]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - virt/kvm/kvm_main.c
mm/mmu_notifier: helper to test if a range invalidation is blockable
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
af669ac6 19#include <kvm/iodev.h>
6aa8b732 20
edf88417 21#include <linux/kvm_host.h>
6aa8b732
AK
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
6aa8b732 25#include <linux/percpu.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
6aa8b732 29#include <linux/reboot.h>
6aa8b732
AK
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
fb3600cc 33#include <linux/syscore_ops.h>
774c47f1 34#include <linux/cpu.h>
174cd4b1 35#include <linux/sched/signal.h>
6e84f315 36#include <linux/sched/mm.h>
03441a34 37#include <linux/sched/stat.h>
d9e368d6
AK
38#include <linux/cpumask.h>
39#include <linux/smp.h>
d6d28168 40#include <linux/anon_inodes.h>
04d2cc77 41#include <linux/profile.h>
7aa81cc0 42#include <linux/kvm_para.h>
6fc138d2 43#include <linux/pagemap.h>
8d4e1288 44#include <linux/mman.h>
35149e21 45#include <linux/swap.h>
e56d532f 46#include <linux/bitops.h>
547de29e 47#include <linux/spinlock.h>
6ff5894c 48#include <linux/compat.h>
bc6678a3 49#include <linux/srcu.h>
8f0b1ab6 50#include <linux/hugetlb.h>
5a0e3ad6 51#include <linux/slab.h>
743eeb0b
SL
52#include <linux/sort.h>
53#include <linux/bsearch.h>
6aa8b732 54
e495606d 55#include <asm/processor.h>
e495606d 56#include <asm/io.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
3e021bf5 59#include <asm/pgtable.h>
6aa8b732 60
5f94c174 61#include "coalesced_mmio.h"
af585b92 62#include "async_pf.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
229456fc
MT
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
536a6f88
JF
68/* Worst case buffer size needed for holding an integer. */
69#define ITOA_MAX_LEN 12
70
6aa8b732
AK
71MODULE_AUTHOR("Qumranet");
72MODULE_LICENSE("GPL");
73
920552b2 74/* Architectures should define their poll value according to the halt latency */
ec76d819 75unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 76module_param(halt_poll_ns, uint, 0644);
ec76d819 77EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 78
aca6ff29 79/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 80unsigned int halt_poll_ns_grow = 2;
039c5d1b 81module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 82EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 83
49113d36
NW
84/* The start value to grow halt_poll_ns from */
85unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86module_param(halt_poll_ns_grow_start, uint, 0644);
87EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88
aca6ff29 89/* Default resets per-vcpu halt_poll_ns . */
ec76d819 90unsigned int halt_poll_ns_shrink;
039c5d1b 91module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 92EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 93
fa40a821
MT
94/*
95 * Ordering of locks:
96 *
b7d409de 97 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
98 */
99
2f303b74 100DEFINE_SPINLOCK(kvm_lock);
4a937f96 101static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 102LIST_HEAD(vm_list);
133de902 103
7f59f492 104static cpumask_var_t cpus_hardware_enabled;
f4fee932 105static int kvm_usage_count;
10474ae8 106static atomic_t hardware_enable_failed;
1b6c0168 107
c16f862d
RR
108struct kmem_cache *kvm_vcpu_cache;
109EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
1165f5fe 110
15ad7146
AK
111static __read_mostly struct preempt_ops kvm_preempt_ops;
112
76f7c879 113struct dentry *kvm_debugfs_dir;
e23a808b 114EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 115
536a6f88
JF
116static int kvm_debugfs_num_entries;
117static const struct file_operations *stat_fops_per_vm[];
118
bccf2150
AK
119static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 unsigned long arg);
de8e5d74 121#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
122static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
7ddfd3e0
MZ
124#define KVM_COMPAT(c) .compat_ioctl = (c)
125#else
126static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
127 unsigned long arg) { return -EINVAL; }
128#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
1dda606c 129#endif
10474ae8
AG
130static int hardware_enable_all(void);
131static void hardware_disable_all(void);
bccf2150 132
e93f8a0f 133static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 134
bc009e43 135static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
e93f8a0f 136
