]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - virt/kvm/arm/vgic/vgic-its.c
Merge remote-tracking branch 'asoc/topic/pcm512x' into asoc-next
[mirror_ubuntu-focal-kernel.git] / virt / kvm / arm / vgic / vgic-its.c
CommitLineData
59c5ab40
AP
1/*
2 * GICv3 ITS emulation
3 *
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/cpu.h>
21#include <linux/kvm.h>
22#include <linux/kvm_host.h>
23#include <linux/interrupt.h>
424c3383 24#include <linux/list.h>
1085fdc6 25#include <linux/uaccess.h>
57a9a117 26#include <linux/list_sort.h>
59c5ab40
AP
27
28#include <linux/irqchip/arm-gic-v3.h>
29
30#include <asm/kvm_emulate.h>
31#include <asm/kvm_arm.h>
32#include <asm/kvm_mmu.h>
33
34#include "vgic.h"
35#include "vgic-mmio.h"
36
71afe470
EA
37static int vgic_its_save_tables_v0(struct vgic_its *its);
38static int vgic_its_restore_tables_v0(struct vgic_its *its);
39static int vgic_its_commit_v0(struct vgic_its *its);
06bd5359 40static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
6ce18e3a 41 struct kvm_vcpu *filter_vcpu, bool needs_inv);
71afe470 42
df9f58fb
AP
43/*
44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
45 * If this LPI is already mapped on another ITS, we increase its refcount
46 * and return a pointer to the existing structure.
47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48 * This function returns a pointer to the _unlocked_ structure.
49 */
06bd5359
EA
50static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
51 struct kvm_vcpu *vcpu)
df9f58fb
AP
52{
53 struct vgic_dist *dist = &kvm->arch.vgic;
54 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
06bd5359 55 int ret;
df9f58fb
AP
56
57 /* In this case there is no put, since we keep the reference. */
58 if (irq)
59 return irq;
60
61 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
62 if (!irq)
99e5e886 63 return ERR_PTR(-ENOMEM);
df9f58fb
AP
64
65 INIT_LIST_HEAD(&irq->lpi_list);
66 INIT_LIST_HEAD(&irq->ap_list);
67 spin_lock_init(&irq->irq_lock);
68
69 irq->config = VGIC_CONFIG_EDGE;
70 kref_init(&irq->refcount);
71 irq->intid = intid;
06bd5359 72 irq->target_vcpu = vcpu;
df9f58fb
AP
73
74 spin_lock(&dist->lpi_list_lock);
75
76 /*
77 * There could be a race with another vgic_add_lpi(), so we need to
78 * check that we don't add a second list entry with the same LPI.
79 */
80 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
81 if (oldirq->intid != intid)
82 continue;
83
84 /* Someone was faster with adding this LPI, lets use that. */
85 kfree(irq);
86 irq = oldirq;
87
88 /*
89 * This increases the refcount, the caller is expected to
90 * call vgic_put_irq() on the returned pointer once it's
91 * finished with the IRQ.
92 */
d97594e6 93 vgic_get_irq_kref(irq);
df9f58fb
AP
94
95 goto out_unlock;
96 }
97
98 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
99 dist->lpi_list_count++;
100
101out_unlock:
102 spin_unlock(&dist->lpi_list_lock);
103
06bd5359
EA
104 /*
105 * We "cache" the configuration table entries in our struct vgic_irq's.
106 * However we only have those structs for mapped IRQs, so we read in
107 * the respective config data from memory here upon mapping the LPI.
108 */
6ce18e3a 109 ret = update_lpi_config(kvm, irq, NULL, false);
06bd5359
EA
110 if (ret)
111 return ERR_PTR(ret);
112
113 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
114 if (ret)
115 return ERR_PTR(ret);
116
df9f58fb
AP
117 return irq;
118}
119
424c3383
AP
120struct its_device {
121 struct list_head dev_list;
122
123 /* the head for the list of ITTEs */
124 struct list_head itt_head;
0d44cdb6 125 u32 num_eventid_bits;
7333cefe 126 gpa_t itt_addr;
424c3383
AP
127 u32 device_id;
128};
129
130#define COLLECTION_NOT_MAPPED ((u32)~0)
131
132struct its_collection {
133 struct list_head coll_list;
134
135 u32 collection_id;
136 u32 target_addr;
137};
138
139#define its_is_collection_mapped(coll) ((coll) && \
140 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
141
9ce91c72
EA
142struct its_ite {
143 struct list_head ite_list;
424c3383 144
3802411d 145 struct vgic_irq *irq;
424c3383 146 struct its_collection *collection;
424c3383
AP
147 u32 event_id;
148};
149
71afe470
EA
150/**
151 * struct vgic_its_abi - ITS abi ops and settings
152 * @cte_esz: collection table entry size
153 * @dte_esz: device table entry size
154 * @ite_esz: interrupt translation table entry size
155 * @save tables: save the ITS tables into guest RAM
156 * @restore_tables: restore the ITS internal structs from tables
157 * stored in guest RAM
158 * @commit: initialize the registers which expose the ABI settings,
159 * especially the entry sizes
160 */
161struct vgic_its_abi {
162 int cte_esz;
163 int dte_esz;
164 int ite_esz;
165 int (*save_tables)(struct vgic_its *its);
166 int (*restore_tables)(struct vgic_its *its);
167 int (*commit)(struct vgic_its *its);
168};
169
170static const struct vgic_its_abi its_table_abi_versions[] = {
171 [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
172 .save_tables = vgic_its_save_tables_v0,
173 .restore_tables = vgic_its_restore_tables_v0,
174 .commit = vgic_its_commit_v0,
175 },
176};
177
178#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
179
180inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
181{
182 return &its_table_abi_versions[its->abi_rev];
183}
184
185int vgic_its_set_abi(struct vgic_its *its, int rev)
186{
187 const struct vgic_its_abi *abi;
188
189 its->abi_rev = rev;
190 abi = vgic_its_get_abi(its);
191 return abi->commit(its);
192}
193
df9f58fb
AP
194/*
195 * Find and returns a device in the device table for an ITS.
196 * Must be called with the its_lock mutex held.
197 */
198static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
199{
200 struct its_device *device;
201
202 list_for_each_entry(device, &its->device_list, dev_list)
203 if (device_id == device->device_id)
204 return device;
205
206 return NULL;
207}
208
209/*
210 * Find and returns an interrupt translation table entry (ITTE) for a given
211 * Device ID/Event ID pair on an ITS.
212 * Must be called with the its_lock mutex held.
213 */
9ce91c72 214static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
df9f58fb
AP
215 u32 event_id)
216{
217 struct its_device *device;
9ce91c72 218 struct its_ite *ite;
df9f58fb
AP
219
220 device = find_its_device(its, device_id);
221 if (device == NULL)
222 return NULL;
223
9ce91c72
EA
224 list_for_each_entry(ite, &device->itt_head, ite_list)
225 if (ite->event_id == event_id)
226 return ite;
df9f58fb
AP
227
228 return NULL;
229}
230
231/* To be used as an iterator this macro misses the enclosing parentheses */
9ce91c72 232#define for_each_lpi_its(dev, ite, its) \
df9f58fb 233 list_for_each_entry(dev, &(its)->device_list, dev_list) \
9ce91c72 234 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
df9f58fb 235
424c3383
AP
236/*
237 * We only implement 48 bits of PA at the moment, although the ITS
238 * supports more. Let's be restrictive here.
239 */
df9f58fb 240#define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
424c3383 241#define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
f9f77af9
AP
242
243#define GIC_LPI_OFFSET 8192
244
0d44cdb6 245#define VITS_TYPER_IDBITS 16
07a3e9a7 246#define VITS_TYPER_DEVBITS 16
920a7a8f
EA
247#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
248#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
0d44cdb6 249
df9f58fb
AP
250/*
251 * Finds and returns a collection in the ITS collection table.
252 * Must be called with the its_lock mutex held.
253 */
254static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
255{
256 struct its_collection *collection;
257
258 list_for_each_entry(collection, &its->collection_list, coll_list) {
259 if (coll_id == collection->collection_id)
260 return collection;
261 }
262
263 return NULL;
264}
265
f9f77af9
AP
266#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
267#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
268
269/*
270 * Reads the configuration data for a given LPI from guest memory and
271 * updates the fields in struct vgic_irq.
272 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
273 * VCPU. Unconditionally applies if filter_vcpu is NULL.
274 */
275static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
6ce18e3a 276 struct kvm_vcpu *filter_vcpu, bool needs_inv)
f9f77af9 277{
44de9d68 278 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
f9f77af9
AP
279 u8 prop;
280 int ret;
006df0f3 281 unsigned long flags;
f9f77af9
AP
282
283 ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
284 &prop, 1);
285
286 if (ret)
287 return ret;
288
006df0f3 289 spin_lock_irqsave(&irq->irq_lock, flags);
f9f77af9
AP
290
291 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
292 irq->priority = LPI_PROP_PRIORITY(prop);
293 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
294
95b110ab
CD
295 if (!irq->hw) {
296 vgic_queue_irq_unlock(kvm, irq, flags);
297 return 0;
298 }
f9f77af9
AP
299 }
300
95b110ab
CD
301 spin_unlock_irqrestore(&irq->irq_lock, flags);
302
af340f99 303 if (irq->hw)
6ce18e3a 304 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
af340f99 305
f9f77af9
AP
306 return 0;
307}
33d3bc95
AP
308
309/*
ccb1d791
EA
310 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
311 * enumerate those LPIs without holding any lock.
312 * Returns their number and puts the kmalloc'ed array into intid_ptr.
33d3bc95 313 */
ccb1d791 314static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
33d3bc95 315{
ccb1d791 316 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
33d3bc95
AP
317 struct vgic_irq *irq;
318 u32 *intids;
319 int irq_count = dist->lpi_list_count, i = 0;
320
321 /*
322 * We use the current value of the list length, which may change
323 * after the kmalloc. We don't care, because the guest shouldn't
324 * change anything while the command handling is still running,
325 * and in the worst case we would miss a new IRQ, which one wouldn't
326 * expect to be covered by this command anyway.
