5eb7d 713 unsafe fn into_inline(self) -> MaybeUninit<A> {
b7449926 714 match self {
60c5eb7d 715 SmallVecData::Inline(a) => a,
b7449926
XL
716 _ => debug_unreachable!(),
717 }
718 }
719 #[inline]
add651ee 720 unsafe fn heap(&self) -> (ConstNonNull<A::Item>, usize) {
60c5eb7d 721 match self {
add651ee 722 SmallVecData::Heap { ptr, len } => (ConstNonNull(*ptr), *len),
8faf50e0
XL
723 _ => debug_unreachable!(),
724 }
725 }
726 #[inline]
add651ee 727 unsafe fn heap_mut(&mut self) -> (NonNull<A::Item>, &mut usize) {
60c5eb7d 728 match self {
add651ee 729 SmallVecData::Heap { ptr, len } => (*ptr, len),
8faf50e0
XL
730 _ => debug_unreachable!(),
731 }
732 }
733 #[inline]
add651ee
FG
734 fn from_heap(ptr: NonNull<A::Item>, len: usize) -> SmallVecData<A> {
735 SmallVecData::Heap { ptr, len }
8faf50e0 736 }
83c7162d
XL
737}
738
739unsafe impl<A: Array + Send> Send for SmallVecData<A> {}
740unsafe impl<A: Array + Sync> Sync for SmallVecData<A> {}
741
83c7162d
XL
742/// A `Vec`-like container that can store a small number of elements inline.
743///
744/// `SmallVec` acts like a vector, but can store a limited amount of data inline within the
dc9dc135 745/// `SmallVec` struct rather than in a separate allocation. If the data exceeds this limit, the
83c7162d
XL
746/// `SmallVec` will "spill" its data onto the heap, allocating a new buffer to hold it.
747///
748/// The amount of data that a `SmallVec` can store inline depends on its backing store. The backing
749/// store can be any type that implements the `Array` trait; usually it is a small fixed-sized
750/// array. For example a `SmallVec<[u64; 8]>` can hold up to eight 64-bit integers inline.
751///
752/// ## Example
753///
754/// ```rust
755/// use smallvec::SmallVec;
756/// let mut v = SmallVec::<[u8; 4]>::new(); // initialize an empty vector
757///
758/// // The vector can hold up to 4 items without spilling onto the heap.
759/// v.extend(0..4);
760/// assert_eq!(v.len(), 4);
761/// assert!(!v.spilled());
762///
763/// // Pushing another element will force the buffer to spill:
764/// v.push(4);
765/// assert_eq!(v.len(), 5);
766/// assert!(v.spilled());
767/// ```
768pub struct SmallVec<A: Array> {
8faf50e0 769 // The capacity field is used to determine which of the storage variants is active:
3dfed10e
XL
770 // If capacity <= Self::inline_capacity() then the inline variant is used and capacity holds the current length of the vector (number of elements actually in use).
771 // If capacity > Self::inline_capacity() then the heap variant is used and capacity holds the size of the memory allocation.
8faf50e0 772 capacity: usize,
83c7162d
XL
773 data: SmallVecData<A>,
774}
775
776impl<A: Array> SmallVec<A> {
777 /// Construct an empty vector
778 #[inline]
779 pub fn new() -> SmallVec<A> {
c295e0f8 780 // Try to detect invalid custom implementations of `Array`. Hopefully,
60c5eb7d
XL
781 // this check should be optimized away entirely for valid ones.
782 assert!(
783 mem::size_of::<A>() == A::size() * mem::size_of::<A::Item>()
784 && mem::align_of::<A>() >= mem::align_of::<A::Item>()
785 );
786 SmallVec {
787 capacity: 0,
788 data: SmallVecData::from_inline(MaybeUninit::uninit()),
83c7162d
XL
789 }
790 }
791
792 /// Construct an empty vector with enough capacity pre-allocated to store at least `n`
793 /// elements.
794 ///
795 /// Will create a heap allocation only if `n` is larger than the inline capacity.
796 ///
797 /// ```
798 /// # use smallvec::SmallVec;
799 ///
800 /// let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(100);
801 ///
802 /// assert!(v.is_empty());
803 /// assert!(v.capacity() >= 100);
804 /// ```
805 #[inline]
806 pub fn with_capacity(n: usize) -> Self {
807 let mut v = SmallVec::new();
808 v.reserve_exact(n);
809 v
810 }
811
8faf50e0
XL
812 /// Construct a new `SmallVec` from a `Vec<A::Item>`.
813 ///
4b012472 814 /// Elements will be copied to the inline buffer if `vec.capacity() <= Self::inline_capacity()`.
83c7162d
XL
815 ///
816 /// ```rust
817 /// use smallvec::SmallVec;
818 ///
819 /// let vec = vec![1, 2, 3, 4, 5];
820 /// let small_vec: SmallVec<[_; 3]> = SmallVec::from_vec(vec);
821 ///
822 /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
823 /// ```
824 #[inline]
825 pub fn from_vec(mut vec: Vec<A::Item>) -> SmallVec<A> {
3dfed10e 826 if vec.capacity() <= Self::inline_capacity() {
add651ee
FG
827 // Cannot use Vec with smaller capacity
828 // because we use value of `Self::capacity` field as indicator.
8faf50e0 829 unsafe {
60c5eb7d 830 let mut data = SmallVecData::<A>::from_inline(MaybeUninit::uninit());
8faf50e0
XL
831 let len = vec.len();
832 vec.set_len(0);
add651ee 833 ptr::copy_nonoverlapping(vec.as_ptr(), data.inline_mut().as_ptr(), len);
8faf50e0
XL
834
835 SmallVec {
836 capacity: len,
837 data,
838 }
839 }
840 } else {
841 let (ptr, cap, len) = (vec.as_mut_ptr(), vec.capacity(), vec.len());
842 mem::forget(vec);
add651ee
FG
843 let ptr = NonNull::new(ptr)
844 // See docs: https://doc.rust-lang.org/std/vec/struct.Vec.html#method.as_mut_ptr
845 .expect("Cannot be null by `Vec` invariant");
83c7162d 846
8faf50e0
XL
847 SmallVec {
848 capacity: cap,
849 data: SmallVecData::from_heap(ptr, len),
83c7162d
XL
850 }
851 }
852 }
853
854 /// Constructs a new `SmallVec` on the stack from an `A` without
855 /// copying elements.
856 ///
857 /// ```rust
858 /// use smallvec::SmallVec;
859 ///
860 /// let buf = [1, 2, 3, 4, 5];
861 /// let small_vec: SmallVec<_> = SmallVec::from_buf(buf);
862 ///
863 /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
864 /// ```
865 #[inline]
866 pub fn from_buf(buf: A) -> SmallVec<A> {
867 SmallVec {
8faf50e0 868 capacity: A::size(),
60c5eb7d 869 data: SmallVecData::from_inline(MaybeUninit::new(buf)),
83c7162d
XL
870 }
871 }
872
b7449926
XL
873 /// Constructs a new `SmallVec` on the stack from an `A` without
874 /// copying elements. Also sets the length, which must be less or
875 /// equal to the size of `buf`.
876 ///
877 /// ```rust
878 /// use smallvec::SmallVec;
879 ///
880 /// let buf = [1, 2, 3, 4, 5, 0, 0, 0];
881 /// let small_vec: SmallVec<_> = SmallVec::from_buf_and_len(buf, 5);
882 ///
883 /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
884 /// ```
885 #[inline]
886 pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec<A> {
887 assert!(len <= A::size());
60c5eb7d 888 unsafe { SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), len) }
b7449926
XL
889 }
890
891 /// Constructs a new `SmallVec` on the stack from an `A` without
892 /// copying elements. Also sets the length. The user is responsible
893 /// for ensuring that `len <= A::size()`.
894 ///
895 /// ```rust
896 /// use smallvec::SmallVec;
60c5eb7d 897 /// use std::mem::MaybeUninit;
b7449926
XL
898 ///
899 /// let buf = [1, 2, 3, 4, 5, 0, 0, 0];
900 /// let small_vec: SmallVec<_> = unsafe {
60c5eb7d 901 /// SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), 5)
b7449926
XL
902 /// };
903 ///
904 /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
905 /// ```
906 #[inline]
60c5eb7d 907 pub unsafe fn from_buf_and_len_unchecked(buf: MaybeUninit<A>, len: usize) -> SmallVec<A> {
b7449926
XL
908 SmallVec {
909 capacity: len,
910 data: SmallVecData::from_inline(buf),
911 }
912 }
913
83c7162d
XL
914 /// Sets the length of a vector.
915 ///
916 /// This will explicitly set the size of the vector, without actually
917 /// modifying its buffers, so it is up to the caller to ensure that the
918 /// vector is actually the specified size.
