]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - virt/kvm/arm/vgic.c
Merge remote-tracking branches 'spi/topic/adi-v3', 'spi/topic/atmel', 'spi/topic...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
1a89dd91 34
b47ef92a
MZ
35/*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending
40 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
41 * bitmap (this bitmap is updated by both user land ioctls and guest
42 * mmio ops, and other in-kernel peripherals such as the
43 * arch. timers) and indicate the 'wire' state.
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_state & dist->irq_enable
49 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - The same is true when injecting an interrupt, except that we only
55 * consider a single interrupt at a time. The irq_spi_cpu array
56 * contains the target CPU for each SPI.
57 *
58 * The handling of level interrupts adds some extra complexity. We
59 * need to track when the interrupt has been EOIed, so we can sample
60 * the 'line' again. This is achieved as such:
61 *
62 * - When a level interrupt is moved onto a vcpu, the corresponding
63 * bit in irq_active is set. As long as this bit is set, the line
64 * will be ignored for further interrupts. The interrupt is injected
65 * into the vcpu with the GICH_LR_EOI bit set (generate a
66 * maintenance interrupt on EOI).
67 * - When the interrupt is EOIed, the maintenance interrupt fires,
68 * and clears the corresponding bit in irq_active. This allow the
69 * interrupt line to be sampled again.
70 */
71
330690cd
CD
72#define VGIC_ADDR_UNDEF (-1)
73#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
74
fa20f5ae
CD
75#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
76#define IMPLEMENTER_ARM 0x43b
77#define GICC_ARCH_VERSION_V2 0x2
78
01ac5e34
MZ
79/* Physical address of vgic virtual cpu interface */
80static phys_addr_t vgic_vcpu_base;
81
82/* Virtual control interface base address */
83static void __iomem *vgic_vctrl_base;
84
85static struct device_node *vgic_node;
86
1a89dd91
MZ
87#define ACCESS_READ_VALUE (1 << 0)
88#define ACCESS_READ_RAZ (0 << 0)
89#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
90#define ACCESS_WRITE_IGNORED (0 << 1)
91#define ACCESS_WRITE_SETBIT (1 << 1)
92#define ACCESS_WRITE_CLEARBIT (2 << 1)
93#define ACCESS_WRITE_VALUE (3 << 1)
94#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
95
a1fcb44e 96static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
b47ef92a 97static void vgic_update_state(struct kvm *kvm);
5863c2ce 98static void vgic_kick_vcpus(struct kvm *kvm);
b47ef92a 99static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
01ac5e34
MZ
100static u32 vgic_nr_lr;
101
102static unsigned int vgic_maint_irq;
b47ef92a
MZ
103
104static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
105 int cpuid, u32 offset)
106{
107 offset >>= 2;
108 if (!offset)
109 return x->percpu[cpuid].reg;
110 else
111 return x->shared.reg + offset - 1;
112}
113
114static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
115 int cpuid, int irq)
116{
117 if (irq < VGIC_NR_PRIVATE_IRQS)
118 return test_bit(irq, x->percpu[cpuid].reg_ul);
119
120 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
121}
122
123static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
124 int irq, int val)
125{
126 unsigned long *reg;
127
128 if (irq < VGIC_NR_PRIVATE_IRQS) {
129 reg = x->percpu[cpuid].reg_ul;
130 } else {
131 reg = x->shared.reg_ul;
132 irq -= VGIC_NR_PRIVATE_IRQS;
133 }
134
135 if (val)
136 set_bit(irq, reg);
137 else
138 clear_bit(irq, reg);
139}
140
141static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
142{
143 if (unlikely(cpuid >= VGIC_MAX_CPUS))
144 return NULL;
145 return x->percpu[cpuid].reg_ul;
146}
147
148static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
149{
150 return x->shared.reg_ul;
151}
152
153static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
154{
155 offset >>= 2;
156 BUG_ON(offset > (VGIC_NR_IRQS / 4));
8d98915b 157 if (offset < 8)
b47ef92a
MZ
158 return x->percpu[cpuid] + offset;
159 else
160 return x->shared + offset - 8;
161}
162
163#define VGIC_CFG_LEVEL 0
164#define VGIC_CFG_EDGE 1
165
166static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
167{
168 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
169 int irq_val;
170
171 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
172 return irq_val == VGIC_CFG_EDGE;
173}
174
175static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
176{
177 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
178
179 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
180}
181
9d949dce
MZ
182static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
183{
184 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
185
186 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
187}
188
189static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
190{
191 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
192
193 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
194}
195
196static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
197{
198 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
199
200 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
201}
202
203static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
204{
205 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
206
207 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
208}
209
b47ef92a
MZ
210static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
211{
212 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
213
214 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
215}
216
217static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
218{
219 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
220
221 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
222}
223
224static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
225{
226 if (irq < VGIC_NR_PRIVATE_IRQS)
227 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
228 else
229 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
230 vcpu->arch.vgic_cpu.pending_shared);
231}
232
233static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
234{
235 if (irq < VGIC_NR_PRIVATE_IRQS)
236 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
237 else
238 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
239 vcpu->arch.vgic_cpu.pending_shared);
240}
241
1a89dd91
MZ
242static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
243{
244 return *((u32 *)mmio->data) & mask;
245}
246
247static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
248{
249 *((u32 *)mmio->data) = value & mask;
250}
251
252/**
253 * vgic_reg_access - access vgic register
254 * @mmio: pointer to the data describing the mmio access
255 * @reg: pointer to the virtual backing of vgic distributor data
256 * @offset: least significant 2 bits used for word offset
257 * @mode: ACCESS_ mode (see defines above)
258 *
259 * Helper to make vgic register access easier using one of the access
260 * modes defined for vgic register access
261 * (read,raz,write-ignored,setbit,clearbit,write)
262 */
263static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
264 phys_addr_t offset, int mode)
265{
266 int word_offset = (offset & 3) * 8;
267 u32 mask = (1UL << (mmio->len * 8)) - 1;
268 u32 regval;
269
270 /*
271 * Any alignment fault should have been delivered to the guest
272 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
273 */
274
275 if (reg) {
276 regval = *reg;
277 } else {
278 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
279 regval = 0;
280 }
281
282 if (mmio->is_write) {
283 u32 data = mmio_data_read(mmio, mask) << word_offset;
284 switch (ACCESS_WRITE_MASK(mode)) {
285 case ACCESS_WRITE_IGNORED:
286 return;
287
288 case ACCESS_WRITE_SETBIT:
289 regval |= data;
290 break;
291
292 case ACCESS_WRITE_CLEARBIT:
293 regval &= ~data;
294 break;
295
296 case ACCESS_WRITE_VALUE:
297 regval = (regval & ~(mask << word_offset)) | data;
298 break;
299 }
300 *reg = regval;
301 } else {
302 switch (ACCESS_READ_MASK(mode)) {
303 case ACCESS_READ_RAZ:
304 regval = 0;
305 /* fall through */
306
307 case ACCESS_READ_VALUE:
308 mmio_data_write(mmio, mask, regval >> word_offset);
309 }
310 }
311}
312
b47ef92a
MZ
313static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