327 */
328 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
329 if (!intids)
330 return -ENOMEM;
331
332 spin_lock(&dist->lpi_list_lock);
333 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
334 /* We don't need to "get" the IRQ, as we hold the list lock. */
ccb1d791
EA
335 if (irq->target_vcpu != vcpu)
336 continue;
337 intids[i++] = irq->intid;
33d3bc95
AP
338 }
339 spin_unlock(&dist->lpi_list_lock);
340
341 *intid_ptr = intids;
ccb1d791 342 return i;
33d3bc95
AP
343}
344
08c9fd04
MZ
345static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
346{
0fc9a58e
MZ
347 int ret = 0;
348
08c9fd04
MZ
349 spin_lock(&irq->irq_lock);
350 irq->target_vcpu = vcpu;
351 spin_unlock(&irq->irq_lock);
352
0fc9a58e
MZ
353 if (irq->hw) {
354 struct its_vlpi_map map;
355
356 ret = its_get_vlpi(irq->host_irq, &map);
357 if (ret)
358 return ret;
359
360 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
361
362 ret = its_map_vlpi(irq->host_irq, &map);
363 }
364
365 return ret;
08c9fd04
MZ
366}
367
df9f58fb
AP
368/*
369 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
370 * is targeting) to the VGIC's view, which deals with target VCPUs.
371 * Needs to be called whenever either the collection for a LPIs has
372 * changed or the collection itself got retargeted.
373 */
9ce91c72 374static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
df9f58fb
AP
375{
376 struct kvm_vcpu *vcpu;
377
9ce91c72 378 if (!its_is_collection_mapped(ite->collection))
df9f58fb
AP
379 return;
380
9ce91c72 381 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
08c9fd04 382 update_affinity(ite->irq, vcpu);
df9f58fb
AP
383}
384
385/*
386 * Updates the target VCPU for every LPI targeting this collection.
387 * Must be called with the its_lock mutex held.
388 */
389static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
390 struct its_collection *coll)
391{
392 struct its_device *device;
9ce91c72 393 struct its_ite *ite;
df9f58fb 394
9ce91c72
EA
395 for_each_lpi_its(device, ite, its) {
396 if (!ite->collection || coll != ite->collection)
df9f58fb
AP
397 continue;
398
9ce91c72 399 update_affinity_ite(kvm, ite);
df9f58fb
AP
400 }
401}
402
403static u32 max_lpis_propbaser(u64 propbaser)
404{
405 int nr_idbits = (propbaser & 0x1f) + 1;
406
407 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
408}
409
33d3bc95 410/*
ccb1d791 411 * Sync the pending table pending bit of LPIs targeting @vcpu
33d3bc95
AP
412 * with our own data structures. This relies on the LPI being
413 * mapped before.
414 */
415static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
416{
44de9d68 417 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
33d3bc95
AP
418 struct vgic_irq *irq;
419 int last_byte_offset = -1;
420 int ret = 0;
421 u32 *intids;
422 int nr_irqs, i;
006df0f3 423 unsigned long flags;
64afe6e9 424 u8 pendmask;
33d3bc95 425
ccb1d791 426 nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
33d3bc95
AP
427 if (nr_irqs < 0)
428 return nr_irqs;
429
430 for (i = 0; i < nr_irqs; i++) {
431 int byte_offset, bit_nr;
33d3bc95
AP
432
433 byte_offset = intids[i] / BITS_PER_BYTE;
434 bit_nr = intids[i] % BITS_PER_BYTE;
435
436 /*
437 * For contiguously allocated LPIs chances are we just read
438 * this very same byte in the last iteration. Reuse that.
439 */
440 if (byte_offset != last_byte_offset) {
441 ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
442 &pendmask, 1);
443 if (ret) {
444 kfree(intids);
445 return ret;
446 }
447 last_byte_offset = byte_offset;
448 }
449
450 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
006df0f3 451 spin_lock_irqsave(&irq->irq_lock, flags);
8694e4da 452 irq->pending_latch = pendmask & (1U << bit_nr);
006df0f3 453 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
33d3bc95
AP
454 vgic_put_irq(vcpu->kvm, irq);
455 }
456
457 kfree(intids);
458
459 return ret;
460}
424c3383 461
424c3383
AP
462static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
463 struct vgic_its *its,
464 gpa_t addr, unsigned int len)
465{
71afe470 466 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
424c3383
AP
467 u64 reg = GITS_TYPER_PLPIS;
468
469 /*
470 * We use linear CPU numbers for redistributor addressing,
471 * so GITS_TYPER.PTA is 0.
472 * Also we force all PROPBASER registers to be the same, so
473 * CommonLPIAff is 0 as well.
474 * To avoid memory waste in the guest, we keep the number of IDBits and
475 * DevBits low - as least for the time being.
476 */
07a3e9a7 477 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
0d44cdb6 478 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
71afe470 479 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
424c3383
AP
480
481 return extract_bytes(reg, addr & 7, len);
482}
483
484static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
485 struct vgic_its *its,
486 gpa_t addr, unsigned int len)
487{
ab01c6bd
EA
488 u32 val;
489
490 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
491 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
492 return val;
493}
494
495static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
496 struct vgic_its *its,
497 gpa_t addr, unsigned int len,
498 unsigned long val)
499{
500 u32 rev = GITS_IIDR_REV(val);
501
502 if (rev >= NR_ITS_ABIS)
503 return -EINVAL;
504 return vgic_its_set_abi(its, rev);
424c3383
AP
505}
506
507static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
508 struct vgic_its *its,
509 gpa_t addr, unsigned int len)
510{
511 switch (addr & 0xffff) {
512 case GITS_PIDR0:
513 return 0x92; /* part number, bits[7:0] */
514 case GITS_PIDR1:
515 return 0xb4; /* part number, bits[11:8] */
516 case GITS_PIDR2:
517 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
518 case GITS_PIDR4:
519 return 0x40; /* This is a 64K software visible page */
520 /* The following are the ID registers for (any) GIC. */
521 case GITS_CIDR0:
522 return 0x0d;
523 case GITS_CIDR1:
524 return 0xf0;
525 case GITS_CIDR2:
526 return 0x05;
527 case GITS_CIDR3:
528 return 0xb1;
529 }
530
531 return 0;
532}
533
bebfd2a2
MZ
534int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
535 u32 devid, u32 eventid, struct vgic_irq **irq)
2891a7df 536{
fd837b08 537 struct kvm_vcpu *vcpu;
9ce91c72 538 struct its_ite *ite;
2891a7df
AP
539
540 if (!its->enabled)
fd837b08 541 return -EBUSY;
2891a7df 542
9ce91c72
EA
543 ite = find_ite(its, devid, eventid);
544 if (!ite || !its_is_collection_mapped(ite->collection))
fd837b08
AP
545 return E_ITS_INT_UNMAPPED_INTERRUPT;
546
9ce91c72 547 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
fd837b08
AP
548 if (!vcpu)
549 return E_ITS_INT_UNMAPPED_INTERRUPT;
550
551 if (!vcpu->arch.vgic_cpu.lpis_enabled)
552 return -EBUSY;
553
bebfd2a2 554 *irq = ite->irq;
fd837b08 555 return 0;
2891a7df
AP
556}
557
bebfd2a2 558struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
505a19ee 559{
bebfd2a2
MZ
560 u64 address;
561 struct kvm_io_device *kvm_io_dev;
505a19ee
AP
562 struct vgic_io_device *iodev;
563
bebfd2a2
MZ
564 if (!vgic_has_its(kvm))
565 return ERR_PTR(-ENODEV);
566
567 if (!(msi->flags & KVM_MSI_VALID_DEVID))
568 return ERR_PTR(-EINVAL);
505a19ee 569
bebfd2a2
MZ
570 address = (u64)msi->address_hi << 32 | msi->address_lo;
571
572 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
573 if (!kvm_io_dev)
574 return ERR_PTR(-EINVAL);
505a19ee 575
bebfd2a2
MZ
576 if (kvm_io_dev->ops != &kvm_io_gic_ops)
577 return ERR_PTR(-EINVAL);
505a19ee 578
bebfd2a2 579 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
505a19ee 580 if (iodev->iodev_type != IODEV_ITS)
bebfd2a2 581 return ERR_PTR(-EINVAL);
505a19ee 582
bebfd2a2
MZ
583 return iodev->its;
584}
585
586/*
587 * Find the target VCPU and the LPI number for a given devid/eventid pair
588 * and make this IRQ pending, possibly injecting it.
589 * Must be called with the its_lock mutex held.
590 * Returns 0 on success, a positive error value for any ITS mapping
591 * related errors and negative error values for generic errors.
592 */
593static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
594 u32 devid, u32 eventid)
595{
596 struct vgic_irq *irq = NULL;
597 unsigned long flags;
598 int err;
505a19ee 599
bebfd2a2
MZ
600 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
601 if (err)
602 return err;
603
1b7fe468
MZ
604 if (irq->hw)
605 return irq_set_irqchip_state(irq->host_irq,
606 IRQCHIP_STATE_PENDING, true);
607
bebfd2a2
MZ
608 spin_lock_irqsave(&irq->irq_lock, flags);
609 irq->pending_latch = true;
610 vgic_queue_irq_unlock(kvm, irq, flags);
611
612 return 0;
505a19ee
AP
613}
614
2891a7df
AP
615/*
616 * Queries the KVM IO bus framework to get the ITS pointer from the given
617 * doorbell address.
618 * We then call vgic_its_trigger_msi() with the decoded data.
fd837b08 619 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
2891a7df
AP
620 */
621int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
622{
bebfd2a2 623 struct vgic_its *its;
fd837b08 624 int ret;
2891a7df 625
bebfd2a2
MZ
626 its = vgic_msi_to_its(kvm, msi);
627 if (IS_ERR(its))
628 return PTR_ERR(its);
2891a7df 629
bebfd2a2
MZ
630 mutex_lock(&its->its_lock);
631 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
632 mutex_unlock(&its->its_lock);
2891a7df 633
fd837b08
AP
634 if (ret < 0)
635 return ret;
636
637 /*
638 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
639 * if the guest has blocked the MSI. So we map any LPI mapping
640 * related error to that.