52480137 137__visible bool kvm_rebooting;
b7c4145b 138EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 139
54dee993
MT
140static bool largepages_enabled = true;
141
286de8f6
CI
142#define KVM_EVENT_CREATE_VM 0
143#define KVM_EVENT_DESTROY_VM 1
144static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
145static unsigned long long kvm_createvm_count;
146static unsigned long long kvm_active_vms;
147
93065ac7
MH
148__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
149 unsigned long start, unsigned long end, bool blockable)
b1394e74 150{
93065ac7 151 return 0;
b1394e74
RK
152}
153
ba049e93 154bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 155{
11feeb49 156 if (pfn_valid(pfn))
bf4bea8e 157 return PageReserved(pfn_to_page(pfn));
cbff90a7
BAY
158
159 return true;
160}
161
bccf2150
AK
162/*
163 * Switches to specified vcpu, until a matching vcpu_put()
164 */
ec7660cc 165void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 166{
ec7660cc 167 int cpu = get_cpu();
15ad7146 168 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 169 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 170 put_cpu();
6aa8b732 171}
2f1fe811 172EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 173
313a3dc7 174void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 175{
15ad7146 176 preempt_disable();
313a3dc7 177 kvm_arch_vcpu_put(vcpu);
15ad7146
AK
178 preempt_notifier_unregister(&vcpu->preempt_notifier);
179 preempt_enable();
6aa8b732 180}
2f1fe811 181EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 182
7a97cec2
PB
183/* TODO: merge with kvm_arch_vcpu_should_kick */
184static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
185{
186 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187
188 /*
189 * We need to wait for the VCPU to reenable interrupts and get out of
190 * READING_SHADOW_PAGE_TABLES mode.
191 */
192 if (req & KVM_REQUEST_WAIT)
193 return mode != OUTSIDE_GUEST_MODE;
194
195 /*
196 * Need to kick a running VCPU, but otherwise there is nothing to do.
197 */
198 return mode == IN_GUEST_MODE;
199}
200
d9e368d6
AK
201static void ack_flush(void *_completed)
202{
d9e368d6
AK
203}
204
b49defe8
PB
205static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
206{
207 if (unlikely(!cpus))
208 cpus = cpu_online_mask;
209
210 if (cpumask_empty(cpus))
211 return false;
212
213 smp_call_function_many(cpus, ack_flush, NULL, wait);
214 return true;
215}
216
7053df4e
VK
217bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
218 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 219{
597a5f55 220 int i, cpu, me;
d9e368d6 221 struct kvm_vcpu *vcpu;
7053df4e 222 bool called;
6ef7a1bc 223
3cba4130 224 me = get_cpu();
7053df4e 225
988a2cae 226 kvm_for_each_vcpu(i, vcpu, kvm) {
a812297c 227 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
7053df4e
VK
228 continue;
229
3cba4130 230 kvm_make_request(req, vcpu);
d9e368d6 231 cpu = vcpu->cpu;
6b7e2d09 232
178f02ff
RK
233 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
234 continue;
6c6e8360 235
7053df4e 236 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 237 kvm_request_needs_ipi(vcpu, req))
7053df4e 238 __cpumask_set_cpu(cpu, tmp);
49846896 239 }
7053df4e
VK
240
241 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 242 put_cpu();
7053df4e
VK
243
244 return called;
245}
246
247bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
248{
249 cpumask_var_t cpus;
250 bool called;
7053df4e
VK
251
252 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
253
a812297c 254 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
7053df4e 255
6ef7a1bc 256 free_cpumask_var(cpus);
49846896 257 return called;
d9e368d6
AK
258}
259
a6d51016 260#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 261void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 262{
4ae3cb3a
LT
263 /*
264 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265 * kvm_make_all_cpus_request.
266 */
267 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268
269 /*
270 * We want to publish modifications to the page tables before reading
271 * mode. Pairs with a memory barrier in arch-specific code.
272 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273 * and smp_mb in walk_shadow_page_lockless_begin/end.
274 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275 *
276 * There is already an smp_mb__after_atomic() before
277 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278 * barrier here.