919 pub unsafe fn set_len(&mut self, new_len: usize) {
8faf50e0
XL
920 let (_, len_ptr, _) = self.triple_mut();
921 *len_ptr = new_len;
83c7162d
XL
922 }
923
3dfed10e
XL
924 /// The maximum number of elements this vector can hold inline
925 #[inline]
926 fn inline_capacity() -> usize {
927 if mem::size_of::<A::Item>() > 0 {
928 A::size()
929 } else {
930 // For zero-size items code like `ptr.add(offset)` always returns the same pointer.
931 // Therefore all items are at the same address,
932 // and any array size has capacity for infinitely many items.
933 // The capacity is limited by the bit width of the length field.
934 //
935 // `Vec` also does this:
936 // https://github.com/rust-lang/rust/blob/1.44.0/src/liballoc/raw_vec.rs#L186
937 //
938 // In our case, this also ensures that a smallvec of zero-size items never spills,
939 // and we never try to allocate zero bytes which `std::alloc::alloc` disallows.
940 core::usize::MAX
941 }
942 }
943
83c7162d
XL
944 /// The maximum number of elements this vector can hold inline
945 #[inline]
946 pub fn inline_size(&self) -> usize {
3dfed10e 947 Self::inline_capacity()
83c7162d
XL
948 }
949
950 /// The number of elements stored in the vector
951 #[inline]
952 pub fn len(&self) -> usize {
8faf50e0 953 self.triple().1
83c7162d
XL
954 }
955
956 /// Returns `true` if the vector is empty
957 #[inline]
958 pub fn is_empty(&self) -> bool {
8faf50e0 959 self.len() == 0
83c7162d
XL
960 }
961
962 /// The number of items the vector can hold without reallocating
963 #[inline]
964 pub fn capacity(&self) -> usize {
8faf50e0
XL
965 self.triple().2
966 }
967
968 /// Returns a tuple with (data ptr, len, capacity)
4b012472 969 /// Useful to get all `SmallVec` properties with a single check of the current storage variant.
8faf50e0 970 #[inline]
add651ee 971 fn triple(&self) -> (ConstNonNull<A::Item>, usize, usize) {
8faf50e0
XL
972 unsafe {
973 if self.spilled() {
974 let (ptr, len) = self.data.heap();
975 (ptr, len, self.capacity)
976 } else {
3dfed10e 977 (self.data.inline(), self.capacity, Self::inline_capacity())
8faf50e0
XL
978 }
979 }
980 }
981
982 /// Returns a tuple with (data ptr, len ptr, capacity)
983 #[inline]
add651ee 984 fn triple_mut(&mut self) -> (NonNull<A::Item>, &mut usize, usize) {
8faf50e0
XL
985 unsafe {
986 if self.spilled() {
add651ee 987 let (ptr, len_ptr) = self.data.heap_mut();
8faf50e0
XL
988 (ptr, len_ptr, self.capacity)
989 } else {
3dfed10e
XL
990 (
991 self.data.inline_mut(),
992 &mut self.capacity,
993 Self::inline_capacity(),
994 )
8faf50e0 995 }
83c7162d
XL
996 }
997 }
998
999 /// Returns `true` if the data has spilled into a separate heap-allocated buffer.
1000 #[inline]
1001 pub fn spilled(&self) -> bool {
3dfed10e 1002 self.capacity > Self::inline_capacity()
83c7162d
XL
1003 }
1004
60c5eb7d
XL
1005 /// Creates a draining iterator that removes the specified range in the vector
1006 /// and yields the removed items.
1007 ///
1008 /// Note 1: The element range is removed even if the iterator is only
1009 /// partially consumed or not consumed at all.
1010 ///
1011 /// Note 2: It is unspecified how many elements are removed from the vector
1012 /// if the `Drain` value is leaked.
1013 ///
1014 /// # Panics
1015 ///
1016 /// Panics if the starting point is greater than the end point or if
1017 /// the end point is greater than the length of the vector.
1018 pub fn drain<R>(&mut self, range: R) -> Drain<'_, A>
1019 where
1020 R: RangeBounds<usize>,
1021 {
1022 use core::ops::Bound::*;
8faf50e0 1023
60c5eb7d
XL
1024 let len = self.len();
1025 let start = match range.start_bound() {
1026 Included(&n) => n,
c295e0f8 1027 Excluded(&n) => n.checked_add(1).expect("Range start out of bounds"),
60c5eb7d
XL
1028 Unbounded => 0,
1029 };
1030 let end = match range.end_bound() {
c295e0f8 1031 Included(&n) => n.checked_add(1).expect("Range end out of bounds"),
60c5eb7d
XL
1032 Excluded(&n) => n,
1033 Unbounded => len,
1034 };
1035
1036 assert!(start <= end);
1037 assert!(end <= len);
83c7162d 1038
60c5eb7d
XL
1039 unsafe {
1040 self.set_len(start);
1041
923072b8 1042 let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
83c7162d
XL
1043
1044 Drain {
60c5eb7d
XL
1045 tail_start: end,
1046 tail_len: len - end,
1047 iter: range_slice.iter(),
923072b8
FG
1048 // Since self is a &mut, passing it to a function would invalidate the slice iterator.
1049 vec: NonNull::new_unchecked(self as *mut _),
83c7162d
XL
1050 }
1051 }
1052 }
1053
add651ee
FG
1054 #[cfg(feature = "drain_filter")]
1055 /// Creates an iterator which uses a closure to determine if an element should be removed.
4b012472 1056 ///
add651ee
FG
1057 /// If the closure returns true, the element is removed and yielded. If the closure returns
1058 /// false, the element will remain in the vector and will not be yielded by the iterator.
4b012472 1059 ///
add651ee
FG
1060 /// Using this method is equivalent to the following code:
1061 /// ```
1062 /// # use smallvec::SmallVec;
1063 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
1064 /// # let mut vec: SmallVec<[i32; 8]> = SmallVec::from_slice(&[1i32, 2, 3, 4, 5, 6]);
1065 /// let mut i = 0;
1066 /// while i < vec.len() {
1067 /// if some_predicate(&mut vec[i]) {
1068 /// let val = vec.remove(i);
1069 /// // your code here
1070 /// } else {
1071 /// i += 1;
1072 /// }
1073 /// }
4b012472 1074 ///
add651ee
FG
1075 /// # assert_eq!(vec, SmallVec::<[i32; 8]>::from_slice(&[1i32, 4, 5]));
1076 /// ```
1077 /// ///
1078 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
1079 /// because it can backshift the elements of the array in bulk.
1080 ///
1081 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
1082 /// regardless of whether you choose to keep or remove it.
1083 ///
1084 /// # Examples
1085 ///
1086 /// Splitting an array into evens and odds, reusing the original allocation:
1087 ///
1088 /// ```
1089 /// # use smallvec::SmallVec;
1090 /// let mut numbers: SmallVec<[i32; 16]> = SmallVec::from_slice(&[1i32, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);
1091 ///
1092 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<SmallVec<[i32; 16]>>();
1093 /// let odds = numbers;
1094 ///
1095 /// assert_eq!(evens, SmallVec::<[i32; 16]>::from_slice(&[2i32, 4, 6, 8, 14]));
1096 /// assert_eq!(odds, SmallVec::<[i32; 16]>::from_slice(&[1i32, 3, 5, 9, 11, 13, 15]));
1097 /// ```
1098 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, A, F,>
1099 where
1100 F: FnMut(&mut A::Item) -> bool,
1101 {
1102 let old_len = self.len();
1103
1104 // Guard against us getting leaked (leak amplification)
1105 unsafe {
1106 self.set_len(0);
1107 }
1108
1109 DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
1110 }
1111
83c7162d
XL
1112 /// Append an item to the vector.
1113 #[inline]
1114 pub fn push(&mut self, value: A::Item) {
83c7162d 1115 unsafe {
5869c6ff
XL
1116 let (mut ptr, mut len, cap) = self.triple_mut();
1117 if *len == cap {
4b012472 1118 self.reserve_one_unchecked();
add651ee 1119 let (heap_ptr, heap_len) = self.data.heap_mut();
5869c6ff
XL
1120 ptr = heap_ptr;
1121 len = heap_len;
8faf50e0 1122 }
add651ee 1123 ptr::write(ptr.as_ptr().add(*len), value);
5869c6ff 1124 *len += 1;
83c7162d
XL
1125 }
1126 }
1127
1128 /// Remove an item from the end of the vector and return it, or None if empty.
1129 #[inline]
1130 pub fn pop(&mut self) -> Option<A::Item> {
83c7162d 1131 unsafe {
8faf50e0 1132 let (ptr, len_ptr, _) = self.triple_mut();
add651ee 1133 let ptr: *const _ = ptr.as_ptr();
8faf50e0
XL
1134 if *len_ptr == 0 {
1135 return None;
1136 }
1137 let last_index = *len_ptr - 1;
1138 *len_ptr = last_index;
f9f354fc 1139 Some(ptr::read(ptr.add(last_index)))
83c7162d
XL
1140 }
1141 }
1142
5869c6ff
XL
1143 /// Moves all the elements of `other` into `self`, leaving `other` empty.