641 */
642 if (ret)
643 return 0;
644 else
645 return 1;
2891a7df
AP
646}
647
424c3383 648/* Requires the its_lock to be held. */
9ce91c72 649static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
424c3383 650{
9ce91c72 651 list_del(&ite->ite_list);
3802411d
AP
652
653 /* This put matches the get in vgic_add_lpi. */
07b46ed1
MZ
654 if (ite->irq) {
655 if (ite->irq->hw)
656 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
657
9ce91c72 658 vgic_put_irq(kvm, ite->irq);
07b46ed1 659 }
3802411d 660
9ce91c72 661 kfree(ite);
424c3383
AP
662}
663
df9f58fb
AP
664static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
665{
666 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
667}
668
669#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
670#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
0d44cdb6 671#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
df9f58fb
AP
672#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
673#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
674#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
7333cefe 675#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
df9f58fb
AP
676#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
677#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
678
679/*
680 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
681 * Must be called with the its_lock mutex held.
682 */
683static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
684 u64 *its_cmd)
685{
686 u32 device_id = its_cmd_get_deviceid(its_cmd);
687 u32 event_id = its_cmd_get_id(its_cmd);
9ce91c72 688 struct its_ite *ite;
df9f58fb
AP
689
690
9ce91c72
EA
691 ite = find_ite(its, device_id, event_id);
692 if (ite && ite->collection) {
df9f58fb
AP
693 /*
694 * Though the spec talks about removing the pending state, we
695 * don't bother here since we clear the ITTE anyway and the
696 * pending state is a property of the ITTE struct.
697 */
9ce91c72 698 its_free_ite(kvm, ite);
df9f58fb
AP
699 return 0;
700 }
701
702 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
703}
704
705/*
706 * The MOVI command moves an ITTE to a different collection.
707 * Must be called with the its_lock mutex held.
708 */
709static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
710 u64 *its_cmd)
711{
712 u32 device_id = its_cmd_get_deviceid(its_cmd);
713 u32 event_id = its_cmd_get_id(its_cmd);
714 u32 coll_id = its_cmd_get_collection(its_cmd);
715 struct kvm_vcpu *vcpu;
9ce91c72 716 struct its_ite *ite;
df9f58fb
AP
717 struct its_collection *collection;
718
9ce91c72
EA
719 ite = find_ite(its, device_id, event_id);
720 if (!ite)
df9f58fb
AP
721 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
722
9ce91c72 723 if (!its_is_collection_mapped(ite->collection))
df9f58fb
AP
724 return E_ITS_MOVI_UNMAPPED_COLLECTION;
725
726 collection = find_collection(its, coll_id);
727 if (!its_is_collection_mapped(collection))
728 return E_ITS_MOVI_UNMAPPED_COLLECTION;
729
9ce91c72 730 ite->collection = collection;
df9f58fb
AP
731 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
732
08c9fd04 733 return update_affinity(ite->irq, vcpu);
df9f58fb
AP
734}
735
6d03a68f
MZ
736/*
737 * Check whether an ID can be stored into the corresponding guest table.
738 * For a direct table this is pretty easy, but gets a bit nasty for
739 * indirect tables. We check whether the resulting guest physical address
07a3e9a7 740 * is actually valid (covered by a memslot and guest accessible).
6d03a68f
MZ
741 * For this we have to read the respective first level entry.
742 */
dceff702
EA
743static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
744 gpa_t *eaddr)
6d03a68f
MZ
745{
746 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
07a3e9a7
EA
747 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
748 int esz = GITS_BASER_ENTRY_SIZE(baser);
6d03a68f 749 int index;
6d03a68f 750 gfn_t gfn;
07a3e9a7
EA
751
752 switch (type) {
753 case GITS_BASER_TYPE_DEVICE:
754 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
755 return false;
756 break;
757 case GITS_BASER_TYPE_COLLECTION:
758 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
759 if (id >= BIT_ULL(16))
760 return false;
761 break;
762 default:
763 return false;
764 }
6d03a68f
MZ
765
766 if (!(baser & GITS_BASER_INDIRECT)) {
767 phys_addr_t addr;
768
e29bd6f2 769 if (id >= (l1_tbl_size / esz))
6d03a68f
MZ
770 return false;
771
e29bd6f2 772 addr = BASER_ADDRESS(baser) + id * esz;
6d03a68f
MZ
773 gfn = addr >> PAGE_SHIFT;
774
dceff702
EA
775 if (eaddr)
776 *eaddr = addr;
6d03a68f
MZ
777 return kvm_is_visible_gfn(its->dev->kvm, gfn);
778 }
779
780 /* calculate and check the index into the 1st level */
e29bd6f2 781 index = id / (SZ_64K / esz);
6d03a68f
MZ
782 if (index >= (l1_tbl_size / sizeof(u64)))
783 return false;
784
785 /* Each 1st level entry is represented by a 64-bit value. */
786 if (kvm_read_guest(its->dev->kvm,
787 BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
788 &indirect_ptr, sizeof(indirect_ptr)))
789 return false;
790
791 indirect_ptr = le64_to_cpu(indirect_ptr);
792
793 /* check the valid bit of the first level entry */
794 if (!(indirect_ptr & BIT_ULL(63)))
795 return false;
796
797 /*
798 * Mask the guest physical address and calculate the frame number.
799 * Any address beyond our supported 48 bits of PA will be caught
800 * by the actual check in the final step.
801 */
802 indirect_ptr &= GENMASK_ULL(51, 16);
803
804 /* Find the address of the actual entry */
e29bd6f2
VM
805 index = id % (SZ_64K / esz);
806 indirect_ptr += index * esz;
6d03a68f
MZ
807 gfn = indirect_ptr >> PAGE_SHIFT;
808
dceff702
EA
809 if (eaddr)
810 *eaddr = indirect_ptr;
6d03a68f
MZ
811 return kvm_is_visible_gfn(its->dev->kvm, gfn);
812}
813
17a21f58
MZ
814static int vgic_its_alloc_collection(struct vgic_its *its,
815 struct its_collection **colp,
df9f58fb
AP
816 u32 coll_id)
817{
17a21f58
MZ
818 struct its_collection *collection;
819
dceff702 820 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
6d03a68f
MZ
821 return E_ITS_MAPC_COLLECTION_OOR;
822
17a21f58 823 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
686f294f
MZ
824 if (!collection)
825 return -ENOMEM;
17a21f58 826
df9f58fb
AP
827 collection->collection_id = coll_id;
828 collection->target_addr = COLLECTION_NOT_MAPPED;
829
830 list_add_tail(&collection->coll_list, &its->collection_list);
17a21f58
MZ
831 *colp = collection;
832
833 return 0;
834}
835
836static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
837{
838 struct its_collection *collection;
839 struct its_device *device;
9ce91c72 840 struct its_ite *ite;
17a21f58
MZ
841
842 /*
843 * Clearing the mapping for that collection ID removes the
844 * entry from the list. If there wasn't any before, we can
845 * go home early.
846 */
847 collection = find_collection(its, coll_id);
848 if (!collection)
849 return;
850
9ce91c72
EA
851 for_each_lpi_its(device, ite, its)
852 if (ite->collection &&
853 ite->collection->collection_id == coll_id)
854 ite->collection = NULL;
17a21f58
MZ
855
856 list_del(&collection->coll_list);
857 kfree(collection);
df9f58fb
AP
858}
859
528297f5
EA
860/* Must be called with its_lock mutex held */
861static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
862 struct its_collection *collection,
7c7d2fa1 863 u32 event_id)
528297f5
EA
864{
865 struct its_ite *ite;
866
867 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
868 if (!ite)
869 return ERR_PTR(-ENOMEM);
870
871 ite->event_id = event_id;
872 ite->collection = collection;
528297f5
EA
873
874 list_add_tail(&ite->ite_list, &device->itt_head);
875 return ite;
876}
877
df9f58fb
AP
878/*
879 * The MAPTI and MAPI commands map LPIs to ITTEs.
880 * Must be called with its_lock mutex held.
881 */
882static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
a3e7aa27 883 u64 *its_cmd)
df9f58fb
AP
884{
885 u32 device_id = its_cmd_get_deviceid(its_cmd);
886 u32 event_id = its_cmd_get_id(its_cmd);
887 u32 coll_id = its_cmd_get_collection(its_cmd);
9ce91c72 888 struct its_ite *ite;
06bd5359 889 struct kvm_vcpu *vcpu = NULL;
df9f58fb
AP
890 struct its_device *device;
891 struct its_collection *collection, *new_coll = NULL;
99e5e886 892 struct vgic_irq *irq;
528297f5 893 int lpi_nr;
df9f58fb
AP
894
895 device = find_its_device(its, device_id);
896 if (!device)
897 return E_ITS_MAPTI_UNMAPPED_DEVICE;
898
0d44cdb6
EA
899 if (event_id >= BIT_ULL(device->num_eventid_bits))
900 return E_ITS_MAPTI_ID_OOR;
901
a3e7aa27 902 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
df9f58fb
AP
903 lpi_nr = its_cmd_get_physical_id(its_cmd);
904 else
905 lpi_nr = event_id;
906 if (lpi_nr < GIC_LPI_OFFSET ||
3a88bded
MZ
907 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
908 return E_ITS_MAPTI_PHYSICALID_OOR;
909
286054a7 910 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
9ce91c72 911 if (find_ite(its, device_id, event_id))
286054a7
AP
912 return 0;
913
3a88bded
MZ
914 collection = find_collection(its, coll_id);
915 if (!collection) {
916 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
917 if (ret)
918 return ret;
919 new_coll = collection;
df9f58fb
AP
920 }
921
7c7d2fa1 922 ite = vgic_its_alloc_ite(device, collection, event_id);
528297f5 923 if (IS_ERR(ite)) {
286054a7
AP
924 if (new_coll)
925 vgic_its_free_collection(its, coll_id);
528297f5 926 return PTR_ERR(ite);
df9f58fb
AP
927 }
928
06bd5359
EA
929 if (its_is_collection_mapped(collection))
930 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
931
932 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
99e5e886
CD
933 if (IS_ERR(irq)) {
934 if (new_coll)
935 vgic_its_free_collection(its, coll_id);
9ce91c72 936 its_free_ite(kvm, ite);
99e5e886
CD
937 return PTR_ERR(irq);
938 }
9ce91c72 939 ite->irq = irq;
99e5e886 940
df9f58fb
AP
941 return 0;
942}
943
944/* Requires the its_lock to be held. */
0a0d389e 945static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
df9f58fb 946{
9ce91c72 947 struct its_ite *ite, *temp;
df9f58fb
AP
948
949 /*
950 * The spec says that unmapping a device with still valid
951 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
952 * since we cannot leave the memory unreferenced.
