]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - virt/kvm/kvm_main.c
KVM: VMX: pass correct DR6 for GD userspace exit
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
6aa8b732 54
e495606d 55#include <asm/processor.h>
2ea75be3 56#include <asm/ioctl.h>
7c0f6ba6 57#include <linux/uaccess.h>
3e021bf5 58#include <asm/pgtable.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
3c3c29fd 62#include "vfio.h"
5f94c174 63
229456fc
MT
64#define CREATE_TRACE_POINTS
65#include <trace/events/kvm.h>
66
536a6f88
JF
67/* Worst case buffer size needed for holding an integer. */
68#define ITOA_MAX_LEN 12
69
6aa8b732
AK
70MODULE_AUTHOR("Qumranet");
71MODULE_LICENSE("GPL");
72
920552b2 73/* Architectures should define their poll value according to the halt latency */
ec76d819 74unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 75module_param(halt_poll_ns, uint, 0644);
ec76d819 76EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 77
aca6ff29 78/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 79unsigned int halt_poll_ns_grow = 2;
039c5d1b 80module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 81EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 82
49113d36
NW
83/* The start value to grow halt_poll_ns from */
84unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85module_param(halt_poll_ns_grow_start, uint, 0644);
86EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
aca6ff29 88/* Default resets per-vcpu halt_poll_ns . */
ec76d819 89unsigned int halt_poll_ns_shrink;
039c5d1b 90module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 91EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 92
fa40a821
MT
93/*
94 * Ordering of locks:
95 *
b7d409de 96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
97 */
98
0d9ce162 99DEFINE_MUTEX(kvm_lock);
4a937f96 100static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 101LIST_HEAD(vm_list);
133de902 102
7f59f492 103static cpumask_var_t cpus_hardware_enabled;
f4fee932 104static int kvm_usage_count;
10474ae8 105static atomic_t hardware_enable_failed;
1b6c0168 106
aaba298c 107static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 108
15ad7146 109static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 110static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 111
76f7c879 112struct dentry *kvm_debugfs_dir;
e23a808b 113EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 114
536a6f88 115static int kvm_debugfs_num_entries;
09cbcef6 116static const struct file_operations stat_fops_per_vm;
536a6f88 117
bccf2150
AK
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
de8e5d74 120#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
7ddfd3e0
MZ
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
9cb09e7c
MZ
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
7ddfd3e0
MZ
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
1dda606c 141#endif
10474ae8
AG
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
bccf2150 144
e93f8a0f 145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 146
bc009e43 147static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
e93f8a0f 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
286de8f6
CI
152#define KVM_EVENT_CREATE_VM 0
153#define KVM_EVENT_DESTROY_VM 1
154static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155static unsigned long long kvm_createvm_count;
156static unsigned long long kvm_active_vms;
157
93065ac7
MH
158__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end, bool blockable)
b1394e74 160{
93065ac7 161 return 0;
b1394e74
RK
162}
163
a78986aa
SC
164bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165{
166 /*
167 * The metadata used by is_zone_device_page() to determine whether or
168 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169 * the device has been pinned, e.g. by get_user_pages(). WARN if the
170 * page_count() is zero to help detect bad usage of this helper.
171 */
172 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 return false;
174
175 return is_zone_device_page(pfn_to_page(pfn));
176}
177
ba049e93 178bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 179{
a78986aa
SC
180 /*
181 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182 * perspective they are "normal" pages, albeit with slightly different
183 * usage rules.
184 */
11feeb49 185 if (pfn_valid(pfn))
a78986aa 186 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 187 !is_zero_pfn(pfn) &&
a78986aa 188 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
189
190 return true;
191}
192
005ba37c
SC
193bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194{
195 struct page *page = pfn_to_page(pfn);
196
197 if (!PageTransCompoundMap(page))
198 return false;
199
200 return is_transparent_hugepage(compound_head(page));
201}
202
bccf2150
AK
203/*
204 * Switches to specified vcpu, until a matching vcpu_put()
205 */
ec7660cc 206void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 207{
ec7660cc 208 int cpu = get_cpu();
7495e22b
PB
209
210 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 211 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 212 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 213 put_cpu();
6aa8b732 214}
2f1fe811 215EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 216
313a3dc7 217void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 218{
15ad7146 219 preempt_disable();
313a3dc7 220 kvm_arch_vcpu_put(vcpu);
15ad7146 221 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 222 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 223 preempt_enable();
6aa8b732 224}
2f1fe811 225EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 226
7a97cec2
PB
227/* TODO: merge with kvm_arch_vcpu_should_kick */
228static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229{
230 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232 /*
233 * We need to wait for the VCPU to reenable interrupts and get out of
234 * READING_SHADOW_PAGE_TABLES mode.
235 */
236 if (req & KVM_REQUEST_WAIT)
237 return mode != OUTSIDE_GUEST_MODE;
238
239 /*
240 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 */
242 return mode == IN_GUEST_MODE;
243}
244
d9e368d6
AK
245static void ack_flush(void *_completed)
246{
d9e368d6
AK
247}
248
b49defe8
PB
249static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250{
251 if (unlikely(!cpus))
252 cpus = cpu_online_mask;
253
254 if (cpumask_empty(cpus))
255 return false;
256
257 smp_call_function_many(cpus, ack_flush, NULL, wait);
258 return true;
259}
260
7053df4e
VK
261bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 263{
597a5f55 264 int i, cpu, me;
d9e368d6 265 struct kvm_vcpu *vcpu;
7053df4e 266 bool called;
6ef7a1bc 267
3cba4130 268 me = get_cpu();
7053df4e 269
988a2cae 270 kvm_for_each_vcpu(i, vcpu, kvm) {
a812297c 271 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
7053df4e
VK
272 continue;
273
3cba4130 274 kvm_make_request(req, vcpu);
d9e368d6 275 cpu = vcpu->cpu;
6b7e2d09 276
178f02ff
RK
277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 continue;
6c6e8360 279
7053df4e 280 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 281 kvm_request_needs_ipi(vcpu, req))
7053df4e 282 __cpumask_set_cpu(cpu, tmp);
49846896 283 }
7053df4e
VK
284
285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 286 put_cpu();
7053df4e
VK
287
288 return called;
289}
290
291bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
292{
293 cpumask_var_t cpus;
294 bool called;
7053df4e
VK
295
296 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
297
a812297c 298 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
7053df4e 299
6ef7a1bc 300 free_cpumask_var(cpus);
49846896 301 return called;
d9e368d6
AK
302}
303
a6d51016 304#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 305void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 306{
4ae3cb3a
LT
307 /*
308 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
309 * kvm_make_all_cpus_request.
310 */
311 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
312
313 /*
314 * We want to publish modifications to the page tables before reading
315 * mode. Pairs with a memory barrier in arch-specific code.
316 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
317 * and smp_mb in walk_shadow_page_lockless_begin/end.
318 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
319 *
320 * There is already an smp_mb__after_atomic() before
321 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
322 * barrier here.
323 */
b08660e5
TL
324 if (!kvm_arch_flush_remote_tlb(kvm)
325 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
49846896 326 ++kvm->stat.remote_tlb_flush;
a086f6a1 327 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 328}
2ba9f0d8 329EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 330#endif
2e53d63a 331
49846896
RR
332void kvm_reload_remote_mmus(struct kvm *kvm)
333{
445b8236 334 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 335}
2e53d63a 336
8bd826d6 337static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 338{
fb3f0f51
RR
339 mutex_init(&vcpu->mutex);
340 vcpu->cpu = -1;
fb3f0f51
RR
341 vcpu->kvm = kvm;
342 vcpu->vcpu_id = id;
34bb10b7 343 vcpu->pid = NULL;
8577370f 344 init_swait_queue_head(&vcpu->wq);
af585b92 345 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 346
bf9f6ac8
FW
347 vcpu->pre_pcpu = -1;
348 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
349
4c088493
R
350 kvm_vcpu_set_in_spin_loop(vcpu, false);
351 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 352 vcpu->preempted = false;
d73eb57b 353 vcpu->ready = false;
d5c48deb 354 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fb3f0f51 355}
fb3f0f51 356
4543bdc0
SC
357void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
358{
359 kvm_arch_vcpu_destroy(vcpu);
e529ef66 360
9941d224
SC
361 /*
362 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
363 * the vcpu->pid pointer, and at destruction time all file descriptors
364 * are already gone.
365 */
366 put_pid(rcu_dereference_protected(vcpu->pid, 1));
367
8bd826d6 368 free_page((unsigned long)vcpu->run);
e529ef66 369 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0
SC
370}
371EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
372
e930bffe
AA
373#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
374static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
375{
376 return container_of(mn, struct kvm, mmu_notifier);
377}
378
3da0dd43
IE
379static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
380 struct mm_struct *mm,
381 unsigned long address,
382 pte_t pte)
383{
384 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 385 int idx;
3da0dd43 386
bc6678a3 387 idx = srcu_read_lock(&kvm->srcu);
3da0dd43
IE
388 spin_lock(&kvm->mmu_lock);
389 kvm->mmu_notifier_seq++;
0cf853c5
LT
390
391 if (kvm_set_spte_hva(kvm, address, pte))
392 kvm_flush_remote_tlbs(kvm);
393
3da0dd43 394 spin_unlock(&kvm->mmu_lock);
bc6678a3 395 srcu_read_unlock(&kvm->srcu, idx);
3da0dd43
IE
396}
397
93065ac7 398static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
5d6527a7 399 const struct mmu_notifier_range *range)
e930bffe
AA
400{
401 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 402 int need_tlb_flush = 0, idx;
93065ac7 403 int ret;
e930bffe 404
bc6678a3 405 idx = srcu_read_lock(&kvm->srcu);
e930bffe
AA
406 spin_lock(&kvm->mmu_lock);
407 /*
408 * The count increase must become visible at unlock time as no
409 * spte can be established without taking the mmu_lock and
410 * count is also read inside the mmu_lock critical section.
411 */
412 kvm->mmu_notifier_count++;
5d6527a7 413 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
a4ee1ca4 414 need_tlb_flush |= kvm->tlbs_dirty;
e930bffe
AA
415 /* we've to flush the tlb before the pages can be freed */
416 if (need_tlb_flush)
417 kvm_flush_remote_tlbs(kvm);
565f3be2
TY
418
419 spin_unlock(&kvm->mmu_lock);
b1394e74 420
5d6527a7 421 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
dfcd6660
JG
422 range->end,
423 mmu_notifier_range_blockable(range));
b1394e74 424
565f3be2 425 srcu_read_unlock(&kvm->srcu, idx);
93065ac7
MH
426
427 return ret;
e930bffe
AA
428}
429
430static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
5d6527a7 431 const struct mmu_notifier_range *range)
e930bffe
AA
432{
433 struct kvm *kvm = mmu_notifier_to_kvm(mn);
434
435 spin_lock(&kvm->mmu_lock);
436 /*
437 * This sequence increase will notify the kvm page fault that
438 * the page that is going to be mapped in the spte could have
439 * been freed.
440 */
441 kvm->mmu_notifier_seq++;
a355aa54 442 smp_wmb();
e930bffe
AA
443 /*
444 * The above sequence increase must be visible before the
a355aa54
PM
445 * below count decrease, which is ensured by the smp_wmb above
446 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
447 */
448 kvm->mmu_notifier_count--;
449 spin_unlock(&kvm->mmu_lock);
450
451 BUG_ON(kvm->mmu_notifier_count < 0);
452}
453
454static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
455 struct mm_struct *mm,
57128468
ALC
456 unsigned long start,
457 unsigned long end)
e930bffe
AA
458{
459 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 460 int young, idx;
e930bffe 461
bc6678a3 462 idx = srcu_read_lock(&kvm->srcu);
e930bffe 463 spin_lock(&kvm->mmu_lock);
e930bffe 464
57128468 465 young = kvm_age_hva(kvm, start, end);
e930bffe
AA
466 if (young)
467 kvm_flush_remote_tlbs(kvm);
468
565f3be2
TY
469 spin_unlock(&kvm->mmu_lock);
470 srcu_read_unlock(&kvm->srcu, idx);
471
e930bffe
AA
472 return young;
473}
474
1d7715c6
VD
475static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
476 struct mm_struct *mm,
477 unsigned long start,
478 unsigned long end)
479{
480 struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 int young, idx;
482
483 idx = srcu_read_lock(&kvm->srcu);
484 spin_lock(&kvm->mmu_lock);
485 /*
486 * Even though we do not flush TLB, this will still adversely
487 * affect performance on pre-Haswell Intel EPT, where there is
488 * no EPT Access Bit to clear so that we have to tear down EPT
489 * tables instead. If we find this unacceptable, we can always
490 * add a parameter to kvm_age_hva so that it effectively doesn't
491 * do anything on clear_young.
492 *
493 * Also note that currently we never issue secondary TLB flushes
494 * from clear_young, leaving this job up to the regular system
495 * cadence. If we find this inaccurate, we might come up with a
496 * more sophisticated heuristic later.
497 */
498 young = kvm_age_hva(kvm, start, end);
499 spin_unlock(&kvm->mmu_lock);
500 srcu_read_unlock(&kvm->srcu, idx);
501
502 return young;
503}
504
8ee53820
AA
505static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
506 struct mm_struct *mm,
507 unsigned long address)
508{
509 struct kvm *kvm = mmu_notifier_to_kvm(mn);
510 int young, idx;
511
512 idx = srcu_read_lock(&kvm->srcu);
513 spin_lock(&kvm->mmu_lock);
514 young = kvm_test_age_hva(kvm, address);
515 spin_unlock(&kvm->mmu_lock);
516 srcu_read_unlock(&kvm->srcu, idx);
517
518 return young;
519}
520
85db06e5
MT
521static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
522 struct mm_struct *mm)
523{
524 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
525 int idx;
526
527 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 528 kvm_arch_flush_shadow_all(kvm);
eda2beda 529 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
530}
531
e930bffe 532static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e930bffe
AA
533 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
534 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
535 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 536 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 537 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 538 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 539 .release = kvm_mmu_notifier_release,
e930bffe 540};
4c07b0a4
AK
541
542static int kvm_init_mmu_notifier(struct kvm *kvm)
543{
544 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
545 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
546}
547
548#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
549
550static int kvm_init_mmu_notifier(struct kvm *kvm)
551{
552 return 0;
553}
554
e930bffe
AA
555#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
556
a47d2b07 557static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
558{
559 int i;
a47d2b07 560 struct kvm_memslots *slots;
bf3e05bc 561
b12ce36a 562 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
563 if (!slots)
564 return NULL;
565
bf3e05bc 566 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
36947254 567 slots->id_to_index[i] = -1;
a47d2b07
PB
568
569 return slots;
570}
571
572static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
573{
574 if (!memslot->dirty_bitmap)
575 return;
576
577 kvfree(memslot->dirty_bitmap);
578 memslot->dirty_bitmap = NULL;
579}
580
e96c81ee 581static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 582{
e96c81ee 583 kvm_destroy_dirty_bitmap(slot);
a47d2b07 584
e96c81ee 585 kvm_arch_free_memslot(kvm, slot);
a47d2b07 586
e96c81ee
SC
587 slot->flags = 0;
588 slot->npages = 0;
a47d2b07
PB
589}
590
591static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
592{
593 struct kvm_memory_slot *memslot;
594
595 if (!slots)
596 return;
597
598 kvm_for_each_memslot(memslot, slots)
e96c81ee 599 kvm_free_memslot(kvm, memslot);
a47d2b07
PB
600
601 kvfree(slots);
bf3e05bc
XG
602}
603
536a6f88
JF
604static void kvm_destroy_vm_debugfs(struct kvm *kvm)
605{
606 int i;
607
608 if (!kvm->debugfs_dentry)
609 return;
610
611 debugfs_remove_recursive(kvm->debugfs_dentry);
612
9d5a1dce
LC
613 if (kvm->debugfs_stat_data) {
614 for (i = 0; i < kvm_debugfs_num_entries; i++)
615 kfree(kvm->debugfs_stat_data[i]);
616 kfree(kvm->debugfs_stat_data);
617 }
536a6f88
JF
618}
619
620static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
621{
622 char dir_name[ITOA_MAX_LEN * 2];
623 struct kvm_stat_data *stat_data;
624 struct kvm_stats_debugfs_item *p;
625
626 if (!debugfs_initialized())
627 return 0;
628
629 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 630 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
631
632 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
633 sizeof(*kvm->debugfs_stat_data),
b12ce36a 634 GFP_KERNEL_ACCOUNT);
536a6f88
JF
635 if (!kvm->debugfs_stat_data)
636 return -ENOMEM;
637
638 for (p = debugfs_entries; p->name; p++) {
b12ce36a 639 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
640 if (!stat_data)
641 return -ENOMEM;
642
643 stat_data->kvm = kvm;
09cbcef6 644 stat_data->dbgfs_item = p;
536a6f88 645 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
09cbcef6
MP
646 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
647 kvm->debugfs_dentry, stat_data,
648 &stat_fops_per_vm);
536a6f88
JF
649 }
650 return 0;
651}
652
1aa9b957
JS
653/*
654 * Called after the VM is otherwise initialized, but just before adding it to
655 * the vm_list.
656 */
657int __weak kvm_arch_post_init_vm(struct kvm *kvm)
658{
659 return 0;
660}
661
662/*
663 * Called just after removing the VM from the vm_list, but before doing any
664 * other destruction.