1144 ///
1145 /// # Example
1146 ///
1147 /// ```
1148 /// # use smallvec::{SmallVec, smallvec};
1149 /// let mut v0: SmallVec<[u8; 16]> = smallvec![1, 2, 3];
1150 /// let mut v1: SmallVec<[u8; 32]> = smallvec![4, 5, 6];
1151 /// v0.append(&mut v1);
1152 /// assert_eq!(*v0, [1, 2, 3, 4, 5, 6]);
1153 /// assert_eq!(*v1, []);
1154 /// ```
1155 pub fn append<B>(&mut self, other: &mut SmallVec<B>)
1156 where
1157 B: Array<Item = A::Item>,
1158 {
1159 self.extend(other.drain(..))
1160 }
1161
8faf50e0 1162 /// Re-allocate to set the capacity to `max(new_cap, inline_size())`.
83c7162d 1163 ///
f9f354fc
XL
1164 /// Panics if `new_cap` is less than the vector's length
1165 /// or if the capacity computation overflows `usize`.
83c7162d 1166 pub fn grow(&mut self, new_cap: usize) {
f9f354fc
XL
1167 infallible(self.try_grow(new_cap))
1168 }
1169
1170 /// Re-allocate to set the capacity to `max(new_cap, inline_size())`.
1171 ///
1172 /// Panics if `new_cap` is less than the vector's length
1173 pub fn try_grow(&mut self, new_cap: usize) -> Result<(), CollectionAllocErr> {
83c7162d 1174 unsafe {
b7449926 1175 let unspilled = !self.spilled();
add651ee 1176 let (ptr, &mut len, cap) = self.triple_mut();
8faf50e0 1177 assert!(new_cap >= len);
add651ee 1178 if new_cap <= Self::inline_capacity() {
b7449926 1179 if unspilled {
f9f354fc 1180 return Ok(());
8faf50e0 1181 }
60c5eb7d 1182 self.data = SmallVecData::from_inline(MaybeUninit::uninit());
add651ee 1183 ptr::copy_nonoverlapping(ptr.as_ptr(), self.data.inline_mut().as_ptr(), len);
dc9dc135 1184 self.capacity = len;
f9f354fc 1185 deallocate(ptr, cap);
8faf50e0 1186 } else if new_cap != cap {
f9f354fc 1187 let layout = layout_array::<A::Item>(new_cap)?;
3dfed10e 1188 debug_assert!(layout.size() > 0);
f9f354fc 1189 let new_alloc;
b7449926 1190 if unspilled {
f9f354fc
XL
1191 new_alloc = NonNull::new(alloc::alloc::alloc(layout))
1192 .ok_or(CollectionAllocErr::AllocErr { layout })?
add651ee
FG
1193 .cast();
1194 ptr::copy_nonoverlapping(ptr.as_ptr(), new_alloc.as_ptr(), len);
f9f354fc
XL
1195 } else {
1196 // This should never fail since the same succeeded
1197 // when previously allocating `ptr`.
1198 let old_layout = layout_array::<A::Item>(cap)?;
1199
add651ee
FG
1200 let new_ptr =
1201 alloc::alloc::realloc(ptr.as_ptr() as *mut u8, old_layout, layout.size());
f9f354fc
XL
1202 new_alloc = NonNull::new(new_ptr)
1203 .ok_or(CollectionAllocErr::AllocErr { layout })?
add651ee 1204 .cast();
8faf50e0 1205 }
f9f354fc
XL
1206 self.data = SmallVecData::from_heap(new_alloc, len);
1207 self.capacity = new_cap;
83c7162d 1208 }
f9f354fc 1209 Ok(())
83c7162d
XL
1210 }
1211 }
1212
1213 /// Reserve capacity for `additional` more elements to be inserted.
1214 ///
1215 /// May reserve more space to avoid frequent reallocations.
1216 ///
f9f354fc 1217 /// Panics if the capacity computation overflows `usize`.
b7449926 1218 #[inline]
83c7162d 1219 pub fn reserve(&mut self, additional: usize) {
f9f354fc
XL
1220 infallible(self.try_reserve(additional))
1221 }
1222
4b012472
FG
1223 /// Internal method used to grow in push() and insert(), where we know already we have to grow.
1224 #[cold]
1225 fn reserve_one_unchecked(&mut self) {
1226 debug_assert_eq!(self.len(), self.capacity());
1227 let new_cap = self.len()
1228 .checked_add(1)
1229 .and_then(usize::checked_next_power_of_two)
1230 .expect("capacity overflow");
1231 infallible(self.try_grow(new_cap))
1232 }
1233
f9f354fc
XL
1234 /// Reserve capacity for `additional` more elements to be inserted.
1235 ///
1236 /// May reserve more space to avoid frequent reallocations.
1237 pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
4b012472
FG
1238 // prefer triple_mut() even if triple() would work so that the optimizer removes duplicated
1239 // calls to it from callers.
8faf50e0 1240 let (_, &mut len, cap) = self.triple_mut();
f9f354fc
XL
1241 if cap - len >= additional {
1242 return Ok(());
83c7162d 1243 }
f9f354fc
XL
1244 let new_cap = len
1245 .checked_add(additional)
1246 .and_then(usize::checked_next_power_of_two)
1247 .ok_or(CollectionAllocErr::CapacityOverflow)?;
1248 self.try_grow(new_cap)
83c7162d
XL
1249 }
1250
0731742a 1251 /// Reserve the minimum capacity for `additional` more elements to be inserted.
83c7162d
XL
1252 ///
1253 /// Panics if the new capacity overflows `usize`.
1254 pub fn reserve_exact(&mut self, additional: usize) {
f9f354fc
XL
1255 infallible(self.try_reserve_exact(additional))
1256 }
1257
1258 /// Reserve the minimum capacity for `additional` more elements to be inserted.
1259 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
8faf50e0 1260 let (_, &mut len, cap) = self.triple_mut();
f9f354fc
XL
1261 if cap - len >= additional {
1262 return Ok(());
83c7162d 1263 }
f9f354fc
XL
1264 let new_cap = len
1265 .checked_add(additional)
1266 .ok_or(CollectionAllocErr::CapacityOverflow)?;
1267 self.try_grow(new_cap)
83c7162d
XL
1268 }
1269
1270 /// Shrink the capacity of the vector as much as possible.
1271 ///
1272 /// When possible, this will move data from an external heap buffer to the vector's inline
1273 /// storage.
1274 pub fn shrink_to_fit(&mut self) {
8faf50e0
XL
1275 if !self.spilled() {
1276 return;
1277 }
1278 let len = self.len();
83c7162d
XL
1279 if self.inline_size() >= len {
1280 unsafe {
8faf50e0 1281 let (ptr, len) = self.data.heap();
60c5eb7d 1282 self.data = SmallVecData::from_inline(MaybeUninit::uninit());
add651ee
FG
1283 ptr::copy_nonoverlapping(ptr.as_ptr(), self.data.inline_mut().as_ptr(), len);
1284 deallocate(ptr.0, self.capacity);
8faf50e0 1285 self.capacity = len;
83c7162d
XL
1286 }
1287 } else if self.capacity() > len {
1288 self.grow(len);
1289 }
1290 }
1291
1292 /// Shorten the vector, keeping the first `len` elements and dropping the rest.
1293 ///
1294 /// If `len` is greater than or equal to the vector's current length, this has no
1295 /// effect.
1296 ///
1297 /// This does not re-allocate. If you want the vector's capacity to shrink, call
1298 /// `shrink_to_fit` after truncating.
1299 pub fn truncate(&mut self, len: usize) {
8faf50e0
XL
1300 unsafe {
1301 let (ptr, len_ptr, _) = self.triple_mut();
add651ee 1302 let ptr = ptr.as_ptr();
8faf50e0
XL
1303 while len < *len_ptr {
1304 let last_index = *len_ptr - 1;
1305 *len_ptr = last_index;
f9f354fc 1306 ptr::drop_in_place(ptr.add(last_index));
83c7162d
XL
1307 }
1308 }
1309 }
1310
1311 /// Extracts a slice containing the entire vector.
1312 ///
8faf50e0 1313 /// Equivalent to `&s[..]`.
83c7162d
XL
1314 pub fn as_slice(&self) -> &[A::Item] {
1315 self
1316 }
1317
1318 /// Extracts a mutable slice of the entire vector.
1319 ///
1320 /// Equivalent to `&mut s[..]`.
1321 pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
1322 self
1323 }
1324
1325 /// Remove the element at position `index`, replacing it with the last element.
1326 ///
1327 /// This does not preserve ordering, but is O(1).
1328 ///
1329 /// Panics if `index` is out of bounds.