953 */
9ce91c72
EA
954 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
955 its_free_ite(kvm, ite);
df9f58fb
AP
956
957 list_del(&device->dev_list);
958 kfree(device);
959}
960
2f609a03 961/* its lock must be held */
962static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
963{
964 struct its_device *cur, *temp;
965
966 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
967 vgic_its_free_device(kvm, cur);
968}
969
970/* its lock must be held */
971static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
972{
973 struct its_collection *cur, *temp;
974
975 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
976 vgic_its_free_collection(its, cur->collection_id);
977}
978
528297f5
EA
979/* Must be called with its_lock mutex held */
980static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
981 u32 device_id, gpa_t itt_addr,
982 u8 num_eventid_bits)
983{
984 struct its_device *device;
985
986 device = kzalloc(sizeof(*device), GFP_KERNEL);
987 if (!device)
988 return ERR_PTR(-ENOMEM);
989
990 device->device_id = device_id;
991 device->itt_addr = itt_addr;
992 device->num_eventid_bits = num_eventid_bits;
993 INIT_LIST_HEAD(&device->itt_head);
994
995 list_add_tail(&device->dev_list, &its->device_list);
996 return device;
997}
998
df9f58fb
AP
999/*
1000 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1001 * Must be called with the its_lock mutex held.
1002 */
1003static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1004 u64 *its_cmd)
1005{
1006 u32 device_id = its_cmd_get_deviceid(its_cmd);
1007 bool valid = its_cmd_get_validbit(its_cmd);
0d44cdb6 1008 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
7333cefe 1009 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
df9f58fb
AP
1010 struct its_device *device;
1011
dceff702 1012 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
df9f58fb
AP
1013 return E_ITS_MAPD_DEVICE_OOR;
1014
0d44cdb6
EA
1015 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1016 return E_ITS_MAPD_ITTSIZE_OOR;
1017
df9f58fb
AP
1018 device = find_its_device(its, device_id);
1019
1020 /*
1021 * The spec says that calling MAPD on an already mapped device
1022 * invalidates all cached data for this device. We implement this
1023 * by removing the mapping and re-establishing it.
1024 */
1025 if (device)
0a0d389e 1026 vgic_its_free_device(kvm, device);
df9f58fb
AP
1027
1028 /*
1029 * The spec does not say whether unmapping a not-mapped device
1030 * is an error, so we are done in any case.
1031 */
1032 if (!valid)
1033 return 0;
1034
528297f5
EA
1035 device = vgic_its_alloc_device(its, device_id, itt_addr,
1036 num_eventid_bits);
1037 if (IS_ERR(device))
1038 return PTR_ERR(device);
df9f58fb
AP
1039
1040 return 0;
1041}
1042
df9f58fb
AP
1043/*
1044 * The MAPC command maps collection IDs to redistributors.
1045 * Must be called with the its_lock mutex held.
1046 */
1047static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1048 u64 *its_cmd)
1049{
1050 u16 coll_id;
1051 u32 target_addr;
1052 struct its_collection *collection;
1053 bool valid;
1054
1055 valid = its_cmd_get_validbit(its_cmd);
1056 coll_id = its_cmd_get_collection(its_cmd);
1057 target_addr = its_cmd_get_target_addr(its_cmd);
1058
1059 if (target_addr >= atomic_read(&kvm->online_vcpus))
1060 return E_ITS_MAPC_PROCNUM_OOR;
1061
df9f58fb 1062 if (!valid) {
17a21f58 1063 vgic_its_free_collection(its, coll_id);
df9f58fb 1064 } else {
17a21f58
MZ
1065 collection = find_collection(its, coll_id);
1066
df9f58fb 1067 if (!collection) {
17a21f58 1068 int ret;
df9f58fb 1069
17a21f58
MZ
1070 ret = vgic_its_alloc_collection(its, &collection,
1071 coll_id);
1072 if (ret)
1073 return ret;
df9f58fb
AP
1074 collection->target_addr = target_addr;
1075 } else {
1076 collection->target_addr = target_addr;
1077 update_affinity_collection(kvm, its, collection);
1078 }
1079 }
1080
1081 return 0;
1082}
1083
1084/*
1085 * The CLEAR command removes the pending state for a particular LPI.
1086 * Must be called with the its_lock mutex held.
1087 */
1088static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1089 u64 *its_cmd)
1090{
1091 u32 device_id = its_cmd_get_deviceid(its_cmd);
1092 u32 event_id = its_cmd_get_id(its_cmd);
9ce91c72 1093 struct its_ite *ite;
df9f58fb
AP
1094
1095
9ce91c72
EA
1096 ite = find_ite(its, device_id, event_id);
1097 if (!ite)
df9f58fb
AP
1098 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1099
9ce91c72 1100 ite->irq->pending_latch = false;
df9f58fb 1101
fb0cada6
MZ
1102 if (ite->irq->hw)
1103 return irq_set_irqchip_state(ite->irq->host_irq,
1104 IRQCHIP_STATE_PENDING, false);
1105
df9f58fb
AP
1106 return 0;
1107}
1108
1109/*
1110 * The INV command syncs the configuration bits from the memory table.
1111 * Must be called with the its_lock mutex held.
1112 */
1113static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1114 u64 *its_cmd)
1115{
1116 u32 device_id = its_cmd_get_deviceid(its_cmd);
1117 u32 event_id = its_cmd_get_id(its_cmd);
9ce91c72 1118 struct its_ite *ite;
df9f58fb
AP
1119
1120
9ce91c72
EA
1121 ite = find_ite(its, device_id, event_id);
1122 if (!ite)
df9f58fb
AP
1123 return E_ITS_INV_UNMAPPED_INTERRUPT;
1124
6ce18e3a 1125 return update_lpi_config(kvm, ite->irq, NULL, true);
df9f58fb
AP
1126}
1127
1128/*
1129 * The INVALL command requests flushing of all IRQ data in this collection.
1130 * Find the VCPU mapped to that collection, then iterate over the VM's list
1131 * of mapped LPIs and update the configuration for each IRQ which targets
1132 * the specified vcpu. The configuration will be read from the in-memory
1133 * configuration table.
1134 * Must be called with the its_lock mutex held.
1135 */
1136static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1137 u64 *its_cmd)
1138{
1139 u32 coll_id = its_cmd_get_collection(its_cmd);
1140 struct its_collection *collection;
1141 struct kvm_vcpu *vcpu;
1142 struct vgic_irq *irq;
1143 u32 *intids;
1144 int irq_count, i;
1145
1146 collection = find_collection(its, coll_id);
1147 if (!its_is_collection_mapped(collection))
1148 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1149
1150 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1151
ccb1d791 1152 irq_count = vgic_copy_lpi_list(vcpu, &intids);
df9f58fb
AP
1153 if (irq_count < 0)
1154 return irq_count;
1155
1156 for (i = 0; i < irq_count; i++) {
1157 irq = vgic_get_irq(kvm, NULL, intids[i]);
1158 if (!irq)
1159 continue;
6ce18e3a 1160 update_lpi_config(kvm, irq, vcpu, false);
df9f58fb
AP
1161 vgic_put_irq(kvm, irq);
1162 }
1163
1164 kfree(intids);
1165
6ce18e3a
MZ
1166 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1167 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1168
df9f58fb
AP
1169 return 0;
1170}
1171
1172/*
1173 * The MOVALL command moves the pending state of all IRQs targeting one
1174 * redistributor to another. We don't hold the pending state in the VCPUs,
1175 * but in the IRQs instead, so there is really not much to do for us here.
1176 * However the spec says that no IRQ must target the old redistributor
1177 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1178 * This command affects all LPIs in the system that target that redistributor.
1179 */
1180static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1181 u64 *its_cmd)
1182{
df9f58fb
AP
1183 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1184 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1185 struct kvm_vcpu *vcpu1, *vcpu2;
1186 struct vgic_irq *irq;
ff9c1143
MZ
1187 u32 *intids;
1188 int irq_count, i;
df9f58fb
AP
1189
1190 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1191 target2_addr >= atomic_read(&kvm->online_vcpus))
1192 return E_ITS_MOVALL_PROCNUM_OOR;
1193
1194 if (target1_addr == target2_addr)
1195 return 0;
1196
1197 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1198 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1199
ff9c1143
MZ
1200 irq_count = vgic_copy_lpi_list(vcpu1, &intids);
1201 if (irq_count < 0)
1202 return irq_count;
df9f58fb 1203
ff9c1143
MZ
1204 for (i = 0; i < irq_count; i++) {
1205 irq = vgic_get_irq(kvm, NULL, intids[i]);
df9f58fb 1206
ff9c1143 1207 update_affinity(irq, vcpu2);
df9f58fb 1208
ff9c1143 1209 vgic_put_irq(kvm, irq);
df9f58fb
AP
1210 }
1211
ff9c1143 1212 kfree(intids);
df9f58fb
AP
1213 return 0;
1214}
1215
2891a7df
AP
1216/*
1217 * The INT command injects the LPI associated with that DevID/EvID pair.
1218 * Must be called with the its_lock mutex held.
1219 */
1220static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1221 u64 *its_cmd)
1222{
1223 u32 msi_data = its_cmd_get_id(its_cmd);
1224 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1225
fd837b08 1226 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
2891a7df
AP
1227}
1228
df9f58fb
AP
1229/*
1230 * This function is called with the its_cmd lock held, but the ITS data
1231 * structure lock dropped.