665 */
666void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
667{
668}
669
e08b9637 670static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 671{
d89f5eff 672 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
673 int r = -ENOMEM;
674 int i;
6aa8b732 675
d89f5eff
JK
676 if (!kvm)
677 return ERR_PTR(-ENOMEM);
678
e9ad4ec8 679 spin_lock_init(&kvm->mmu_lock);
f1f10076 680 mmgrab(current->mm);
e9ad4ec8
PB
681 kvm->mm = current->mm;
682 kvm_eventfd_init(kvm);
683 mutex_init(&kvm->lock);
684 mutex_init(&kvm->irq_lock);
685 mutex_init(&kvm->slots_lock);
e9ad4ec8
PB
686 INIT_LIST_HEAD(&kvm->devices);
687
1e702d9a
AW
688 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
689
8a44119a
PB
690 if (init_srcu_struct(&kvm->srcu))
691 goto out_err_no_srcu;
692 if (init_srcu_struct(&kvm->irq_srcu))
693 goto out_err_no_irq_srcu;
694
e2d3fcaf 695 refcount_set(&kvm->users_count, 1);
f481b069 696 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 697 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 698
4bd518f1 699 if (!slots)
a97b0e77 700 goto out_err_no_arch_destroy_vm;
0e32958e 701 /* Generations must be different for each address space. */
164bf7e5 702 slots->generation = i;
4bd518f1 703 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 704 }
00f034a1 705
e93f8a0f 706 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 707 rcu_assign_pointer(kvm->buses[i],
b12ce36a 708 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 709 if (!kvm->buses[i])
a97b0e77 710 goto out_err_no_arch_destroy_vm;
e93f8a0f 711 }
e930bffe 712
e08b9637 713 r = kvm_arch_init_vm(kvm, type);
d89f5eff 714 if (r)
a97b0e77 715 goto out_err_no_arch_destroy_vm;
10474ae8
AG
716
717 r = hardware_enable_all();
718 if (r)
719d93cd 719 goto out_err_no_disable;
10474ae8 720
c77dcacb 721#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 722 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 723#endif
6aa8b732 724
74b5c5bf 725 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
726 if (r)
727 goto out_err_no_mmu_notifier;
728
729 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
730 if (r)
731 goto out_err;
732
0d9ce162 733 mutex_lock(&kvm_lock);
5e58cfe4 734 list_add(&kvm->vm_list, &vm_list);
0d9ce162 735 mutex_unlock(&kvm_lock);
d89f5eff 736
2ecd9d29
PZ
737 preempt_notifier_inc();
738
f17abe9a 739 return kvm;
10474ae8
AG
740
741out_err:
1aa9b957
JS
742#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
743 if (kvm->mmu_notifier.ops)
744 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
745#endif
746out_err_no_mmu_notifier:
10474ae8 747 hardware_disable_all();
719d93cd 748out_err_no_disable:
a97b0e77 749 kvm_arch_destroy_vm(kvm);
a97b0e77 750out_err_no_arch_destroy_vm:
e2d3fcaf 751 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 752 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 753 kfree(kvm_get_bus(kvm, i));
f481b069 754 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 755 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
756 cleanup_srcu_struct(&kvm->irq_srcu);
757out_err_no_irq_srcu:
758 cleanup_srcu_struct(&kvm->srcu);
759out_err_no_srcu:
d89f5eff 760 kvm_arch_free_vm(kvm);
e9ad4ec8 761 mmdrop(current->mm);
10474ae8 762 return ERR_PTR(r);
f17abe9a
AK
763}
764
07f0a7bd
SW
765static void kvm_destroy_devices(struct kvm *kvm)
766{
e6e3b5a6 767 struct kvm_device *dev, *tmp;
07f0a7bd 768
a28ebea2
CD
769 /*
770 * We do not need to take the kvm->lock here, because nobody else
771 * has a reference to the struct kvm at this point and therefore
772 * cannot access the devices list anyhow.
773 */
e6e3b5a6
GT
774 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
775 list_del(&dev->vm_node);
07f0a7bd
SW
776 dev->ops->destroy(dev);
777 }
778}
779
f17abe9a
AK
780static void kvm_destroy_vm(struct kvm *kvm)
781{
e93f8a0f 782 int i;
6d4e4c4f
AK
783 struct mm_struct *mm = kvm->mm;
784
286de8f6 785 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 786 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 787 kvm_arch_sync_events(kvm);
0d9ce162 788 mutex_lock(&kvm_lock);
133de902 789 list_del(&kvm->vm_list);
0d9ce162 790 mutex_unlock(&kvm_lock);
1aa9b957
JS
791 kvm_arch_pre_destroy_vm(kvm);
792
399ec807 793 kvm_free_irq_routing(kvm);
df630b8c 794 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 795 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 796
4a12f951
CB
797 if (bus)
798 kvm_io_bus_destroy(bus);
df630b8c
PX
799 kvm->buses[i] = NULL;
800 }
980da6ce 801 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
802#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
803 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 804#else
2df72e9b 805 kvm_arch_flush_shadow_all(kvm);
5f94c174 806#endif
d19a9cd2 807 kvm_arch_destroy_vm(kvm);
07f0a7bd 808 kvm_destroy_devices(kvm);
f481b069 809 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 810 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 811 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
812 cleanup_srcu_struct(&kvm->srcu);
813 kvm_arch_free_vm(kvm);
2ecd9d29 814 preempt_notifier_dec();
10474ae8 815 hardware_disable_all();
6d4e4c4f 816 mmdrop(mm);
f17abe9a
AK
817}
818
d39f13b0
IE
819void kvm_get_kvm(struct kvm *kvm)
820{
e3736c3e 821 refcount_inc(&kvm->users_count);
d39f13b0
IE
822}
823EXPORT_SYMBOL_GPL(kvm_get_kvm);
824
825void kvm_put_kvm(struct kvm *kvm)
826{
e3736c3e 827 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
828 kvm_destroy_vm(kvm);
829}
830EXPORT_SYMBOL_GPL(kvm_put_kvm);
831
149487bd
SC
832/*
833 * Used to put a reference that was taken on behalf of an object associated
834 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
835 * of the new file descriptor fails and the reference cannot be transferred to
836 * its final owner. In such cases, the caller is still actively using @kvm and
837 * will fail miserably if the refcount unexpectedly hits zero.
838 */
839void kvm_put_kvm_no_destroy(struct kvm *kvm)
840{
841 WARN_ON(refcount_dec_and_test(&kvm->users_count));
842}
843EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 844
f17abe9a
AK
845static int kvm_vm_release(struct inode *inode, struct file *filp)
846{
847 struct kvm *kvm = filp->private_data;
848
721eecbf
GH
849 kvm_irqfd_release(kvm);
850
d39f13b0 851 kvm_put_kvm(kvm);
6aa8b732
AK
852 return 0;
853}
854
515a0127
TY
855/*
856 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 857 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 858 */
3c9bd400 859static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 860{
515a0127 861 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 862
b12ce36a 863 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
864 if (!memslot->dirty_bitmap)
865 return -ENOMEM;
866
a36a57b1
TY
867 return 0;
868}
869
bf3e05bc 870/*
0577d1ab
SC
871 * Delete a memslot by decrementing the number of used slots and shifting all
872 * other entries in the array forward one spot.
bf3e05bc 873 */
0577d1ab
SC
874static inline void kvm_memslot_delete(struct kvm_memslots *slots,
875 struct kvm_memory_slot *memslot)
bf3e05bc 876{
063584d4 877 struct kvm_memory_slot *mslots = slots->memslots;
0577d1ab 878 int i;
f85e2cb5 879
0577d1ab
SC
880 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
881 return;
0e60b079 882
0577d1ab
SC
883 slots->used_slots--;
884
0774a964
SC
885 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
886 atomic_set(&slots->lru_slot, 0);
887
0577d1ab 888 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
7f379cff
IM
889 mslots[i] = mslots[i + 1];
890 slots->id_to_index[mslots[i].id] = i;
7f379cff 891 }
0577d1ab
SC
892 mslots[i] = *memslot;
893 slots->id_to_index[memslot->id] = -1;
894}
895
896/*
897 * "Insert" a new memslot by incrementing the number of used slots. Returns
898 * the new slot's initial index into the memslots array.
899 */
900static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
901{
902 return slots->used_slots++;
903}
904
905/*
906 * Move a changed memslot backwards in the array by shifting existing slots
907 * with a higher GFN toward the front of the array. Note, the changed memslot
908 * itself is not preserved in the array, i.e. not swapped at this time, only
909 * its new index into the array is tracked. Returns the changed memslot's
910 * current index into the memslots array.
911 */
912static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
913 struct kvm_memory_slot *memslot)
914{
915 struct kvm_memory_slot *mslots = slots->memslots;
916 int i;
917
918 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
919 WARN_ON_ONCE(!slots->used_slots))
920 return -1;
efbeec70
PB
921
922 /*
0577d1ab
SC
923 * Move the target memslot backward in the array by shifting existing
924 * memslots with a higher GFN (than the target memslot) towards the
925 * front of the array.
efbeec70 926 */
0577d1ab
SC
927 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
928 if (memslot->base_gfn > mslots[i + 1].base_gfn)
929 break;
930
931 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
f85e2cb5 932
0577d1ab
SC
933 /* Shift the next memslot forward one and update its index. */
934 mslots[i] = mslots[i + 1];
935 slots->id_to_index[mslots[i].id] = i;
936 }
937 return i;
938}
939
940/*
941 * Move a changed memslot forwards in the array by shifting existing slots with
942 * a lower GFN toward the back of the array. Note, the changed memslot itself
943 * is not preserved in the array, i.e. not swapped at this time, only its new
944 * index into the array is tracked. Returns the changed memslot's final index
945 * into the memslots array.
946 */
947static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
948 struct kvm_memory_slot *memslot,
949 int start)
950{
951 struct kvm_memory_slot *mslots = slots->memslots;
952 int i;
953
954 for (i = start; i > 0; i--) {
955 if (memslot->base_gfn < mslots[i - 1].base_gfn)
956 break;
957
958 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
959
960 /* Shift the next memslot back one and update its index. */
961 mslots[i] = mslots[i - 1];
962 slots->id_to_index[mslots[i].id] = i;
963 }
964 return i;
965}
966
967/*
968 * Re-sort memslots based on their GFN to account for an added, deleted, or
969 * moved memslot. Sorting memslots by GFN allows using a binary search during
970 * memslot lookup.
971 *
972 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
973 * at memslots[0] has the highest GFN.
974 *
975 * The sorting algorithm takes advantage of having initially sorted memslots
976 * and knowing the position of the changed memslot. Sorting is also optimized
977 * by not swapping the updated memslot and instead only shifting other memslots
978 * and tracking the new index for the update memslot. Only once its final
979 * index is known is the updated memslot copied into its position in the array.
980 *
981 * - When deleting a memslot, the deleted memslot simply needs to be moved to
982 * the end of the array.
983 *
984 * - When creating a memslot, the algorithm "inserts" the new memslot at the
985 * end of the array and then it forward to its correct location.
986 *
987 * - When moving a memslot, the algorithm first moves the updated memslot
988 * backward to handle the scenario where the memslot's GFN was changed to a
989 * lower value. update_memslots() then falls through and runs the same flow
990 * as creating a memslot to move the memslot forward to handle the scenario
991 * where its GFN was changed to a higher value.
992 *
993 * Note, slots are sorted from highest->lowest instead of lowest->highest for
994 * historical reasons. Originally, invalid memslots where denoted by having
995 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
996 * to the end of the array. The current algorithm uses dedicated logic to
997 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
998 *
999 * The other historical motiviation for highest->lowest was to improve the
1000 * performance of memslot lookup. KVM originally used a linear search starting
1001 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1002 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1003 * single memslot above the 4gb boundary. As the largest memslot is also the
1004 * most likely to be referenced, sorting it to the front of the array was
1005 * advantageous. The current binary search starts from the middle of the array
1006 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1007 */
1008static void update_memslots(struct kvm_memslots *slots,
1009 struct kvm_memory_slot *memslot,
1010 enum kvm_mr_change change)
1011{
1012 int i;
1013
1014 if (change == KVM_MR_DELETE) {
1015 kvm_memslot_delete(slots, memslot);
1016 } else {
1017 if (change == KVM_MR_CREATE)
1018 i = kvm_memslot_insert_back(slots);
1019 else
1020 i = kvm_memslot_move_backward(slots, memslot);
1021 i = kvm_memslot_move_forward(slots, memslot, i);
1022
1023 /*
1024 * Copy the memslot to its new position in memslots and update
1025 * its index accordingly.
1026 */
1027 slots->memslots[i] = *memslot;
1028 slots->id_to_index[memslot->id] = i;
1029 }
bf3e05bc
XG
1030}
1031
09170a49 1032static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1033{
4d8b81ab
XG
1034 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1035
0f8a4de3 1036#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1037 valid_flags |= KVM_MEM_READONLY;
1038#endif
1039
1040 if (mem->flags & ~valid_flags)
a50d64d6
XG
1041 return -EINVAL;
1042
1043 return 0;
1044}
1045
7ec4fb44 1046static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 1047 int as_id, struct kvm_memslots *slots)
7ec4fb44 1048{
f481b069 1049 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 1050 u64 gen = old_memslots->generation;
7ec4fb44 1051
361209e0
SC
1052 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1053 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1054
f481b069 1055 rcu_assign_pointer(kvm->memslots[as_id], slots);
7ec4fb44 1056 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1057
ee3d1570 1058 /*
361209e0 1059 * Increment the new memslot generation a second time, dropping the
00116795 1060 * update in-progress flag and incrementing the generation based on
361209e0
SC
1061 * the number of address spaces. This provides a unique and easily
1062 * identifiable generation number while the memslots are in flux.
1063 */
1064 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1065
1066 /*
4bd518f1
PB
1067 * Generations must be unique even across address spaces. We do not need
1068 * a global counter for that, instead the generation space is evenly split
1069 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1070 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1071 * use generations 1, 3, 5, ...
ee3d1570 1072 */
164bf7e5 1073 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1074
15248258 1075 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1076
15248258 1077 slots->generation = gen;
e59dbe09
TY
1078
1079 return old_memslots;
7ec4fb44
GN
1080}
1081
36947254
SC
1082/*
1083 * Note, at a minimum, the current number of used slots must be allocated, even
1084 * when deleting a memslot, as we need a complete duplicate of the memslots for
1085 * use when invalidating a memslot prior to deleting/moving the memslot.
1086 */
1087static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1088 enum kvm_mr_change change)
1089{
1090 struct kvm_memslots *slots;
1091 size_t old_size, new_size;
1092
1093 old_size = sizeof(struct kvm_memslots) +
1094 (sizeof(struct kvm_memory_slot) * old->used_slots);
1095
1096 if (change == KVM_MR_CREATE)
1097 new_size = old_size + sizeof(struct kvm_memory_slot);
1098 else
1099 new_size = old_size;
1100
1101 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1102 if (likely(slots))
1103 memcpy(slots, old, old_size);
1104
1105 return slots;
1106}
1107
cf47f50b
SC
1108static int kvm_set_memslot(struct kvm *kvm,
1109 const struct kvm_userspace_memory_region *mem,
9d4c197c 1110 struct kvm_memory_slot *old,
cf47f50b
SC
1111 struct kvm_memory_slot *new, int as_id,
1112 enum kvm_mr_change change)
1113{
1114 struct kvm_memory_slot *slot;
1115 struct kvm_memslots *slots;
1116 int r;
1117
36947254 1118 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
cf47f50b
SC
1119 if (!slots)
1120 return -ENOMEM;
cf47f50b
SC
1121
1122 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1123 /*
1124 * Note, the INVALID flag needs to be in the appropriate entry
1125 * in the freshly allocated memslots, not in @old or @new.
1126 */
1127 slot = id_to_memslot(slots, old->id);
1128 slot->flags |= KVM_MEMSLOT_INVALID;
1129
1130 /*
1131 * We can re-use the old memslots, the only difference from the
1132 * newly installed memslots is the invalid flag, which will get
1133 * dropped by update_memslots anyway. We'll also revert to the
1134 * old memslots if preparing the new memory region fails.
1135 */
1136 slots = install_new_memslots(kvm, as_id, slots);
1137
1138 /* From this point no new shadow pages pointing to a deleted,
1139 * or moved, memslot will be created.
1140 *
1141 * validation of sp->gfn happens in:
1142 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1143 * - kvm_is_visible_gfn (mmu_check_root)
1144 */
1145 kvm_arch_flush_shadow_memslot(kvm, slot);
1146 }
1147
1148 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1149 if (r)
1150 goto out_slots;
1151
1152 update_memslots(slots, new, change);
1153 slots = install_new_memslots(kvm, as_id, slots);
1154
1155 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1156
1157 kvfree(slots);
1158 return 0;
1159
1160out_slots:
1161 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1162 slots = install_new_memslots(kvm, as_id, slots);
1163 kvfree(slots);
1164 return r;
1165}
1166
5c0b4f3d
SC
1167static int kvm_delete_memslot(struct kvm *kvm,
1168 const struct kvm_userspace_memory_region *mem,
1169 struct kvm_memory_slot *old, int as_id)
1170{
1171 struct kvm_memory_slot new;
1172 int r;
1173
1174 if (!old->npages)
1175 return -EINVAL;
1176
1177 memset(&new, 0, sizeof(new));
1178 new.id = old->id;
1179
1180 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1181 if (r)
1182 return r;
1183
e96c81ee 1184 kvm_free_memslot(kvm, old);
5c0b4f3d
SC
1185 return 0;
1186}
1187
6aa8b732
AK
1188/*
1189 * Allocate some memory and give it an address in the guest physical address
1190 * space.
1191 *
1192 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1193 *
02d5d55b 1194 * Must be called holding kvm->slots_lock for write.
6aa8b732 1195 */
f78e0e2e 1196int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1197 const struct kvm_userspace_memory_region *mem)
6aa8b732 1198{
6aa8b732 1199 struct kvm_memory_slot old, new;
163da372 1200 struct kvm_memory_slot *tmp;
f64c0398 1201 enum kvm_mr_change change;
163da372
SC
1202 int as_id, id;
1203 int r;
6aa8b732 1204
a50d64d6
XG
1205 r = check_memory_region_flags(mem);
1206 if (r)
71a4c30b 1207 return r;
a50d64d6 1208
f481b069
PB
1209 as_id = mem->slot >> 16;
1210 id = (u16)mem->slot;
1211
6aa8b732
AK
1212 /* General sanity checks */
1213 if (mem->memory_size & (PAGE_SIZE - 1))
71a4c30b 1214 return -EINVAL;
6aa8b732 1215 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1216 return -EINVAL;
fa3d315a 1217 /* We can read the guest memory with __xxx_user() later on. */
f481b069 1218 if ((id < KVM_USER_MEM_SLOTS) &&
fa3d315a 1219 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
96d4f267 1220 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
9e3bb6b6 1221 mem->memory_size)))
71a4c30b 1222 return -EINVAL;
f481b069 1223 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1224 return -EINVAL;
6aa8b732 1225 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1226 return -EINVAL;
6aa8b732 1227
5c0b4f3d
SC
1228 /*
1229 * Make a full copy of the old memslot, the pointer will become stale
1230 * when the memslots are re-sorted by update_memslots(), and the old
1231 * memslot needs to be referenced after calling update_memslots(), e.g.
0dff0846 1232 * to free its resources and for arch specific behavior.