1330 #[inline]
1331 pub fn swap_remove(&mut self, index: usize) -> A::Item {
8faf50e0 1332 let len = self.len();
83c7162d 1333 self.swap(len - 1, index);
60c5eb7d
XL
1334 self.pop()
1335 .unwrap_or_else(|| unsafe { unreachable_unchecked() })
83c7162d
XL
1336 }
1337
1338 /// Remove all elements from the vector.
1339 #[inline]
1340 pub fn clear(&mut self) {
1341 self.truncate(0);
1342 }
1343
1344 /// Remove and return the element at position `index`, shifting all elements after it to the
1345 /// left.
1346 ///
1347 /// Panics if `index` is out of bounds.
1348 pub fn remove(&mut self, index: usize) -> A::Item {
83c7162d 1349 unsafe {
add651ee 1350 let (ptr, len_ptr, _) = self.triple_mut();
8faf50e0
XL
1351 let len = *len_ptr;
1352 assert!(index < len);
1353 *len_ptr = len - 1;
add651ee 1354 let ptr = ptr.as_ptr().add(index);
83c7162d 1355 let item = ptr::read(ptr);
f9f354fc 1356 ptr::copy(ptr.add(1), ptr, len - index - 1);
83c7162d
XL
1357 item
1358 }
1359 }
1360
1361 /// Insert an element at position `index`, shifting all elements after it to the right.
1362 ///
923072b8 1363 /// Panics if `index > len`.
83c7162d 1364 pub fn insert(&mut self, index: usize, element: A::Item) {
83c7162d 1365 unsafe {
4b012472
FG
1366 let (mut ptr, mut len_ptr, cap) = self.triple_mut();
1367 if *len_ptr == cap {
1368 self.reserve_one_unchecked();
1369 let (heap_ptr, heap_len_ptr) = self.data.heap_mut();
1370 ptr = heap_ptr;
1371 len_ptr = heap_len_ptr;
1372 }
add651ee 1373 let mut ptr = ptr.as_ptr();
8faf50e0 1374 let len = *len_ptr;
f9f354fc 1375 ptr = ptr.add(index);
923072b8
FG
1376 if index < len {
1377 ptr::copy(ptr, ptr.add(1), len - index);
1378 } else if index == len {
1379 // No elements need shifting.
1380 } else {
1381 panic!("index exceeds length");
1382 }
1383 *len_ptr = len + 1;
83c7162d 1384 ptr::write(ptr, element);
83c7162d
XL
1385 }
1386 }
1387
1388 /// Insert multiple elements at position `index`, shifting all following elements toward the
1389 /// back.
60c5eb7d 1390 pub fn insert_many<I: IntoIterator<Item = A::Item>>(&mut self, index: usize, iterable: I) {
5869c6ff 1391 let mut iter = iterable.into_iter();
8faf50e0
XL
1392 if index == self.len() {
1393 return self.extend(iter);
1394 }
1395
83c7162d 1396 let (lower_size_bound, _) = iter.size_hint();
60c5eb7d
XL
1397 assert!(lower_size_bound <= core::isize::MAX as usize); // Ensure offset is indexable
1398 assert!(index + lower_size_bound >= index); // Protect against overflow
5869c6ff
XL
1399
1400 let mut num_added = 0;
1401 let old_len = self.len();
1402 assert!(index <= old_len);
83c7162d
XL
1403
1404 unsafe {
5869c6ff
XL
1405 // Reserve space for `lower_size_bound` elements.
1406 self.reserve(lower_size_bound);
3dfed10e 1407 let start = self.as_mut_ptr();
5869c6ff 1408 let ptr = start.add(index);
8faf50e0
XL
1409
1410 // Move the trailing elements.
f9f354fc 1411 ptr::copy(ptr, ptr.add(lower_size_bound), old_len - index);
8faf50e0
XL
1412
1413 // In case the iterator panics, don't double-drop the items we just copied above.
3dfed10e
XL
1414 self.set_len(0);
1415 let mut guard = DropOnPanic {
1416 start,
1417 skip: index..(index + lower_size_bound),
1418 len: old_len + lower_size_bound,
1419 };
8faf50e0 1420
923072b8
FG
1421 // The set_len above invalidates the previous pointers, so we must re-create them.
1422 let start = self.as_mut_ptr();
1423 let ptr = start.add(index);
1424
5869c6ff
XL
1425 while num_added < lower_size_bound {
1426 let element = match iter.next() {
1427 Some(x) => x,
1428 None => break,
1429 };
1430 let cur = ptr.add(num_added);
8faf50e0 1431 ptr::write(cur, element);
3dfed10e 1432 guard.skip.start += 1;
8faf50e0 1433 num_added += 1;
83c7162d 1434 }
3dfed10e 1435
83c7162d 1436 if num_added < lower_size_bound {
5869c6ff 1437 // Iterator provided fewer elements than the hint. Move the tail backward.
60c5eb7d 1438 ptr::copy(
f9f354fc
XL
1439 ptr.add(lower_size_bound),
1440 ptr.add(num_added),
60c5eb7d
XL
1441 old_len - index,
1442 );
83c7162d 1443 }
5869c6ff 1444 // There are no more duplicate or uninitialized slots, so the guard is not needed.
8faf50e0 1445 self.set_len(old_len + num_added);
5869c6ff
XL
1446 mem::forget(guard);
1447 }
1448
1449 // Insert any remaining elements one-by-one.
1450 for element in iter {
1451 self.insert(index + num_added, element);
1452 num_added += 1;
83c7162d 1453 }
3dfed10e
XL
1454
1455 struct DropOnPanic<T> {
1456 start: *mut T,
5869c6ff 1457 skip: Range<usize>, // Space we copied-out-of, but haven't written-to yet.
3dfed10e
XL
1458 len: usize,
1459 }
1460
1461 impl<T> Drop for DropOnPanic<T> {
1462 fn drop(&mut self) {
1463 for i in 0..self.len {
1464 if !self.skip.contains(&i) {
1465 unsafe {
1466 ptr::drop_in_place(self.start.add(i));
1467 }
1468 }
1469 }
1470 }
1471 }
83c7162d
XL
1472 }
1473
4b012472 1474 /// Convert a `SmallVec` to a `Vec`, without reallocating if the `SmallVec` has already spilled onto
83c7162d 1475 /// the heap.
add651ee 1476 pub fn into_vec(mut self) -> Vec<A::Item> {
8faf50e0
XL
1477 if self.spilled() {
1478 unsafe {
add651ee
FG
1479 let (ptr, &mut len) = self.data.heap_mut();
1480 let v = Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity);
83c7162d
XL
1481 mem::forget(self);
1482 v
1483 }
8faf50e0
XL
1484 } else {
1485 self.into_iter().collect()
83c7162d
XL
1486 }
1487 }
1488
f9f354fc
XL
1489 /// Converts a `SmallVec` into a `Box<[T]>` without reallocating if the `SmallVec` has already spilled
1490 /// onto the heap.
1491 ///
1492 /// Note that this will drop any excess capacity.
1493 pub fn into_boxed_slice(self) -> Box<[A::Item]> {
1494 self.into_vec().into_boxed_slice()
1495 }
1496
4b012472 1497 /// Convert the `SmallVec` into an `A` if possible. Otherwise return `Err(Self)`.
b7449926 1498 ///
4b012472
FG
1499 /// This method returns `Err(Self)` if the `SmallVec` is too short (and the `A` contains uninitialized elements),
1500 /// or if the `SmallVec` is too long (and all the elements were spilled to the heap).
b7449926
XL
1501 pub fn into_inner(self) -> Result<A, Self> {
1502 if self.spilled() || self.len() != A::size() {
3dfed10e 1503 // Note: A::size, not Self::inline_capacity
b7449926
XL
1504 Err(self)
1505 } else {
1506 unsafe {
1507 let data = ptr::read(&self.data);
1508 mem::forget(self);
60c5eb7d 1509 Ok(data.into_inline().assume_init())
b7449926
XL
1510 }
1511 }
1512 }
1513
83c7162d
XL
1514 /// Retains only the elements specified by the predicate.
1515 ///
1516 /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
1517 /// This method operates in place and preserves the order of the retained
1518 /// elements.
1519 pub fn retain<F: FnMut(&mut A::Item) -> bool>(&mut self, mut f: F) {
1520 let mut del = 0;
8faf50e0 1521 let len = self.len();
83c7162d
XL
1522 for i in 0..len {
1523 if !f(&mut self[i]) {
1524 del += 1;
1525 } else if del > 0 {
1526 self.swap(i - del, i);
1527 }
1528 }
1529 self.truncate(len - del);
1530 }
1531
064997fb
FG
1532 /// Retains only the elements specified by the predicate.
1533 ///
1534 /// This method is identical in behaviour to [`retain`]; it is included only
1535 /// to maintain api-compatability with `std::Vec`, where the methods are
1536 /// separate for historical reasons.