1232 */
424c3383
AP
1233static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1234 u64 *its_cmd)
1235{
df9f58fb
AP
1236 int ret = -ENODEV;
1237
1238 mutex_lock(&its->its_lock);
a3e7aa27 1239 switch (its_cmd_get_command(its_cmd)) {
df9f58fb
AP
1240 case GITS_CMD_MAPD:
1241 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1242 break;
1243 case GITS_CMD_MAPC:
1244 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1245 break;
1246 case GITS_CMD_MAPI:
a3e7aa27 1247 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
df9f58fb
AP
1248 break;
1249 case GITS_CMD_MAPTI:
a3e7aa27 1250 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
df9f58fb
AP
1251 break;
1252 case GITS_CMD_MOVI:
1253 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1254 break;
1255 case GITS_CMD_DISCARD:
1256 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1257 break;
1258 case GITS_CMD_CLEAR:
1259 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1260 break;
1261 case GITS_CMD_MOVALL:
1262 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1263 break;
2891a7df
AP
1264 case GITS_CMD_INT:
1265 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1266 break;
df9f58fb
AP
1267 case GITS_CMD_INV:
1268 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1269 break;
1270 case GITS_CMD_INVALL:
1271 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1272 break;
1273 case GITS_CMD_SYNC:
1274 /* we ignore this command: we are in sync all of the time */
1275 ret = 0;
1276 break;
1277 }
1278 mutex_unlock(&its->its_lock);
1279
1280 return ret;
424c3383
AP
1281}
1282
1283static u64 vgic_sanitise_its_baser(u64 reg)
1284{
1285 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1286 GITS_BASER_SHAREABILITY_SHIFT,
1287 vgic_sanitise_shareability);
1288 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1289 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1290 vgic_sanitise_inner_cacheability);
1291 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1292 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1293 vgic_sanitise_outer_cacheability);
1294
1295 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1296 reg &= ~GENMASK_ULL(15, 12);
1297
1298 /* We support only one (ITS) page size: 64K */
1299 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1300
1301 return reg;
1302}
1303
1304static u64 vgic_sanitise_its_cbaser(u64 reg)
1305{
1306 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1307 GITS_CBASER_SHAREABILITY_SHIFT,
1308 vgic_sanitise_shareability);
1309 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1310 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1311 vgic_sanitise_inner_cacheability);
1312 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1313 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1314 vgic_sanitise_outer_cacheability);
1315
1316 /*
1317 * Sanitise the physical address to be 64k aligned.
1318 * Also limit the physical addresses to 48 bits.
1319 */
1320 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1321
1322 return reg;
1323}
1324
1325static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1326 struct vgic_its *its,
1327 gpa_t addr, unsigned int len)
1328{
1329 return extract_bytes(its->cbaser, addr & 7, len);
1330}
1331
1332static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1333 gpa_t addr, unsigned int len,
1334 unsigned long val)
1335{
1336 /* When GITS_CTLR.Enable is 1, this register is RO. */
1337 if (its->enabled)
1338 return;
1339
1340 mutex_lock(&its->cmd_lock);
1341 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1342 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1343 its->creadr = 0;
1344 /*
1345 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1346 * it to CREADR to make sure we start with an empty command buffer.
1347 */
1348 its->cwriter = its->creadr;
1349 mutex_unlock(&its->cmd_lock);
1350}
1351
1352#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1353#define ITS_CMD_SIZE 32
1354#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1355
a5e1e6ca
AP
1356/* Must be called with the cmd_lock held. */
1357static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
424c3383
AP
1358{
1359 gpa_t cbaser;
1360 u64 cmd_buf[4];
424c3383 1361
a5e1e6ca
AP
1362 /* Commands are only processed when the ITS is enabled. */
1363 if (!its->enabled)
424c3383 1364 return;
424c3383 1365
424c3383
AP
1366 cbaser = CBASER_ADDRESS(its->cbaser);
1367
1368 while (its->cwriter != its->creadr) {
1369 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1370 cmd_buf, ITS_CMD_SIZE);
1371 /*
1372 * If kvm_read_guest() fails, this could be due to the guest
1373 * programming a bogus value in CBASER or something else going
1374 * wrong from which we cannot easily recover.
1375 * According to section 6.3.2 in the GICv3 spec we can just
1376 * ignore that command then.
1377 */
1378 if (!ret)
1379 vgic_its_handle_command(kvm, its, cmd_buf);
1380
1381 its->creadr += ITS_CMD_SIZE;
1382 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1383 its->creadr = 0;
1384 }
a5e1e6ca
AP
1385}
1386
1387/*
1388 * By writing to CWRITER the guest announces new commands to be processed.
1389 * To avoid any races in the first place, we take the its_cmd lock, which
1390 * protects our ring buffer variables, so that there is only one user
1391 * per ITS handling commands at a given time.
1392 */
1393static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1394 gpa_t addr, unsigned int len,
1395 unsigned long val)
1396{
1397 u64 reg;
1398
1399 if (!its)
1400 return;
1401
1402 mutex_lock(&its->cmd_lock);
1403
1404 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1405 reg = ITS_CMD_OFFSET(reg);
1406 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1407 mutex_unlock(&its->cmd_lock);
1408 return;
1409 }
1410 its->cwriter = reg;
1411
1412 vgic_its_process_commands(kvm, its);
424c3383
AP
1413
1414 mutex_unlock(&its->cmd_lock);
1415}
1416
1417static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1418 struct vgic_its *its,
1419 gpa_t addr, unsigned int len)
1420{
1421 return extract_bytes(its->cwriter, addr & 0x7, len);
1422}
1423
1424static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1425 struct vgic_its *its,
1426 gpa_t addr, unsigned int len)
1427{
1428 return extract_bytes(its->creadr, addr & 0x7, len);
1429}
1430
0979bfa6
EA
1431static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1432 struct vgic_its *its,
1433 gpa_t addr, unsigned int len,
1434 unsigned long val)
1435{
1436 u32 cmd_offset;
1437 int ret = 0;
1438
1439 mutex_lock(&its->cmd_lock);
1440
1441 if (its->enabled) {
1442 ret = -EBUSY;
1443 goto out;
1444 }
1445
1446 cmd_offset = ITS_CMD_OFFSET(val);
1447 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1448 ret = -EINVAL;
1449 goto out;
1450 }
1451
1452 its->creadr = cmd_offset;
1453out:
1454 mutex_unlock(&its->cmd_lock);
1455 return ret;
1456}
1457
424c3383
AP
1458#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1459static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1460 struct vgic_its *its,
1461 gpa_t addr, unsigned int len)
1462{
1463 u64 reg;
1464
1465 switch (BASER_INDEX(addr)) {
1466 case 0:
1467 reg = its->baser_device_table;
1468 break;
1469 case 1:
1470 reg = its->baser_coll_table;
1471 break;
1472 default:
1473 reg = 0;
1474 break;
1475 }
1476
1477 return extract_bytes(reg, addr & 7, len);
1478}
1479
1480#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1481static void vgic_mmio_write_its_baser(struct kvm *kvm,
1482 struct vgic_its *its,
1483 gpa_t addr, unsigned int len,
1484 unsigned long val)
1485{
71afe470 1486 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
36d6961c 1487 u64 entry_size, table_type;
424c3383
AP
1488 u64 reg, *regptr, clearbits = 0;
1489
1490 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1491 if (its->enabled)
1492 return;
1493
1494 switch (BASER_INDEX(addr)) {
1495 case 0:
1496 regptr = &its->baser_device_table;
71afe470 1497 entry_size = abi->dte_esz;
36d6961c 1498 table_type = GITS_BASER_TYPE_DEVICE;
424c3383
AP
1499 break;
1500 case 1:
1501 regptr = &its->baser_coll_table;
71afe470 1502 entry_size = abi->cte_esz;
36d6961c 1503 table_type = GITS_BASER_TYPE_COLLECTION;
424c3383
AP
1504 clearbits = GITS_BASER_INDIRECT;
1505 break;
1506 default:
1507 return;
1508 }
1509
1510 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1511 reg &= ~GITS_BASER_RO_MASK;
1512 reg &= ~clearbits;
1513
1514 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
36d6961c 1515 reg |= table_type << GITS_BASER_TYPE_SHIFT;
424c3383
AP
1516 reg = vgic_sanitise_its_baser(reg);
1517
1518 *regptr = reg;
36d6961c
EA
1519
1520 if (!(reg & GITS_BASER_VALID)) {
1521 /* Take the its_lock to prevent a race with a save/restore */
1522 mutex_lock(&its->its_lock);
1523 switch (table_type) {
1524 case GITS_BASER_TYPE_DEVICE:
1525 vgic_its_free_device_list(kvm, its);
1526 break;
1527 case GITS_BASER_TYPE_COLLECTION:
1528 vgic_its_free_collection_list(kvm, its);
1529 break;
1530 }
1531 mutex_unlock(&its->its_lock);
1532 }
424c3383
AP
1533}
1534
a5e1e6ca
AP
1535static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1536 struct vgic_its *its,
1537 gpa_t addr, unsigned int len)
1538{
1539 u32 reg = 0;
1540
1541 mutex_lock(&its->cmd_lock);
1542 if (its->creadr == its->cwriter)
1543 reg |= GITS_CTLR_QUIESCENT;
1544 if (its->enabled)
1545 reg |= GITS_CTLR_ENABLE;
1546 mutex_unlock(&its->cmd_lock);
1547
1548 return reg;
1549}
1550
1551static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1552 gpa_t addr, unsigned int len,
1553 unsigned long val)
1554{
1555 mutex_lock(&its->cmd_lock);
1556
c9b51bb6
EA
1557 /*
1558 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1559 * device/collection BASER are invalid
1560 */
1561 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1562 (!(its->baser_device_table & GITS_BASER_VALID) ||
1563 !(its->baser_coll_table & GITS_BASER_VALID) ||
1564 !(its->cbaser & GITS_CBASER_VALID)))
1565 goto out;
1566
a5e1e6ca
AP
1567 its->enabled = !!(val & GITS_CTLR_ENABLE);
1568
1569 /*
1570 * Try to process any pending commands. This function bails out early
1571 * if the ITS is disabled or no commands have been queued.