314 struct kvm_exit_mmio *mmio, phys_addr_t offset)
315{
316 u32 reg;
317 u32 word_offset = offset & 3;
318
319 switch (offset & ~3) {
fa20f5ae 320 case 0: /* GICD_CTLR */
b47ef92a
MZ
321 reg = vcpu->kvm->arch.vgic.enabled;
322 vgic_reg_access(mmio, &reg, word_offset,
323 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
324 if (mmio->is_write) {
325 vcpu->kvm->arch.vgic.enabled = reg & 1;
326 vgic_update_state(vcpu->kvm);
327 return true;
328 }
329 break;
330
fa20f5ae 331 case 4: /* GICD_TYPER */
b47ef92a
MZ
332 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
333 reg |= (VGIC_NR_IRQS >> 5) - 1;
334 vgic_reg_access(mmio, &reg, word_offset,
335 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
336 break;
337
fa20f5ae
CD
338 case 8: /* GICD_IIDR */
339 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
b47ef92a
MZ
340 vgic_reg_access(mmio, &reg, word_offset,
341 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
342 break;
343 }
344
345 return false;
346}
347
348static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
349 struct kvm_exit_mmio *mmio, phys_addr_t offset)
350{
351 vgic_reg_access(mmio, NULL, offset,
352 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
353 return false;
354}
355
356static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
357 struct kvm_exit_mmio *mmio,
358 phys_addr_t offset)
359{
360 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
361 vcpu->vcpu_id, offset);
362 vgic_reg_access(mmio, reg, offset,
363 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
364 if (mmio->is_write) {
365 vgic_update_state(vcpu->kvm);
366 return true;
367 }
368
369 return false;
370}
371
372static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
373 struct kvm_exit_mmio *mmio,
374 phys_addr_t offset)
375{
376 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
377 vcpu->vcpu_id, offset);
378 vgic_reg_access(mmio, reg, offset,
379 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
380 if (mmio->is_write) {
381 if (offset < 4) /* Force SGI enabled */
382 *reg |= 0xffff;
a1fcb44e 383 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
384 vgic_update_state(vcpu->kvm);
385 return true;
386 }
387
388 return false;
389}
390
391static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
392 struct kvm_exit_mmio *mmio,
393 phys_addr_t offset)
394{
395 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
396 vcpu->vcpu_id, offset);
397 vgic_reg_access(mmio, reg, offset,
398 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
399 if (mmio->is_write) {
400 vgic_update_state(vcpu->kvm);
401 return true;
402 }
403
404 return false;
405}
406
407static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
408 struct kvm_exit_mmio *mmio,
409 phys_addr_t offset)
410{
411 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
412 vcpu->vcpu_id, offset);
413 vgic_reg_access(mmio, reg, offset,
414 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
415 if (mmio->is_write) {
416 vgic_update_state(vcpu->kvm);
417 return true;
418 }
419
420 return false;
421}
422
423static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
424 struct kvm_exit_mmio *mmio,
425 phys_addr_t offset)
426{
427 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
428 vcpu->vcpu_id, offset);
429 vgic_reg_access(mmio, reg, offset,
430 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
431 return false;
432}
433
434#define GICD_ITARGETSR_SIZE 32
435#define GICD_CPUTARGETS_BITS 8
436#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
437static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
438{
439 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 440 int i;
b47ef92a
MZ
441 u32 val = 0;
442
443 irq -= VGIC_NR_PRIVATE_IRQS;
444
986af8e0
MZ
445 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
446 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
447
448 return val;
449}
450
451static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
452{
453 struct vgic_dist *dist = &kvm->arch.vgic;
454 struct kvm_vcpu *vcpu;
455 int i, c;
456 unsigned long *bmap;
457 u32 target;
458
459 irq -= VGIC_NR_PRIVATE_IRQS;
460
461 /*
462 * Pick the LSB in each byte. This ensures we target exactly
463 * one vcpu per IRQ. If the byte is null, assume we target
464 * CPU0.
465 */
466 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
467 int shift = i * GICD_CPUTARGETS_BITS;
468 target = ffs((val >> shift) & 0xffU);
469 target = target ? (target - 1) : 0;
470 dist->irq_spi_cpu[irq + i] = target;
471 kvm_for_each_vcpu(c, vcpu, kvm) {
472 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
473 if (c == target)
474 set_bit(irq + i, bmap);
475 else
476 clear_bit(irq + i, bmap);
477 }
478 }
479}
480
481static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
482 struct kvm_exit_mmio *mmio,
483 phys_addr_t offset)
484{
485 u32 reg;
486
487 /* We treat the banked interrupts targets as read-only */
488 if (offset < 32) {
489 u32 roreg = 1 << vcpu->vcpu_id;
490 roreg |= roreg << 8;
491 roreg |= roreg << 16;
492
493 vgic_reg_access(mmio, &roreg, offset,
494 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
495 return false;
496 }
497
498 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
499 vgic_reg_access(mmio, &reg, offset,
500 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
501 if (mmio->is_write) {
502 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
503 vgic_update_state(vcpu->kvm);
504 return true;
505 }
506
507 return false;
508}
509
510static u32 vgic_cfg_expand(u16 val)
511{
512 u32 res = 0;
513 int i;
514
515 /*
516 * Turn a 16bit value like abcd...mnop into a 32bit word
517 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
518 */
519 for (i = 0; i < 16; i++)
520 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
521
522 return res;
523}
524
525static u16 vgic_cfg_compress(u32 val)
526{
527 u16 res = 0;
528 int i;
529
530 /*
531 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
532 * abcd...mnop which is what we really care about.
533 */
534 for (i = 0; i < 16; i++)
535 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
536
537 return res;
538}
539
540/*
541 * The distributor uses 2 bits per IRQ for the CFG register, but the
542 * LSB is always 0. As such, we only keep the upper bit, and use the
543 * two above functions to compress/expand the bits
544 */
545static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
546 struct kvm_exit_mmio *mmio, phys_addr_t offset)
547{
548 u32 val;
6545eae3
MZ
549 u32 *reg;
550
6545eae3 551 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
f2ae85b2 552 vcpu->vcpu_id, offset >> 1);
6545eae3 553
f2ae85b2 554 if (offset & 4)
b47ef92a
MZ
555 val = *reg >> 16;
556 else
557 val = *reg & 0xffff;
558
559 val = vgic_cfg_expand(val);
560 vgic_reg_access(mmio, &val, offset,
561 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
562 if (mmio->is_write) {
f2ae85b2 563 if (offset < 8) {
b47ef92a
MZ
564 *reg = ~0U; /* Force PPIs/SGIs to 1 */
565 return false;
566 }
567
568 val = vgic_cfg_compress(val);
f2ae85b2 569 if (offset & 4) {
b47ef92a
MZ
570 *reg &= 0xffff;
571 *reg |= val << 16;
572 } else {
573 *reg &= 0xffff << 16;
574 *reg |= val;
575 }
576 }
577
578 return false;
579}
580
581static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
582 struct kvm_exit_mmio *mmio, phys_addr_t offset)
583{
584 u32 reg;
585 vgic_reg_access(mmio, &reg, offset,
586 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
587 if (mmio->is_write) {
588 vgic_dispatch_sgi(vcpu, reg);
589 vgic_update_state(vcpu->kvm);
590 return true;
591 }
592
593 return false;
594}
595
cbd333a4
CD
596#define LR_CPUID(lr) \
597 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
598#define LR_IRQID(lr) \
599 ((lr) & GICH_LR_VIRTUALID)
600
601static void vgic_retire_lr(int lr_nr, int irq, struct vgic_cpu *vgic_cpu)
602{
603 clear_bit(lr_nr, vgic_cpu->lr_used);
604 vgic_cpu->vgic_lr[lr_nr] &= ~GICH_LR_STATE;
605 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
606}
607
608/**
609 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
610 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
611 *
612 * Move any pending IRQs that have already been assigned to LRs back to the
613 * emulated distributor state so that the complete emulated state can be read
614 * from the main emulation structures without investigating the LRs.