5c0b4f3d 1233 */
0577d1ab
SC
1234 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1235 if (tmp) {
1236 old = *tmp;
1237 tmp = NULL;
1238 } else {
1239 memset(&old, 0, sizeof(old));
1240 old.id = id;
1241 }
163da372 1242
5c0b4f3d
SC
1243 if (!mem->memory_size)
1244 return kvm_delete_memslot(kvm, mem, &old, as_id);
1245
f481b069 1246 new.id = id;
163da372
SC
1247 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1248 new.npages = mem->memory_size >> PAGE_SHIFT;
6aa8b732 1249 new.flags = mem->flags;
414de7ab 1250 new.userspace_addr = mem->userspace_addr;
6aa8b732 1251
163da372
SC
1252 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1253 return -EINVAL;
1254
5c0b4f3d
SC
1255 if (!old.npages) {
1256 change = KVM_MR_CREATE;
163da372
SC
1257 new.dirty_bitmap = NULL;
1258 memset(&new.arch, 0, sizeof(new.arch));
5c0b4f3d
SC
1259 } else { /* Modify an existing slot. */
1260 if ((new.userspace_addr != old.userspace_addr) ||
163da372 1261 (new.npages != old.npages) ||
5c0b4f3d 1262 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
71a4c30b 1263 return -EINVAL;
09170a49 1264
163da372 1265 if (new.base_gfn != old.base_gfn)
5c0b4f3d
SC
1266 change = KVM_MR_MOVE;
1267 else if (new.flags != old.flags)
1268 change = KVM_MR_FLAGS_ONLY;
1269 else /* Nothing to change. */
1270 return 0;
163da372
SC
1271
1272 /* Copy dirty_bitmap and arch from the current memslot. */
1273 new.dirty_bitmap = old.dirty_bitmap;
1274 memcpy(&new.arch, &old.arch, sizeof(new.arch));
09170a49 1275 }
6aa8b732 1276
f64c0398 1277 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee 1278 /* Check for overlaps */
163da372
SC
1279 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1280 if (tmp->id == id)
0a706bee 1281 continue;
163da372
SC
1282 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1283 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
71a4c30b 1284 return -EEXIST;
0a706bee 1285 }
6aa8b732 1286 }
6aa8b732 1287
414de7ab
SC
1288 /* Allocate/free page dirty bitmap as needed */
1289 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1290 new.dirty_bitmap = NULL;
1291 else if (!new.dirty_bitmap) {
3c9bd400 1292 r = kvm_alloc_dirty_bitmap(&new);
71a4c30b
SC
1293 if (r)
1294 return r;
3c9bd400
JZ
1295
1296 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1297 bitmap_set(new.dirty_bitmap, 0, new.npages);
6aa8b732
AK
1298 }
1299
cf47f50b
SC
1300 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1301 if (r)
1302 goto out_bitmap;
82ce2c96 1303
5c0b4f3d
SC
1304 if (old.dirty_bitmap && !new.dirty_bitmap)
1305 kvm_destroy_dirty_bitmap(&old);
6aa8b732
AK
1306 return 0;
1307
bd0e96fd
SC
1308out_bitmap:
1309 if (new.dirty_bitmap && !old.dirty_bitmap)
1310 kvm_destroy_dirty_bitmap(&new);
6aa8b732 1311 return r;
210c7c4d 1312}
f78e0e2e
SY
1313EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1314
1315int kvm_set_memory_region(struct kvm *kvm,
09170a49 1316 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1317{
1318 int r;
1319
79fac95e 1320 mutex_lock(&kvm->slots_lock);
47ae31e2 1321 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1322 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1323 return r;
1324}
210c7c4d
IE
1325EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1326
7940876e
SH
1327static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1328 struct kvm_userspace_memory_region *mem)
210c7c4d 1329{
f481b069 1330 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1331 return -EINVAL;
09170a49 1332
47ae31e2 1333 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1334}
1335
0dff0846 1336#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1337/**
1338 * kvm_get_dirty_log - get a snapshot of dirty pages
1339 * @kvm: pointer to kvm instance
1340 * @log: slot id and address to which we copy the log
1341 * @is_dirty: set to '1' if any dirty pages were found
1342 * @memslot: set to the associated memslot, always valid on success
1343 */
1344int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1345 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1346{
9f6b8029 1347 struct kvm_memslots *slots;
843574a3 1348 int i, as_id, id;
87bf6e7d 1349 unsigned long n;
6aa8b732
AK
1350 unsigned long any = 0;
1351
2a49f61d
SC
1352 *memslot = NULL;
1353 *is_dirty = 0;
1354
f481b069
PB
1355 as_id = log->slot >> 16;
1356 id = (u16)log->slot;
1357 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1358 return -EINVAL;
6aa8b732 1359
f481b069 1360 slots = __kvm_memslots(kvm, as_id);
2a49f61d 1361 *memslot = id_to_memslot(slots, id);
0577d1ab 1362 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 1363 return -ENOENT;
6aa8b732 1364
2a49f61d
SC
1365 kvm_arch_sync_dirty_log(kvm, *memslot);
1366
1367 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 1368
cd1a4a98 1369 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 1370 any = (*memslot)->dirty_bitmap[i];
6aa8b732 1371
2a49f61d 1372 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 1373 return -EFAULT;
6aa8b732 1374
5bb064dc
ZX
1375 if (any)
1376 *is_dirty = 1;
843574a3 1377 return 0;
6aa8b732 1378}
2ba9f0d8 1379EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1380
0dff0846 1381#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1382/**
b8b00220 1383 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1384 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1385 * @kvm: pointer to kvm instance
1386 * @log: slot id and address to which we copy the log
ba0513b5
MS
1387 *
1388 * We need to keep it in mind that VCPU threads can write to the bitmap
1389 * concurrently. So, to avoid losing track of dirty pages we keep the
1390 * following order:
1391 *
1392 * 1. Take a snapshot of the bit and clear it if needed.
1393 * 2. Write protect the corresponding page.
1394 * 3. Copy the snapshot to the userspace.
1395 * 4. Upon return caller flushes TLB's if needed.
1396 *
1397 * Between 2 and 4, the guest may write to the page using the remaining TLB
1398 * entry. This is not a problem because the page is reported dirty using
1399 * the snapshot taken before and step 4 ensures that writes done after
1400 * exiting to userspace will be logged for the next call.
1401 *
1402 */
0dff0846 1403static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 1404{
9f6b8029 1405 struct kvm_memslots *slots;
ba0513b5 1406 struct kvm_memory_slot *memslot;
58d6db34 1407 int i, as_id, id;
ba0513b5
MS
1408 unsigned long n;
1409 unsigned long *dirty_bitmap;
1410 unsigned long *dirty_bitmap_buffer;
0dff0846 1411 bool flush;
ba0513b5 1412
f481b069
PB
1413 as_id = log->slot >> 16;
1414 id = (u16)log->slot;
1415 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1416 return -EINVAL;
ba0513b5 1417
f481b069
PB
1418 slots = __kvm_memslots(kvm, as_id);
1419 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1420 if (!memslot || !memslot->dirty_bitmap)
1421 return -ENOENT;
ba0513b5
MS
1422
1423 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1424
0dff0846
SC
1425 kvm_arch_sync_dirty_log(kvm, memslot);
1426
ba0513b5 1427 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 1428 flush = false;
2a31b9db
PB
1429 if (kvm->manual_dirty_log_protect) {
1430 /*
1431 * Unlike kvm_get_dirty_log, we always return false in *flush,
1432 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1433 * is some code duplication between this function and
1434 * kvm_get_dirty_log, but hopefully all architecture
1435 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1436 * can be eliminated.
1437 */
1438 dirty_bitmap_buffer = dirty_bitmap;
1439 } else {
1440 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1441 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1442
2a31b9db
PB
1443 spin_lock(&kvm->mmu_lock);
1444 for (i = 0; i < n / sizeof(long); i++) {
1445 unsigned long mask;
1446 gfn_t offset;
ba0513b5 1447
2a31b9db
PB
1448 if (!dirty_bitmap[i])
1449 continue;
1450
0dff0846 1451 flush = true;
2a31b9db
PB
1452 mask = xchg(&dirty_bitmap[i], 0);
1453 dirty_bitmap_buffer[i] = mask;
1454
a67794ca
LT
1455 offset = i * BITS_PER_LONG;
1456 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1457 offset, mask);
2a31b9db
PB
1458 }
1459 spin_unlock(&kvm->mmu_lock);
1460 }
1461
0dff0846
SC
1462 if (flush)
1463 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1464
2a31b9db
PB
1465 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1466 return -EFAULT;
1467 return 0;
1468}
0dff0846
SC
1469
1470
1471/**
1472 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1473 * @kvm: kvm instance
1474 * @log: slot id and address to which we copy the log
1475 *
1476 * Steps 1-4 below provide general overview of dirty page logging. See
1477 * kvm_get_dirty_log_protect() function description for additional details.
1478 *
1479 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1480 * always flush the TLB (step 4) even if previous step failed and the dirty
1481 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1482 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1483 * writes will be marked dirty for next log read.
1484 *
1485 * 1. Take a snapshot of the bit and clear it if needed.
1486 * 2. Write protect the corresponding page.
1487 * 3. Copy the snapshot to the userspace.
1488 * 4. Flush TLB's if needed.
1489 */
1490static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1491 struct kvm_dirty_log *log)
1492{
1493 int r;
1494
1495 mutex_lock(&kvm->slots_lock);
1496
1497 r = kvm_get_dirty_log_protect(kvm, log);
1498
1499 mutex_unlock(&kvm->slots_lock);
1500 return r;
1501}
2a31b9db
PB
1502
1503/**
1504 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1505 * and reenable dirty page tracking for the corresponding pages.
1506 * @kvm: pointer to kvm instance
1507 * @log: slot id and address from which to fetch the bitmap of dirty pages
1508 */
0dff0846
SC
1509static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1510 struct kvm_clear_dirty_log *log)
2a31b9db
PB
1511{
1512 struct kvm_memslots *slots;
1513 struct kvm_memory_slot *memslot;
98938aa8 1514 int as_id, id;
2a31b9db 1515 gfn_t offset;
98938aa8 1516 unsigned long i, n;
2a31b9db
PB
1517 unsigned long *dirty_bitmap;
1518 unsigned long *dirty_bitmap_buffer;
0dff0846 1519 bool flush;
2a31b9db
PB
1520
1521 as_id = log->slot >> 16;
1522 id = (u16)log->slot;
1523 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1524 return -EINVAL;
1525
76d58e0f 1526 if (log->first_page & 63)
2a31b9db
PB
1527 return -EINVAL;
1528
1529 slots = __kvm_memslots(kvm, as_id);
1530 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1531 if (!memslot || !memslot->dirty_bitmap)
1532 return -ENOENT;
2a31b9db
PB
1533
1534 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 1535
4ddc9204 1536 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
1537
1538 if (log->first_page > memslot->npages ||
76d58e0f
PB
1539 log->num_pages > memslot->npages - log->first_page ||
1540 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1541 return -EINVAL;
98938aa8 1542
0dff0846
SC
1543 kvm_arch_sync_dirty_log(kvm, memslot);
1544
1545 flush = false;
2a31b9db
PB
1546 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1547 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1548 return -EFAULT;
ba0513b5 1549
2a31b9db 1550 spin_lock(&kvm->mmu_lock);
53eac7a8
PX
1551 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1552 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
1553 i++, offset += BITS_PER_LONG) {
1554 unsigned long mask = *dirty_bitmap_buffer++;
1555 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1556 if (!mask)
ba0513b5
MS
1557 continue;
1558
2a31b9db 1559 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1560
2a31b9db
PB
1561 /*
1562 * mask contains the bits that really have been cleared. This
1563 * never includes any bits beyond the length of the memslot (if
1564 * the length is not aligned to 64 pages), therefore it is not
1565 * a problem if userspace sets them in log->dirty_bitmap.
1566 */
58d2930f 1567 if (mask) {
0dff0846 1568 flush = true;
58d2930f
TY
1569 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1570 offset, mask);
1571 }
ba0513b5 1572 }
ba0513b5 1573 spin_unlock(&kvm->mmu_lock);
2a31b9db 1574
0dff0846
SC
1575 if (flush)
1576 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1577
58d6db34 1578 return 0;
ba0513b5 1579}
0dff0846
SC
1580
1581static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1582 struct kvm_clear_dirty_log *log)
1583{
1584 int r;
1585
1586 mutex_lock(&kvm->slots_lock);
1587
1588 r = kvm_clear_dirty_log_protect(kvm, log);
1589
1590 mutex_unlock(&kvm->slots_lock);
1591 return r;
1592}
1593#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1594
49c7754c
GN
1595struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1596{
1597 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1598}
a1f4d395 1599EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1600
8e73485c
PB
1601struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1602{
1603 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1604}
1605
33e94154 1606bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1607{
bf3e05bc 1608 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1609
bbacc0c1 1610 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
bf3e05bc 1611 memslot->flags & KVM_MEMSLOT_INVALID)
33e94154 1612 return false;
e0d62c7f 1613
33e94154 1614 return true;
e0d62c7f
IE
1615}
1616EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1617
f9b84e19 1618unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
1619{
1620 struct vm_area_struct *vma;
1621 unsigned long addr, size;
1622
1623 size = PAGE_SIZE;
1624
42cde48b 1625 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
1626 if (kvm_is_error_hva(addr))
1627 return PAGE_SIZE;
1628
1629 down_read(&current->mm->mmap_sem);
1630 vma = find_vma(current->mm, addr);
1631 if (!vma)
1632 goto out;
1633
1634 size = vma_kernel_pagesize(vma);
1635
1636out:
1637 up_read(&current->mm->mmap_sem);
1638
1639 return size;
1640}
1641
4d8b81ab
XG
1642static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1643{
1644 return slot->flags & KVM_MEM_READONLY;
1645}
1646
4d8b81ab
XG
1647static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1648 gfn_t *nr_pages, bool write)
539cb660 1649{
bc6678a3 1650 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 1651 return KVM_HVA_ERR_BAD;
48987781 1652
4d8b81ab
XG
1653 if (memslot_is_readonly(slot) && write)
1654 return KVM_HVA_ERR_RO_BAD;
48987781
XG
1655
1656 if (nr_pages)
1657 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1658
4d8b81ab 1659 return __gfn_to_hva_memslot(slot, gfn);
539cb660 1660}
48987781 1661
4d8b81ab
XG
1662static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1663 gfn_t *nr_pages)
1664{
1665 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 1666}
48987781 1667
4d8b81ab 1668unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 1669 gfn_t gfn)
4d8b81ab
XG
1670{
1671 return gfn_to_hva_many(slot, gfn, NULL);
1672}
1673EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1674
48987781
XG
1675unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1676{
49c7754c 1677 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 1678}
0d150298 1679EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 1680
8e73485c
PB
1681unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1682{
1683 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1684}
1685EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1686
86ab8cff 1687/*
970c0d4b
WY
1688 * Return the hva of a @gfn and the R/W attribute if possible.
1689 *
1690 * @slot: the kvm_memory_slot which contains @gfn
1691 * @gfn: the gfn to be translated
1692 * @writable: used to return the read/write attribute of the @slot if the hva
1693 * is valid and @writable is not NULL
86ab8cff 1694 */
64d83126
CD
1695unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1696 gfn_t gfn, bool *writable)
86ab8cff 1697{
a2ac07fe
GN
1698 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1699
1700 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
1701 *writable = !memslot_is_readonly(slot);
1702
a2ac07fe 1703 return hva;
86ab8cff
XG
1704}
1705
64d83126
CD
1706unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1707{
1708 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1709
1710 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1711}
1712
8e73485c
PB
1713unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1714{
1715 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1716
1717 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1718}
1719
fafc3dba
HY
1720static inline int check_user_page_hwpoison(unsigned long addr)
1721{
0d731759 1722 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 1723
0d731759 1724 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
1725 return rc == -EHWPOISON;
1726}
1727
2fc84311 1728/*
b9b33da2
PB
1729 * The fast path to get the writable pfn which will be stored in @pfn,
1730 * true indicates success, otherwise false is returned. It's also the
311497e0 1731 * only part that runs if we can in atomic context.
2fc84311 1732 */
b9b33da2
PB
1733static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1734 bool *writable, kvm_pfn_t *pfn)
954bbbc2 1735{
8d4e1288 1736 struct page *page[1];
2fc84311 1737 int npages;
954bbbc2 1738
12ce13fe
XG
1739 /*
1740 * Fast pin a writable pfn only if it is a write fault request
1741 * or the caller allows to map a writable pfn for a read fault
1742 * request.
1743 */
1744 if (!(write_fault || writable))
1745 return false;
612819c3 1746
2fc84311
XG
1747 npages = __get_user_pages_fast(addr, 1, 1, page);
1748 if (npages == 1) {
1749 *pfn = page_to_pfn(page[0]);
612819c3 1750
2fc84311
XG
1751 if (writable)
1752 *writable = true;
1753 return true;
1754 }
af585b92 1755
2fc84311
XG
1756 return false;
1757}
612819c3 1758
2fc84311
XG
1759/*
1760 * The slow path to get the pfn of the specified host virtual address,
1761 * 1 indicates success, -errno is returned if error is detected.
1762 */
1763static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 1764 bool *writable, kvm_pfn_t *pfn)
2fc84311 1765{
ce53053c
AV
1766 unsigned int flags = FOLL_HWPOISON;
1767 struct page *page;
2fc84311 1768 int npages = 0;
612819c3 1769
2fc84311
XG
1770 might_sleep();
1771
1772 if (writable)
1773 *writable = write_fault;
1774
ce53053c
AV
1775 if (write_fault)
1776 flags |= FOLL_WRITE;
1777 if (async)
1778 flags |= FOLL_NOWAIT;
d4944b0e 1779
ce53053c 1780 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
1781 if (npages != 1)
1782 return npages;
1783
1784 /* map read fault as writable if possible */
12ce13fe 1785 if (unlikely(!write_fault) && writable) {
ce53053c 1786 struct page *wpage;
2fc84311 1787
ce53053c 1788 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
2fc84311 1789 *writable = true;
ce53053c
AV
1790 put_page(page);
1791 page = wpage;
612819c3 1792 }
887c08ac 1793 }
ce53053c 1794 *pfn = page_to_pfn(page);
2fc84311
XG
1795 return npages;
1796}
539cb660 1797
4d8b81ab
XG
1798static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1799{
1800 if (unlikely(!(vma->vm_flags & VM_READ)))
1801 return false;
2e2e3738 1802
4d8b81ab
XG
1803 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1804 return false;
887c08ac 1805
4d8b81ab
XG
1806 return true;
1807}
bf998156 1808
92176a8e
PB
1809static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1810 unsigned long addr, bool *async,
a340b3e2
KA
1811 bool write_fault, bool *writable,
1812 kvm_pfn_t *p_pfn)
92176a8e 1813{
add6a0cd
PB
1814 unsigned long pfn;
1815 int r;
1816
1817 r = follow_pfn(vma, addr, &pfn);
1818 if (r) {
1819 /*
1820 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1821 * not call the fault handler, so do it here.