1537 pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, f: F) {
1538 self.retain(f)
1539 }
1540
83c7162d 1541 /// Removes consecutive duplicate elements.
60c5eb7d
XL
1542 pub fn dedup(&mut self)
1543 where
1544 A::Item: PartialEq<A::Item>,
1545 {
83c7162d
XL
1546 self.dedup_by(|a, b| a == b);
1547 }
1548
1549 /// Removes consecutive duplicate elements using the given equality relation.
8faf50e0 1550 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
60c5eb7d
XL
1551 where
1552 F: FnMut(&mut A::Item, &mut A::Item) -> bool,
83c7162d
XL
1553 {
1554 // See the implementation of Vec::dedup_by in the
1555 // standard library for an explanation of this algorithm.
8faf50e0 1556 let len = self.len();
83c7162d
XL
1557 if len <= 1 {
1558 return;
1559 }
1560
1561 let ptr = self.as_mut_ptr();
1562 let mut w: usize = 1;
1563
1564 unsafe {
1565 for r in 1..len {
f9f354fc
XL
1566 let p_r = ptr.add(r);
1567 let p_wm1 = ptr.add(w - 1);
83c7162d
XL
1568 if !same_bucket(&mut *p_r, &mut *p_wm1) {
1569 if r != w {
f9f354fc 1570 let p_w = p_wm1.add(1);
83c7162d
XL
1571 mem::swap(&mut *p_r, &mut *p_w);
1572 }
1573 w += 1;
1574 }
1575 }
1576 }
1577
1578 self.truncate(w);
1579 }
1580
1581 /// Removes consecutive elements that map to the same key.
8faf50e0 1582 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
60c5eb7d
XL
1583 where
1584 F: FnMut(&mut A::Item) -> K,
1585 K: PartialEq<K>,
83c7162d
XL
1586 {
1587 self.dedup_by(|a, b| key(a) == key(b));
1588 }
0731742a 1589
3dfed10e
XL
1590 /// Resizes the `SmallVec` in-place so that `len` is equal to `new_len`.
1591 ///
1592 /// If `new_len` is greater than `len`, the `SmallVec` is extended by the difference, with each
1593 /// additional slot filled with the result of calling the closure `f`. The return values from `f`
4b012472 1594 /// will end up in the `SmallVec` in the order they have been generated.
3dfed10e
XL
1595 ///
1596 /// If `new_len` is less than `len`, the `SmallVec` is simply truncated.
1597 ///
1598 /// This method uses a closure to create new values on every push. If you'd rather `Clone` a given
1599 /// value, use `resize`. If you want to use the `Default` trait to generate values, you can pass
1600 /// `Default::default()` as the second argument.
1601 ///
4b012472 1602 /// Added for `std::vec::Vec` compatibility (added in Rust 1.33.0)
3dfed10e
XL
1603 ///
1604 /// ```
1605 /// # use smallvec::{smallvec, SmallVec};
1606 /// let mut vec : SmallVec<[_; 4]> = smallvec![1, 2, 3];
1607 /// vec.resize_with(5, Default::default);
1608 /// assert_eq!(&*vec, &[1, 2, 3, 0, 0]);
1609 ///
1610 /// let mut vec : SmallVec<[_; 4]> = smallvec![];
1611 /// let mut p = 1;
1612 /// vec.resize_with(4, || { p *= 2; p });
1613 /// assert_eq!(&*vec, &[2, 4, 8, 16]);
1614 /// ```
1615 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
1616 where
1617 F: FnMut() -> A::Item,
1618 {
1619 let old_len = self.len();
1620 if old_len < new_len {
1621 let mut f = f;
1622 let additional = new_len - old_len;
1623 self.reserve(additional);
1624 for _ in 0..additional {
1625 self.push(f());
1626 }
1627 } else if old_len > new_len {
1628 self.truncate(new_len);
1629 }
1630 }
1631
0731742a
XL
1632 /// Creates a `SmallVec` directly from the raw components of another
1633 /// `SmallVec`.
1634 ///
1635 /// # Safety
1636 ///
1637 /// This is highly unsafe, due to the number of invariants that aren't
1638 /// checked:
1639 ///
1640 /// * `ptr` needs to have been previously allocated via `SmallVec` for its
1641 /// spilled storage (at least, it's highly likely to be incorrect if it
1642 /// wasn't).
1643 /// * `ptr`'s `A::Item` type needs to be the same size and alignment that
1644 /// it was allocated with
1645 /// * `length` needs to be less than or equal to `capacity`.
1646 /// * `capacity` needs to be the capacity that the pointer was allocated
1647 /// with.
1648 ///
1649 /// Violating these may cause problems like corrupting the allocator's
1650 /// internal data structures.
1651 ///
1652 /// Additionally, `capacity` must be greater than the amount of inline
1653 /// storage `A` has; that is, the new `SmallVec` must need to spill over
1654 /// into heap allocated storage. This condition is asserted against.
1655 ///
1656 /// The ownership of `ptr` is effectively transferred to the
1657 /// `SmallVec` which may then deallocate, reallocate or change the
1658 /// contents of memory pointed to by the pointer at will. Ensure
1659 /// that nothing else uses the pointer after calling this
1660 /// function.
1661 ///
1662 /// # Examples
1663 ///
1664 /// ```
4b012472 1665 /// # use smallvec::{smallvec, SmallVec};
0731742a
XL
1666 /// use std::mem;
1667 /// use std::ptr;
1668 ///
1669 /// fn main() {
1670 /// let mut v: SmallVec<[_; 1]> = smallvec![1, 2, 3];
1671 ///
1672 /// // Pull out the important parts of `v`.
1673 /// let p = v.as_mut_ptr();
1674 /// let len = v.len();
1675 /// let cap = v.capacity();
1676 /// let spilled = v.spilled();
1677 ///
1678 /// unsafe {
1679 /// // Forget all about `v`. The heap allocation that stored the
1680 /// // three values won't be deallocated.
1681 /// mem::forget(v);
1682 ///
1683 /// // Overwrite memory with [4, 5, 6].
1684 /// //
1685 /// // This is only safe if `spilled` is true! Otherwise, we are
1686 /// // writing into the old `SmallVec`'s inline storage on the
1687 /// // stack.
1688 /// assert!(spilled);
f9f354fc
XL
1689 /// for i in 0..len {
1690 /// ptr::write(p.add(i), 4 + i);
0731742a
XL
1691 /// }
1692 ///
1693 /// // Put everything back together into a SmallVec with a different
1694 /// // amount of inline storage, but which is still less than `cap`.
1695 /// let rebuilt = SmallVec::<[_; 2]>::from_raw_parts(p, len, cap);
1696 /// assert_eq!(&*rebuilt, &[4, 5, 6]);
1697 /// }
1698 /// }
f9f354fc 1699 #[inline]
60c5eb7d 1700 pub unsafe fn from_raw_parts(ptr: *mut A::Item, length: usize, capacity: usize) -> SmallVec<A> {
add651ee
FG
1701 // SAFETY: We require caller to provide same ptr as we alloc
1702 // and we never alloc null pointer.
1703 let ptr = unsafe {
1704 debug_assert!(!ptr.is_null(), "Called `from_raw_parts` with null pointer.");
1705 NonNull::new_unchecked(ptr)
1706 };
3dfed10e 1707 assert!(capacity > Self::inline_capacity());
0731742a
XL
1708 SmallVec {
1709 capacity,
1710 data: SmallVecData::from_heap(ptr, length),
1711 }
1712 }
3dfed10e
XL
1713
1714 /// Returns a raw pointer to the vector's buffer.
1715 pub fn as_ptr(&self) -> *const A::Item {
1716 // We shadow the slice method of the same name to avoid going through
1717 // `deref`, which creates an intermediate reference that may place
1718 // additional safety constraints on the contents of the slice.
add651ee 1719 self.triple().0.as_ptr()
3dfed10e
XL
1720 }
1721
1722 /// Returns a raw mutable pointer to the vector's buffer.
1723 pub fn as_mut_ptr(&mut self) -> *mut A::Item {
1724 // We shadow the slice method of the same name to avoid going through
1725 // `deref_mut`, which creates an intermediate reference that may place
1726 // additional safety constraints on the contents of the slice.
add651ee 1727 self.triple_mut().0.as_ptr()
3dfed10e 1728 }
83c7162d
XL
1729}
1730
60c5eb7d
XL
1731impl<A: Array> SmallVec<A>
1732where
1733 A::Item: Copy,
1734{
83c7162d
XL
1735 /// Copy the elements from a slice into a new `SmallVec`.
1736 ///
1737 /// For slices of `Copy` types, this is more efficient than `SmallVec::from(slice)`.