615 *
616 * Note that IRQs in the active state in the LRs get their pending state moved
617 * to the distributor but the active state stays in the LRs, because we don't
618 * track the active state on the distributor side.
619 */
620static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
621{
622 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
623 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
624 int vcpu_id = vcpu->vcpu_id;
625 int i, irq, source_cpu;
626 u32 *lr;
627
628 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
629 lr = &vgic_cpu->vgic_lr[i];
630 irq = LR_IRQID(*lr);
631 source_cpu = LR_CPUID(*lr);
632
633 /*
634 * There are three options for the state bits:
635 *
636 * 01: pending
637 * 10: active
638 * 11: pending and active
639 *
640 * If the LR holds only an active interrupt (not pending) then
641 * just leave it alone.
642 */
643 if ((*lr & GICH_LR_STATE) == GICH_LR_ACTIVE_BIT)
644 continue;
645
646 /*
647 * Reestablish the pending state on the distributor and the
648 * CPU interface. It may have already been pending, but that
649 * is fine, then we are only setting a few bits that were
650 * already set.
651 */
652 vgic_dist_irq_set(vcpu, irq);
653 if (irq < VGIC_NR_SGIS)
654 dist->irq_sgi_sources[vcpu_id][irq] |= 1 << source_cpu;
655 *lr &= ~GICH_LR_PENDING_BIT;
656
657 /*
658 * If there's no state left on the LR (it could still be
659 * active), then the LR does not hold any useful info and can
660 * be marked as free for other use.
661 */
662 if (!(*lr & GICH_LR_STATE))
663 vgic_retire_lr(i, irq, vgic_cpu);
664
665 /* Finally update the VGIC state. */
666 vgic_update_state(vcpu->kvm);
667 }
668}
669
90a5355e
CD
670/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
671static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
672 struct kvm_exit_mmio *mmio,
673 phys_addr_t offset)
c07a0191 674{
90a5355e
CD
675 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
676 int sgi;
677 int min_sgi = (offset & ~0x3) * 4;
678 int max_sgi = min_sgi + 3;
679 int vcpu_id = vcpu->vcpu_id;
680 u32 reg = 0;
681
682 /* Copy source SGIs from distributor side */
683 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
684 int shift = 8 * (sgi - min_sgi);
685 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
686 }
687
688 mmio_data_write(mmio, ~0, reg);
c07a0191
CD
689 return false;
690}
691
90a5355e
CD
692static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
693 struct kvm_exit_mmio *mmio,
694 phys_addr_t offset, bool set)
695{
696 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
697 int sgi;
698 int min_sgi = (offset & ~0x3) * 4;
699 int max_sgi = min_sgi + 3;
700 int vcpu_id = vcpu->vcpu_id;
701 u32 reg;
702 bool updated = false;
703
704 reg = mmio_data_read(mmio, ~0);
705
706 /* Clear pending SGIs on the distributor */
707 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
708 u8 mask = reg >> (8 * (sgi - min_sgi));
709 if (set) {
710 if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
711 updated = true;
712 dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
713 } else {
714 if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
715 updated = true;
716 dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
717 }
718 }
719
720 if (updated)
721 vgic_update_state(vcpu->kvm);
722
723 return updated;
724}
725
c07a0191
CD
726static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
727 struct kvm_exit_mmio *mmio,
728 phys_addr_t offset)
729{
90a5355e
CD
730 if (!mmio->is_write)
731 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
732 else
733 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
734}
735
736static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
737 struct kvm_exit_mmio *mmio,
738 phys_addr_t offset)
739{
740 if (!mmio->is_write)
741 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
742 else
743 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
c07a0191
CD
744}
745
1a89dd91
MZ
746/*
747 * I would have liked to use the kvm_bus_io_*() API instead, but it
748 * cannot cope with banked registers (only the VM pointer is passed
749 * around, and we need the vcpu). One of these days, someone please
750 * fix it!
751 */
752struct mmio_range {
753 phys_addr_t base;
754 unsigned long len;
755 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
756 phys_addr_t offset);
757};
758
1006e8cb 759static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
760 {
761 .base = GIC_DIST_CTRL,
762 .len = 12,
763 .handle_mmio = handle_mmio_misc,
764 },
765 {
766 .base = GIC_DIST_IGROUP,
767 .len = VGIC_NR_IRQS / 8,
768 .handle_mmio = handle_mmio_raz_wi,
769 },
770 {
771 .base = GIC_DIST_ENABLE_SET,
772 .len = VGIC_NR_IRQS / 8,
773 .handle_mmio = handle_mmio_set_enable_reg,
774 },
775 {
776 .base = GIC_DIST_ENABLE_CLEAR,
777 .len = VGIC_NR_IRQS / 8,
778 .handle_mmio = handle_mmio_clear_enable_reg,
779 },
780 {
781 .base = GIC_DIST_PENDING_SET,
782 .len = VGIC_NR_IRQS / 8,
783 .handle_mmio = handle_mmio_set_pending_reg,
784 },
785 {
786 .base = GIC_DIST_PENDING_CLEAR,
787 .len = VGIC_NR_IRQS / 8,
788 .handle_mmio = handle_mmio_clear_pending_reg,
789 },
790 {
791 .base = GIC_DIST_ACTIVE_SET,
792 .len = VGIC_NR_IRQS / 8,
793 .handle_mmio = handle_mmio_raz_wi,
794 },
795 {
796 .base = GIC_DIST_ACTIVE_CLEAR,
797 .len = VGIC_NR_IRQS / 8,
798 .handle_mmio = handle_mmio_raz_wi,
799 },
800 {
801 .base = GIC_DIST_PRI,
802 .len = VGIC_NR_IRQS,
803 .handle_mmio = handle_mmio_priority_reg,
804 },
805 {
806 .base = GIC_DIST_TARGET,
807 .len = VGIC_NR_IRQS,
808 .handle_mmio = handle_mmio_target_reg,
809 },
810 {
811 .base = GIC_DIST_CONFIG,
812 .len = VGIC_NR_IRQS / 4,
813 .handle_mmio = handle_mmio_cfg_reg,
814 },
815 {
816 .base = GIC_DIST_SOFTINT,
817 .len = 4,
818 .handle_mmio = handle_mmio_sgi_reg,
819 },
c07a0191
CD
820 {
821 .base = GIC_DIST_SGI_PENDING_CLEAR,
822 .len = VGIC_NR_SGIS,
823 .handle_mmio = handle_mmio_sgi_clear,
824 },
825 {
826 .base = GIC_DIST_SGI_PENDING_SET,
827 .len = VGIC_NR_SGIS,
828 .handle_mmio = handle_mmio_sgi_set,
829 },
1a89dd91
MZ
830 {}
831};
832
833static const
834struct mmio_range *find_matching_range(const struct mmio_range *ranges,
835 struct kvm_exit_mmio *mmio,
1006e8cb 836 phys_addr_t offset)
1a89dd91
MZ
837{
838 const struct mmio_range *r = ranges;
1a89dd91
MZ
839
840 while (r->len) {
1006e8cb
CD
841 if (offset >= r->base &&
842 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
843 return r;
844 r++;
845 }
846
847 return NULL;
848}
849
850/**
851 * vgic_handle_mmio - handle an in-kernel MMIO access
852 * @vcpu: pointer to the vcpu performing the access
853 * @run: pointer to the kvm_run structure
854 * @mmio: pointer to the data describing the access
855 *
856 * returns true if the MMIO access has been performed in kernel space,
857 * and false if it needs to be emulated in user space.