279 */
b08660e5
TL
280 if (!kvm_arch_flush_remote_tlb(kvm)
281 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
49846896 282 ++kvm->stat.remote_tlb_flush;
a086f6a1 283 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 284}
2ba9f0d8 285EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 286#endif
2e53d63a 287
49846896
RR
288void kvm_reload_remote_mmus(struct kvm *kvm)
289{
445b8236 290 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 291}
2e53d63a 292
fb3f0f51
RR
293int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
294{
295 struct page *page;
296 int r;
297
298 mutex_init(&vcpu->mutex);
299 vcpu->cpu = -1;
fb3f0f51
RR
300 vcpu->kvm = kvm;
301 vcpu->vcpu_id = id;
34bb10b7 302 vcpu->pid = NULL;
8577370f 303 init_swait_queue_head(&vcpu->wq);
af585b92 304 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 305
bf9f6ac8
FW
306 vcpu->pre_pcpu = -1;
307 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
308
fb3f0f51
RR
309 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
310 if (!page) {
311 r = -ENOMEM;
312 goto fail;
313 }
314 vcpu->run = page_address(page);
315
4c088493
R
316 kvm_vcpu_set_in_spin_loop(vcpu, false);
317 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 318 vcpu->preempted = false;
4c088493 319
e9b11c17 320 r = kvm_arch_vcpu_init(vcpu);
fb3f0f51 321 if (r < 0)
e9b11c17 322 goto fail_free_run;
fb3f0f51
RR
323 return 0;
324
fb3f0f51
RR
325fail_free_run:
326 free_page((unsigned long)vcpu->run);
327fail:
76fafa5e 328 return r;
fb3f0f51
RR
329}
330EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331
332void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333{
0e4524a5
CB
334 /*
335 * no need for rcu_read_lock as VCPU_RUN is the only place that
336 * will change the vcpu->pid pointer and on uninit all file
337 * descriptors are already gone.
338 */
339 put_pid(rcu_dereference_protected(vcpu->pid, 1));
e9b11c17 340 kvm_arch_vcpu_uninit(vcpu);
fb3f0f51
RR
341 free_page((unsigned long)vcpu->run);
342}
343EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344
e930bffe
AA
345#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347{
348 return container_of(mn, struct kvm, mmu_notifier);
349}
350
3da0dd43
IE
351static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352 struct mm_struct *mm,
353 unsigned long address,
354 pte_t pte)
355{
356 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 357 int idx;
3da0dd43 358
bc6678a3 359 idx = srcu_read_lock(&kvm->srcu);
3da0dd43
IE
360 spin_lock(&kvm->mmu_lock);
361 kvm->mmu_notifier_seq++;
0cf853c5
LT
362
363 if (kvm_set_spte_hva(kvm, address, pte))
364 kvm_flush_remote_tlbs(kvm);
365
3da0dd43 366 spin_unlock(&kvm->mmu_lock);
bc6678a3 367 srcu_read_unlock(&kvm->srcu, idx);
3da0dd43
IE
368}
369
93065ac7 370static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
5d6527a7 371 const struct mmu_notifier_range *range)
e930bffe
AA
372{
373 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 374 int need_tlb_flush = 0, idx;
93065ac7 375 int ret;
e930bffe 376
bc6678a3 377 idx = srcu_read_lock(&kvm->srcu);
e930bffe
AA
378 spin_lock(&kvm->mmu_lock);
379 /*
380 * The count increase must become visible at unlock time as no
381 * spte can be established without taking the mmu_lock and
382 * count is also read inside the mmu_lock critical section.
383 */
384 kvm->mmu_notifier_count++;
5d6527a7 385 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
a4ee1ca4 386 need_tlb_flush |= kvm->tlbs_dirty;
e930bffe
AA
387 /* we've to flush the tlb before the pages can be freed */
388 if (need_tlb_flush)
389 kvm_flush_remote_tlbs(kvm);
565f3be2
TY
390
391 spin_unlock(&kvm->mmu_lock);
b1394e74 392
5d6527a7
JG
393 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394 range->end, range->blockable);
b1394e74 395
565f3be2 396 srcu_read_unlock(&kvm->srcu, idx);
93065ac7
MH
397
398 return ret;
e930bffe
AA
399}
400
401static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
5d6527a7 402 const struct mmu_notifier_range *range)
e930bffe
AA
403{
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405
406 spin_lock(&kvm->mmu_lock);
407 /*
408 * This sequence increase will notify the kvm page fault that
409 * the page that is going to be mapped in the spte could have
410 * been freed.