1738 pub fn from_slice(slice: &[A::Item]) -> Self {
b7449926 1739 let len = slice.len();
3dfed10e 1740 if len <= Self::inline_capacity() {
b7449926
XL
1741 SmallVec {
1742 capacity: len,
1743 data: SmallVecData::from_inline(unsafe {
60c5eb7d
XL
1744 let mut data: MaybeUninit<A> = MaybeUninit::uninit();
1745 ptr::copy_nonoverlapping(
1746 slice.as_ptr(),
1747 data.as_mut_ptr() as *mut A::Item,
1748 len,
1749 );
b7449926 1750 data
60c5eb7d 1751 }),
b7449926
XL
1752 }
1753 } else {
1754 let mut b = slice.to_vec();
add651ee
FG
1755 let cap = b.capacity();
1756 let ptr = NonNull::new(b.as_mut_ptr()).expect("Vec always contain non null pointers.");
b7449926
XL
1757 mem::forget(b);
1758 SmallVec {
0731742a 1759 capacity: cap,
b7449926
XL
1760 data: SmallVecData::from_heap(ptr, len),
1761 }
1762 }
83c7162d
XL
1763 }
1764
1765 /// Copy elements from a slice into the vector at position `index`, shifting any following
1766 /// elements toward the back.
1767 ///
1768 /// For slices of `Copy` types, this is more efficient than `insert`.
4b012472 1769 #[inline]
83c7162d
XL
1770 pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item]) {
1771 self.reserve(slice.len());
1772
8faf50e0 1773 let len = self.len();
83c7162d
XL
1774 assert!(index <= len);
1775
1776 unsafe {
1777 let slice_ptr = slice.as_ptr();
f9f354fc
XL
1778 let ptr = self.as_mut_ptr().add(index);
1779 ptr::copy(ptr, ptr.add(slice.len()), len - index);
83c7162d
XL
1780 ptr::copy_nonoverlapping(slice_ptr, ptr, slice.len());
1781 self.set_len(len + slice.len());
1782 }
1783 }
1784
1785 /// Copy elements from a slice and append them to the vector.
1786 ///
1787 /// For slices of `Copy` types, this is more efficient than `extend`.
1788 #[inline]
1789 pub fn extend_from_slice(&mut self, slice: &[A::Item]) {
1790 let len = self.len();
1791 self.insert_from_slice(len, slice);
1792 }
1793}
1794
60c5eb7d
XL
1795impl<A: Array> SmallVec<A>
1796where
1797 A::Item: Clone,
1798{
8faf50e0
XL
1799 /// Resizes the vector so that its length is equal to `len`.
1800 ///
1801 /// If `len` is less than the current length, the vector simply truncated.
1802 ///
1803 /// If `len` is greater than the current length, `value` is appended to the
1804 /// vector until its length equals `len`.
1805 pub fn resize(&mut self, len: usize, value: A::Item) {
1806 let old_len = self.len();
1807
1808 if len > old_len {
1809 self.extend(repeat(value).take(len - old_len));
1810 } else {
1811 self.truncate(len);
1812 }
1813 }
1814
1815 /// Creates a `SmallVec` with `n` copies of `elem`.
1816 /// ```
1817 /// use smallvec::SmallVec;
1818 ///
1819 /// let v = SmallVec::<[char; 128]>::from_elem('d', 2);
1820 /// assert_eq!(v, SmallVec::from_buf(['d', 'd']));
1821 /// ```
1822 pub fn from_elem(elem: A::Item, n: usize) -> Self {
3dfed10e 1823 if n > Self::inline_capacity() {
8faf50e0
XL
1824 vec![elem; n].into()
1825 } else {
1826 let mut v = SmallVec::<A>::new();
1827 unsafe {
1828 let (ptr, len_ptr, _) = v.triple_mut();
add651ee 1829 let ptr = ptr.as_ptr();
8faf50e0
XL
1830 let mut local_len = SetLenOnDrop::new(len_ptr);
1831
f9f354fc
XL
1832 for i in 0..n {
1833 ::core::ptr::write(ptr.add(i), elem.clone());
8faf50e0
XL
1834 local_len.increment_len(1);
1835 }
1836 }
1837 v
1838 }
1839 }
1840}
1841
83c7162d
XL
1842impl<A: Array> ops::Deref for SmallVec<A> {
1843 type Target = [A::Item];
1844 #[inline]
1845 fn deref(&self) -> &[A::Item] {
83c7162d 1846 unsafe {
8faf50e0 1847 let (ptr, len, _) = self.triple();
add651ee 1848 slice::from_raw_parts(ptr.as_ptr(), len)
83c7162d
XL
1849 }
1850 }
1851}
1852
1853impl<A: Array> ops::DerefMut for SmallVec<A> {
1854 #[inline]
1855 fn deref_mut(&mut self) -> &mut [A::Item] {
83c7162d 1856 unsafe {
8faf50e0 1857 let (ptr, &mut len, _) = self.triple_mut();
add651ee 1858 slice::from_raw_parts_mut(ptr.as_ptr(), len)
83c7162d
XL
1859 }
1860 }
1861}
1862
1863impl<A: Array> AsRef<[A::Item]> for SmallVec<A> {
1864 #[inline]
1865 fn as_ref(&self) -> &[A::Item] {
1866 self
1867 }
1868}
1869
1870impl<A: Array> AsMut<[A::Item]> for SmallVec<A> {
1871 #[inline]
1872 fn as_mut(&mut self) -> &mut [A::Item] {
1873 self
1874 }
1875}
1876
1877impl<A: Array> Borrow<[A::Item]> for SmallVec<A> {
1878 #[inline]
1879 fn borrow(&self) -> &[A::Item] {
1880 self
1881 }
1882}
1883
1884impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A> {
1885 #[inline]
1886 fn borrow_mut(&mut self) -> &mut [A::Item] {
1887 self
1888 }
1889}
1890
60c5eb7d 1891#[cfg(feature = "write")]
c295e0f8 1892#[cfg_attr(docsrs, doc(cfg(feature = "write")))]
83c7162d
XL
1893impl<A: Array<Item = u8>> io::Write for SmallVec<A> {
1894 #[inline]
1895 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
1896 self.extend_from_slice(buf);
1897 Ok(buf.len())
1898 }
1899
1900 #[inline]
1901 fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
1902 self.extend_from_slice(buf);
1903 Ok(())
1904 }
1905
1906 #[inline]
1907 fn flush(&mut self) -> io::Result<()> {
1908 Ok(())
1909 }
1910}
1911
1912#[cfg(feature = "serde")]
c295e0f8 1913#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
60c5eb7d
XL
1914impl<A: Array> Serialize for SmallVec<A>
1915where
1916 A::Item: Serialize,
1917{
83c7162d
XL
1918 fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
1919 let mut state = serializer.serialize_seq(Some(self.len()))?;
1920 for item in self {
1921 state.serialize_element(&item)?;
1922 }
1923 state.end()
1924 }
1925}
1926
1927#[cfg(feature = "serde")]
c295e0f8 1928#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
60c5eb7d
XL
1929impl<'de, A: Array> Deserialize<'de> for SmallVec<A>
1930where
1931 A::Item: Deserialize<'de>,
1932{
83c7162d 1933 fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
60c5eb7d
XL
1934 deserializer.deserialize_seq(SmallVecVisitor {
1935 phantom: PhantomData,
1936 })
83c7162d
XL
1937 }
1938}
1939
1940#[cfg(feature = "serde")]
1941struct SmallVecVisitor<A> {
60c5eb7d 1942 phantom: PhantomData<A>,
83c7162d
XL
1943}
1944
1945#[cfg(feature = "serde")]
1946impl<'de, A: Array> Visitor<'de> for SmallVecVisitor<A>
60c5eb7d
XL
1947where
1948 A::Item: Deserialize<'de>,
83c7162d
XL
1949{
1950 type Value = SmallVec<A>;
1951
60c5eb7d 1952 fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
83c7162d
XL
1953 formatter.write_str("a sequence")
1954 }
1955
1956 fn visit_seq<B>(self, mut seq: B) -> Result<Self::Value, B::Error>
60c5eb7d
XL
1957 where
1958 B: SeqAccess<'de>,
83c7162d 1959 {
5869c6ff 1960 use serde::de::Error;
83c7162d 1961 let len = seq.size_hint().unwrap_or(0);
5869c6ff
XL
1962 let mut values = SmallVec::new();