858 */
859bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
860 struct kvm_exit_mmio *mmio)
861{
b47ef92a
MZ
862 const struct mmio_range *range;
863 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
864 unsigned long base = dist->vgic_dist_base;
865 bool updated_state;
866 unsigned long offset;
867
868 if (!irqchip_in_kernel(vcpu->kvm) ||
869 mmio->phys_addr < base ||
870 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
871 return false;
872
873 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
874 if (mmio->len > 4) {
875 kvm_inject_dabt(vcpu, mmio->phys_addr);
876 return true;
877 }
878
1006e8cb
CD
879 offset = mmio->phys_addr - base;
880 range = find_matching_range(vgic_dist_ranges, mmio, offset);
b47ef92a
MZ
881 if (unlikely(!range || !range->handle_mmio)) {
882 pr_warn("Unhandled access %d %08llx %d\n",
883 mmio->is_write, mmio->phys_addr, mmio->len);
884 return false;
885 }
886
887 spin_lock(&vcpu->kvm->arch.vgic.lock);
888 offset = mmio->phys_addr - range->base - base;
889 updated_state = range->handle_mmio(vcpu, mmio, offset);
890 spin_unlock(&vcpu->kvm->arch.vgic.lock);
891 kvm_prepare_mmio(run, mmio);
892 kvm_handle_mmio_return(vcpu, run);
893
5863c2ce
MZ
894 if (updated_state)
895 vgic_kick_vcpus(vcpu->kvm);
896
b47ef92a
MZ
897 return true;
898}
899
900static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
901{
902 struct kvm *kvm = vcpu->kvm;
903 struct vgic_dist *dist = &kvm->arch.vgic;
904 int nrcpus = atomic_read(&kvm->online_vcpus);
905 u8 target_cpus;
906 int sgi, mode, c, vcpu_id;
907
908 vcpu_id = vcpu->vcpu_id;
909
910 sgi = reg & 0xf;
911 target_cpus = (reg >> 16) & 0xff;
912 mode = (reg >> 24) & 3;
913
914 switch (mode) {
915 case 0:
916 if (!target_cpus)
917 return;
91021a6c 918 break;
b47ef92a
MZ
919
920 case 1:
921 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
922 break;
923
924 case 2:
925 target_cpus = 1 << vcpu_id;
926 break;
927 }
928
929 kvm_for_each_vcpu(c, vcpu, kvm) {
930 if (target_cpus & 1) {
931 /* Flag the SGI as pending */
932 vgic_dist_irq_set(vcpu, sgi);
933 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
934 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
935 }
936
937 target_cpus >>= 1;
938 }
939}
940
941static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
942{
9d949dce
MZ
943 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
944 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
945 unsigned long pending_private, pending_shared;
946 int vcpu_id;
947
948 vcpu_id = vcpu->vcpu_id;
949 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
950 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
951
952 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
953 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
954 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
955
956 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
957 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
958 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
959 bitmap_and(pend_shared, pend_shared,
960 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
961 VGIC_NR_SHARED_IRQS);
962
963 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
964 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
965 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
966 pending_shared < VGIC_NR_SHARED_IRQS);
b47ef92a
MZ
967}
968
969/*
970 * Update the interrupt state and determine which CPUs have pending
971 * interrupts. Must be called with distributor lock held.
972 */
973static void vgic_update_state(struct kvm *kvm)
974{
975 struct vgic_dist *dist = &kvm->arch.vgic;
976 struct kvm_vcpu *vcpu;
977 int c;
978
979 if (!dist->enabled) {
980 set_bit(0, &dist->irq_pending_on_cpu);
981 return;
982 }
983
984 kvm_for_each_vcpu(c, vcpu, kvm) {
985 if (compute_pending_for_cpu(vcpu)) {
986 pr_debug("CPU%d has pending interrupts\n", c);
987 set_bit(c, &dist->irq_pending_on_cpu);
988 }
989 }
1a89dd91 990}
330690cd 991
9d949dce
MZ
992#define MK_LR_PEND(src, irq) \
993 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
a1fcb44e
MZ
994
995/*
996 * An interrupt may have been disabled after being made pending on the
997 * CPU interface (the classic case is a timer running while we're
998 * rebooting the guest - the interrupt would kick as soon as the CPU
999 * interface gets enabled, with deadly consequences).
1000 *
1001 * The solution is to examine already active LRs, and check the
1002 * interrupt is still enabled. If not, just retire it.
1003 */
1004static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1005{
1006 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1007 int lr;
1008
1009 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
1010 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1011
1012 if (!vgic_irq_is_enabled(vcpu, irq)) {
cbd333a4 1013 vgic_retire_lr(lr, irq, vgic_cpu);
a1fcb44e
MZ
1014 if (vgic_irq_is_active(vcpu, irq))
1015 vgic_irq_clear_active(vcpu, irq);
1016 }
1017 }
1018}
1019
9d949dce
MZ
1020/*
1021 * Queue an interrupt to a CPU virtual interface. Return true on success,
1022 * or false if it wasn't possible to queue it.