411 */
412 kvm->mmu_notifier_seq++;
a355aa54 413 smp_wmb();
e930bffe
AA
414 /*
415 * The above sequence increase must be visible before the
a355aa54
PM
416 * below count decrease, which is ensured by the smp_wmb above
417 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
418 */
419 kvm->mmu_notifier_count--;
420 spin_unlock(&kvm->mmu_lock);
421
422 BUG_ON(kvm->mmu_notifier_count < 0);
423}
424
425static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426 struct mm_struct *mm,
57128468
ALC
427 unsigned long start,
428 unsigned long end)
e930bffe
AA
429{
430 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 431 int young, idx;
e930bffe 432
bc6678a3 433 idx = srcu_read_lock(&kvm->srcu);
e930bffe 434 spin_lock(&kvm->mmu_lock);
e930bffe 435
57128468 436 young = kvm_age_hva(kvm, start, end);
e930bffe
AA
437 if (young)
438 kvm_flush_remote_tlbs(kvm);
439
565f3be2
TY
440 spin_unlock(&kvm->mmu_lock);
441 srcu_read_unlock(&kvm->srcu, idx);
442
e930bffe
AA
443 return young;
444}
445
1d7715c6
VD
446static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447 struct mm_struct *mm,
448 unsigned long start,
449 unsigned long end)
450{
451 struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 int young, idx;
453
454 idx = srcu_read_lock(&kvm->srcu);
455 spin_lock(&kvm->mmu_lock);
456 /*
457 * Even though we do not flush TLB, this will still adversely
458 * affect performance on pre-Haswell Intel EPT, where there is
459 * no EPT Access Bit to clear so that we have to tear down EPT
460 * tables instead. If we find this unacceptable, we can always
461 * add a parameter to kvm_age_hva so that it effectively doesn't
462 * do anything on clear_young.
463 *
464 * Also note that currently we never issue secondary TLB flushes
465 * from clear_young, leaving this job up to the regular system
466 * cadence. If we find this inaccurate, we might come up with a
467 * more sophisticated heuristic later.
468 */
469 young = kvm_age_hva(kvm, start, end);
470 spin_unlock(&kvm->mmu_lock);
471 srcu_read_unlock(&kvm->srcu, idx);
472
473 return young;
474}
475
8ee53820
AA
476static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477 struct mm_struct *mm,
478 unsigned long address)
479{
480 struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 int young, idx;
482
483 idx = srcu_read_lock(&kvm->srcu);
484 spin_lock(&kvm->mmu_lock);
485 young = kvm_test_age_hva(kvm, address);
486 spin_unlock(&kvm->mmu_lock);
487 srcu_read_unlock(&kvm->srcu, idx);
488
489 return young;
490}
491
85db06e5
MT
492static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493 struct mm_struct *mm)
494{
495 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
496 int idx;
497
498 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 499 kvm_arch_flush_shadow_all(kvm);
eda2beda 500 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
501}
502
e930bffe 503static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e930bffe
AA
504 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
505 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
506 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 507 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 508 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 509 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 510 .release = kvm_mmu_notifier_release,
e930bffe 511};
4c07b0a4
AK
512
513static int kvm_init_mmu_notifier(struct kvm *kvm)
514{
515 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517}
518
519#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520
521static int kvm_init_mmu_notifier(struct kvm *kvm)
522{
523 return 0;
524}
525
e930bffe
AA
526#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527
a47d2b07 528static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
529{
530 int i;
a47d2b07 531 struct kvm_memslots *slots;
bf3e05bc 532
b12ce36a 533 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
534 if (!slots)
535 return NULL;
536
bf3e05bc 537 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
f85e2cb5 538 slots->id_to_index[i] = slots->memslots[i].id = i;
a47d2b07
PB
539
540 return slots;
541}
542
543static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544{
545 if (!memslot->dirty_bitmap)
546 return;
547
548 kvfree(memslot->dirty_bitmap);
549 memslot->dirty_bitmap = NULL;
550}
551
552/*
553 * Free any memory in @free but not in @dont.