1963 values.try_reserve(len).map_err(B::Error::custom)?;
83c7162d
XL
1964
1965 while let Some(value) = seq.next_element()? {
1966 values.push(value);
1967 }
1968
1969 Ok(values)
1970 }
1971}
1972
0731742a
XL
1973#[cfg(feature = "specialization")]
1974trait SpecFrom<A: Array, S> {
1975 fn spec_from(slice: S) -> SmallVec<A>;
1976}
1977
1978#[cfg(feature = "specialization")]
60c5eb7d 1979mod specialization;
0731742a 1980
5099ac24
FG
1981#[cfg(feature = "arbitrary")]
1982mod arbitrary;
1983
0731742a 1984#[cfg(feature = "specialization")]
60c5eb7d
XL
1985impl<'a, A: Array> SpecFrom<A, &'a [A::Item]> for SmallVec<A>
1986where
1987 A::Item: Copy,
1988{
0731742a
XL
1989 #[inline]
1990 fn spec_from(slice: &'a [A::Item]) -> SmallVec<A> {
1991 SmallVec::from_slice(slice)
1992 }
1993}
1994
60c5eb7d
XL
1995impl<'a, A: Array> From<&'a [A::Item]> for SmallVec<A>
1996where
1997 A::Item: Clone,
1998{
0731742a 1999 #[cfg(not(feature = "specialization"))]
83c7162d
XL
2000 #[inline]
2001 fn from(slice: &'a [A::Item]) -> SmallVec<A> {
f9f354fc 2002 slice.iter().cloned().collect()
83c7162d 2003 }
0731742a
XL
2004
2005 #[cfg(feature = "specialization")]
2006 #[inline]
2007 fn from(slice: &'a [A::Item]) -> SmallVec<A> {
2008 SmallVec::spec_from(slice)
2009 }
83c7162d
XL
2010}
2011
2012impl<A: Array> From<Vec<A::Item>> for SmallVec<A> {
2013 #[inline]
2014 fn from(vec: Vec<A::Item>) -> SmallVec<A> {
2015 SmallVec::from_vec(vec)
2016 }
2017}
2018
2019impl<A: Array> From<A> for SmallVec<A> {
2020 #[inline]
2021 fn from(array: A) -> SmallVec<A> {
2022 SmallVec::from_buf(array)
2023 }
2024}
2025
60c5eb7d
XL
2026impl<A: Array, I: SliceIndex<[A::Item]>> ops::Index<I> for SmallVec<A> {
2027 type Output = I::Output;
83c7162d 2028
60c5eb7d
XL
2029 fn index(&self, index: I) -> &I::Output {
2030 &(**self)[index]
83c7162d
XL
2031 }
2032}
2033
60c5eb7d
XL
2034impl<A: Array, I: SliceIndex<[A::Item]>> ops::IndexMut<I> for SmallVec<A> {
2035 fn index_mut(&mut self, index: I) -> &mut I::Output {
2036 &mut (&mut **self)[index]
83c7162d
XL
2037 }
2038}
2039
3dfed10e 2040#[allow(deprecated)]
60c5eb7d
XL
2041impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A>
2042where
2043 A::Item: Copy,
2044{
2045 fn extend_from_slice(&mut self, other: &[A::Item]) {
2046 SmallVec::extend_from_slice(self, other)
83c7162d
XL
2047 }
2048}
2049
2050impl<A: Array> FromIterator<A::Item> for SmallVec<A> {
f9f354fc 2051 #[inline]
60c5eb7d 2052 fn from_iter<I: IntoIterator<Item = A::Item>>(iterable: I) -> SmallVec<A> {
83c7162d
XL
2053 let mut v = SmallVec::new();
2054 v.extend(iterable);
2055 v
2056 }
2057}
2058
2059impl<A: Array> Extend<A::Item> for SmallVec<A> {
60c5eb7d 2060 fn extend<I: IntoIterator<Item = A::Item>>(&mut self, iterable: I) {
8faf50e0 2061 let mut iter = iterable.into_iter();
83c7162d 2062 let (lower_size_bound, _) = iter.size_hint();
8faf50e0 2063 self.reserve(lower_size_bound);
83c7162d 2064
8faf50e0 2065 unsafe {
dc9dc135 2066 let (ptr, len_ptr, cap) = self.triple_mut();
add651ee 2067 let ptr = ptr.as_ptr();
dc9dc135
XL
2068 let mut len = SetLenOnDrop::new(len_ptr);
2069 while len.get() < cap {
8faf50e0 2070 if let Some(out) = iter.next() {
f9f354fc 2071 ptr::write(ptr.add(len.get()), out);
dc9dc135 2072 len.increment_len(1);
8faf50e0 2073 } else {
dc9dc135 2074 return;
8faf50e0
XL
2075 }
2076 }
83c7162d
XL
2077 }
2078
2079 for elem in iter {
2080 self.push(elem);
2081 }
2082 }
2083}
2084
60c5eb7d
XL
2085impl<A: Array> fmt::Debug for SmallVec<A>
2086where
2087 A::Item: fmt::Debug,
2088{
2089 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
b7449926 2090 f.debug_list().entries(self.iter()).finish()
83c7162d
XL
2091 }
2092}
2093
2094impl<A: Array> Default for SmallVec<A> {
2095 #[inline]
2096 fn default() -> SmallVec<A> {
2097 SmallVec::new()
2098 }
2099}
2100
0731742a
XL
2101#[cfg(feature = "may_dangle")]
2102unsafe impl<#[may_dangle] A: Array> Drop for SmallVec<A> {
2103 fn drop(&mut self) {
2104 unsafe {
2105 if self.spilled() {
add651ee
FG
2106 let (ptr, &mut len) = self.data.heap_mut();
2107 Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity);
0731742a
XL
2108 } else {
2109 ptr::drop_in_place(&mut self[..]);
2110 }
2111 }
2112 }
2113}
2114
2115#[cfg(not(feature = "may_dangle"))]
83c7162d
XL
2116impl<A: Array> Drop for SmallVec<A> {
2117 fn drop(&mut self) {
83c7162d 2118 unsafe {
8faf50e0 2119 if self.spilled() {
add651ee
FG
2120 let (ptr, &mut len) = self.data.heap_mut();
2121 drop(Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity));
8faf50e0
XL
2122 } else {
2123 ptr::drop_in_place(&mut self[..]);
83c7162d
XL
2124 }
2125 }
2126 }
2127}
2128
60c5eb7d
XL
2129impl<A: Array> Clone for SmallVec<A>
2130where
2131 A::Item: Clone,
2132{
f9f354fc 2133 #[inline]
83c7162d 2134 fn clone(&self) -> SmallVec<A> {
3dfed10e 2135 SmallVec::from(self.as_slice())
83c7162d 2136 }
c295e0f8
XL
2137
2138 fn clone_from(&mut self, source: &Self) {
2139 // Inspired from `impl Clone for Vec`.
2140
2141 // drop anything that will not be overwritten
2142 self.truncate(source.len());
2143
2144 // self.len <= other.len due to the truncate above, so the
2145 // slices here are always in-bounds.
2146 let (init, tail) = source.split_at(self.len());
2147
2148 // reuse the contained values' allocations/resources.
2149 self.clone_from_slice(init);
2150 self.extend(tail.iter().cloned());
2151 }
83c7162d
XL
2152}
2153
2154impl<A: Array, B: Array> PartialEq<SmallVec<B>> for SmallVec<A>
60c5eb7d
XL
2155where
2156 A::Item: PartialEq<B::Item>,
2157{
83c7162d 2158 #[inline]
60c5eb7d
XL
2159 fn eq(&self, other: &SmallVec<B>) -> bool {
2160 self[..] == other[..]
2161 }
83c7162d
XL
2162}
2163
2164impl<A: Array> Eq for SmallVec<A> where A::Item: Eq {}
2165
60c5eb7d
XL
2166impl<A: Array> PartialOrd for SmallVec<A>
2167where
2168 A::Item: PartialOrd,
2169{
83c7162d
XL
2170 #[inline]
2171 fn partial_cmp(&self, other: &SmallVec<A>) -> Option<cmp::Ordering> {
2172 PartialOrd::partial_cmp(&**self, &**other)
2173 }
2174}
2175
60c5eb7d
XL
2176impl<A: Array> Ord for SmallVec<A>
2177where
2178 A::Item: Ord,
2179{
83c7162d
XL
2180 #[inline]
2181 fn cmp(&self, other: &SmallVec<A>) -> cmp::Ordering {
2182 Ord::cmp(&**self, &**other)
2183 }
2184}
2185
60c5eb7d
XL
2186impl<A: Array> Hash for SmallVec<A>
2187where
2188 A::Item: Hash,
2189{
83c7162d
XL
2190 fn hash<H: Hasher>(&self, state: &mut H) {
2191 (**self).hash(state)
2192 }
2193}
2194
2195unsafe impl<A: Array> Send for SmallVec<A> where A::Item: Send {}
2196
2197/// An iterator that consumes a `SmallVec` and yields its items by value.
2198///
2199/// Returned from [`SmallVec::into_iter`][1].