1023 */
1024static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1025{
1026 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1027 int lr;
1028
1029 /* Sanitize the input... */
1030 BUG_ON(sgi_source_id & ~7);
1031 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1032 BUG_ON(irq >= VGIC_NR_IRQS);
1033
1034 kvm_debug("Queue IRQ%d\n", irq);
1035
1036 lr = vgic_cpu->vgic_irq_lr_map[irq];
1037
1038 /* Do we have an active interrupt for the same CPUID? */
1039 if (lr != LR_EMPTY &&
1040 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
1041 kvm_debug("LR%d piggyback for IRQ%d %x\n",
1042 lr, irq, vgic_cpu->vgic_lr[lr]);
1043 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1044 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
75da01e1 1045 return true;
9d949dce
MZ
1046 }
1047
1048 /* Try to use another LR for this interrupt */
1049 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1050 vgic_cpu->nr_lr);
1051 if (lr >= vgic_cpu->nr_lr)
1052 return false;
1053
1054 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1055 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
1056 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1057 set_bit(lr, vgic_cpu->lr_used);
1058
9d949dce
MZ
1059 if (!vgic_irq_is_edge(vcpu, irq))
1060 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
1061
1062 return true;
1063}
1064
1065static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1066{
1067 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1068 unsigned long sources;
1069 int vcpu_id = vcpu->vcpu_id;
1070 int c;
1071
1072 sources = dist->irq_sgi_sources[vcpu_id][irq];
1073
1074 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1075 if (vgic_queue_irq(vcpu, c, irq))
1076 clear_bit(c, &sources);
1077 }
1078
1079 dist->irq_sgi_sources[vcpu_id][irq] = sources;
1080
1081 /*
1082 * If the sources bitmap has been cleared it means that we
1083 * could queue all the SGIs onto link registers (see the
1084 * clear_bit above), and therefore we are done with them in
1085 * our emulated gic and can get rid of them.
1086 */
1087 if (!sources) {
1088 vgic_dist_irq_clear(vcpu, irq);
1089 vgic_cpu_irq_clear(vcpu, irq);
1090 return true;
1091 }
1092
1093 return false;
1094}
1095
1096static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1097{
1098 if (vgic_irq_is_active(vcpu, irq))
1099 return true; /* level interrupt, already queued */
1100
1101 if (vgic_queue_irq(vcpu, 0, irq)) {
1102 if (vgic_irq_is_edge(vcpu, irq)) {
1103 vgic_dist_irq_clear(vcpu, irq);
1104 vgic_cpu_irq_clear(vcpu, irq);
1105 } else {
1106 vgic_irq_set_active(vcpu, irq);
1107 }
1108
1109 return true;
1110 }
1111
1112 return false;
1113}
1114
1115/*
1116 * Fill the list registers with pending interrupts before running the
1117 * guest.
1118 */
1119static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1120{
1121 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1122 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1123 int i, vcpu_id;
1124 int overflow = 0;
1125
1126 vcpu_id = vcpu->vcpu_id;
1127
1128 /*
1129 * We may not have any pending interrupt, or the interrupts
1130 * may have been serviced from another vcpu. In all cases,
1131 * move along.
1132 */
1133 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1134 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1135 goto epilog;
1136 }
1137
1138 /* SGIs */
1139 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1140 if (!vgic_queue_sgi(vcpu, i))
1141 overflow = 1;
1142 }
1143
1144 /* PPIs */
1145 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1146 if (!vgic_queue_hwirq(vcpu, i))
1147 overflow = 1;
1148 }
1149
1150 /* SPIs */
1151 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1152 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1153 overflow = 1;
1154 }
1155
1156epilog:
1157 if (overflow) {
1158 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1159 } else {
1160 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1161 /*
1162 * We're about to run this VCPU, and we've consumed
1163 * everything the distributor had in store for
1164 * us. Claim we don't have anything pending. We'll
1165 * adjust that if needed while exiting.
1166 */
1167 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1168 }
1169}
1170
1171static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1172{
1173 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1174 bool level_pending = false;
1175
1176 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1177
9d949dce
MZ
1178 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1179 /*
1180 * Some level interrupts have been EOIed. Clear their
1181 * active bit.
1182 */
1183 int lr, irq;
1184
1185 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1186 vgic_cpu->nr_lr) {
1187 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1188
1189 vgic_irq_clear_active(vcpu, irq);
1190 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1191
1192 /* Any additional pending interrupt? */
1193 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1194 vgic_cpu_irq_set(vcpu, irq);
1195 level_pending = true;
1196 } else {
1197 vgic_cpu_irq_clear(vcpu, irq);
1198 }
75da01e1
MZ
1199
1200 /*
1201 * Despite being EOIed, the LR may not have
1202 * been marked as empty.
1203 */
1204 set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1205 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
9d949dce
MZ
1206 }
1207 }
1208
1209 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1210 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1211
1212 return level_pending;
1213}
1214
1215/*
33c83cb3
MZ
1216 * Sync back the VGIC state after a guest run. The distributor lock is
1217 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1218 */
1219static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1220{
1221 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1222 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1223 int lr, pending;
1224 bool level_pending;
1225
1226 level_pending = vgic_process_maintenance(vcpu);
1227
1228 /* Clear mappings for empty LRs */
1229 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1230 vgic_cpu->nr_lr) {
1231 int irq;
1232
1233 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1234 continue;
1235
1236 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1237
1238 BUG_ON(irq >= VGIC_NR_IRQS);
1239 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1240 }
1241
1242 /* Check if we still have something up our sleeve... */
1243 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1244 vgic_cpu->nr_lr);
1245 if (level_pending || pending < vgic_cpu->nr_lr)
1246 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1247}
1248
1249void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1250{
1251 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1252
1253 if (!irqchip_in_kernel(vcpu->kvm))
1254 return;
1255
1256 spin_lock(&dist->lock);
1257 __kvm_vgic_flush_hwstate(vcpu);
1258 spin_unlock(&dist->lock);
1259}
1260
1261void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1262{
33c83cb3
MZ
1263 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1264
9d949dce
MZ
1265 if (!irqchip_in_kernel(vcpu->kvm))
1266 return;
1267
33c83cb3 1268 spin_lock(&dist->lock);
9d949dce 1269 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1270 spin_unlock(&dist->lock);
9d949dce
MZ
1271}
1272
1273int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1274{
1275 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1276
1277 if (!irqchip_in_kernel(vcpu->kvm))
1278 return 0;
1279
1280 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1281}
1282
5863c2ce
MZ
1283static void vgic_kick_vcpus(struct kvm *kvm)
1284{
1285 struct kvm_vcpu *vcpu;
1286 int c;
1287
1288 /*
1289 * We've injected an interrupt, time to find out who deserves
1290 * a good kick...
1291 */
1292 kvm_for_each_vcpu(c, vcpu, kvm) {
1293 if (kvm_vgic_vcpu_pending_irq(vcpu))
1294 kvm_vcpu_kick(vcpu);
1295 }
1296}
1297
1298static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1299{
1300 int is_edge = vgic_irq_is_edge(vcpu, irq);
1301 int state = vgic_dist_irq_is_pending(vcpu, irq);
1302
1303 /*
1304 * Only inject an interrupt if:
1305 * - edge triggered and we have a rising edge
1306 * - level triggered and we change level
1307 */
1308 if (is_edge)
1309 return level > state;
1310 else
1311 return level != state;
1312}
1313
1314static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1315 unsigned int irq_num, bool level)
1316{
1317 struct vgic_dist *dist = &kvm->arch.vgic;
1318 struct kvm_vcpu *vcpu;
1319 int is_edge, is_level;
1320 int enabled;
1321 bool ret = true;
1322
1323 spin_lock(&dist->lock);
1324
1325 vcpu = kvm_get_vcpu(kvm, cpuid);
1326 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1327 is_level = !is_edge;
1328
1329 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1330 ret = false;
1331 goto out;
1332 }
1333
1334 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1335 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1336 vcpu = kvm_get_vcpu(kvm, cpuid);
1337 }
1338
1339 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1340
1341 if (level)
1342 vgic_dist_irq_set(vcpu, irq_num);
1343 else
1344 vgic_dist_irq_clear(vcpu, irq_num);
1345
1346 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1347
1348 if (!enabled) {
1349 ret = false;
1350 goto out;
1351 }
1352
1353 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1354 /*
1355 * Level interrupt in progress, will be picked up
1356 * when EOId.