554 */
555static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556 struct kvm_memory_slot *dont)
557{
558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 kvm_destroy_dirty_bitmap(free);
560
561 kvm_arch_free_memslot(kvm, free, dont);
562
563 free->npages = 0;
564}
565
566static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567{
568 struct kvm_memory_slot *memslot;
569
570 if (!slots)
571 return;
572
573 kvm_for_each_memslot(memslot, slots)
574 kvm_free_memslot(kvm, memslot, NULL);
575
576 kvfree(slots);
bf3e05bc
XG
577}
578
536a6f88
JF
579static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580{
581 int i;
582
583 if (!kvm->debugfs_dentry)
584 return;
585
586 debugfs_remove_recursive(kvm->debugfs_dentry);
587
9d5a1dce
LC
588 if (kvm->debugfs_stat_data) {
589 for (i = 0; i < kvm_debugfs_num_entries; i++)
590 kfree(kvm->debugfs_stat_data[i]);
591 kfree(kvm->debugfs_stat_data);
592 }
536a6f88
JF
593}
594
595static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596{
597 char dir_name[ITOA_MAX_LEN * 2];
598 struct kvm_stat_data *stat_data;
599 struct kvm_stats_debugfs_item *p;
600
601 if (!debugfs_initialized())
602 return 0;
603
604 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 605 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
606
607 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608 sizeof(*kvm->debugfs_stat_data),
b12ce36a 609 GFP_KERNEL_ACCOUNT);
536a6f88
JF
610 if (!kvm->debugfs_stat_data)
611 return -ENOMEM;
612
613 for (p = debugfs_entries; p->name; p++) {
b12ce36a 614 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
615 if (!stat_data)
616 return -ENOMEM;
617
618 stat_data->kvm = kvm;
619 stat_data->offset = p->offset;
620 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
929f45e3
GKH
621 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
622 stat_data, stat_fops_per_vm[p->kind]);
536a6f88
JF
623 }
624 return 0;
625}
626
e08b9637 627static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 628{
d89f5eff
JK
629 int r, i;
630 struct kvm *kvm = kvm_arch_alloc_vm();
6aa8b732 631
d89f5eff
JK
632 if (!kvm)
633 return ERR_PTR(-ENOMEM);
634
e9ad4ec8 635 spin_lock_init(&kvm->mmu_lock);
f1f10076 636 mmgrab(current->mm);
e9ad4ec8
PB
637 kvm->mm = current->mm;
638 kvm_eventfd_init(kvm);
639 mutex_init(&kvm->lock);
640 mutex_init(&kvm->irq_lock);
641 mutex_init(&kvm->slots_lock);
e3736c3e 642 refcount_set(&kvm->users_count, 1);
e9ad4ec8
PB
643 INIT_LIST_HEAD(&kvm->devices);
644
e08b9637 645 r = kvm_arch_init_vm(kvm, type);
d89f5eff 646 if (r)
719d93cd 647 goto out_err_no_disable;
10474ae8
AG
648
649 r = hardware_enable_all();
650 if (r)
719d93cd 651 goto out_err_no_disable;
10474ae8 652
c77dcacb 653#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 654 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 655#endif
6aa8b732 656
1e702d9a
AW
657 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658
46a26bf5 659 r = -ENOMEM;
f481b069 660 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1
PB
661 struct kvm_memslots *slots = kvm_alloc_memslots();
662 if (!slots)
f481b069 663 goto out_err_no_srcu;
0e32958e 664 /* Generations must be different for each address space. */
164bf7e5 665 slots->generation = i;
4bd518f1 666 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 667 }
00f034a1 668
bc6678a3 669 if (init_srcu_struct(&kvm->srcu))
719d93cd
CB
670 goto out_err_no_srcu;
671 if (init_srcu_struct(&kvm->irq_srcu))
672 goto out_err_no_irq_srcu;
e93f8a0f 673 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 674 rcu_assign_pointer(kvm->buses[i],
b12ce36a 675 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 676 if (!kvm->buses[i])
e93f8a0f 677 goto out_err;
e93f8a0f 678 }
e930bffe 679
74b5c5bf
MW
680 r = kvm_init_mmu_notifier(kvm);
681 if (r)
682 goto out_err;
683
2f303b74 684 spin_lock(&kvm_lock);
5e58cfe4 685 list_add(&kvm->vm_list, &vm_list);
2f303b74 686 spin_unlock(&kvm_lock);
d89f5eff 687
2ecd9d29
PZ
688 preempt_notifier_inc();
689
f17abe9a 690 return kvm;
10474ae8
AG
691
692out_err:
719d93cd
CB
693 cleanup_srcu_struct(&kvm->irq_srcu);
694out_err_no_irq_srcu:
57e7fbee 695 cleanup_srcu_struct(&kvm->srcu);
719d93cd 696out_err_no_srcu:
10474ae8 697 hardware_disable_all();
719d93cd 698out_err_no_disable:
021086e3 699 refcount_set(&kvm->users_count, 0);
e93f8a0f 700 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 701 kfree(kvm_get_bus(kvm, i));
f481b069 702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 703 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
d89f5eff 704 kvm_arch_free_vm(kvm);
e9ad4ec8 705 mmdrop(current->mm);
10474ae8 706 return ERR_PTR(r);
f17abe9a
AK
707}
708
07f0a7bd
SW
709static void kvm_destroy_devices(struct kvm *kvm)
710{
e6e3b5a6 711 struct kvm_device *dev, *tmp;
07f0a7bd 712
a28ebea2
CD
713 /*
714 * We do not need to take the kvm->lock here, because nobody else
715 * has a reference to the struct kvm at this point and therefore
716 * cannot access the devices list anyhow.