1822 */
1823 bool unlocked = false;
1824 r = fixup_user_fault(current, current->mm, addr,
1825 (write_fault ? FAULT_FLAG_WRITE : 0),
1826 &unlocked);
1827 if (unlocked)
1828 return -EAGAIN;
1829 if (r)
1830 return r;
1831
1832 r = follow_pfn(vma, addr, &pfn);
1833 if (r)
1834 return r;
1835
1836 }
1837
a340b3e2
KA
1838 if (writable)
1839 *writable = true;
add6a0cd
PB
1840
1841 /*
1842 * Get a reference here because callers of *hva_to_pfn* and
1843 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1844 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1845 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1846 * simply do nothing for reserved pfns.
1847 *
1848 * Whoever called remap_pfn_range is also going to call e.g.
1849 * unmap_mapping_range before the underlying pages are freed,
1850 * causing a call to our MMU notifier.
1851 */
1852 kvm_get_pfn(pfn);
1853
1854 *p_pfn = pfn;
92176a8e
PB
1855 return 0;
1856}
1857
12ce13fe
XG
1858/*
1859 * Pin guest page in memory and return its pfn.
1860 * @addr: host virtual address which maps memory to the guest
1861 * @atomic: whether this function can sleep
1862 * @async: whether this function need to wait IO complete if the
1863 * host page is not in the memory
1864 * @write_fault: whether we should get a writable host page
1865 * @writable: whether it allows to map a writable host page for !@write_fault
1866 *
1867 * The function will map a writable host page for these two cases:
1868 * 1): @write_fault = true
1869 * 2): @write_fault = false && @writable, @writable will tell the caller
1870 * whether the mapping is writable.
1871 */
ba049e93 1872static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
1873 bool write_fault, bool *writable)
1874{
1875 struct vm_area_struct *vma;
ba049e93 1876 kvm_pfn_t pfn = 0;
92176a8e 1877 int npages, r;
2e2e3738 1878
2fc84311
XG
1879 /* we can do it either atomically or asynchronously, not both */
1880 BUG_ON(atomic && async);
8d4e1288 1881
b9b33da2 1882 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
1883 return pfn;
1884
1885 if (atomic)
1886 return KVM_PFN_ERR_FAULT;
1887
1888 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1889 if (npages == 1)
1890 return pfn;
8d4e1288 1891
2fc84311
XG
1892 down_read(&current->mm->mmap_sem);
1893 if (npages == -EHWPOISON ||
1894 (!async && check_user_page_hwpoison(addr))) {
1895 pfn = KVM_PFN_ERR_HWPOISON;
1896 goto exit;
1897 }
1898
add6a0cd 1899retry:
2fc84311
XG
1900 vma = find_vma_intersection(current->mm, addr, addr + 1);
1901
1902 if (vma == NULL)
1903 pfn = KVM_PFN_ERR_FAULT;
92176a8e 1904 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 1905 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
add6a0cd
PB
1906 if (r == -EAGAIN)
1907 goto retry;
92176a8e
PB
1908 if (r < 0)
1909 pfn = KVM_PFN_ERR_FAULT;
2fc84311 1910 } else {
4d8b81ab 1911 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
1912 *async = true;
1913 pfn = KVM_PFN_ERR_FAULT;
1914 }
1915exit:
1916 up_read(&current->mm->mmap_sem);
2e2e3738 1917 return pfn;
35149e21
AL
1918}
1919
ba049e93
DW
1920kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1921 bool atomic, bool *async, bool write_fault,
1922 bool *writable)
887c08ac 1923{
4d8b81ab
XG
1924 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1925
b2740d35
PB
1926 if (addr == KVM_HVA_ERR_RO_BAD) {
1927 if (writable)
1928 *writable = false;
4d8b81ab 1929 return KVM_PFN_ERR_RO_FAULT;
b2740d35 1930 }
4d8b81ab 1931
b2740d35
PB
1932 if (kvm_is_error_hva(addr)) {
1933 if (writable)
1934 *writable = false;
81c52c56 1935 return KVM_PFN_NOSLOT;
b2740d35 1936 }
4d8b81ab
XG
1937
1938 /* Do not map writable pfn in the readonly memslot. */
1939 if (writable && memslot_is_readonly(slot)) {
1940 *writable = false;
1941 writable = NULL;
1942 }
1943
1944 return hva_to_pfn(addr, atomic, async, write_fault,
1945 writable);
887c08ac 1946}
3520469d 1947EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 1948
ba049e93 1949kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
1950 bool *writable)
1951{
e37afc6e
PB
1952 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1953 write_fault, writable);
612819c3
MT
1954}
1955EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1956
ba049e93 1957kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1958{
4d8b81ab 1959 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
506f0d6f 1960}
e37afc6e 1961EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 1962
ba049e93 1963kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1964{
4d8b81ab 1965 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
506f0d6f 1966}
037d92dc 1967EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 1968
ba049e93 1969kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1970{
1971 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1972}
1973EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1974
ba049e93 1975kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1976{
1977 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1978}
1979EXPORT_SYMBOL_GPL(gfn_to_pfn);
1980
ba049e93 1981kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1982{
1983 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1984}
1985EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1986
d9ef13c2
PB
1987int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1988 struct page **pages, int nr_pages)
48987781
XG
1989{
1990 unsigned long addr;
076b925d 1991 gfn_t entry = 0;
48987781 1992
d9ef13c2 1993 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
1994 if (kvm_is_error_hva(addr))
1995 return -1;
1996
1997 if (entry < nr_pages)
1998 return 0;
1999
2000 return __get_user_pages_fast(addr, nr_pages, 1, pages);
2001}
2002EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2003
ba049e93 2004static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 2005{
81c52c56 2006 if (is_error_noslot_pfn(pfn))
cb9aaa30 2007 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2008
bf4bea8e 2009 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 2010 WARN_ON(1);
6cede2e6 2011 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 2012 }
a2766325
XG
2013
2014 return pfn_to_page(pfn);
2015}
2016
35149e21
AL
2017struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2018{
ba049e93 2019 kvm_pfn_t pfn;
2e2e3738
AL
2020
2021 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2022
a2766325 2023 return kvm_pfn_to_page(pfn);
954bbbc2
AK
2024}
2025EXPORT_SYMBOL_GPL(gfn_to_page);
2026
91724814
BO
2027void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2028{
2029 if (pfn == 0)
2030 return;
2031
2032 if (cache)
2033 cache->pfn = cache->gfn = 0;
2034
2035 if (dirty)
2036 kvm_release_pfn_dirty(pfn);
2037 else
2038 kvm_release_pfn_clean(pfn);
2039}
2040
2041static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2042 struct gfn_to_pfn_cache *cache, u64 gen)
2043{
2044 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2045
2046 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2047 cache->gfn = gfn;
2048 cache->dirty = false;
2049 cache->generation = gen;
2050}
2051
1eff70a9 2052static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
91724814
BO
2053 struct kvm_host_map *map,
2054 struct gfn_to_pfn_cache *cache,
2055 bool atomic)
e45adf66
KA
2056{
2057 kvm_pfn_t pfn;
2058 void *hva = NULL;
2059 struct page *page = KVM_UNMAPPED_PAGE;
1eff70a9 2060 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
91724814 2061 u64 gen = slots->generation;
e45adf66
KA
2062
2063 if (!map)
2064 return -EINVAL;
2065
91724814
BO
2066 if (cache) {
2067 if (!cache->pfn || cache->gfn != gfn ||
2068 cache->generation != gen) {
2069 if (atomic)
2070 return -EAGAIN;
2071 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2072 }
2073 pfn = cache->pfn;
2074 } else {
2075 if (atomic)
2076 return -EAGAIN;
2077 pfn = gfn_to_pfn_memslot(slot, gfn);
2078 }
e45adf66
KA
2079 if (is_error_noslot_pfn(pfn))
2080 return -EINVAL;
2081
2082 if (pfn_valid(pfn)) {
2083 page = pfn_to_page(pfn);
91724814
BO
2084 if (atomic)
2085 hva = kmap_atomic(page);
2086 else
2087 hva = kmap(page);
d30b214d 2088#ifdef CONFIG_HAS_IOMEM
91724814 2089 } else if (!atomic) {
e45adf66 2090 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
91724814
BO
2091 } else {
2092 return -EINVAL;
d30b214d 2093#endif
e45adf66
KA
2094 }
2095
2096 if (!hva)
2097 return -EFAULT;
2098
2099 map->page = page;
2100 map->hva = hva;
2101 map->pfn = pfn;
2102 map->gfn = gfn;
2103
2104 return 0;
2105}
2106
91724814
BO
2107int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2108 struct gfn_to_pfn_cache *cache, bool atomic)
1eff70a9 2109{
91724814
BO
2110 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2111 cache, atomic);
1eff70a9
BO
2112}
2113EXPORT_SYMBOL_GPL(kvm_map_gfn);
2114
e45adf66
KA
2115int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2116{
91724814
BO
2117 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2118 NULL, false);
e45adf66
KA
2119}
2120EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2121
1eff70a9 2122static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
91724814
BO
2123 struct kvm_host_map *map,
2124 struct gfn_to_pfn_cache *cache,
2125 bool dirty, bool atomic)
e45adf66
KA
2126{
2127 if (!map)
2128 return;
2129
2130 if (!map->hva)
2131 return;
2132
91724814
BO
2133 if (map->page != KVM_UNMAPPED_PAGE) {
2134 if (atomic)
2135 kunmap_atomic(map->hva);
2136 else
2137 kunmap(map->page);
2138 }
eb1f2f38 2139#ifdef CONFIG_HAS_IOMEM
91724814 2140 else if (!atomic)
e45adf66 2141 memunmap(map->hva);
91724814
BO
2142 else
2143 WARN_ONCE(1, "Unexpected unmapping in atomic context");
eb1f2f38 2144#endif
e45adf66 2145
91724814 2146 if (dirty)
1eff70a9 2147 mark_page_dirty_in_slot(memslot, map->gfn);
91724814
BO
2148
2149 if (cache)
2150 cache->dirty |= dirty;
2151 else
2152 kvm_release_pfn(map->pfn, dirty, NULL);
e45adf66
KA
2153
2154 map->hva = NULL;
2155 map->page = NULL;
2156}
1eff70a9 2157
91724814
BO
2158int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2159 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1eff70a9 2160{
91724814
BO
2161 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2162 cache, dirty, atomic);
1eff70a9
BO
2163 return 0;
2164}
2165EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2166
2167void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2168{
91724814
BO
2169 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2170 dirty, false);
1eff70a9 2171}
e45adf66
KA
2172EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2173
8e73485c
PB
2174struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2175{
ba049e93 2176 kvm_pfn_t pfn;
8e73485c
PB
2177
2178 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2179
2180 return kvm_pfn_to_page(pfn);
2181}
2182EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2183
b4231d61
IE
2184void kvm_release_page_clean(struct page *page)
2185{
32cad84f
XG
2186 WARN_ON(is_error_page(page));
2187
35149e21 2188 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
2189}
2190EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2191
ba049e93 2192void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2193{
bf4bea8e 2194 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 2195 put_page(pfn_to_page(pfn));
35149e21
AL
2196}
2197EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2198
b4231d61 2199void kvm_release_page_dirty(struct page *page)
8a7ae055 2200{
a2766325
XG
2201 WARN_ON(is_error_page(page));
2202
35149e21
AL
2203 kvm_release_pfn_dirty(page_to_pfn(page));
2204}
2205EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2206
f7a6509f 2207void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
2208{
2209 kvm_set_pfn_dirty(pfn);
2210 kvm_release_pfn_clean(pfn);
2211}
f7a6509f 2212EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2213
ba049e93 2214void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2215{
d29c03a5
ML
2216 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2217 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2218}
35149e21
AL
2219EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2220
ba049e93 2221void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2222{
a78986aa 2223 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2224 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2225}
2226EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2227
ba049e93 2228void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 2229{
bf4bea8e 2230 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 2231 get_page(pfn_to_page(pfn));
35149e21
AL
2232}
2233EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 2234
195aefde
IE
2235static int next_segment(unsigned long len, int offset)
2236{
2237 if (len > PAGE_SIZE - offset)
2238 return PAGE_SIZE - offset;
2239 else
2240 return len;
2241}
2242
8e73485c
PB
2243static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2244 void *data, int offset, int len)
195aefde 2245{
e0506bcb
IE
2246 int r;
2247 unsigned long addr;
195aefde 2248
8e73485c 2249 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2250 if (kvm_is_error_hva(addr))
2251 return -EFAULT;
3180a7fc 2252 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2253 if (r)
195aefde 2254 return -EFAULT;
195aefde
IE
2255 return 0;
2256}
8e73485c
PB
2257
2258int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2259 int len)
2260{
2261 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2262
2263 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2264}
195aefde
IE
2265EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2266
8e73485c
PB
2267int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2268 int offset, int len)
2269{
2270 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2271
2272 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2273}
2274EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2275
195aefde
IE
2276int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2277{
2278 gfn_t gfn = gpa >> PAGE_SHIFT;
2279 int seg;
2280 int offset = offset_in_page(gpa);
2281 int ret;
2282
2283 while ((seg = next_segment(len, offset)) != 0) {
2284 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2285 if (ret < 0)
2286 return ret;
2287 offset = 0;
2288 len -= seg;
2289 data += seg;
2290 ++gfn;
2291 }
2292 return 0;
2293}
2294EXPORT_SYMBOL_GPL(kvm_read_guest);
2295
8e73485c 2296int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2297{
7ec54588 2298 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2299 int seg;
7ec54588 2300 int offset = offset_in_page(gpa);
8e73485c
PB
2301 int ret;
2302
2303 while ((seg = next_segment(len, offset)) != 0) {
2304 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2305 if (ret < 0)
2306 return ret;
2307 offset = 0;
2308 len -= seg;
2309 data += seg;
2310 ++gfn;
2311 }
2312 return 0;
2313}
2314EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2315
8e73485c
PB
2316static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2317 void *data, int offset, unsigned long len)
2318{
2319 int r;
2320 unsigned long addr;
2321
2322 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2323 if (kvm_is_error_hva(addr))
2324 return -EFAULT;
0aac03f0 2325 pagefault_disable();
3180a7fc 2326 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2327 pagefault_enable();
7ec54588
MT
2328 if (r)
2329 return -EFAULT;
2330 return 0;
2331}
7ec54588 2332
8e73485c
PB
2333int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2334 void *data, unsigned long len)
2335{
2336 gfn_t gfn = gpa >> PAGE_SHIFT;
2337 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2338 int offset = offset_in_page(gpa);
2339
2340 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2341}
2342EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2343
2344static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2345 const void *data, int offset, int len)
195aefde 2346{
e0506bcb
IE
2347 int r;
2348 unsigned long addr;
195aefde 2349
251eb841 2350 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2351 if (kvm_is_error_hva(addr))
2352 return -EFAULT;
8b0cedff 2353 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2354 if (r)
195aefde 2355 return -EFAULT;
bc009e43 2356 mark_page_dirty_in_slot(memslot, gfn);
195aefde
IE
2357 return 0;
2358}
8e73485c
PB
2359
2360int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2361 const void *data, int offset, int len)
2362{
2363 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2364
2365 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2366}
195aefde
IE
2367EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2368
8e73485c
PB
2369int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2370 const void *data, int offset, int len)
2371{
2372 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2373
2374 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2375}
2376EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2377
195aefde
IE
2378int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2379 unsigned long len)
2380{
2381 gfn_t gfn = gpa >> PAGE_SHIFT;
2382 int seg;
2383 int offset = offset_in_page(gpa);
2384 int ret;
2385
2386 while ((seg = next_segment(len, offset)) != 0) {
2387 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2388 if (ret < 0)
2389 return ret;
2390 offset = 0;
2391 len -= seg;
2392 data += seg;
2393 ++gfn;
2394 }
2395 return 0;
2396}
ff651cb6 2397EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2398
8e73485c
PB
2399int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2400 unsigned long len)
2401{
2402 gfn_t gfn = gpa >> PAGE_SHIFT;
2403 int seg;
2404 int offset = offset_in_page(gpa);
2405 int ret;
2406
2407 while ((seg = next_segment(len, offset)) != 0) {
2408 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2409 if (ret < 0)
2410 return ret;
2411 offset = 0;
2412 len -= seg;
2413 data += seg;
2414 ++gfn;
2415 }
2416 return 0;
2417}
2418EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2419
5a2d4365
PB
2420static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2421 struct gfn_to_hva_cache *ghc,
2422 gpa_t gpa, unsigned long len)
49c7754c 2423{
49c7754c 2424 int offset = offset_in_page(gpa);
8f964525
AH
2425 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2426 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2427 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2428 gfn_t nr_pages_avail;
49c7754c 2429
6ad1e29f 2430 /* Update ghc->generation before performing any error checks. */
49c7754c 2431 ghc->generation = slots->generation;
6ad1e29f
SC
2432
2433 if (start_gfn > end_gfn) {
2434 ghc->hva = KVM_HVA_ERR_BAD;
2435 return -EINVAL;
2436 }
f1b9dd5e
JM
2437
2438 /*
2439 * If the requested region crosses two memslots, we still
2440 * verify that the entire region is valid here.