1357 */
1358 ret = false;
1359 goto out;
1360 }
1361
1362 if (level) {
1363 vgic_cpu_irq_set(vcpu, irq_num);
1364 set_bit(cpuid, &dist->irq_pending_on_cpu);
1365 }
1366
1367out:
1368 spin_unlock(&dist->lock);
1369
1370 return ret;
1371}
1372
1373/**
1374 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1375 * @kvm: The VM structure pointer
1376 * @cpuid: The CPU for PPIs
1377 * @irq_num: The IRQ number that is assigned to the device
1378 * @level: Edge-triggered: true: to trigger the interrupt
1379 * false: to ignore the call
1380 * Level-sensitive true: activates an interrupt
1381 * false: deactivates an interrupt
1382 *
1383 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1384 * level-sensitive interrupts. You can think of the level parameter as 1
1385 * being HIGH and 0 being LOW and all devices being active-HIGH.
1386 */
1387int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1388 bool level)
1389{
1390 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1391 vgic_kick_vcpus(kvm);
1392
1393 return 0;
1394}
1395
01ac5e34
MZ
1396static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1397{
1398 /*
1399 * We cannot rely on the vgic maintenance interrupt to be
1400 * delivered synchronously. This means we can only use it to
1401 * exit the VM, and we perform the handling of EOIed
1402 * interrupts on the exit path (see vgic_process_maintenance).
1403 */
1404 return IRQ_HANDLED;
1405}
1406
e1ba0207
CD
1407/**
1408 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1409 * @vcpu: pointer to the vcpu struct
1410 *
1411 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1412 * this vcpu and enable the VGIC for this VCPU
1413 */
01ac5e34
MZ
1414int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1415{
1416 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1417 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1418 int i;
1419
01ac5e34
MZ
1420 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1421 return -EBUSY;
1422
1423 for (i = 0; i < VGIC_NR_IRQS; i++) {
1424 if (i < VGIC_NR_PPIS)
1425 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1426 vcpu->vcpu_id, i, 1);
1427 if (i < VGIC_NR_PRIVATE_IRQS)
1428 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1429 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1430
1431 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1432 }
1433
1434 /*
1435 * By forcing VMCR to zero, the GIC will restore the binary
1436 * points to their reset values. Anything else resets to zero
1437 * anyway.
1438 */
1439 vgic_cpu->vgic_vmcr = 0;
1440
1441 vgic_cpu->nr_lr = vgic_nr_lr;
1442 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1443
1444 return 0;
1445}
1446
1447static void vgic_init_maintenance_interrupt(void *info)
1448{
1449 enable_percpu_irq(vgic_maint_irq, 0);
1450}
1451
1452static int vgic_cpu_notify(struct notifier_block *self,
1453 unsigned long action, void *cpu)
1454{
1455 switch (action) {
1456 case CPU_STARTING:
1457 case CPU_STARTING_FROZEN:
1458 vgic_init_maintenance_interrupt(NULL);
1459 break;
1460 case CPU_DYING:
1461 case CPU_DYING_FROZEN:
1462 disable_percpu_irq(vgic_maint_irq);
1463 break;
1464 }
1465
1466 return NOTIFY_OK;
1467}
1468
1469static struct notifier_block vgic_cpu_nb = {
1470 .notifier_call = vgic_cpu_notify,
1471};
1472
1473int kvm_vgic_hyp_init(void)
1474{
1475 int ret;
1476 struct resource vctrl_res;
1477 struct resource vcpu_res;
1478
1479 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1480 if (!vgic_node) {
1481 kvm_err("error: no compatible vgic node in DT\n");
1482 return -ENODEV;
1483 }
1484
1485 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1486 if (!vgic_maint_irq) {
1487 kvm_err("error getting vgic maintenance irq from DT\n");
1488 ret = -ENXIO;
1489 goto out;
1490 }
1491
1492 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1493 "vgic", kvm_get_running_vcpus());
1494 if (ret) {
1495 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1496 goto out;
1497 }
1498
553f809e 1499 ret = __register_cpu_notifier(&vgic_cpu_nb);
01ac5e34
MZ
1500 if (ret) {
1501 kvm_err("Cannot register vgic CPU notifier\n");
1502 goto out_free_irq;
1503 }
1504
1505 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1506 if (ret) {
1507 kvm_err("Cannot obtain VCTRL resource\n");
1508 goto out_free_irq;
1509 }
1510
1511 vgic_vctrl_base = of_iomap(vgic_node, 2);
1512 if (!vgic_vctrl_base) {
1513 kvm_err("Cannot ioremap VCTRL\n");
1514 ret = -ENOMEM;
1515 goto out_free_irq;
1516 }
1517
1518 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1519 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1520
1521 ret = create_hyp_io_mappings(vgic_vctrl_base,
1522 vgic_vctrl_base + resource_size(&vctrl_res),
1523 vctrl_res.start);
1524 if (ret) {
1525 kvm_err("Cannot map VCTRL into hyp\n");
1526 goto out_unmap;
1527 }
1528
01ac5e34
MZ
1529 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1530 kvm_err("Cannot obtain VCPU resource\n");
1531 ret = -ENXIO;
1532 goto out_unmap;
1533 }
63afbe7a
WD
1534
1535 if (!PAGE_ALIGNED(vcpu_res.start)) {
1536 kvm_err("GICV physical address 0x%llx not page aligned\n",
1537 (unsigned long long)vcpu_res.start);
1538 ret = -ENXIO;
1539 goto out_unmap;
1540 }
1541
1542 if (!PAGE_ALIGNED(resource_size(&vcpu_res))) {
1543 kvm_err("GICV size 0x%llx not a multiple of page size 0x%lx\n",
1544 (unsigned long long)resource_size(&vcpu_res),
1545 PAGE_SIZE);
1546 ret = -ENXIO;
1547 goto out_unmap;
1548 }
1549
01ac5e34
MZ
1550 vgic_vcpu_base = vcpu_res.start;
1551
63afbe7a
WD
1552 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1553 vctrl_res.start, vgic_maint_irq);
1554 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1555
01ac5e34
MZ
1556 goto out;
1557
1558out_unmap:
1559 iounmap(vgic_vctrl_base);
1560out_free_irq:
1561 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1562out:
1563 of_node_put(vgic_node);
1564 return ret;
1565}
1566
e1ba0207
CD
1567/**
1568 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1569 * @kvm: pointer to the kvm struct
1570 *
1571 * Map the virtual CPU interface into the VM before running any VCPUs. We
1572 * can't do this at creation time, because user space must first set the
1573 * virtual CPU interface address in the guest physical address space. Also
1574 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1575 */
01ac5e34
MZ
1576int kvm_vgic_init(struct kvm *kvm)
1577{
1578 int ret = 0, i;
1579
e1ba0207
CD
1580 if (!irqchip_in_kernel(kvm))
1581 return 0;
1582
01ac5e34
MZ
1583 mutex_lock(&kvm->lock);
1584
1585 if (vgic_initialized(kvm))
1586 goto out;
1587
1588 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1589 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1590 kvm_err("Need to set vgic cpu and dist addresses first\n");
1591 ret = -ENXIO;
1592 goto out;
1593 }
1594
1595 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1596 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1597 if (ret) {
1598 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1599 goto out;
1600 }
1601
1602 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1603 vgic_set_target_reg(kvm, 0, i);
1604
1605 kvm->arch.vgic.ready = true;
1606out:
1607 mutex_unlock(&kvm->lock);
1608 return ret;
1609}
1610
1611int kvm_vgic_create(struct kvm *kvm)
1612{
7330672b
CD
1613 int i, vcpu_lock_idx = -1, ret = 0;
1614 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1615
1616 mutex_lock(&kvm->lock);
1617
7330672b 1618 if (kvm->arch.vgic.vctrl_base) {
01ac5e34
MZ
1619 ret = -EEXIST;
1620 goto out;
1621 }
1622
7330672b
CD
1623 /*
1624 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1625 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1626 * that no other VCPUs are run while we create the vgic.