717 */
e6e3b5a6
GT
718 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719 list_del(&dev->vm_node);
07f0a7bd
SW
720 dev->ops->destroy(dev);
721 }
722}
723
f17abe9a
AK
724static void kvm_destroy_vm(struct kvm *kvm)
725{
e93f8a0f 726 int i;
6d4e4c4f
AK
727 struct mm_struct *mm = kvm->mm;
728
286de8f6 729 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 730 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 731 kvm_arch_sync_events(kvm);
2f303b74 732 spin_lock(&kvm_lock);
133de902 733 list_del(&kvm->vm_list);
2f303b74 734 spin_unlock(&kvm_lock);
399ec807 735 kvm_free_irq_routing(kvm);
df630b8c 736 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 737 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 738
4a12f951
CB
739 if (bus)
740 kvm_io_bus_destroy(bus);
df630b8c
PX
741 kvm->buses[i] = NULL;
742 }
980da6ce 743 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
744#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 746#else
2df72e9b 747 kvm_arch_flush_shadow_all(kvm);
5f94c174 748#endif
d19a9cd2 749 kvm_arch_destroy_vm(kvm);
07f0a7bd 750 kvm_destroy_devices(kvm);
f481b069 751 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 752 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 753 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
754 cleanup_srcu_struct(&kvm->srcu);
755 kvm_arch_free_vm(kvm);
2ecd9d29 756 preempt_notifier_dec();
10474ae8 757 hardware_disable_all();
6d4e4c4f 758 mmdrop(mm);
f17abe9a
AK
759}
760
d39f13b0
IE
761void kvm_get_kvm(struct kvm *kvm)
762{
e3736c3e 763 refcount_inc(&kvm->users_count);
d39f13b0
IE
764}
765EXPORT_SYMBOL_GPL(kvm_get_kvm);
766
767void kvm_put_kvm(struct kvm *kvm)
768{
e3736c3e 769 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
770 kvm_destroy_vm(kvm);
771}
772EXPORT_SYMBOL_GPL(kvm_put_kvm);
773
774
f17abe9a
AK
775static int kvm_vm_release(struct inode *inode, struct file *filp)
776{
777 struct kvm *kvm = filp->private_data;
778
721eecbf
GH
779 kvm_irqfd_release(kvm);
780
d39f13b0 781 kvm_put_kvm(kvm);
6aa8b732
AK
782 return 0;
783}
784
515a0127
TY
785/*
786 * Allocation size is twice as large as the actual dirty bitmap size.
93474b25 787 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 788 */
a36a57b1
TY
789static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790{
515a0127 791 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 792
b12ce36a 793 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
794 if (!memslot->dirty_bitmap)
795 return -ENOMEM;
796
a36a57b1
TY
797 return 0;
798}
799
bf3e05bc 800/*
0e60b079
IM
801 * Insert memslot and re-sort memslots based on their GFN,
802 * so binary search could be used to lookup GFN.
803 * Sorting algorithm takes advantage of having initially
804 * sorted array and known changed memslot position.