1572 */
1573 vgic_its_process_commands(kvm, its);
1574
c9b51bb6 1575out:
a5e1e6ca
AP
1576 mutex_unlock(&its->cmd_lock);
1577}
1578
59c5ab40
AP
1579#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1580{ \
1581 .reg_offset = off, \
1582 .len = length, \
1583 .access_flags = acc, \
1584 .its_read = rd, \
1585 .its_write = wr, \
1586}
1587
0979bfa6
EA
1588#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1589{ \
1590 .reg_offset = off, \
1591 .len = length, \
1592 .access_flags = acc, \
1593 .its_read = rd, \
1594 .its_write = wr, \
1595 .uaccess_its_write = uwr, \
1596}
1597
59c5ab40
AP
1598static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1599 gpa_t addr, unsigned int len, unsigned long val)
1600{
1601 /* Ignore */
1602}
1603
1604static struct vgic_register_region its_registers[] = {
1605 REGISTER_ITS_DESC(GITS_CTLR,
424c3383 1606 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
59c5ab40 1607 VGIC_ACCESS_32bit),
ab01c6bd
EA
1608 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1609 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1610 vgic_mmio_uaccess_write_its_iidr, 4,
59c5ab40
AP
1611 VGIC_ACCESS_32bit),
1612 REGISTER_ITS_DESC(GITS_TYPER,
424c3383 1613 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
59c5ab40
AP
1614 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1615 REGISTER_ITS_DESC(GITS_CBASER,
424c3383 1616 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
59c5ab40
AP
1617 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1618 REGISTER_ITS_DESC(GITS_CWRITER,
424c3383 1619 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
59c5ab40 1620 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
0979bfa6
EA
1621 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1622 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1623 vgic_mmio_uaccess_write_its_creadr, 8,
59c5ab40
AP
1624 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1625 REGISTER_ITS_DESC(GITS_BASER,
424c3383 1626 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
59c5ab40
AP
1627 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1628 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
424c3383 1629 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
59c5ab40
AP
1630 VGIC_ACCESS_32bit),
1631};
1632
33d3bc95
AP
1633/* This is called on setting the LPI enable bit in the redistributor. */
1634void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1635{
1636 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1637 its_sync_lpi_pending_table(vcpu);
1638}
1639
30e1b684
CD
1640static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1641 u64 addr)
59c5ab40
AP
1642{
1643 struct vgic_io_device *iodev = &its->iodev;
1644 int ret;
1645
30e1b684
CD
1646 mutex_lock(&kvm->slots_lock);
1647 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1648 ret = -EBUSY;
1649 goto out;
1650 }
59c5ab40 1651
30e1b684 1652 its->vgic_its_base = addr;
59c5ab40
AP
1653 iodev->regions = its_registers;
1654 iodev->nr_regions = ARRAY_SIZE(its_registers);
1655 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1656
1657 iodev->base_addr = its->vgic_its_base;
1658 iodev->iodev_type = IODEV_ITS;
1659 iodev->its = its;
59c5ab40
AP
1660 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1661 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
30e1b684 1662out:
59c5ab40
AP
1663 mutex_unlock(&kvm->slots_lock);
1664
1665 return ret;
1666}
1085fdc6 1667
424c3383
AP
1668#define INITIAL_BASER_VALUE \
1669 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1670 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1671 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
424c3383
AP
1672 GITS_BASER_PAGE_SIZE_64K)
1673
1674#define INITIAL_PROPBASER_VALUE \
1675 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1676 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1677 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1678
1085fdc6
AP
1679static int vgic_its_create(struct kvm_device *dev, u32 type)
1680{
1681 struct vgic_its *its;
1682
1683 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1684 return -ENODEV;
1685
1686 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1687 if (!its)
1688 return -ENOMEM;
1689
74fe55dc
MZ
1690 if (vgic_initialized(dev->kvm)) {
1691 int ret = vgic_v4_init(dev->kvm);
3d1ad640 1692 if (ret < 0) {
74fe55dc
MZ
1693 kfree(its);
1694 return ret;
1695 }
1696 }
1697
424c3383
AP
1698 mutex_init(&its->its_lock);
1699 mutex_init(&its->cmd_lock);
1700
1085fdc6
AP
1701 its->vgic_its_base = VGIC_ADDR_UNDEF;
1702
424c3383
AP
1703 INIT_LIST_HEAD(&its->device_list);
1704 INIT_LIST_HEAD(&its->collection_list);
1705
79962a5c 1706 dev->kvm->arch.vgic.msis_require_devid = true;
1085fdc6 1707 dev->kvm->arch.vgic.has_its = true;
1085fdc6 1708 its->enabled = false;
bb717644 1709 its->dev = dev;
1085fdc6 1710
424c3383
AP
1711 its->baser_device_table = INITIAL_BASER_VALUE |
1712 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1713 its->baser_coll_table = INITIAL_BASER_VALUE |
1714 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1715 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1716
1085fdc6
AP
1717 dev->private = its;
1718
71afe470 1719 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1085fdc6
AP
1720}
1721
1722static void vgic_its_destroy(struct kvm_device *kvm_dev)
1723{
424c3383 1724 struct kvm *kvm = kvm_dev->kvm;
1085fdc6 1725 struct vgic_its *its = kvm_dev->private;
424c3383
AP
1726
1727 mutex_lock(&its->its_lock);
a2b19e6e 1728
2f609a03 1729 vgic_its_free_device_list(kvm, its);
1730 vgic_its_free_collection_list(kvm, its);
424c3383 1731
424c3383 1732 mutex_unlock(&its->its_lock);
1085fdc6
AP
1733 kfree(its);
1734}
1735
876ae234
EA
1736int vgic_its_has_attr_regs(struct kvm_device *dev,
1737 struct kvm_device_attr *attr)
1738{
8331c23c
EA
1739 const struct vgic_register_region *region;
1740 gpa_t offset = attr->attr;
1741 int align;
1742
1743 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1744
1745 if (offset & align)
1746 return -EINVAL;
1747
1748 region = vgic_find_mmio_region(its_registers,
1749 ARRAY_SIZE(its_registers),
1750 offset);
1751 if (!region)
1752 return -ENXIO;
1753
1754 return 0;
876ae234
EA
1755}
1756
1757int vgic_its_attr_regs_access(struct kvm_device *dev,
1758 struct kvm_device_attr *attr,
1759 u64 *reg, bool is_write)
1760{
8331c23c
EA
1761 const struct vgic_register_region *region;
1762 struct vgic_its *its;
1763 gpa_t addr, offset;
1764 unsigned int len;
1765 int align, ret = 0;
1766
1767 its = dev->private;
1768 offset = attr->attr;
1769
1770 /*
1771 * Although the spec supports upper/lower 32-bit accesses to
1772 * 64-bit ITS registers, the userspace ABI requires 64-bit
1773 * accesses to all 64-bit wide registers. We therefore only
1774 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1775 * registers
1776 */
1777 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1778 align = 0x3;
1779 else
1780 align = 0x7;
1781
1782 if (offset & align)
1783 return -EINVAL;
1784
1785 mutex_lock(&dev->kvm->lock);
1786
1787 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1788 ret = -ENXIO;
1789 goto out;
1790 }
1791
1792 region = vgic_find_mmio_region(its_registers,
1793 ARRAY_SIZE(its_registers),
1794 offset);
1795 if (!region) {
1796 ret = -ENXIO;
1797 goto out;
1798 }
1799
1800 if (!lock_all_vcpus(dev->kvm)) {
1801 ret = -EBUSY;
1802 goto out;
1803 }
1804
1805 addr = its->vgic_its_base + offset;
1806
1807 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1808
1809 if (is_write) {
1810 if (region->uaccess_its_write)
1811 ret = region->uaccess_its_write(dev->kvm, its, addr,
1812 len, *reg);
1813 else
1814 region->its_write(dev->kvm, its, addr, len, *reg);
1815 } else {
1816 *reg = region->its_read(dev->kvm, its, addr, len);
1817 }
1818 unlock_all_vcpus(dev->kvm);
1819out:
1820 mutex_unlock(&dev->kvm->lock);
1821 return ret;
876ae234
EA
1822}
1823
57a9a117
EA
1824static u32 compute_next_devid_offset(struct list_head *h,
1825 struct its_device *dev)
920a7a8f
EA
1826{
1827 struct its_device *next;
1828 u32 next_offset;
1829
1830 if (list_is_last(&dev->dev_list, h))
1831 return 0;
1832 next = list_next_entry(dev, dev_list);
1833 next_offset = next->device_id - dev->device_id;
1834
1835 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1836}
1837
eff484e0 1838static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
920a7a8f
EA
1839{
1840 struct its_ite *next;
1841 u32 next_offset;
1842
1843 if (list_is_last(&ite->ite_list, h))
1844 return 0;
1845 next = list_next_entry(ite, ite_list);
1846 next_offset = next->event_id - ite->event_id;
1847
1848 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1849}
1850
1851/**
1852 * entry_fn_t - Callback called on a table entry restore path
1853 * @its: its handle
1854 * @id: id of the entry
1855 * @entry: pointer to the entry
1856 * @opaque: pointer to an opaque data
1857 *
1858 * Return: < 0 on error, 0 if last element was identified, id offset to next
1859 * element otherwise
1860 */
1861typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1862 void *opaque);
1863
1864/**
1865 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1866 * to each entry
1867 *
1868 * @its: its handle
1869 * @base: base gpa of the table
1870 * @size: size of the table in bytes
1871 * @esz: entry size in bytes
1872 * @start_id: the ID of the first entry in the table
1873 * (non zero for 2d level tables)
1874 * @fn: function to apply on each entry
1875 *
1876 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1877 * (the last element may not be found on second level tables)
1878 */
57a9a117
EA
1879static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
1880 int start_id, entry_fn_t fn, void *opaque)
920a7a8f 1881{
920a7a8f
EA
1882 struct kvm *kvm = its->dev->kvm;
1883 unsigned long len = size;
1884 int id = start_id;
1885 gpa_t gpa = base;
8c1a8a32 1886 char entry[esz];
920a7a8f
EA