1627 */
1628 kvm_for_each_vcpu(i, vcpu, kvm) {
1629 if (!mutex_trylock(&vcpu->mutex))
1630 goto out_unlock;
1631 vcpu_lock_idx = i;
1632 }
1633
1634 kvm_for_each_vcpu(i, vcpu, kvm) {
1635 if (vcpu->arch.has_run_once) {
1636 ret = -EBUSY;
1637 goto out_unlock;
1638 }
1639 }
1640
01ac5e34
MZ
1641 spin_lock_init(&kvm->arch.vgic.lock);
1642 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1643 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1644 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1645
7330672b
CD
1646out_unlock:
1647 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1648 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1649 mutex_unlock(&vcpu->mutex);
1650 }
1651
01ac5e34
MZ
1652out:
1653 mutex_unlock(&kvm->lock);
1654 return ret;
1655}
1656
330690cd
CD
1657static bool vgic_ioaddr_overlap(struct kvm *kvm)
1658{
1659 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1660 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1661
1662 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1663 return 0;
1664 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1665 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1666 return -EBUSY;
1667 return 0;
1668}
1669
1670static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1671 phys_addr_t addr, phys_addr_t size)
1672{
1673 int ret;
1674
ce01e4e8
CD
1675 if (addr & ~KVM_PHYS_MASK)
1676 return -E2BIG;
1677
1678 if (addr & (SZ_4K - 1))
1679 return -EINVAL;
1680
330690cd
CD
1681 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1682 return -EEXIST;
1683 if (addr + size < addr)
1684 return -EINVAL;
1685
30c21170 1686 *ioaddr = addr;
330690cd
CD
1687 ret = vgic_ioaddr_overlap(kvm);
1688 if (ret)
30c21170
HW
1689 *ioaddr = VGIC_ADDR_UNDEF;
1690
330690cd
CD
1691 return ret;
1692}
1693
ce01e4e8
CD
1694/**
1695 * kvm_vgic_addr - set or get vgic VM base addresses
1696 * @kvm: pointer to the vm struct
1697 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1698 * @addr: pointer to address value
1699 * @write: if true set the address in the VM address space, if false read the
1700 * address
1701 *
1702 * Set or get the vgic base addresses for the distributor and the virtual CPU
1703 * interface in the VM physical address space. These addresses are properties
1704 * of the emulated core/SoC and therefore user space initially knows this
1705 * information.
1706 */
1707int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1708{
1709 int r = 0;
1710 struct vgic_dist *vgic = &kvm->arch.vgic;
1711
330690cd
CD
1712 mutex_lock(&kvm->lock);
1713 switch (type) {
1714 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
1715 if (write) {
1716 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1717 *addr, KVM_VGIC_V2_DIST_SIZE);
1718 } else {
1719 *addr = vgic->vgic_dist_base;
1720 }
330690cd
CD
1721 break;
1722 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
1723 if (write) {
1724 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1725 *addr, KVM_VGIC_V2_CPU_SIZE);
1726 } else {
1727 *addr = vgic->vgic_cpu_base;
1728 }
330690cd
CD
1729 break;
1730 default:
1731 r = -ENODEV;
1732 }
1733
1734 mutex_unlock(&kvm->lock);
1735 return r;
1736}
7330672b 1737
c07a0191
CD
1738static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1739 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1740{
fa20f5ae
CD
1741 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1742 u32 reg, mask = 0, shift = 0;
1743 bool updated = false;
1744
1745 switch (offset & ~0x3) {
1746 case GIC_CPU_CTRL:
1747 mask = GICH_VMCR_CTRL_MASK;
1748 shift = GICH_VMCR_CTRL_SHIFT;
1749 break;
1750 case GIC_CPU_PRIMASK:
1751 mask = GICH_VMCR_PRIMASK_MASK;
1752 shift = GICH_VMCR_PRIMASK_SHIFT;
1753 break;
1754 case GIC_CPU_BINPOINT:
1755 mask = GICH_VMCR_BINPOINT_MASK;
1756 shift = GICH_VMCR_BINPOINT_SHIFT;
1757 break;
1758 case GIC_CPU_ALIAS_BINPOINT:
1759 mask = GICH_VMCR_ALIAS_BINPOINT_MASK;
1760 shift = GICH_VMCR_ALIAS_BINPOINT_SHIFT;
1761 break;
1762 }
1763
1764 if (!mmio->is_write) {
1765 reg = (vgic_cpu->vgic_vmcr & mask) >> shift;
1766 mmio_data_write(mmio, ~0, reg);
1767 } else {
1768 reg = mmio_data_read(mmio, ~0);
1769 reg = (reg << shift) & mask;
1770 if (reg != (vgic_cpu->vgic_vmcr & mask))
1771 updated = true;
1772 vgic_cpu->vgic_vmcr &= ~mask;
1773 vgic_cpu->vgic_vmcr |= reg;
1774 }
1775 return updated;
1776}
1777
1778static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1779 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1780{
1781 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
c07a0191
CD
1782}
1783
fa20f5ae
CD
1784static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1785 struct kvm_exit_mmio *mmio,
1786 phys_addr_t offset)
1787{
1788 u32 reg;
1789
1790 if (mmio->is_write)
1791 return false;
1792
1793 /* GICC_IIDR */
1794 reg = (PRODUCT_ID_KVM << 20) |
1795 (GICC_ARCH_VERSION_V2 << 16) |
1796 (IMPLEMENTER_ARM << 0);
1797 mmio_data_write(mmio, ~0, reg);
1798 return false;
1799}
1800
1801/*
1802 * CPU Interface Register accesses - these are not accessed by the VM, but by
1803 * user space for saving and restoring VGIC state.