bf3e05bc 805 */
5cc15027 806static void update_memslots(struct kvm_memslots *slots,
31fc4f95
WY
807 struct kvm_memory_slot *new,
808 enum kvm_mr_change change)
bf3e05bc 809{
8593176c
PB
810 int id = new->id;
811 int i = slots->id_to_index[id];
063584d4 812 struct kvm_memory_slot *mslots = slots->memslots;
f85e2cb5 813
8593176c 814 WARN_ON(mslots[i].id != id);
31fc4f95
WY
815 switch (change) {
816 case KVM_MR_CREATE:
817 slots->used_slots++;
818 WARN_ON(mslots[i].npages || !new->npages);
819 break;
820 case KVM_MR_DELETE:
821 slots->used_slots--;
822 WARN_ON(new->npages || !mslots[i].npages);
823 break;
824 default:
825 break;
9c1a5d38 826 }
0e60b079 827
7f379cff 828 while (i < KVM_MEM_SLOTS_NUM - 1 &&
0e60b079
IM
829 new->base_gfn <= mslots[i + 1].base_gfn) {
830 if (!mslots[i + 1].npages)
831 break;
7f379cff
IM
832 mslots[i] = mslots[i + 1];
833 slots->id_to_index[mslots[i].id] = i;
834 i++;
835 }
efbeec70
PB
836
837 /*
838 * The ">=" is needed when creating a slot with base_gfn == 0,
839 * so that it moves before all those with base_gfn == npages == 0.
840 *
841 * On the other hand, if new->npages is zero, the above loop has
842 * already left i pointing to the beginning of the empty part of
843 * mslots, and the ">=" would move the hole backwards in this
844 * case---which is wrong. So skip the loop when deleting a slot.
845 */
846 if (new->npages) {
847 while (i > 0 &&
848 new->base_gfn >= mslots[i - 1].base_gfn) {
849 mslots[i] = mslots[i - 1];
850 slots->id_to_index[mslots[i].id] = i;
851 i--;
852 }
dbaff309
PB
853 } else
854 WARN_ON_ONCE(i != slots->used_slots);
f85e2cb5 855
8593176c
PB
856 mslots[i] = *new;
857 slots->id_to_index[mslots[i].id] = i;
bf3e05bc
XG
858}
859
09170a49 860static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 861{
4d8b81ab
XG
862 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863
0f8a4de3 864#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
865 valid_flags |= KVM_MEM_READONLY;
866#endif
867
868 if (mem->flags & ~valid_flags)
a50d64d6
XG
869 return -EINVAL;
870
871 return 0;
872}
873
7ec4fb44 874static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 875 int as_id, struct kvm_memslots *slots)
7ec4fb44 876{
f481b069 877 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 878 u64 gen = old_memslots->generation;
7ec4fb44 879
361209e0
SC
880 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
881 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 882
f481b069 883 rcu_assign_pointer(kvm->memslots[as_id], slots);
7ec4fb44 884 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 885
ee3d1570 886 /*
361209e0
SC
887 * Increment the new memslot generation a second time, dropping the
888 * update in-progress flag and incrementing then generation based on
889 * the number of address spaces. This provides a unique and easily
890 * identifiable generation number while the memslots are in flux.
891 */
892 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
893
894 /*
4bd518f1
PB
895 * Generations must be unique even across address spaces. We do not need
896 * a global counter for that, instead the generation space is evenly split
897 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
898 * space 0 will use generations 0, 2, 4, ... while address space 1 will
899 * use generations 1, 3, 5, ...
ee3d1570 900 */
164bf7e5 901 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 902
15248258 903 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 904
15248258 905 slots->generation = gen;
e59dbe09
TY
906
907 return old_memslots;
7ec4fb44
GN
908}
909
6aa8b732
AK
910/*
911 * Allocate some memory and give it an address in the guest physical address
912 * space.
913 *
914 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 915 *
02d5d55b 916 * Must be called holding kvm->slots_lock for write.