1887 int ret;
1888
8c1a8a32
CD
1889 memset(entry, 0, esz);
1890
920a7a8f
EA
1891 while (len > 0) {
1892 int next_offset;
1893 size_t byte_offset;
1894
1895 ret = kvm_read_guest(kvm, gpa, entry, esz);
1896 if (ret)
8c1a8a32 1897 return ret;
920a7a8f
EA
1898
1899 next_offset = fn(its, id, entry, opaque);
8c1a8a32
CD
1900 if (next_offset <= 0)
1901 return next_offset;
920a7a8f
EA
1902
1903 byte_offset = next_offset * esz;
1904 id += next_offset;
1905 gpa += byte_offset;
1906 len -= byte_offset;
1907 }
8c1a8a32 1908 return 1;
920a7a8f
EA
1909}
1910
eff484e0
EA
1911/**
1912 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1913 */
1914static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1915 struct its_ite *ite, gpa_t gpa, int ite_esz)
1916{
1917 struct kvm *kvm = its->dev->kvm;
1918 u32 next_offset;
1919 u64 val;
1920
1921 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1922 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
7c7d2fa1 1923 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
eff484e0
EA
1924 ite->collection->collection_id;
1925 val = cpu_to_le64(val);
1926 return kvm_write_guest(kvm, gpa, &val, ite_esz);
1927}
1928
1929/**
1930 * vgic_its_restore_ite - restore an interrupt translation entry
1931 * @event_id: id used for indexing
1932 * @ptr: pointer to the ITE entry
1933 * @opaque: pointer to the its_device
1934 */
1935static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1936 void *ptr, void *opaque)
1937{
1938 struct its_device *dev = (struct its_device *)opaque;
1939 struct its_collection *collection;
1940 struct kvm *kvm = its->dev->kvm;
1941 struct kvm_vcpu *vcpu = NULL;
1942 u64 val;
1943 u64 *p = (u64 *)ptr;
1944 struct vgic_irq *irq;
1945 u32 coll_id, lpi_id;
1946 struct its_ite *ite;
1947 u32 offset;
1948
1949 val = *p;
1950
1951 val = le64_to_cpu(val);
1952
1953 coll_id = val & KVM_ITS_ITE_ICID_MASK;
1954 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1955
1956 if (!lpi_id)
1957 return 1; /* invalid entry, no choice but to scan next entry */
1958
1959 if (lpi_id < VGIC_MIN_LPI)
1960 return -EINVAL;
1961
1962 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1963 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1964 return -EINVAL;
1965
1966 collection = find_collection(its, coll_id);
1967 if (!collection)
1968 return -EINVAL;
1969
7c7d2fa1 1970 ite = vgic_its_alloc_ite(dev, collection, event_id);
eff484e0
EA
1971 if (IS_ERR(ite))
1972 return PTR_ERR(ite);
1973
1974 if (its_is_collection_mapped(collection))
1975 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1976
1977 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1978 if (IS_ERR(irq))
1979 return PTR_ERR(irq);
1980 ite->irq = irq;
1981
1982 return offset;
1983}
1984
1985static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1986 struct list_head *b)
1987{
1988 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1989 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1990
1991 if (itea->event_id < iteb->event_id)
1992 return -1;
1993 else
1994 return 1;
1995}
1996
57a9a117
EA
1997static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
1998{
eff484e0
EA
1999 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2000 gpa_t base = device->itt_addr;
2001 struct its_ite *ite;
2002 int ret;
2003 int ite_esz = abi->ite_esz;
2004
2005 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2006
2007 list_for_each_entry(ite, &device->itt_head, ite_list) {
2008 gpa_t gpa = base + ite->event_id * ite_esz;
2009
bd94e7ae
MZ
2010 /*
2011 * If an LPI carries the HW bit, this means that this
2012 * interrupt is controlled by GICv4, and we do not
2013 * have direct access to that state. Let's simply fail
2014 * the save operation...
2015 */
2016 if (ite->irq->hw)
2017 return -EACCES;
2018
eff484e0
EA
2019 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2020 if (ret)
2021 return ret;
2022 }
2023 return 0;
57a9a117
EA
2024}
2025
b9238262 2026/**
2027 * vgic_its_restore_itt - restore the ITT of a device
2028 *
2029 * @its: its handle
2030 * @dev: device handle
2031 *
2032 * Return 0 on success, < 0 on error
2033 */
57a9a117
EA
2034static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2035{
eff484e0
EA
2036 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2037 gpa_t base = dev->itt_addr;
2038 int ret;
2039 int ite_esz = abi->ite_esz;
2040 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2041
2042 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2043 vgic_its_restore_ite, dev);
2044
b9238262 2045 /* scan_its_table returns +1 if all ITEs are invalid */
2046 if (ret > 0)
2047 ret = 0;
2048
eff484e0 2049 return ret;
57a9a117
EA
2050}
2051
2052/**
2053 * vgic_its_save_dte - Save a device table entry at a given GPA
2054 *
2055 * @its: ITS handle
2056 * @dev: ITS device
2057 * @ptr: GPA
2058 */
2059static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2060 gpa_t ptr, int dte_esz)
2061{
2062 struct kvm *kvm = its->dev->kvm;
2063 u64 val, itt_addr_field;
2064 u32 next_offset;
2065
2066 itt_addr_field = dev->itt_addr >> 8;
2067 next_offset = compute_next_devid_offset(&its->device_list, dev);
2068 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2069 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2070 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2071 (dev->num_eventid_bits - 1));
2072 val = cpu_to_le64(val);
2073 return kvm_write_guest(kvm, ptr, &val, dte_esz);
2074}
2075
2076/**
2077 * vgic_its_restore_dte - restore a device table entry
2078 *
2079 * @its: its handle
2080 * @id: device id the DTE corresponds to
2081 * @ptr: kernel VA where the 8 byte DTE is located
2082 * @opaque: unused
2083 *
2084 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2085 * next dte otherwise
2086 */
2087static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2088 void *ptr, void *opaque)
2089{
2090 struct its_device *dev;
2091 gpa_t itt_addr;
2092 u8 num_eventid_bits;
2093 u64 entry = *(u64 *)ptr;
2094 bool valid;
2095 u32 offset;
2096 int ret;
2097
2098 entry = le64_to_cpu(entry);
2099
2100 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2101 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2102 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2103 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2104
2105 if (!valid)
2106 return 1;
2107
2108 /* dte entry is valid */
2109 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2110
2111 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2112 if (IS_ERR(dev))
2113 return PTR_ERR(dev);
2114
2115 ret = vgic_its_restore_itt(its, dev);
a2b19e6e
CD
2116 if (ret) {
2117 vgic_its_free_device(its->dev->kvm, dev);
57a9a117 2118 return ret;
a2b19e6e 2119 }
57a9a117
EA
2120
2121 return offset;
2122}
2123
2124static int vgic_its_device_cmp(void *priv, struct list_head *a,
2125 struct list_head *b)
2126{
2127 struct its_device *deva = container_of(a, struct its_device, dev_list);
2128 struct its_device *devb = container_of(b, struct its_device, dev_list);
2129
2130 if (deva->device_id < devb->device_id)
2131 return -1;
2132 else
2133 return 1;
2134}
2135
3b65808f
EA
2136/**
2137 * vgic_its_save_device_tables - Save the device table and all ITT
2138 * into guest RAM
57a9a117
EA
2139 *
2140 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2141 * returns the GPA of the device entry
3b65808f
EA
2142 */
2143static int vgic_its_save_device_tables(struct vgic_its *its)
2144{
57a9a117 2145 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
c2385eaa 2146 u64 baser = its->baser_device_table;
57a9a117
EA
2147 struct its_device *dev;
2148 int dte_esz = abi->dte_esz;
57a9a117 2149
c2385eaa
EA
2150 if (!(baser & GITS_BASER_VALID))
2151 return 0;
57a9a117
EA
2152
2153 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2154
2155 list_for_each_entry(dev, &its->device_list, dev_list) {
2156 int ret;
2157 gpa_t eaddr;
2158
2159 if (!vgic_its_check_id(its, baser,
2160 dev->device_id, &eaddr))
2161 return -EINVAL;
2162
2163 ret = vgic_its_save_itt(its, dev);
2164 if (ret)
2165 return ret;
2166
2167 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2168 if (ret)
2169 return ret;
2170 }
2171 return 0;
2172}
2173
2174/**
2175 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2176 *
2177 * @its: its handle
2178 * @id: index of the entry in the L1 table
2179 * @addr: kernel VA
2180 * @opaque: unused
2181 *
2182 * L1 table entries are scanned by steps of 1 entry
2183 * Return < 0 if error, 0 if last dte was found when scanning the L2
2184 * table, +1 otherwise (meaning next L1 entry must be scanned)
2185 */
2186static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2187 void *opaque)
2188{
2189 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2190 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2191 u64 entry = *(u64 *)addr;
2192 int dte_esz = abi->dte_esz;
2193 gpa_t gpa;
2194 int ret;
2195
2196 entry = le64_to_cpu(entry);
2197
2198 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2199 return 1;
2200
2201 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2202
2203 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2204 l2_start_id, vgic_its_restore_dte, NULL);
2205
b9238262 2206 return ret;
3b65808f
EA
2207}
2208
2209/**
2210 * vgic_its_restore_device_tables - Restore the device table and all ITT
2211 * from guest RAM to internal data structs
2212 */
2213static int vgic_its_restore_device_tables(struct vgic_its *its)
2214{
57a9a117
EA
2215 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2216 u64 baser = its->baser_device_table;
2217 int l1_esz, ret;
2218 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2219 gpa_t l1_gpa;
2220
2221 if (!(baser & GITS_BASER_VALID))
2222 return 0;
2223
2224 l1_gpa = BASER_ADDRESS(baser);
2225
2226 if (baser & GITS_BASER_INDIRECT) {
2227 l1_esz = GITS_LVL1_ENTRY_SIZE;
2228 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2229 handle_l1_dte, NULL);