1804 */
c07a0191
CD
1805static const struct mmio_range vgic_cpu_ranges[] = {
1806 {
1807 .base = GIC_CPU_CTRL,
1808 .len = 12,
1809 .handle_mmio = handle_cpu_mmio_misc,
1810 },
1811 {
1812 .base = GIC_CPU_ALIAS_BINPOINT,
1813 .len = 4,
fa20f5ae 1814 .handle_mmio = handle_mmio_abpr,
c07a0191
CD
1815 },
1816 {
1817 .base = GIC_CPU_ACTIVEPRIO,
1818 .len = 16,
fa20f5ae 1819 .handle_mmio = handle_mmio_raz_wi,
c07a0191
CD
1820 },
1821 {
1822 .base = GIC_CPU_IDENT,
1823 .len = 4,
fa20f5ae 1824 .handle_mmio = handle_cpu_mmio_ident,
c07a0191
CD
1825 },
1826};
1827
1828static int vgic_attr_regs_access(struct kvm_device *dev,
1829 struct kvm_device_attr *attr,
1830 u32 *reg, bool is_write)
1831{
1832 const struct mmio_range *r = NULL, *ranges;
1833 phys_addr_t offset;
1834 int ret, cpuid, c;
1835 struct kvm_vcpu *vcpu, *tmp_vcpu;
1836 struct vgic_dist *vgic;
1837 struct kvm_exit_mmio mmio;
1838
1839 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1840 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1841 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1842
1843 mutex_lock(&dev->kvm->lock);
1844
1845 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1846 ret = -EINVAL;
1847 goto out;
1848 }
1849
1850 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1851 vgic = &dev->kvm->arch.vgic;
1852
1853 mmio.len = 4;
1854 mmio.is_write = is_write;
1855 if (is_write)
1856 mmio_data_write(&mmio, ~0, *reg);
1857 switch (attr->group) {
1858 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1859 mmio.phys_addr = vgic->vgic_dist_base + offset;
1860 ranges = vgic_dist_ranges;
1861 break;
1862 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1863 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1864 ranges = vgic_cpu_ranges;
1865 break;
1866 default:
1867 BUG();
1868 }
1869 r = find_matching_range(ranges, &mmio, offset);
1870
1871 if (unlikely(!r || !r->handle_mmio)) {
1872 ret = -ENXIO;
1873 goto out;
1874 }
1875
1876
1877 spin_lock(&vgic->lock);
1878
1879 /*
1880 * Ensure that no other VCPU is running by checking the vcpu->cpu
1881 * field. If no other VPCUs are running we can safely access the VGIC
1882 * state, because even if another VPU is run after this point, that
1883 * VCPU will not touch the vgic state, because it will block on
1884 * getting the vgic->lock in kvm_vgic_sync_hwstate().
1885 */
1886 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1887 if (unlikely(tmp_vcpu->cpu != -1)) {
1888 ret = -EBUSY;
1889 goto out_vgic_unlock;
1890 }
1891 }
1892
cbd333a4
CD
1893 /*
1894 * Move all pending IRQs from the LRs on all VCPUs so the pending
1895 * state can be properly represented in the register state accessible
1896 * through this API.
1897 */
1898 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1899 vgic_unqueue_irqs(tmp_vcpu);
1900
c07a0191
CD
1901 offset -= r->base;
1902 r->handle_mmio(vcpu, &mmio, offset);
1903
1904 if (!is_write)
1905 *reg = mmio_data_read(&mmio, ~0);
1906
1907 ret = 0;
1908out_vgic_unlock:
1909 spin_unlock(&vgic->lock);
1910out:
1911 mutex_unlock(&dev->kvm->lock);
1912 return ret;
1913}
1914
7330672b
CD
1915static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1916{
ce01e4e8
CD
1917 int r;
1918
1919 switch (attr->group) {
1920 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1921 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1922 u64 addr;
1923 unsigned long type = (unsigned long)attr->attr;
1924
1925 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1926 return -EFAULT;
1927
1928 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1929 return (r == -ENODEV) ? -ENXIO : r;
1930 }
c07a0191
CD
1931
1932 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1933 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1934 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1935 u32 reg;
1936
1937 if (get_user(reg, uaddr))
1938 return -EFAULT;
1939
1940 return vgic_attr_regs_access(dev, attr, &reg, true);
1941 }
1942
ce01e4e8
CD
1943 }
1944
7330672b
CD
1945 return -ENXIO;
1946}
1947
1948static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1949{
ce01e4e8
CD
1950 int r = -ENXIO;
1951
1952 switch (attr->group) {
1953 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1954 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1955 u64 addr;
1956 unsigned long type = (unsigned long)attr->attr;
1957
1958 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1959 if (r)
1960 return (r == -ENODEV) ? -ENXIO : r;
1961
1962 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1963 return -EFAULT;
c07a0191
CD
1964 break;
1965 }
1966
1967 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1968 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1969 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1970 u32 reg = 0;
1971
1972 r = vgic_attr_regs_access(dev, attr, &reg, false);
1973 if (r)
1974 return r;
1975 r = put_user(reg, uaddr);
1976 break;
ce01e4e8 1977 }
c07a0191 1978
ce01e4e8
CD
1979 }
1980
1981 return r;
7330672b
CD
1982}
1983
c07a0191
CD
1984static int vgic_has_attr_regs(const struct mmio_range *ranges,
1985 phys_addr_t offset)
1986{
1987 struct kvm_exit_mmio dev_attr_mmio;
1988
1989 dev_attr_mmio.len = 4;
1990 if (find_matching_range(ranges, &dev_attr_mmio, offset))
1991 return 0;
1992 else
1993 return -ENXIO;
1994}
1995
7330672b
CD
1996static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1997{
c07a0191
CD
1998 phys_addr_t offset;
1999
ce01e4e8
CD
2000 switch (attr->group) {
2001 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2002 switch (attr->attr) {
2003 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2004 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2005 return 0;
2006 }
2007 break;
c07a0191
CD
2008 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2009 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2010 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2011 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2012 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2013 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
ce01e4e8 2014 }
7330672b
CD
2015 return -ENXIO;
2016}
2017
2018static void vgic_destroy(struct kvm_device *dev)
2019{
2020 kfree(dev);
2021}
2022
2023static int vgic_create(struct kvm_device *dev, u32 type)
2024{
2025 return kvm_vgic_create(dev->kvm);
2026}
2027
2028struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2029 .name = "kvm-arm-vgic",
2030 .create = vgic_create,
2031 .destroy = vgic_destroy,
2032 .set_attr = vgic_set_attr,
2033 .get_attr = vgic_get_attr,
2034 .has_attr = vgic_has_attr,
2035};