2441 */
6ad1e29f 2442 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2443 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2444 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2445 &nr_pages_avail);
2446 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2447 return -EFAULT;
f1b9dd5e
JM
2448 }
2449
2450 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2451 if (nr_pages_needed == 1)
49c7754c 2452 ghc->hva += offset;
f1b9dd5e 2453 else
8f964525 2454 ghc->memslot = NULL;
f1b9dd5e 2455
6ad1e29f
SC
2456 ghc->gpa = gpa;
2457 ghc->len = len;
2458 return 0;
49c7754c 2459}
5a2d4365 2460
4e335d9e 2461int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2462 gpa_t gpa, unsigned long len)
2463{
4e335d9e 2464 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2465 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2466}
4e335d9e 2467EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2468
4e335d9e 2469int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2470 void *data, unsigned int offset,
2471 unsigned long len)
49c7754c 2472{
4e335d9e 2473 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2474 int r;
4ec6e863 2475 gpa_t gpa = ghc->gpa + offset;
49c7754c 2476
4ec6e863 2477 BUG_ON(len + offset > ghc->len);
8f964525 2478
dc9ce71e
SC
2479 if (slots->generation != ghc->generation) {
2480 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2481 return -EFAULT;
2482 }
8f964525 2483
49c7754c
GN
2484 if (kvm_is_error_hva(ghc->hva))
2485 return -EFAULT;
2486
fcfbc617
SC
2487 if (unlikely(!ghc->memslot))
2488 return kvm_write_guest(kvm, gpa, data, len);
2489
4ec6e863 2490 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2491 if (r)
2492 return -EFAULT;
4ec6e863 2493 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2494
2495 return 0;
2496}
4e335d9e 2497EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2498
4e335d9e
PB
2499int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2500 void *data, unsigned long len)
4ec6e863 2501{
4e335d9e 2502 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2503}
4e335d9e 2504EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2505
4e335d9e
PB
2506int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2507 void *data, unsigned long len)
e03b644f 2508{
4e335d9e 2509 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f
GN
2510 int r;
2511
8f964525
AH
2512 BUG_ON(len > ghc->len);
2513
dc9ce71e
SC
2514 if (slots->generation != ghc->generation) {
2515 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2516 return -EFAULT;
2517 }
8f964525 2518
e03b644f
GN
2519 if (kvm_is_error_hva(ghc->hva))
2520 return -EFAULT;
2521
fcfbc617
SC
2522 if (unlikely(!ghc->memslot))
2523 return kvm_read_guest(kvm, ghc->gpa, data, len);
2524
e03b644f
GN
2525 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2526 if (r)
2527 return -EFAULT;
2528
2529 return 0;
2530}
4e335d9e 2531EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2532
195aefde
IE
2533int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2534{
8a3caa6d
HC
2535 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2536
2537 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2538}
2539EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2540
2541int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2542{
2543 gfn_t gfn = gpa >> PAGE_SHIFT;
2544 int seg;
2545 int offset = offset_in_page(gpa);
2546 int ret;
2547
bfda0e84 2548 while ((seg = next_segment(len, offset)) != 0) {
195aefde
IE
2549 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2550 if (ret < 0)
2551 return ret;
2552 offset = 0;
2553 len -= seg;
2554 ++gfn;
2555 }
2556 return 0;
2557}
2558EXPORT_SYMBOL_GPL(kvm_clear_guest);
2559
bc009e43 2560static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
7940876e 2561 gfn_t gfn)
6aa8b732 2562{
7e9d619d
RR
2563 if (memslot && memslot->dirty_bitmap) {
2564 unsigned long rel_gfn = gfn - memslot->base_gfn;
6aa8b732 2565
b74ca3b3 2566 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2567 }
2568}
2569
49c7754c
GN
2570void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2571{
2572 struct kvm_memory_slot *memslot;
2573
2574 memslot = gfn_to_memslot(kvm, gfn);
bc009e43 2575 mark_page_dirty_in_slot(memslot, gfn);
49c7754c 2576}
2ba9f0d8 2577EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2578
8e73485c
PB
2579void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2580{
2581 struct kvm_memory_slot *memslot;
2582
2583 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2584 mark_page_dirty_in_slot(memslot, gfn);
2585}
2586EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2587
20b7035c
JS
2588void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2589{
2590 if (!vcpu->sigset_active)
2591 return;
2592
2593 /*
2594 * This does a lockless modification of ->real_blocked, which is fine
2595 * because, only current can change ->real_blocked and all readers of
2596 * ->real_blocked don't care as long ->real_blocked is always a subset
2597 * of ->blocked.
2598 */
2599 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2600}
2601
2602void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2603{
2604 if (!vcpu->sigset_active)
2605 return;
2606
2607 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2608 sigemptyset(&current->real_blocked);
2609}
2610
aca6ff29
WL
2611static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2612{
dee339b5 2613 unsigned int old, val, grow, grow_start;
aca6ff29 2614
2cbd7824 2615 old = val = vcpu->halt_poll_ns;
dee339b5 2616 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 2617 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
2618 if (!grow)
2619 goto out;
2620
dee339b5
NW
2621 val *= grow;
2622 if (val < grow_start)
2623 val = grow_start;
aca6ff29 2624
313f636d
DM
2625 if (val > halt_poll_ns)
2626 val = halt_poll_ns;
2627
aca6ff29 2628 vcpu->halt_poll_ns = val;
7fa08e71 2629out:
2cbd7824 2630 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
2631}
2632
2633static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2634{
6b6de68c 2635 unsigned int old, val, shrink;
aca6ff29 2636
2cbd7824 2637 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
2638 shrink = READ_ONCE(halt_poll_ns_shrink);
2639 if (shrink == 0)
aca6ff29
WL
2640 val = 0;
2641 else
6b6de68c 2642 val /= shrink;
aca6ff29
WL
2643
2644 vcpu->halt_poll_ns = val;
2cbd7824 2645 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
2646}
2647
f7819512
PB
2648static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2649{
50c28f21
JS
2650 int ret = -EINTR;
2651 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2652
f7819512
PB
2653 if (kvm_arch_vcpu_runnable(vcpu)) {
2654 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 2655 goto out;
f7819512
PB
2656 }
2657 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 2658 goto out;
f7819512 2659 if (signal_pending(current))
50c28f21 2660 goto out;
f7819512 2661
50c28f21
JS
2662 ret = 0;
2663out:
2664 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2665 return ret;
f7819512
PB
2666}
2667
b6958ce4
ED
2668/*
2669 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2670 */
8776e519 2671void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 2672{
f7819512 2673 ktime_t start, cur;
8577370f 2674 DECLARE_SWAITQUEUE(wait);
f7819512 2675 bool waited = false;
aca6ff29 2676 u64 block_ns;
f7819512 2677
07ab0f8d
MZ
2678 kvm_arch_vcpu_blocking(vcpu);
2679
f7819512 2680 start = cur = ktime_get();
cdd6ad3a 2681 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 2682 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 2683
62bea5bf 2684 ++vcpu->stat.halt_attempted_poll;
f7819512
PB
2685 do {
2686 /*
2687 * This sets KVM_REQ_UNHALT if an interrupt
2688 * arrives.
2689 */
2690 if (kvm_vcpu_check_block(vcpu) < 0) {
2691 ++vcpu->stat.halt_successful_poll;
3491caf2
CB
2692 if (!vcpu_valid_wakeup(vcpu))
2693 ++vcpu->stat.halt_poll_invalid;
f7819512
PB
2694 goto out;
2695 }
2696 cur = ktime_get();
2697 } while (single_task_running() && ktime_before(cur, stop));
2698 }
e5c239cf
MT
2699
2700 for (;;) {
b3dae109 2701 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
e5c239cf 2702
f7819512 2703 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
2704 break;
2705
f7819512 2706 waited = true;
b6958ce4 2707 schedule();
b6958ce4 2708 }
d3bef15f 2709
8577370f 2710 finish_swait(&vcpu->wq, &wait);
f7819512 2711 cur = ktime_get();
f7819512 2712out:
07ab0f8d 2713 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
2714 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2715
44551b2f
WL
2716 if (!kvm_arch_no_poll(vcpu)) {
2717 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 2718 shrink_halt_poll_ns(vcpu);
44551b2f
WL
2719 } else if (halt_poll_ns) {
2720 if (block_ns <= vcpu->halt_poll_ns)
2721 ;
2722 /* we had a long block, shrink polling */
2723 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2724 shrink_halt_poll_ns(vcpu);
2725 /* we had a short halt and our poll time is too small */
2726 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2727 block_ns < halt_poll_ns)
2728 grow_halt_poll_ns(vcpu);
2729 } else {
2730 vcpu->halt_poll_ns = 0;
2731 }
2732 }
aca6ff29 2733
3491caf2
CB
2734 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2735 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 2736}
2ba9f0d8 2737EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 2738
178f02ff 2739bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 2740{
8577370f 2741 struct swait_queue_head *wqp;
b6d33834
CD
2742
2743 wqp = kvm_arch_vcpu_wq(vcpu);
5e0018b3 2744 if (swq_has_sleeper(wqp)) {
b3dae109 2745 swake_up_one(wqp);
d73eb57b 2746 WRITE_ONCE(vcpu->ready, true);
b6d33834 2747 ++vcpu->stat.halt_wakeup;
178f02ff 2748 return true;
b6d33834
CD
2749 }
2750
178f02ff 2751 return false;
dd1a4cc1
RK
2752}
2753EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2754
0266c894 2755#ifndef CONFIG_S390
dd1a4cc1
RK
2756/*
2757 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2758 */
2759void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2760{
2761 int me;
2762 int cpu = vcpu->cpu;
2763
178f02ff
RK
2764 if (kvm_vcpu_wake_up(vcpu))
2765 return;
2766
b6d33834
CD
2767 me = get_cpu();
2768 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2769 if (kvm_arch_vcpu_should_kick(vcpu))
2770 smp_send_reschedule(cpu);
2771 put_cpu();
2772}
a20ed54d 2773EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 2774#endif /* !CONFIG_S390 */
b6d33834 2775
fa93384f 2776int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
2777{
2778 struct pid *pid;
2779 struct task_struct *task = NULL;
fa93384f 2780 int ret = 0;
41628d33
KW
2781
2782 rcu_read_lock();
2783 pid = rcu_dereference(target->pid);
2784 if (pid)
27fbe64b 2785 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
2786 rcu_read_unlock();
2787 if (!task)
c45c528e 2788 return ret;
c45c528e 2789 ret = yield_to(task, 1);
41628d33 2790 put_task_struct(task);
c45c528e
R
2791
2792 return ret;
41628d33
KW
2793}
2794EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2795
06e48c51
R
2796/*
2797 * Helper that checks whether a VCPU is eligible for directed yield.
2798 * Most eligible candidate to yield is decided by following heuristics:
2799 *
2800 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2801 * (preempted lock holder), indicated by @in_spin_loop.
2802 * Set at the beiginning and cleared at the end of interception/PLE handler.
2803 *
2804 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2805 * chance last time (mostly it has become eligible now since we have probably
2806 * yielded to lockholder in last iteration. This is done by toggling
2807 * @dy_eligible each time a VCPU checked for eligibility.)
2808 *
2809 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2810 * to preempted lock-holder could result in wrong VCPU selection and CPU
2811 * burning. Giving priority for a potential lock-holder increases lock
2812 * progress.
2813 *
2814 * Since algorithm is based on heuristics, accessing another VCPU data without
2815 * locking does not harm. It may result in trying to yield to same VCPU, fail
2816 * and continue with next VCPU and so on.
2817 */
7940876e 2818static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 2819{
4a55dd72 2820#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
2821 bool eligible;
2822
2823 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 2824 vcpu->spin_loop.dy_eligible;
06e48c51
R
2825
2826 if (vcpu->spin_loop.in_spin_loop)
2827 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2828
2829 return eligible;
4a55dd72
SW
2830#else
2831 return true;
06e48c51 2832#endif
4a55dd72 2833}
c45c528e 2834
17e433b5
WL
2835/*
2836 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2837 * a vcpu_load/vcpu_put pair. However, for most architectures
2838 * kvm_arch_vcpu_runnable does not require vcpu_load.
2839 */
2840bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2841{
2842 return kvm_arch_vcpu_runnable(vcpu);
2843}
2844
2845static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2846{
2847 if (kvm_arch_dy_runnable(vcpu))
2848 return true;
2849
2850#ifdef CONFIG_KVM_ASYNC_PF
2851 if (!list_empty_careful(&vcpu->async_pf.done))
2852 return true;
2853#endif
2854
2855 return false;
2856}
2857
199b5763 2858void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 2859{
217ece61
RR
2860 struct kvm *kvm = me->kvm;
2861 struct kvm_vcpu *vcpu;
2862 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2863 int yielded = 0;
c45c528e 2864 int try = 3;
217ece61
RR
2865 int pass;
2866 int i;
d255f4f2 2867
4c088493 2868 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
2869 /*
2870 * We boost the priority of a VCPU that is runnable but not
2871 * currently running, because it got preempted by something
2872 * else and called schedule in __vcpu_run. Hopefully that
2873 * VCPU is holding the lock that we need and will release it.
2874 * We approximate round-robin by starting at the last boosted VCPU.
2875 */
c45c528e 2876 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 2877 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 2878 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
2879 i = last_boosted_vcpu;
2880 continue;
2881 } else if (pass && i > last_boosted_vcpu)
2882 break;
d73eb57b 2883 if (!READ_ONCE(vcpu->ready))
7bc7ae25 2884 continue;
217ece61
RR
2885 if (vcpu == me)
2886 continue;
17e433b5 2887 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
217ece61 2888 continue;
046ddeed
WL
2889 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2890 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 2891 continue;
06e48c51
R
2892 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2893 continue;
c45c528e
R
2894
2895 yielded = kvm_vcpu_yield_to(vcpu);
2896 if (yielded > 0) {
217ece61 2897 kvm->last_boosted_vcpu = i;
217ece61 2898 break;
c45c528e
R
2899 } else if (yielded < 0) {
2900 try--;
2901 if (!try)
2902 break;
217ece61 2903 }
217ece61
RR
2904 }
2905 }
4c088493 2906 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
2907
2908 /* Ensure vcpu is not eligible during next spinloop */
2909 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
2910}
2911EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2912
1499fa80 2913static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 2914{
11bac800 2915 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
2916 struct page *page;
2917
e4a533a4 2918 if (vmf->pgoff == 0)
039576c0 2919 page = virt_to_page(vcpu->run);
09566765 2920#ifdef CONFIG_X86
e4a533a4 2921 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 2922 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 2923#endif
4b4357e0 2924#ifdef CONFIG_KVM_MMIO
5f94c174
LV
2925 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2926 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 2927#endif
039576c0 2928 else
5b1c1493 2929 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 2930 get_page(page);
e4a533a4
NP
2931 vmf->page = page;
2932 return 0;
9a2bb7f4
AK
2933}
2934
f0f37e2f 2935static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 2936 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
2937};
2938
2939static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2940{
2941 vma->vm_ops = &kvm_vcpu_vm_ops;
2942 return 0;
2943}
2944
bccf2150
AK
2945static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2946{
2947 struct kvm_vcpu *vcpu = filp->private_data;
2948
45b5939e 2949 debugfs_remove_recursive(vcpu->debugfs_dentry);
66c0b394 2950 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
2951 return 0;
2952}
2953
3d3aab1b 2954static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
2955 .release = kvm_vcpu_release,
2956 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 2957 .mmap = kvm_vcpu_mmap,
6038f373 2958 .llseek = noop_llseek,
7ddfd3e0 2959 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
2960};
2961
2962/*
2963 * Allocates an inode for the vcpu.
2964 */
2965static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2966{
e46b4692
MY
2967 char name[8 + 1 + ITOA_MAX_LEN + 1];
2968
2969 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2970 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
2971}
2972
3e7093d0 2973static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 2974{
741cbbae 2975#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
45b5939e 2976 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 2977
45b5939e 2978 if (!debugfs_initialized())
3e7093d0 2979 return;
45b5939e
LC
2980
2981 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2982 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3e7093d0 2983 vcpu->kvm->debugfs_dentry);
45b5939e 2984
3e7093d0 2985 kvm_arch_create_vcpu_debugfs(vcpu);
741cbbae 2986#endif
45b5939e
LC
2987}
2988
c5ea7660
AK
2989/*
2990 * Creates some virtual cpus. Good luck creating more than one.
2991 */
73880c80 2992static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
2993{
2994 int r;
e09fefde 2995 struct kvm_vcpu *vcpu;
8bd826d6 2996 struct page *page;
c5ea7660 2997
0b1b1dfd 2998 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
2999 return -EINVAL;
3000
6c7caebc
PB
3001 mutex_lock(&kvm->lock);
3002 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3003 mutex_unlock(&kvm->lock);
3004 return -EINVAL;
3005 }
3006
3007 kvm->created_vcpus++;
3008 mutex_unlock(&kvm->lock);
3009
897cc38e
SC
3010 r = kvm_arch_vcpu_precreate(kvm, id);
3011 if (r)
3012 goto vcpu_decrement;
3013
e529ef66
SC
3014 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3015 if (!vcpu) {
3016 r = -ENOMEM;
6c7caebc
PB
3017 goto vcpu_decrement;
3018 }
c5ea7660 3019
fcd97ad5 3020 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
8bd826d6
SC
3021 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3022 if (!page) {
3023 r = -ENOMEM;
e529ef66 3024 goto vcpu_free;
8bd826d6
SC
3025 }
3026 vcpu->run = page_address(page);
3027
3028 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3029
3030 r = kvm_arch_vcpu_create(vcpu);
3031 if (r)
8bd826d6 3032 goto vcpu_free_run_page;
e529ef66 3033
3e7093d0 3034 kvm_create_vcpu_debugfs(vcpu);
45b5939e 3035
11ec2804 3036 mutex_lock(&kvm->lock);
e09fefde
DH
3037 if (kvm_get_vcpu_by_id(kvm, id)) {
3038 r = -EEXIST;
3039 goto unlock_vcpu_destroy;
3040 }
73880c80 3041
8750e72a
RK
3042 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3043 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
c5ea7660 3044
fb3f0f51 3045 /* Now it's all set up, let userspace reach it */
66c0b394 3046 kvm_get_kvm(kvm);
bccf2150 3047 r = create_vcpu_fd(vcpu);
73880c80 3048 if (r < 0) {
149487bd 3049 kvm_put_kvm_no_destroy(kvm);
d780592b 3050 goto unlock_vcpu_destroy;
73880c80
GN
3051 }
3052
8750e72a 3053 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
dd489240
PB
3054
3055 /*
3056 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3057 * before kvm->online_vcpu's incremented value.