2230 } else {
2231 l1_esz = abi->dte_esz;
2232 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2233 vgic_its_restore_dte, NULL);
2234 }
2235
b9238262 2236 /* scan_its_table returns +1 if all entries are invalid */
57a9a117 2237 if (ret > 0)
b9238262 2238 ret = 0;
57a9a117
EA
2239
2240 return ret;
3b65808f
EA
2241}
2242
ea1ad53e
EA
2243static int vgic_its_save_cte(struct vgic_its *its,
2244 struct its_collection *collection,
2245 gpa_t gpa, int esz)
2246{
2247 u64 val;
2248
2249 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2250 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2251 collection->collection_id);
2252 val = cpu_to_le64(val);
2253 return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2254}
2255
2256static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2257{
2258 struct its_collection *collection;
2259 struct kvm *kvm = its->dev->kvm;
2260 u32 target_addr, coll_id;
2261 u64 val;
2262 int ret;
2263
2264 BUG_ON(esz > sizeof(val));
2265 ret = kvm_read_guest(kvm, gpa, &val, esz);
2266 if (ret)
2267 return ret;
2268 val = le64_to_cpu(val);
2269 if (!(val & KVM_ITS_CTE_VALID_MASK))
2270 return 0;
2271
2272 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2273 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2274
2275 if (target_addr >= atomic_read(&kvm->online_vcpus))
2276 return -EINVAL;
2277
2278 collection = find_collection(its, coll_id);
2279 if (collection)
2280 return -EEXIST;
2281 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2282 if (ret)
2283 return ret;
2284 collection->target_addr = target_addr;
2285 return 1;
2286}
2287
3b65808f
EA
2288/**
2289 * vgic_its_save_collection_table - Save the collection table into
2290 * guest RAM
2291 */
2292static int vgic_its_save_collection_table(struct vgic_its *its)
2293{
ea1ad53e 2294 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
c2385eaa
EA
2295 u64 baser = its->baser_coll_table;
2296 gpa_t gpa = BASER_ADDRESS(baser);
ea1ad53e
EA
2297 struct its_collection *collection;
2298 u64 val;
ea1ad53e
EA
2299 size_t max_size, filled = 0;
2300 int ret, cte_esz = abi->cte_esz;
2301
c2385eaa 2302 if (!(baser & GITS_BASER_VALID))
ea1ad53e
EA
2303 return 0;
2304
c2385eaa 2305 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
ea1ad53e
EA
2306
2307 list_for_each_entry(collection, &its->collection_list, coll_list) {
2308 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2309 if (ret)
2310 return ret;
2311 gpa += cte_esz;
2312 filled += cte_esz;
2313 }
2314
2315 if (filled == max_size)
2316 return 0;
2317
2318 /*
2319 * table is not fully filled, add a last dummy element
2320 * with valid bit unset
2321 */
2322 val = 0;
2323 BUG_ON(cte_esz > sizeof(val));
2324 ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2325 return ret;
3b65808f
EA
2326}
2327
2328/**
2329 * vgic_its_restore_collection_table - reads the collection table
2330 * in guest memory and restores the ITS internal state. Requires the
2331 * BASER registers to be restored before.
2332 */
2333static int vgic_its_restore_collection_table(struct vgic_its *its)
2334{
ea1ad53e 2335 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
c2385eaa 2336 u64 baser = its->baser_coll_table;
ea1ad53e
EA
2337 int cte_esz = abi->cte_esz;
2338 size_t max_size, read = 0;
2339 gpa_t gpa;
2340 int ret;
2341
c2385eaa 2342 if (!(baser & GITS_BASER_VALID))
ea1ad53e
EA
2343 return 0;
2344
c2385eaa 2345 gpa = BASER_ADDRESS(baser);
ea1ad53e 2346
c2385eaa 2347 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
ea1ad53e
EA
2348
2349 while (read < max_size) {
2350 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2351 if (ret <= 0)
2352 break;
2353 gpa += cte_esz;
2354 read += cte_esz;
2355 }
f31b98b5
EA
2356
2357 if (ret > 0)
2358 return 0;
2359
ea1ad53e 2360 return ret;
3b65808f
EA
2361}
2362
71afe470
EA
2363/**
2364 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2365 * according to v0 ABI
2366 */
2367static int vgic_its_save_tables_v0(struct vgic_its *its)
2368{
3b65808f
EA
2369 int ret;
2370
3b65808f
EA
2371 ret = vgic_its_save_device_tables(its);
2372 if (ret)
3eb4271b 2373 return ret;
3b65808f 2374
3eb4271b 2375 return vgic_its_save_collection_table(its);
71afe470
EA
2376}
2377
2378/**
2379 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2380 * to internal data structs according to V0 ABI
2381 *
2382 */
2383static int vgic_its_restore_tables_v0(struct vgic_its *its)
2384{
3b65808f
EA
2385 int ret;
2386
3b65808f
EA
2387 ret = vgic_its_restore_collection_table(its);
2388 if (ret)
3eb4271b 2389 return ret;
3b65808f 2390
3eb4271b 2391 return vgic_its_restore_device_tables(its);
71afe470
EA
2392}
2393
2394static int vgic_its_commit_v0(struct vgic_its *its)
2395{
2396 const struct vgic_its_abi *abi;
2397
2398 abi = vgic_its_get_abi(its);
2399 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2400 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2401
2402 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2403 << GITS_BASER_ENTRY_SIZE_SHIFT);
2404
2405 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2406 << GITS_BASER_ENTRY_SIZE_SHIFT);
2407 return 0;
2408}
2409
3eb4271b
EA
2410static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2411{
2412 /* We need to keep the ABI specific field values */
2413 its->baser_coll_table &= ~GITS_BASER_VALID;
2414 its->baser_device_table &= ~GITS_BASER_VALID;
2415 its->cbaser = 0;
2416 its->creadr = 0;
2417 its->cwriter = 0;
2418 its->enabled = 0;
2419 vgic_its_free_device_list(kvm, its);
2420 vgic_its_free_collection_list(kvm, its);
2421}
2422
1085fdc6
AP
2423static int vgic_its_has_attr(struct kvm_device *dev,
2424 struct kvm_device_attr *attr)
2425{
2426 switch (attr->group) {
2427 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2428 switch (attr->attr) {
2429 case KVM_VGIC_ITS_ADDR_TYPE:
2430 return 0;
2431 }
2432 break;
2433 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2434 switch (attr->attr) {
2435 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2436 return 0;
3eb4271b
EA
2437 case KVM_DEV_ARM_ITS_CTRL_RESET:
2438 return 0;
3b65808f
EA
2439 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2440 return 0;
2441 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2442 return 0;
1085fdc6
AP
2443 }
2444 break;
876ae234
EA
2445 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2446 return vgic_its_has_attr_regs(dev, attr);
1085fdc6
AP
2447 }
2448 return -ENXIO;
2449}
2450
3eb4271b
EA
2451static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2452{
2453 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2454 int ret = 0;
2455
2456 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2457 return 0;
2458
2459 mutex_lock(&kvm->lock);
2460 mutex_lock(&its->its_lock);
2461
2462 if (!lock_all_vcpus(kvm)) {
2463 mutex_unlock(&its->its_lock);
2464 mutex_unlock(&kvm->lock);
2465 return -EBUSY;
2466 }
2467
2468 switch (attr) {
2469 case KVM_DEV_ARM_ITS_CTRL_RESET:
2470 vgic_its_reset(kvm, its);
2471 break;
2472 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2473 ret = abi->save_tables(its);
2474 break;
2475 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2476 ret = abi->restore_tables(its);
2477 break;
2478 }
2479
2480 unlock_all_vcpus(kvm);
2481 mutex_unlock(&its->its_lock);
2482 mutex_unlock(&kvm->lock);
2483 return ret;
2484}
2485
1085fdc6
AP
2486static int vgic_its_set_attr(struct kvm_device *dev,
2487 struct kvm_device_attr *attr)
2488{
2489 struct vgic_its *its = dev->private;
2490 int ret;
2491
2492 switch (attr->group) {
2493 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2494 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2495 unsigned long type = (unsigned long)attr->attr;
2496 u64 addr;
2497
2498 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2499 return -ENODEV;
2500
1085fdc6
AP
2501 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2502 return -EFAULT;
2503
2504 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2505 addr, SZ_64K);
2506 if (ret)
2507 return ret;
2508
30e1b684 2509 return vgic_register_its_iodev(dev->kvm, its, addr);
1085fdc6 2510 }
3eb4271b
EA
2511 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2512 return vgic_its_ctrl(dev->kvm, its, attr->attr);
876ae234
EA
2513 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2514 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2515 u64 reg;
2516
2517 if (get_user(reg, uaddr))
2518 return -EFAULT;
2519
2520 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2521 }
1085fdc6
AP
2522 }
2523 return -ENXIO;
2524}
2525
2526static int vgic_its_get_attr(struct kvm_device *dev,
2527 struct kvm_device_attr *attr)
2528{
2529 switch (attr->group) {
2530 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2531 struct vgic_its *its = dev->private;
2532 u64 addr = its->vgic_its_base;
2533 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2534 unsigned long type = (unsigned long)attr->attr;
2535
2536 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2537 return -ENODEV;
2538
2539 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2540 return -EFAULT;
2541 break;
876ae234
EA
2542 }
2543 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2544 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2545 u64 reg;
2546 int ret;
2547
2548 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2549 if (ret)
2550 return ret;
2551 return put_user(reg, uaddr);
2552 }
1085fdc6
AP
2553 default:
2554 return -ENXIO;
2555 }
1085fdc6
AP
2556
2557 return 0;
2558}
2559
2560static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2561 .name = "kvm-arm-vgic-its",
2562 .create = vgic_its_create,
2563 .destroy = vgic_its_destroy,
2564 .set_attr = vgic_its_set_attr,
2565 .get_attr = vgic_its_get_attr,
2566 .has_attr = vgic_its_has_attr,
2567};
2568
2569int kvm_vgic_register_its_device(void)
2570{
2571 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2572 KVM_DEV_TYPE_ARM_VGIC_ITS);
2573}