2200///
2201/// [1]: struct.SmallVec.html#method.into_iter
2202pub struct IntoIter<A: Array> {
8faf50e0 2203 data: SmallVec<A>,
83c7162d
XL
2204 current: usize,
2205 end: usize,
2206}
2207
f9f354fc
XL
2208impl<A: Array> fmt::Debug for IntoIter<A>
2209where
2210 A::Item: fmt::Debug,
2211{
2212 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2213 f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
2214 }
2215}
2216
2217impl<A: Array + Clone> Clone for IntoIter<A>
2218where
2219 A::Item: Clone,
2220{
2221 fn clone(&self) -> IntoIter<A> {
2222 SmallVec::from(self.as_slice()).into_iter()
2223 }
2224}
2225
83c7162d
XL
2226impl<A: Array> Drop for IntoIter<A> {
2227 fn drop(&mut self) {
60c5eb7d 2228 for _ in self {}
83c7162d
XL
2229 }
2230}
2231
2232impl<A: Array> Iterator for IntoIter<A> {
2233 type Item = A::Item;
2234
2235 #[inline]
2236 fn next(&mut self) -> Option<A::Item> {
2237 if self.current == self.end {
2238 None
60c5eb7d 2239 } else {
83c7162d 2240 unsafe {
f9f354fc 2241 let current = self.current;
83c7162d 2242 self.current += 1;
f9f354fc 2243 Some(ptr::read(self.data.as_ptr().add(current)))
83c7162d
XL
2244 }
2245 }
2246 }
2247
2248 #[inline]
2249 fn size_hint(&self) -> (usize, Option<usize>) {
2250 let size = self.end - self.current;
2251 (size, Some(size))
2252 }
2253}
2254
2255impl<A: Array> DoubleEndedIterator for IntoIter<A> {
2256 #[inline]
2257 fn next_back(&mut self) -> Option<A::Item> {
2258 if self.current == self.end {
2259 None
60c5eb7d 2260 } else {
83c7162d
XL
2261 unsafe {
2262 self.end -= 1;
f9f354fc 2263 Some(ptr::read(self.data.as_ptr().add(self.end)))
83c7162d
XL
2264 }
2265 }
2266 }
2267}
2268
60c5eb7d
XL
2269impl<A: Array> ExactSizeIterator for IntoIter<A> {}
2270impl<A: Array> FusedIterator for IntoIter<A> {}
83c7162d 2271
f9f354fc
XL
2272impl<A: Array> IntoIter<A> {
2273 /// Returns the remaining items of this iterator as a slice.
2274 pub fn as_slice(&self) -> &[A::Item] {
2275 let len = self.end - self.current;
2276 unsafe { core::slice::from_raw_parts(self.data.as_ptr().add(self.current), len) }
2277 }
2278
2279 /// Returns the remaining items of this iterator as a mutable slice.
2280 pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
2281 let len = self.end - self.current;
2282 unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().add(self.current), len) }
2283 }
2284}
2285
83c7162d
XL
2286impl<A: Array> IntoIterator for SmallVec<A> {
2287 type IntoIter = IntoIter<A>;
2288 type Item = A::Item;
2289 fn into_iter(mut self) -> Self::IntoIter {
83c7162d 2290 unsafe {
8faf50e0
XL
2291 // Set SmallVec len to zero as `IntoIter` drop handles dropping of the elements
2292 let len = self.len();
2293 self.set_len(0);
83c7162d 2294 IntoIter {
8faf50e0 2295 data: self,
83c7162d
XL
2296 current: 0,
2297 end: len,
2298 }
2299 }
2300 }
2301}
2302
2303impl<'a, A: Array> IntoIterator for &'a SmallVec<A> {
2304 type IntoIter = slice::Iter<'a, A::Item>;
2305 type Item = &'a A::Item;
2306 fn into_iter(self) -> Self::IntoIter {
2307 self.iter()
2308 }
2309}
2310
2311impl<'a, A: Array> IntoIterator for &'a mut SmallVec<A> {
2312 type IntoIter = slice::IterMut<'a, A::Item>;
2313 type Item = &'a mut A::Item;
2314 fn into_iter(self) -> Self::IntoIter {
2315 self.iter_mut()
2316 }
2317}
2318
4b012472 2319/// Types that can be used as the backing store for a [`SmallVec`].
83c7162d
XL
2320pub unsafe trait Array {
2321 /// The type of the array's elements.
2322 type Item;
2323 /// Returns the number of items the array can hold.
2324 fn size() -> usize;
83c7162d
XL
2325}
2326
8faf50e0
XL
2327/// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
2328///
4b012472 2329/// Copied from <https://github.com/rust-lang/rust/pull/36355>
8faf50e0
XL
2330struct SetLenOnDrop<'a> {
2331 len: &'a mut usize,
2332 local_len: usize,
2333}
2334
2335impl<'a> SetLenOnDrop<'a> {
2336 #[inline]
2337 fn new(len: &'a mut usize) -> Self {
60c5eb7d
XL
2338 SetLenOnDrop {
2339 local_len: *len,
f9f354fc 2340 len,
60c5eb7d 2341 }
8faf50e0
XL
2342 }
2343
dc9dc135
XL
2344 #[inline]
2345 fn get(&self) -> usize {
2346 self.local_len
2347 }
2348
8faf50e0
XL
2349 #[inline]
2350 fn increment_len(&mut self, increment: usize) {
2351 self.local_len += increment;
2352 }
2353}
2354
2355impl<'a> Drop for SetLenOnDrop<'a> {
2356 #[inline]
2357 fn drop(&mut self) {
2358 *self.len = self.local_len;
2359 }
2360}
2361
c295e0f8
XL
2362#[cfg(feature = "const_new")]
2363impl<T, const N: usize> SmallVec<[T; N]> {
2364 /// Construct an empty vector.
2365 ///
2366 /// This is a `const` version of [`SmallVec::new`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays.
2367 #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
2368 #[inline]
2369 pub const fn new_const() -> Self {
2370 SmallVec {
2371 capacity: 0,
2372 data: SmallVecData::from_const(MaybeUninit::uninit()),
2373 }
2374 }
2375
2376 /// The array passed as an argument is moved to be an inline version of `SmallVec`.
2377 ///
2378 /// This is a `const` version of [`SmallVec::from_buf`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays.
2379 #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
2380 #[inline]
2381 pub const fn from_const(items: [T; N]) -> Self {
2382 SmallVec {
2383 capacity: N,
2384 data: SmallVecData::from_const(MaybeUninit::new(items)),
2385 }
2386 }
2387}
2388
4b012472 2389#[cfg(feature = "const_generics")]
c295e0f8 2390#[cfg_attr(docsrs, doc(cfg(feature = "const_generics")))]
f9f354fc
XL
2391unsafe impl<T, const N: usize> Array for [T; N] {
2392 type Item = T;
2b03887a 2393 #[inline]
3dfed10e
XL
2394 fn size() -> usize {
2395 N
2396 }
f9f354fc
XL
2397}
2398
4b012472 2399#[cfg(not(feature = "const_generics"))]
83c7162d
XL
2400macro_rules! impl_array(
2401 ($($size:expr),+) => {
2402 $(
2403 unsafe impl<T> Array for [T; $size] {
2404 type Item = T;
2b03887a 2405 #[inline]
83c7162d 2406 fn size() -> usize { $size }
83c7162d
XL
2407 }
2408 )+
2409 }
2410);
2411
4b012472 2412#[cfg(not(feature = "const_generics"))]
60c5eb7d 2413impl_array!(
5869c6ff
XL
2414 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
2415 26, 27, 28, 29, 30, 31, 32, 36, 0x40, 0x60, 0x80, 0x100, 0x200, 0x400, 0x600, 0x800, 0x1000,
2416 0x2000, 0x4000, 0x6000, 0x8000, 0x10000, 0x20000, 0x40000, 0x60000, 0x80000, 0x10_0000
60c5eb7d 2417);
83c7162d 2418
f9f354fc 2419/// Convenience trait for constructing a `SmallVec`
3dfed10e 2420pub trait ToSmallVec<A: Array> {
f9f354fc
XL
2421 /// Construct a new `SmallVec` from a slice.
2422 fn to_smallvec(&self) -> SmallVec<A>;
2423}
2424
3dfed10e
XL
2425impl<A: Array> ToSmallVec<A> for [A::Item]
2426where
2427 A::Item: Copy,
2428{
f9f354fc
XL
2429 #[inline]
2430 fn to_smallvec(&self) -> SmallVec<A> {
2431 SmallVec::from_slice(self)
2432 }
2433}
add651ee
FG
2434
2435// Immutable counterpart for `NonNull<T>`.
2436#[repr(transparent)]
2437struct ConstNonNull<T>(NonNull<T>);
2438
2439impl<T> ConstNonNull<T> {
2440 #[inline]
2441 fn new(ptr: *const T) -> Option<Self> {
2442 NonNull::new(ptr as *mut T).map(Self)
2443 }
2444 #[inline]
2445 fn as_ptr(self) -> *const T {
2446 self.0.as_ptr()
2447 }
2448}
2449
2450impl<T> Clone for ConstNonNull<T> {
2451 #[inline]
2452 fn clone(&self) -> Self {
2453 *self
2454 }
2455}
2456
2457impl<T> Copy for ConstNonNull<T> {}