3058 */
73880c80
GN
3059 smp_wmb();
3060 atomic_inc(&kvm->online_vcpus);
3061
73880c80 3062 mutex_unlock(&kvm->lock);
42897d86 3063 kvm_arch_vcpu_postcreate(vcpu);
fb3f0f51 3064 return r;
39c3b86e 3065
d780592b 3066unlock_vcpu_destroy:
7d8fece6 3067 mutex_unlock(&kvm->lock);
45b5939e 3068 debugfs_remove_recursive(vcpu->debugfs_dentry);
d40ccc62 3069 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3070vcpu_free_run_page:
3071 free_page((unsigned long)vcpu->run);
e529ef66
SC
3072vcpu_free:
3073 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3074vcpu_decrement:
3075 mutex_lock(&kvm->lock);
3076 kvm->created_vcpus--;
3077 mutex_unlock(&kvm->lock);
c5ea7660
AK
3078 return r;
3079}
3080
1961d276
AK
3081static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3082{
3083 if (sigset) {
3084 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3085 vcpu->sigset_active = 1;
3086 vcpu->sigset = *sigset;
3087 } else
3088 vcpu->sigset_active = 0;
3089 return 0;
3090}
3091
bccf2150
AK
3092static long kvm_vcpu_ioctl(struct file *filp,
3093 unsigned int ioctl, unsigned long arg)
6aa8b732 3094{
bccf2150 3095 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3096 void __user *argp = (void __user *)arg;
313a3dc7 3097 int r;
fa3795a7
DH
3098 struct kvm_fpu *fpu = NULL;
3099 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3100
6d4e4c4f
AK
3101 if (vcpu->kvm->mm != current->mm)
3102 return -EIO;
2122ff5e 3103
2ea75be3
DM
3104 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3105 return -EINVAL;
3106
2122ff5e 3107 /*
5cb0944c
PB
3108 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3109 * execution; mutex_lock() would break them.
2122ff5e 3110 */
5cb0944c
PB
3111 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3112 if (r != -ENOIOCTLCMD)
9fc77441 3113 return r;
2122ff5e 3114
ec7660cc
CD
3115 if (mutex_lock_killable(&vcpu->mutex))
3116 return -EINTR;
6aa8b732 3117 switch (ioctl) {
0e4524a5
CB
3118 case KVM_RUN: {
3119 struct pid *oldpid;
f0fe5108
AK
3120 r = -EINVAL;
3121 if (arg)
3122 goto out;
0e4524a5 3123 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3124 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3125 /* The thread running this VCPU changed. */
bd2a6394 3126 struct pid *newpid;
f95ef0cd 3127
bd2a6394
CD
3128 r = kvm_arch_vcpu_run_pid_change(vcpu);
3129 if (r)
3130 break;
3131
3132 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3133 rcu_assign_pointer(vcpu->pid, newpid);
3134 if (oldpid)
3135 synchronize_rcu();
3136 put_pid(oldpid);
3137 }
b6c7a5dc 3138 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
64be5007 3139 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3140 break;
0e4524a5 3141 }
6aa8b732 3142 case KVM_GET_REGS: {
3e4bb3ac 3143 struct kvm_regs *kvm_regs;
6aa8b732 3144
3e4bb3ac 3145 r = -ENOMEM;
b12ce36a 3146 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3147 if (!kvm_regs)
6aa8b732 3148 goto out;
3e4bb3ac
XZ
3149 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3150 if (r)
3151 goto out_free1;
6aa8b732 3152 r = -EFAULT;
3e4bb3ac
XZ
3153 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3154 goto out_free1;
6aa8b732 3155 r = 0;
3e4bb3ac
XZ
3156out_free1:
3157 kfree(kvm_regs);
6aa8b732
AK
3158 break;
3159 }
3160 case KVM_SET_REGS: {
3e4bb3ac 3161 struct kvm_regs *kvm_regs;
6aa8b732 3162
3e4bb3ac 3163 r = -ENOMEM;
ff5c2c03
SL
3164 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3165 if (IS_ERR(kvm_regs)) {
3166 r = PTR_ERR(kvm_regs);
6aa8b732 3167 goto out;
ff5c2c03 3168 }
3e4bb3ac 3169 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 3170 kfree(kvm_regs);
6aa8b732
AK
3171 break;
3172 }
3173 case KVM_GET_SREGS: {
b12ce36a
BG
3174 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3175 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3176 r = -ENOMEM;
3177 if (!kvm_sregs)
3178 goto out;
3179 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3180 if (r)
3181 goto out;
3182 r = -EFAULT;
fa3795a7 3183 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
3184 goto out;
3185 r = 0;
3186 break;
3187 }
3188 case KVM_SET_SREGS: {
ff5c2c03
SL
3189 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3190 if (IS_ERR(kvm_sregs)) {
3191 r = PTR_ERR(kvm_sregs);
18595411 3192 kvm_sregs = NULL;
6aa8b732 3193 goto out;
ff5c2c03 3194 }
fa3795a7 3195 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3196 break;
3197 }
62d9f0db
MT
3198 case KVM_GET_MP_STATE: {
3199 struct kvm_mp_state mp_state;
3200
3201 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3202 if (r)
3203 goto out;
3204 r = -EFAULT;
893bdbf1 3205 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
3206 goto out;
3207 r = 0;
3208 break;
3209 }
3210 case KVM_SET_MP_STATE: {
3211 struct kvm_mp_state mp_state;
3212
3213 r = -EFAULT;
893bdbf1 3214 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3215 goto out;
3216 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3217 break;
3218 }
6aa8b732
AK
3219 case KVM_TRANSLATE: {
3220 struct kvm_translation tr;
3221
3222 r = -EFAULT;
893bdbf1 3223 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3224 goto out;
8b006791 3225 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3226 if (r)
3227 goto out;
3228 r = -EFAULT;
893bdbf1 3229 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3230 goto out;
3231 r = 0;
3232 break;
3233 }
d0bfb940
JK
3234 case KVM_SET_GUEST_DEBUG: {
3235 struct kvm_guest_debug dbg;
6aa8b732
AK
3236
3237 r = -EFAULT;
893bdbf1 3238 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3239 goto out;
d0bfb940 3240 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3241 break;
3242 }
1961d276
AK
3243 case KVM_SET_SIGNAL_MASK: {
3244 struct kvm_signal_mask __user *sigmask_arg = argp;
3245 struct kvm_signal_mask kvm_sigmask;
3246 sigset_t sigset, *p;
3247
3248 p = NULL;
3249 if (argp) {
3250 r = -EFAULT;
3251 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3252 sizeof(kvm_sigmask)))
1961d276
AK
3253 goto out;
3254 r = -EINVAL;
893bdbf1 3255 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3256 goto out;
3257 r = -EFAULT;
3258 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3259 sizeof(sigset)))
1961d276
AK
3260 goto out;
3261 p = &sigset;
3262 }
376d41ff 3263 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3264 break;
3265 }
b8836737 3266 case KVM_GET_FPU: {
b12ce36a 3267 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3268 r = -ENOMEM;
3269 if (!fpu)
3270 goto out;
3271 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3272 if (r)
3273 goto out;
3274 r = -EFAULT;
fa3795a7 3275 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3276 goto out;
3277 r = 0;
3278 break;
3279 }
3280 case KVM_SET_FPU: {
ff5c2c03
SL
3281 fpu = memdup_user(argp, sizeof(*fpu));
3282 if (IS_ERR(fpu)) {
3283 r = PTR_ERR(fpu);
18595411 3284 fpu = NULL;
b8836737 3285 goto out;
ff5c2c03 3286 }
fa3795a7 3287 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3288 break;
3289 }
bccf2150 3290 default:
313a3dc7 3291 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3292 }
3293out:
ec7660cc 3294 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3295 kfree(fpu);
3296 kfree(kvm_sregs);
bccf2150
AK
3297 return r;
3298}
3299
de8e5d74 3300#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3301static long kvm_vcpu_compat_ioctl(struct file *filp,
3302 unsigned int ioctl, unsigned long arg)
3303{
3304 struct kvm_vcpu *vcpu = filp->private_data;
3305 void __user *argp = compat_ptr(arg);
3306 int r;
3307
3308 if (vcpu->kvm->mm != current->mm)
3309 return -EIO;
3310
3311 switch (ioctl) {
3312 case KVM_SET_SIGNAL_MASK: {
3313 struct kvm_signal_mask __user *sigmask_arg = argp;
3314 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3315 sigset_t sigset;
3316
3317 if (argp) {
3318 r = -EFAULT;
3319 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3320 sizeof(kvm_sigmask)))
1dda606c
AG
3321 goto out;
3322 r = -EINVAL;
3968cf62 3323 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3324 goto out;
3325 r = -EFAULT;
3968cf62 3326 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
1dda606c 3327 goto out;
760a9a30
AC
3328 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3329 } else
3330 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3331 break;
3332 }
3333 default:
3334 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3335 }
3336
3337out:
3338 return r;
3339}
3340#endif
3341
a1cd3f08
CLG
3342static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3343{
3344 struct kvm_device *dev = filp->private_data;
3345
3346 if (dev->ops->mmap)
3347 return dev->ops->mmap(dev, vma);
3348
3349 return -ENODEV;
3350}
3351
852b6d57
SW
3352static int kvm_device_ioctl_attr(struct kvm_device *dev,
3353 int (*accessor)(struct kvm_device *dev,
3354 struct kvm_device_attr *attr),
3355 unsigned long arg)
3356{
3357 struct kvm_device_attr attr;
3358
3359 if (!accessor)
3360 return -EPERM;
3361
3362 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3363 return -EFAULT;
3364
3365 return accessor(dev, &attr);
3366}
3367
3368static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3369 unsigned long arg)
3370{
3371 struct kvm_device *dev = filp->private_data;
3372
ddba9180
SC
3373 if (dev->kvm->mm != current->mm)
3374 return -EIO;
3375
852b6d57
SW
3376 switch (ioctl) {
3377 case KVM_SET_DEVICE_ATTR:
3378 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3379 case KVM_GET_DEVICE_ATTR:
3380 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3381 case KVM_HAS_DEVICE_ATTR:
3382 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3383 default:
3384 if (dev->ops->ioctl)
3385 return dev->ops->ioctl(dev, ioctl, arg);
3386
3387 return -ENOTTY;
3388 }
3389}
3390
852b6d57
SW
3391static int kvm_device_release(struct inode *inode, struct file *filp)
3392{
3393 struct kvm_device *dev = filp->private_data;
3394 struct kvm *kvm = dev->kvm;
3395
2bde9b3e
CLG
3396 if (dev->ops->release) {
3397 mutex_lock(&kvm->lock);
3398 list_del(&dev->vm_node);
3399 dev->ops->release(dev);
3400 mutex_unlock(&kvm->lock);
3401 }
3402
852b6d57
SW
3403 kvm_put_kvm(kvm);
3404 return 0;
3405}
3406
3407static const struct file_operations kvm_device_fops = {
3408 .unlocked_ioctl = kvm_device_ioctl,
3409 .release = kvm_device_release,
7ddfd3e0 3410 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 3411 .mmap = kvm_device_mmap,
852b6d57
SW
3412};
3413
3414struct kvm_device *kvm_device_from_filp(struct file *filp)
3415{
3416 if (filp->f_op != &kvm_device_fops)
3417 return NULL;
3418
3419 return filp->private_data;
3420}
3421
8538cb22 3422static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 3423#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
3424 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3425 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 3426#endif
d60eacb0
WD
3427};
3428
8538cb22 3429int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
3430{
3431 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3432 return -ENOSPC;
3433
3434 if (kvm_device_ops_table[type] != NULL)
3435 return -EEXIST;
3436
3437 kvm_device_ops_table[type] = ops;
3438 return 0;
3439}
3440
571ee1b6
WL
3441void kvm_unregister_device_ops(u32 type)
3442{
3443 if (kvm_device_ops_table[type] != NULL)
3444 kvm_device_ops_table[type] = NULL;
3445}
3446
852b6d57
SW
3447static int kvm_ioctl_create_device(struct kvm *kvm,
3448 struct kvm_create_device *cd)
3449{
8538cb22 3450 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
3451 struct kvm_device *dev;
3452 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 3453 int type;
852b6d57
SW
3454 int ret;
3455
d60eacb0
WD
3456 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3457 return -ENODEV;
3458
1d487e9b
PB
3459 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3460 ops = kvm_device_ops_table[type];
d60eacb0 3461 if (ops == NULL)
852b6d57 3462 return -ENODEV;
852b6d57
SW
3463
3464 if (test)
3465 return 0;
3466
b12ce36a 3467 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
3468 if (!dev)
3469 return -ENOMEM;
3470
3471 dev->ops = ops;
3472 dev->kvm = kvm;
852b6d57 3473
a28ebea2 3474 mutex_lock(&kvm->lock);
1d487e9b 3475 ret = ops->create(dev, type);
852b6d57 3476 if (ret < 0) {
a28ebea2 3477 mutex_unlock(&kvm->lock);
852b6d57
SW
3478 kfree(dev);
3479 return ret;
3480 }
a28ebea2
CD
3481 list_add(&dev->vm_node, &kvm->devices);
3482 mutex_unlock(&kvm->lock);
852b6d57 3483
023e9fdd
CD
3484 if (ops->init)
3485 ops->init(dev);
3486
cfa39381 3487 kvm_get_kvm(kvm);
24009b05 3488 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3489 if (ret < 0) {
149487bd 3490 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
3491 mutex_lock(&kvm->lock);
3492 list_del(&dev->vm_node);
3493 mutex_unlock(&kvm->lock);
a0f1d21c 3494 ops->destroy(dev);
852b6d57
SW
3495 return ret;
3496 }
3497
852b6d57
SW
3498 cd->fd = ret;
3499 return 0;
3500}
3501
92b591a4
AG
3502static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3503{
3504 switch (arg) {
3505 case KVM_CAP_USER_MEMORY:
3506 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3507 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
3508 case KVM_CAP_INTERNAL_ERROR_DATA:
3509#ifdef CONFIG_HAVE_KVM_MSI
3510 case KVM_CAP_SIGNAL_MSI:
3511#endif
297e2105 3512#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 3513 case KVM_CAP_IRQFD:
92b591a4
AG
3514 case KVM_CAP_IRQFD_RESAMPLE:
3515#endif
e9ea5069 3516 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 3517 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 3518 case KVM_CAP_ENABLE_CAP_VM:
92b591a4 3519 return 1;
4b4357e0 3520#ifdef CONFIG_KVM_MMIO
30422558
PB
3521 case KVM_CAP_COALESCED_MMIO:
3522 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
3523 case KVM_CAP_COALESCED_PIO:
3524 return 1;
30422558 3525#endif
3c9bd400
JZ
3526#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3527 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3528 return KVM_DIRTY_LOG_MANUAL_CAPS;
3529#endif
92b591a4
AG
3530#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3531 case KVM_CAP_IRQ_ROUTING:
3532 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
3533#endif
3534#if KVM_ADDRESS_SPACE_NUM > 1
3535 case KVM_CAP_MULTI_ADDRESS_SPACE:
3536 return KVM_ADDRESS_SPACE_NUM;
92b591a4 3537#endif
c110ae57
PB
3538 case KVM_CAP_NR_MEMSLOTS:
3539 return KVM_USER_MEM_SLOTS;
92b591a4
AG
3540 default:
3541 break;
3542 }
3543 return kvm_vm_ioctl_check_extension(kvm, arg);
3544}
3545
e5d83c74
PB
3546int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3547 struct kvm_enable_cap *cap)
3548{
3549 return -EINVAL;
3550}
3551
3552static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3553 struct kvm_enable_cap *cap)
3554{
3555 switch (cap->cap) {
2a31b9db 3556#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
3557 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3558 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3559
3560 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3561 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3562
3563 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
3564 return -EINVAL;
3565 kvm->manual_dirty_log_protect = cap->args[0];
3566 return 0;
3c9bd400 3567 }
2a31b9db 3568#endif
e5d83c74
PB
3569 default:
3570 return kvm_vm_ioctl_enable_cap(kvm, cap);
3571 }
3572}
3573
bccf2150
AK
3574static long kvm_vm_ioctl(struct file *filp,
3575 unsigned int ioctl, unsigned long arg)
3576{
3577 struct kvm *kvm = filp->private_data;
3578 void __user *argp = (void __user *)arg;
1fe779f8 3579 int r;
bccf2150 3580
6d4e4c4f
AK
3581 if (kvm->mm != current->mm)
3582 return -EIO;
bccf2150
AK
3583 switch (ioctl) {
3584 case KVM_CREATE_VCPU:
3585 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 3586 break;
e5d83c74
PB
3587 case KVM_ENABLE_CAP: {
3588 struct kvm_enable_cap cap;
3589
3590 r = -EFAULT;
3591 if (copy_from_user(&cap, argp, sizeof(cap)))
3592 goto out;
3593 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3594 break;
3595 }
6fc138d2
IE
3596 case KVM_SET_USER_MEMORY_REGION: {
3597 struct kvm_userspace_memory_region kvm_userspace_mem;
3598
3599 r = -EFAULT;
3600 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 3601 sizeof(kvm_userspace_mem)))
6fc138d2
IE
3602 goto out;
3603
47ae31e2 3604 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
3605 break;
3606 }
3607 case KVM_GET_DIRTY_LOG: {
3608 struct kvm_dirty_log log;
3609
3610 r = -EFAULT;
893bdbf1 3611 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 3612 goto out;
2c6f5df9 3613 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
3614 break;
3615 }
2a31b9db
PB
3616#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3617 case KVM_CLEAR_DIRTY_LOG: {
3618 struct kvm_clear_dirty_log log;
3619
3620 r = -EFAULT;
3621 if (copy_from_user(&log, argp, sizeof(log)))
3622 goto out;
3623 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3624 break;
3625 }
3626#endif
4b4357e0 3627#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3628 case KVM_REGISTER_COALESCED_MMIO: {
3629 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3630
5f94c174 3631 r = -EFAULT;
893bdbf1 3632 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3633 goto out;
5f94c174 3634 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
3635 break;
3636 }
3637 case KVM_UNREGISTER_COALESCED_MMIO: {
3638 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3639
5f94c174 3640 r = -EFAULT;
893bdbf1 3641 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3642 goto out;
5f94c174 3643 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
3644 break;
3645 }
3646#endif
721eecbf
GH
3647 case KVM_IRQFD: {
3648 struct kvm_irqfd data;
3649
3650 r = -EFAULT;
893bdbf1 3651 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 3652 goto out;
d4db2935 3653 r = kvm_irqfd(kvm, &data);
721eecbf
GH
3654 break;
3655 }
d34e6b17
GH
3656 case KVM_IOEVENTFD: {
3657 struct kvm_ioeventfd data;
3658
3659 r = -EFAULT;
893bdbf1 3660 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
3661 goto out;
3662 r = kvm_ioeventfd(kvm, &data);
3663 break;
3664 }
07975ad3
JK
3665#ifdef CONFIG_HAVE_KVM_MSI
3666 case KVM_SIGNAL_MSI: {
3667 struct kvm_msi msi;
3668
3669 r = -EFAULT;
893bdbf1 3670 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
3671 goto out;
3672 r = kvm_send_userspace_msi(kvm, &msi);
3673 break;
3674 }
23d43cf9
CD
3675#endif
3676#ifdef __KVM_HAVE_IRQ_LINE
3677 case KVM_IRQ_LINE_STATUS:
3678 case KVM_IRQ_LINE: {
3679 struct kvm_irq_level irq_event;
3680
3681 r = -EFAULT;
893bdbf1 3682 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
3683 goto out;
3684
aa2fbe6d
YZ
3685 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3686 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
3687 if (r)
3688 goto out;
3689
3690 r = -EFAULT;
3691 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 3692 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
3693 goto out;
3694 }
3695
3696 r = 0;
3697 break;
3698 }
73880c80 3699#endif
aa8d5944
AG
3700#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3701 case KVM_SET_GSI_ROUTING: {
3702 struct kvm_irq_routing routing;
3703 struct kvm_irq_routing __user *urouting;
f8c1b85b 3704 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
3705
3706 r = -EFAULT;
3707 if (copy_from_user(&routing, argp, sizeof(routing)))
3708 goto out;
3709 r = -EINVAL;
5c0aea0e
DH
3710 if (!kvm_arch_can_set_irq_routing(kvm))
3711 goto out;
caf1ff26 3712 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
3713 goto out;
3714 if (routing.flags)
3715 goto out;
f8c1b85b
PB
3716 if (routing.nr) {
3717 r = -ENOMEM;
42bc47b3
KC
3718 entries = vmalloc(array_size(sizeof(*entries),
3719 routing.nr));
f8c1b85b
PB
3720 if (!entries)
3721 goto out;
3722 r = -EFAULT;
3723 urouting = argp;
3724 if (copy_from_user(entries, urouting->entries,
3725 routing.nr * sizeof(*entries)))
3726 goto out_free_irq_routing;
3727 }
aa8d5944
AG
3728 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3729 routing.flags);
a642a175 3730out_free_irq_routing:
aa8d5944
AG
3731 vfree(entries);
3732 break;
3733 }
3734#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
3735 case KVM_CREATE_DEVICE: {
3736 struct kvm_create_device cd;
3737
3738 r = -EFAULT;
3739 if (copy_from_user(&cd, argp, sizeof(cd)))
3740 goto out;
3741
3742 r = kvm_ioctl_create_device(kvm, &cd);
3743 if (r)
3744 goto out;
3745
3746 r = -EFAULT;
3747 if (copy_to_user(argp, &cd, sizeof(cd)))
3748 goto out;
3749
3750 r = 0;
3751 break;
3752 }
92b591a4
AG
3753 case KVM_CHECK_EXTENSION:
3754 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3755 break;
f17abe9a 3756 default:
1fe779f8 3757 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
3758 }
3759out:
3760 return r;
3761}
3762
de8e5d74 3763#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
3764struct compat_kvm_dirty_log {
3765 __u32 slot;
3766 __u32 padding1;
3767 union {
3768 compat_uptr_t dirty_bitmap; /* one bit per page */
3769 __u64 padding2;
3770 };
3771};
3772
3773static long kvm_vm_compat_ioctl(struct file *filp,
3774 unsigned int ioctl, unsigned long arg)
3775{
3776 struct kvm *kvm = filp->private_data;
3777 int r;
3778
3779 if (kvm->mm != current->mm)
3780 return -EIO;
3781 switch (ioctl) {
3782 case KVM_GET_DIRTY_LOG: {
3783 struct compat_kvm_dirty_log compat_log;
3784 struct kvm_dirty_log log;
3785
6ff5894c
AB
3786 if (copy_from_user(&compat_log, (void __user *)arg,
3787 sizeof(compat_log)))
f6a3b168 3788 return -EFAULT;
6ff5894c
AB
3789 log.slot = compat_log.slot;
3790 log.padding1 = compat_log.padding1;
3791 log.padding2 = compat_log.padding2;
3792 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3793
3794 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
3795 break;
3796 }
3797 default:
3798 r = kvm_vm_ioctl(filp, ioctl, arg);
3799 }
6ff5894c
AB
3800 return r;
3801}
3802#endif
3803
3d3aab1b 3804static struct file_operations kvm_vm_fops = {
f17abe9a
AK
3805 .release = kvm_vm_release,
3806 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 3807 .llseek = noop_llseek,
7ddfd3e0 3808 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
3809};
3810
e08b9637 3811static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 3812{
aac87636 3813 int r;
f17abe9a 3814 struct kvm *kvm;
506cfba9 3815 struct file *file;
f17abe9a 3816
e08b9637 3817 kvm = kvm_create_vm(type);
d6d28168
AK
3818 if (IS_ERR(kvm))
3819 return PTR_ERR(kvm);
4b4357e0 3820#ifdef CONFIG_KVM_MMIO
6ce5a090 3821 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
3822 if (r < 0)
3823 goto put_kvm;
6ce5a090 3824#endif
506cfba9 3825 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
3826 if (r < 0)
3827 goto put_kvm;
3828
506cfba9
AV
3829 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3830 if (IS_ERR(file)) {
3831 put_unused_fd(r);
78588335
ME
3832 r = PTR_ERR(file);
3833 goto put_kvm;
506cfba9 3834 }
536a6f88 3835
525df861
PB
3836 /*
3837 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3838 * already set, with ->release() being kvm_vm_release(). In error
3839 * cases it will be called by the final fput(file) and will take
3840 * care of doing kvm_put_kvm(kvm).
3841 */
536a6f88 3842 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
3843 put_unused_fd(r);
3844 fput(file);
536a6f88
JF
3845 return -ENOMEM;
3846 }
286de8f6 3847 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 3848
506cfba9 3849 fd_install(r, file);
aac87636 3850 return r;
78588335
ME
3851
3852put_kvm:
3853 kvm_put_kvm(kvm);
3854 return r;
f17abe9a
AK
3855}
3856
3857static long kvm_dev_ioctl(struct file *filp,
3858 unsigned int ioctl, unsigned long arg)
3859{
07c45a36 3860 long r = -EINVAL;
f17abe9a
AK
3861
3862 switch (ioctl) {
3863 case KVM_GET_API_VERSION:
f0fe5108
AK
3864 if (arg)
3865 goto out;
f17abe9a
AK
3866 r = KVM_API_VERSION;
3867 break;
3868 case KVM_CREATE_VM:
e08b9637 3869 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 3870 break;
018d00d2 3871 case KVM_CHECK_EXTENSION:
784aa3d7 3872 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 3873 break;
07c45a36 3874 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
3875 if (arg)
3876 goto out;
adb1ff46
AK
3877 r = PAGE_SIZE; /* struct kvm_run */
3878#ifdef CONFIG_X86
3879 r += PAGE_SIZE; /* pio data page */
5f94c174 3880#endif
4b4357e0 3881#ifdef CONFIG_KVM_MMIO
5f94c174 3882 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 3883#endif
07c45a36 3884 break;
d4c9ff2d
FEL
3885 case KVM_TRACE_ENABLE:
3886 case KVM_TRACE_PAUSE:
3887 case KVM_TRACE_DISABLE:
2023a29c 3888 r = -EOPNOTSUPP;
d4c9ff2d 3889 break;
6aa8b732 3890 default:
043405e1 3891 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
3892 }
3893out:
3894 return r;
3895}
3896
6aa8b732 3897static struct file_operations kvm_chardev_ops = {
6aa8b732 3898 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 3899 .llseek = noop_llseek,
7ddfd3e0 3900 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
3901};
3902
3903static struct miscdevice kvm_dev = {
bbe4432e 3904 KVM_MINOR,
6aa8b732
AK
3905 "kvm",
3906 &kvm_chardev_ops,
3907};
3908
75b7127c 3909static void hardware_enable_nolock(void *junk)
1b6c0168
AK
3910{
3911 int cpu = raw_smp_processor_id();
10474ae8 3912 int r;
1b6c0168 3913
7f59f492 3914 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3915 return;
10474ae8 3916
7f59f492 3917 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 3918
13a34e06 3919 r = kvm_arch_hardware_enable();
10474ae8
AG
3920
3921 if (r) {
3922 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3923 atomic_inc(&hardware_enable_failed);
1170adc6 3924 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 3925 }
1b6c0168
AK
3926}
3927
8c18b2d2 3928static int kvm_starting_cpu(unsigned int cpu)
75b7127c 3929{
4a937f96 3930 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3931 if (kvm_usage_count)
3932 hardware_enable_nolock(NULL);
4a937f96 3933 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3934 return 0;
75b7127c
TY
3935}
3936
3937static void hardware_disable_nolock(void *junk)
1b6c0168
AK
3938{
3939 int cpu = raw_smp_processor_id();
3940
7f59f492 3941 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3942 return;
7f59f492 3943 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 3944 kvm_arch_hardware_disable();
1b6c0168
AK
3945}
3946
8c18b2d2 3947static int kvm_dying_cpu(unsigned int cpu)
75b7127c 3948{
4a937f96 3949 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3950 if (kvm_usage_count)
3951 hardware_disable_nolock(NULL);
4a937f96 3952 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3953 return 0;
75b7127c
TY
3954}
3955
10474ae8
AG
3956static void hardware_disable_all_nolock(void)
3957{
3958 BUG_ON(!kvm_usage_count);
3959
3960 kvm_usage_count--;
3961 if (!kvm_usage_count)
75b7127c 3962 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
3963}
3964
3965static void hardware_disable_all(void)
3966{
4a937f96 3967 raw_spin_lock(&kvm_count_lock);
10474ae8 3968 hardware_disable_all_nolock();
4a937f96 3969 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3970}
3971
3972static int hardware_enable_all(void)
3973{
3974 int r = 0;
3975
4a937f96 3976 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
3977
3978 kvm_usage_count++;
3979 if (kvm_usage_count == 1) {
3980 atomic_set(&hardware_enable_failed, 0);
75b7127c 3981 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
3982
3983 if (atomic_read(&hardware_enable_failed)) {
3984 hardware_disable_all_nolock();
3985 r = -EBUSY;
3986 }
3987 }
3988
4a937f96 3989 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3990
3991 return r;
3992}
3993
9a2b85c6 3994static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 3995 void *v)
9a2b85c6 3996{
8e1c1815
SY
3997 /*
3998 * Some (well, at least mine) BIOSes hang on reboot if
3999 * in vmx root mode.
4000 *
4001 * And Intel TXT required VMX off for all cpu when system shutdown.
4002 */
1170adc6 4003 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 4004 kvm_rebooting = true;
75b7127c 4005 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
4006 return NOTIFY_OK;
4007}
4008
4009static struct notifier_block kvm_reboot_notifier = {
4010 .notifier_call = kvm_reboot,
4011 .priority = 0,
4012};
4013
e93f8a0f 4014static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
4015{
4016 int i;
4017
4018 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 4019 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
4020
4021 kvm_iodevice_destructor(pos);
4022 }
e93f8a0f 4023 kfree(bus);
2eeb2e94
GH
4024}
4025
c21fbff1 4026static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 4027 const struct kvm_io_range *r2)
743eeb0b 4028{
8f4216c7
JW
4029 gpa_t addr1 = r1->addr;
4030 gpa_t addr2 = r2->addr;
4031
4032 if (addr1 < addr2)
743eeb0b 4033 return -1;
8f4216c7
JW
4034
4035 /* If r2->len == 0, match the exact address. If r2->len != 0,
4036 * accept any overlapping write. Any order is acceptable for
4037 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4038 * we process all of them.
4039 */
4040 if (r2->len) {
4041 addr1 += r1->len;
4042 addr2 += r2->len;
4043 }
4044
4045 if (addr1 > addr2)
743eeb0b 4046 return 1;
8f4216c7 4047
743eeb0b
SL
4048 return 0;
4049}
4050
a343c9b7
PB
4051static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4052{
c21fbff1 4053 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
4054}
4055
39369f7a 4056static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
4057 gpa_t addr, int len)
4058{
4059 struct kvm_io_range *range, key;
4060 int off;
4061
4062 key = (struct kvm_io_range) {
4063 .addr = addr,
4064 .len = len,
4065 };
4066
4067 range = bsearch(&key, bus->range, bus->dev_count,
4068 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4069 if (range == NULL)
4070 return -ENOENT;
4071
4072 off = range - bus->range;
4073
c21fbff1 4074 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
4075 off--;
4076
4077 return off;
4078}
4079
e32edf4f 4080static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
4081 struct kvm_io_range *range, const void *val)
4082{
4083 int idx;
4084
4085 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4086 if (idx < 0)
4087 return -EOPNOTSUPP;
4088
4089 while (idx < bus->dev_count &&
c21fbff1 4090 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4091 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4092 range->len, val))
4093 return idx;
4094 idx++;
4095 }
4096
4097 return -EOPNOTSUPP;
4098}
4099
bda9020e 4100/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 4101int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 4102 int len, const void *val)
2eeb2e94 4103{
90d83dc3 4104 struct kvm_io_bus *bus;
743eeb0b 4105 struct kvm_io_range range;
126a5af5 4106 int r;
743eeb0b
SL
4107
4108 range = (struct kvm_io_range) {
4109 .addr = addr,
4110 .len = len,
4111 };
90d83dc3 4112
e32edf4f 4113 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4114 if (!bus)
4115 return -ENOMEM;
e32edf4f 4116 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4117 return r < 0 ? r : 0;
4118}
a2420107 4119EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
4120
4121/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
4122int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4123 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
4124{
4125 struct kvm_io_bus *bus;
4126 struct kvm_io_range range;
4127
4128 range = (struct kvm_io_range) {
4129 .addr = addr,
4130 .len = len,
4131 };
4132
e32edf4f 4133 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4134 if (!bus)
4135 return -ENOMEM;
126a5af5
CH
4136
4137 /* First try the device referenced by cookie. */
4138 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 4139 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 4140 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
4141 val))
4142 return cookie;
4143
4144 /*
4145 * cookie contained garbage; fall back to search and return the
4146 * correct cookie value.
4147 */
e32edf4f 4148 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4149}
4150
e32edf4f
NN
4151static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4152 struct kvm_io_range *range, void *val)
126a5af5
CH
4153{
4154 int idx;
4155
4156 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
4157 if (idx < 0)
4158 return -EOPNOTSUPP;
4159
4160 while (idx < bus->dev_count &&
c21fbff1 4161 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4162 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4163 range->len, val))
4164 return idx;
743eeb0b
SL
4165 idx++;
4166 }
4167
bda9020e
MT
4168 return -EOPNOTSUPP;
4169}
2eeb2e94 4170
bda9020e 4171/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 4172int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 4173 int len, void *val)
bda9020e 4174{
90d83dc3 4175 struct kvm_io_bus *bus;
743eeb0b 4176 struct kvm_io_range range;
126a5af5 4177 int r;
743eeb0b
SL
4178
4179 range = (struct kvm_io_range) {
4180 .addr = addr,
4181 .len = len,
4182 };
e93f8a0f 4183
e32edf4f 4184 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4185 if (!bus)
4186 return -ENOMEM;
e32edf4f 4187 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
4188 return r < 0 ? r : 0;
4189}
743eeb0b 4190
79fac95e 4191/* Caller must hold slots_lock. */
743eeb0b
SL
4192int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4193 int len, struct kvm_io_device *dev)
6c474694 4194{
d4c67a7a 4195 int i;
e93f8a0f 4196 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 4197 struct kvm_io_range range;
090b7aff 4198
4a12f951 4199 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
4200 if (!bus)
4201 return -ENOMEM;
4202
6ea34c9b
AK
4203 /* exclude ioeventfd which is limited by maximum fd */
4204 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 4205 return -ENOSPC;
2eeb2e94 4206
90952cd3 4207 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 4208 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
4209 if (!new_bus)
4210 return -ENOMEM;
d4c67a7a
GH
4211
4212 range = (struct kvm_io_range) {
4213 .addr = addr,
4214 .len = len,
4215 .dev = dev,
4216 };
4217
4218 for (i = 0; i < bus->dev_count; i++)
4219 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4220 break;
4221
4222 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4223 new_bus->dev_count++;
4224 new_bus->range[i] = range;
4225 memcpy(new_bus->range + i + 1, bus->range + i,
4226 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
4227 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4228 synchronize_srcu_expedited(&kvm->srcu);
4229 kfree(bus);
090b7aff
GH
4230
4231 return 0;
4232}
4233
79fac95e 4234/* Caller must hold slots_lock. */
90db1043
DH
4235void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4236 struct kvm_io_device *dev)
090b7aff 4237{
90db1043 4238 int i;
e93f8a0f 4239 struct kvm_io_bus *new_bus, *bus;
090b7aff 4240
4a12f951 4241 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 4242 if (!bus)
90db1043 4243 return;
df630b8c 4244
a1300716
AK
4245 for (i = 0; i < bus->dev_count; i++)
4246 if (bus->range[i].dev == dev) {
090b7aff
GH
4247 break;
4248 }
e93f8a0f 4249
90db1043
DH
4250 if (i == bus->dev_count)
4251 return;
a1300716 4252
90952cd3 4253 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 4254 GFP_KERNEL_ACCOUNT);
90db1043
DH
4255 if (!new_bus) {
4256 pr_err("kvm: failed to shrink bus, removing it completely\n");
4257 goto broken;
4258 }
a1300716
AK
4259
4260 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4261 new_bus->dev_count--;
4262 memcpy(new_bus->range + i, bus->range + i + 1,
4263 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f 4264
90db1043 4265broken:
e93f8a0f
MT
4266 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4267 synchronize_srcu_expedited(&kvm->srcu);
4268 kfree(bus);
90db1043 4269 return;
2eeb2e94
GH
4270}
4271
8a39d006
AP
4272struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4273 gpa_t addr)
4274{
4275 struct kvm_io_bus *bus;
4276 int dev_idx, srcu_idx;
4277 struct kvm_io_device *iodev = NULL;
4278
4279 srcu_idx = srcu_read_lock(&kvm->srcu);
4280
4281 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
4282 if (!bus)
4283 goto out_unlock;
8a39d006
AP
4284
4285 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4286 if (dev_idx < 0)
4287 goto out_unlock;
4288
4289 iodev = bus->range[dev_idx].dev;
4290
4291out_unlock:
4292 srcu_read_unlock(&kvm->srcu, srcu_idx);
4293
4294 return iodev;
4295}
4296EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4297
536a6f88
JF
4298static int kvm_debugfs_open(struct inode *inode, struct file *file,
4299 int (*get)(void *, u64 *), int (*set)(void *, u64),
4300 const char *fmt)
4301{
4302 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4303 inode->i_private;
4304
4305 /* The debugfs files are a reference to the kvm struct which
4306 * is still valid when kvm_destroy_vm is called.
4307 * To avoid the race between open and the removal of the debugfs
4308 * directory we test against the users count.
4309 */
e3736c3e 4310 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
4311 return -ENOENT;
4312
833b45de 4313 if (simple_attr_open(inode, file, get,
09cbcef6
MP
4314 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4315 ? set : NULL,
4316 fmt)) {
536a6f88
JF
4317 kvm_put_kvm(stat_data->kvm);
4318 return -ENOMEM;
4319 }
4320
4321 return 0;
4322}
4323
4324static int kvm_debugfs_release(struct inode *inode, struct file *file)
4325{
4326 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4327 inode->i_private;
4328
4329 simple_attr_release(inode, file);
4330 kvm_put_kvm(stat_data->kvm);
4331
4332 return 0;
4333}
4334
09cbcef6 4335static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 4336{
09cbcef6 4337 *val = *(ulong *)((void *)kvm + offset);
536a6f88 4338
09cbcef6
MP
4339 return 0;
4340}
4341
4342static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4343{
4344 *(ulong *)((void *)kvm + offset) = 0;
536a6f88
JF
4345
4346 return 0;
4347}
4348
09cbcef6 4349static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 4350{
09cbcef6
MP
4351 int i;
4352 struct kvm_vcpu *vcpu;
ce35ef27 4353
09cbcef6 4354 *val = 0;
ce35ef27 4355
09cbcef6
MP
4356 kvm_for_each_vcpu(i, vcpu, kvm)
4357 *val += *(u64 *)((void *)vcpu + offset);
ce35ef27
SJS
4358
4359 return 0;
4360}
4361
09cbcef6 4362static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 4363{
09cbcef6
MP
4364 int i;
4365 struct kvm_vcpu *vcpu;
536a6f88 4366
09cbcef6
MP
4367 kvm_for_each_vcpu(i, vcpu, kvm)
4368 *(u64 *)((void *)vcpu + offset) = 0;
4369
4370 return 0;
4371}
536a6f88 4372
09cbcef6 4373static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 4374{
09cbcef6 4375 int r = -EFAULT;
536a6f88 4376 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 4377
09cbcef6
MP
4378 switch (stat_data->dbgfs_item->kind) {
4379 case KVM_STAT_VM:
4380 r = kvm_get_stat_per_vm(stat_data->kvm,
4381 stat_data->dbgfs_item->offset, val);
4382 break;
4383 case KVM_STAT_VCPU:
4384 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4385 stat_data->dbgfs_item->offset, val);
4386 break;
4387 }
536a6f88 4388
09cbcef6 4389 return r;
536a6f88
JF
4390}
4391
09cbcef6 4392static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 4393{
09cbcef6 4394 int r = -EFAULT;
ce35ef27 4395 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
4396
4397 if (val)
4398 return -EINVAL;
4399
09cbcef6
MP
4400 switch (stat_data->dbgfs_item->kind) {
4401 case KVM_STAT_VM:
4402 r = kvm_clear_stat_per_vm(stat_data->kvm,
4403 stat_data->dbgfs_item->offset);
4404 break;
4405 case KVM_STAT_VCPU:
4406 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4407 stat_data->dbgfs_item->offset);
4408 break;
4409 }
ce35ef27 4410
09cbcef6 4411 return r;
ce35ef27
SJS
4412}
4413
09cbcef6 4414static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
4415{
4416 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
4417 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4418 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
4419}
4420
09cbcef6
MP
4421static const struct file_operations stat_fops_per_vm = {
4422 .owner = THIS_MODULE,
4423 .open = kvm_stat_data_open,
536a6f88 4424 .release = kvm_debugfs_release,
09cbcef6
MP
4425 .read = simple_attr_read,
4426 .write = simple_attr_write,
4427 .llseek = no_llseek,
536a6f88
JF
4428};
4429
8b88b099 4430static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
4431{
4432 unsigned offset = (long)_offset;
ba1389b7 4433 struct kvm *kvm;
536a6f88 4434 u64 tmp_val;
ba1389b7 4435
8b88b099 4436 *val = 0;
0d9ce162 4437 mutex_lock(&kvm_lock);
536a6f88 4438 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4439 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
4440 *val += tmp_val;
4441 }
0d9ce162 4442 mutex_unlock(&kvm_lock);
8b88b099 4443 return 0;
ba1389b7
AK
4444}
4445
ce35ef27
SJS
4446static int vm_stat_clear(void *_offset, u64 val)
4447{
4448 unsigned offset = (long)_offset;
4449 struct kvm *kvm;
ce35ef27
SJS
4450
4451 if (val)
4452 return -EINVAL;
4453
0d9ce162 4454 mutex_lock(&kvm_lock);
ce35ef27 4455 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4456 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 4457 }
0d9ce162 4458 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4459
4460 return 0;
4461}
4462
4463DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
ba1389b7 4464
8b88b099 4465static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
4466{
4467 unsigned offset = (long)_offset;
1165f5fe 4468 struct kvm *kvm;
536a6f88 4469 u64 tmp_val;
1165f5fe 4470
8b88b099 4471 *val = 0;
0d9ce162 4472 mutex_lock(&kvm_lock);
536a6f88 4473 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4474 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
4475 *val += tmp_val;
4476 }
0d9ce162 4477 mutex_unlock(&kvm_lock);
8b88b099 4478 return 0;
1165f5fe
AK
4479}
4480
ce35ef27
SJS
4481static int vcpu_stat_clear(void *_offset, u64 val)
4482{
4483 unsigned offset = (long)_offset;
4484 struct kvm *kvm;
ce35ef27
SJS
4485
4486 if (val)
4487 return -EINVAL;
4488
0d9ce162 4489 mutex_lock(&kvm_lock);
ce35ef27 4490 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4491 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 4492 }
0d9ce162 4493 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4494
4495 return 0;
4496}
4497
4498DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4499 "%llu\n");
ba1389b7 4500
828c0950 4501static const struct file_operations *stat_fops[] = {
ba1389b7
AK
4502 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4503 [KVM_STAT_VM] = &vm_stat_fops,
4504};
1165f5fe 4505
286de8f6
CI
4506static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4507{
4508 struct kobj_uevent_env *env;
286de8f6
CI
4509 unsigned long long created, active;
4510
4511 if (!kvm_dev.this_device || !kvm)
4512 return;
4513
0d9ce162 4514 mutex_lock(&kvm_lock);
286de8f6
CI
4515 if (type == KVM_EVENT_CREATE_VM) {
4516 kvm_createvm_count++;
4517 kvm_active_vms++;
4518 } else if (type == KVM_EVENT_DESTROY_VM) {
4519 kvm_active_vms--;
4520 }
4521 created = kvm_createvm_count;
4522 active = kvm_active_vms;
0d9ce162 4523 mutex_unlock(&kvm_lock);
286de8f6 4524
b12ce36a 4525 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
4526 if (!env)
4527 return;
4528
4529 add_uevent_var(env, "CREATED=%llu", created);
4530 add_uevent_var(env, "COUNT=%llu", active);
4531
fdeaf7e3 4532 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 4533 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
4534 kvm->userspace_pid = task_pid_nr(current);
4535 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 4536 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
4537 }
4538 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 4539
8ed0579c 4540 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
b12ce36a 4541 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
4542
4543 if (p) {
4544 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4545 if (!IS_ERR(tmp))
4546 add_uevent_var(env, "STATS_PATH=%s", tmp);
4547 kfree(p);
286de8f6
CI
4548 }
4549 }
4550 /* no need for checks, since we are adding at most only 5 keys */
4551 env->envp[env->envp_idx++] = NULL;
4552 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4553 kfree(env);
286de8f6
CI
4554}
4555
929f45e3 4556static void kvm_init_debug(void)
6aa8b732
AK
4557{
4558 struct kvm_stats_debugfs_item *p;
4559
76f7c879 4560 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 4561
536a6f88
JF
4562 kvm_debugfs_num_entries = 0;
4563 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
09cbcef6
MP
4564 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4565 kvm_debugfs_dir, (void *)(long)p->offset,
929f45e3 4566 stat_fops[p->kind]);
4f69b680 4567 }
6aa8b732
AK
4568}
4569
fb3600cc 4570static int kvm_suspend(void)
59ae6c6b 4571{
10474ae8 4572 if (kvm_usage_count)
75b7127c 4573 hardware_disable_nolock(NULL);
59ae6c6b
AK
4574 return 0;
4575}
4576
fb3600cc 4577static void kvm_resume(void)
59ae6c6b 4578{
ca84d1a2 4579 if (kvm_usage_count) {
2eb06c30
WL
4580#ifdef CONFIG_LOCKDEP
4581 WARN_ON(lockdep_is_held(&kvm_count_lock));
4582#endif
75b7127c 4583 hardware_enable_nolock(NULL);
ca84d1a2 4584 }
59ae6c6b
AK
4585}
4586
fb3600cc 4587static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
4588 .suspend = kvm_suspend,
4589 .resume = kvm_resume,
4590};
4591
15ad7146
AK
4592static inline
4593struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4594{
4595 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4596}
4597
4598static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4599{
4600 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 4601
046ddeed 4602 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 4603 WRITE_ONCE(vcpu->ready, false);
15ad7146 4604
7495e22b 4605 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 4606 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 4607 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
4608}
4609
4610static void kvm_sched_out(struct preempt_notifier *pn,
4611 struct task_struct *next)
4612{
4613 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4614
d73eb57b 4615 if (current->state == TASK_RUNNING) {
046ddeed 4616 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
4617 WRITE_ONCE(vcpu->ready, true);
4618 }
e9b11c17 4619 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
4620 __this_cpu_write(kvm_running_vcpu, NULL);
4621}
4622
4623/**
4624 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
4625 *
4626 * We can disable preemption locally around accessing the per-CPU variable,
4627 * and use the resolved vcpu pointer after enabling preemption again,
4628 * because even if the current thread is migrated to another CPU, reading
4629 * the per-CPU value later will give us the same value as we update the
4630 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
4631 */
4632struct kvm_vcpu *kvm_get_running_vcpu(void)
4633{
1f03b2bc
MZ
4634 struct kvm_vcpu *vcpu;
4635
4636 preempt_disable();
4637 vcpu = __this_cpu_read(kvm_running_vcpu);
4638 preempt_enable();
4639
4640 return vcpu;
7495e22b
PB
4641}
4642
4643/**
4644 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4645 */
4646struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4647{
4648 return &kvm_running_vcpu;
15ad7146
AK
4649}
4650
b9904085
SC
4651struct kvm_cpu_compat_check {
4652 void *opaque;
4653 int *ret;
4654};
4655
4656static void check_processor_compat(void *data)
f257d6dc 4657{
b9904085
SC
4658 struct kvm_cpu_compat_check *c = data;
4659
4660 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
4661}
4662
0ee75bea 4663int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 4664 struct module *module)
6aa8b732 4665{
b9904085 4666 struct kvm_cpu_compat_check c;
6aa8b732 4667 int r;
002c7f7c 4668 int cpu;
6aa8b732 4669
f8c16bba
ZX
4670 r = kvm_arch_init(opaque);
4671 if (r)
d2308784 4672 goto out_fail;
cb498ea2 4673
7dac16c3
AH
4674 /*
4675 * kvm_arch_init makes sure there's at most one caller
4676 * for architectures that support multiple implementations,
4677 * like intel and amd on x86.
36343f6e
PB
4678 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4679 * conflicts in case kvm is already setup for another implementation.
7dac16c3 4680 */
36343f6e
PB
4681 r = kvm_irqfd_init();
4682 if (r)
4683 goto out_irqfd;
7dac16c3 4684
8437a617 4685 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
4686 r = -ENOMEM;
4687 goto out_free_0;
4688 }
4689
b9904085 4690 r = kvm_arch_hardware_setup(opaque);
6aa8b732 4691 if (r < 0)
faf0be22 4692 goto out_free_1;
6aa8b732 4693
b9904085
SC
4694 c.ret = &r;
4695 c.opaque = opaque;
002c7f7c 4696 for_each_online_cpu(cpu) {
b9904085 4697 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 4698 if (r < 0)
faf0be22 4699 goto out_free_2;
002c7f7c
YS
4700 }
4701
73c1b41e 4702 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 4703 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 4704 if (r)
d2308784 4705 goto out_free_2;
6aa8b732
AK
4706 register_reboot_notifier(&kvm_reboot_notifier);
4707
c16f862d 4708 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
4709 if (!vcpu_align)
4710 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
4711 kvm_vcpu_cache =
4712 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4713 SLAB_ACCOUNT,
4714 offsetof(struct kvm_vcpu, arch),
4715 sizeof_field(struct kvm_vcpu, arch),
4716 NULL);
c16f862d
RR
4717 if (!kvm_vcpu_cache) {
4718 r = -ENOMEM;
fb3600cc 4719 goto out_free_3;
c16f862d
RR
4720 }
4721
af585b92
GN
4722 r = kvm_async_pf_init();
4723 if (r)
4724 goto out_free;
4725
6aa8b732 4726 kvm_chardev_ops.owner = module;
3d3aab1b
CB
4727 kvm_vm_fops.owner = module;
4728 kvm_vcpu_fops.owner = module;
6aa8b732
AK
4729
4730 r = misc_register(&kvm_dev);
4731 if (r) {
1170adc6 4732 pr_err("kvm: misc device register failed\n");
af585b92 4733 goto out_unreg;
6aa8b732
AK
4734 }
4735
fb3600cc
RW
4736 register_syscore_ops(&kvm_syscore_ops);
4737
15ad7146
AK
4738 kvm_preempt_ops.sched_in = kvm_sched_in;
4739 kvm_preempt_ops.sched_out = kvm_sched_out;
4740
929f45e3 4741 kvm_init_debug();
0ea4ed8e 4742
3c3c29fd
PB
4743 r = kvm_vfio_ops_init();
4744 WARN_ON(r);
4745
c7addb90 4746 return 0;
6aa8b732 4747
af585b92
GN
4748out_unreg:
4749 kvm_async_pf_deinit();
6aa8b732 4750out_free:
c16f862d 4751 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 4752out_free_3:
6aa8b732 4753 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4754 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 4755out_free_2:
e9b11c17 4756 kvm_arch_hardware_unsetup();
faf0be22 4757out_free_1:
7f59f492 4758 free_cpumask_var(cpus_hardware_enabled);
d2308784 4759out_free_0:
a0f155e9 4760 kvm_irqfd_exit();
36343f6e 4761out_irqfd:
7dac16c3
AH
4762 kvm_arch_exit();
4763out_fail:
6aa8b732
AK
4764 return r;
4765}
cb498ea2 4766EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 4767
cb498ea2 4768void kvm_exit(void)
6aa8b732 4769{
4bd33b56 4770 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 4771 misc_deregister(&kvm_dev);
c16f862d 4772 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 4773 kvm_async_pf_deinit();
fb3600cc 4774 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 4775 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4776 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 4777 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 4778 kvm_arch_hardware_unsetup();
f8c16bba 4779 kvm_arch_exit();
a0f155e9 4780 kvm_irqfd_exit();
7f59f492 4781 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 4782 kvm_vfio_ops_exit();
6aa8b732 4783}
cb498ea2 4784EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
4785
4786struct kvm_vm_worker_thread_context {
4787 struct kvm *kvm;
4788 struct task_struct *parent;
4789 struct completion init_done;
4790 kvm_vm_thread_fn_t thread_fn;
4791 uintptr_t data;
4792 int err;
4793};
4794
4795static int kvm_vm_worker_thread(void *context)
4796{
4797 /*
4798 * The init_context is allocated on the stack of the parent thread, so
4799 * we have to locally copy anything that is needed beyond initialization
4800 */
4801 struct kvm_vm_worker_thread_context *init_context = context;
4802 struct kvm *kvm = init_context->kvm;
4803 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4804 uintptr_t data = init_context->data;
4805 int err;
4806
4807 err = kthread_park(current);
4808 /* kthread_park(current) is never supposed to return an error */
4809 WARN_ON(err != 0);
4810 if (err)
4811 goto init_complete;
4812
4813 err = cgroup_attach_task_all(init_context->parent, current);
4814 if (err) {
4815 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4816 __func__, err);
4817 goto init_complete;
4818 }
4819
4820 set_user_nice(current, task_nice(init_context->parent));
4821
4822init_complete:
4823 init_context->err = err;
4824 complete(&init_context->init_done);
4825 init_context = NULL;
4826
4827 if (err)
4828 return err;
4829
4830 /* Wait to be woken up by the spawner before proceeding. */
4831 kthread_parkme();
4832
4833 if (!kthread_should_stop())
4834 err = thread_fn(kvm, data);
4835
4836 return err;
4837}
4838
4839int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4840 uintptr_t data, const char *name,
4841 struct task_struct **thread_ptr)
4842{
4843 struct kvm_vm_worker_thread_context init_context = {};
4844 struct task_struct *thread;
4845
4846 *thread_ptr = NULL;
4847 init_context.kvm = kvm;
4848 init_context.parent = current;
4849 init_context.thread_fn = thread_fn;
4850 init_context.data = data;
4851 init_completion(&init_context.init_done);
4852
4853 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4854 "%s-%d", name, task_pid_nr(current));
4855 if (IS_ERR(thread))
4856 return PTR_ERR(thread);
4857
4858 /* kthread_run is never supposed to return NULL */
4859 WARN_ON(thread == NULL);
4860
4861 wait_for_completion(&init_context.init_done);
4862
4863 if (!init_context.err)
4864 *thread_ptr = thread;
4865
4866 return init_context.err;
4867}