6aa8b732 917 */
f78e0e2e 918int __kvm_set_memory_region(struct kvm *kvm,
09170a49 919 const struct kvm_userspace_memory_region *mem)
6aa8b732 920{
8234b22e 921 int r;
6aa8b732 922 gfn_t base_gfn;
28bcb112 923 unsigned long npages;
a843fac2 924 struct kvm_memory_slot *slot;
6aa8b732 925 struct kvm_memory_slot old, new;
b7f69c55 926 struct kvm_memslots *slots = NULL, *old_memslots;
f481b069 927 int as_id, id;
f64c0398 928 enum kvm_mr_change change;
6aa8b732 929
a50d64d6
XG
930 r = check_memory_region_flags(mem);
931 if (r)
932 goto out;
933
6aa8b732 934 r = -EINVAL;
f481b069
PB
935 as_id = mem->slot >> 16;
936 id = (u16)mem->slot;
937
6aa8b732
AK
938 /* General sanity checks */
939 if (mem->memory_size & (PAGE_SIZE - 1))
940 goto out;
941 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
942 goto out;
fa3d315a 943 /* We can read the guest memory with __xxx_user() later on. */
f481b069 944 if ((id < KVM_USER_MEM_SLOTS) &&
fa3d315a 945 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
96d4f267 946 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
9e3bb6b6 947 mem->memory_size)))
78749809 948 goto out;
f481b069 949 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
6aa8b732
AK
950 goto out;
951 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
952 goto out;
953
f481b069 954 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
6aa8b732
AK
955 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
956 npages = mem->memory_size >> PAGE_SHIFT;
957
660c22c4
TY
958 if (npages > KVM_MEM_MAX_NR_PAGES)
959 goto out;
960
a843fac2 961 new = old = *slot;
6aa8b732 962
f481b069 963 new.id = id;
6aa8b732
AK
964 new.base_gfn = base_gfn;
965 new.npages = npages;
966 new.flags = mem->flags;
967
f64c0398
TY
968 if (npages) {
969 if (!old.npages)
970 change = KVM_MR_CREATE;
971 else { /* Modify an existing slot. */
972 if ((mem->userspace_addr != old.userspace_addr) ||
75d61fbc
TY
973 (npages != old.npages) ||
974 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
f64c0398
TY
975 goto out;
976
977 if (base_gfn != old.base_gfn)
978 change = KVM_MR_MOVE;
979 else if (new.flags != old.flags)
980 change = KVM_MR_FLAGS_ONLY;
981 else { /* Nothing to change. */
982 r = 0;
983 goto out;
984 }
985 }
09170a49
PB
986 } else {
987 if (!old.npages)
988 goto out;
989
f64c0398 990 change = KVM_MR_DELETE;
09170a49
PB
991 new.base_gfn = 0;
992 new.flags = 0;
993 }
6aa8b732 994
f64c0398 995 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee
TY
996 /* Check for overlaps */
997 r = -EEXIST;
f481b069 998 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
b28676bb 999 if (slot->id == id)
0a706bee
TY
1000 continue;
1001 if (!((base_gfn + npages <= slot->base_gfn) ||
1002 (base_gfn >= slot->base_gfn + slot->npages)))
1003 goto out;
1004 }
6aa8b732 1005 }
6aa8b732 1006
6aa8b732
AK
1007 /* Free page dirty bitmap if unneeded */
1008 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
8b6d44c7 1009 new.dirty_bitmap = NULL;
6aa8b732
AK
1010
1011 r = -ENOMEM;
f64c0398 1012 if (change == KVM_MR_CREATE) {
189a2f7b 1013 new.userspace_addr = mem->userspace_addr;
d89cc617 1014
5587027c 1015 if (kvm_arch_create_memslot(kvm, &new, npages))
db3fe4eb 1016 goto out_free;
6aa8b732 1017 }
ec04b260 1018
6aa8b732
AK
1019 /* Allocate page dirty bitmap if needed */
1020 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
a36a57b1 1021 if (kvm_create_dirty_bitmap(&new) < 0)
f78e0e2e 1022 goto out_free;
6aa8b732
AK
1023 }
1024
b12ce36a 1025 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
f2a81036
PB
1026 if (!slots)
1027 goto out_free;
f481b069 1028 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
f2a81036 1029
f64c0398 1030 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
f481b069 1031 slot = id_to_memslot(slots, id);
28a37544
XG
1032 slot->flags |= KVM_MEMSLOT_INVALID;
1033
f481b069 1034 old_memslots = install_new_memslots(kvm, as_id, slots);
bc6678a3 1035
12d6e753
MT
1036 /* From this point no new shadow pages pointing to a deleted,
1037 * or moved, memslot will be created.
bc6678a3
MT
1038 *
1039 * validation of sp->gfn happens in:
b7d409de
XL
1040 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1041 * - kvm_is_visible_gfn (mmu_check_roots)
bc6678a3 1042 */
2df72e9b 1043 kvm_arch_flush_shadow_memslot(kvm, slot);
f2a81036
PB
1044
1045 /*
1046 * We can re-use the old_memslots from above, the only difference
1047 * from the currently installed memslots is the invalid flag. This
1048 * will get overwritten by update_memslots anyway.
1049 */
b7f69c55 1050 slots = old_memslots;
bc6678a3 1051 }
34d4cb8f 1052
7b6195a9 1053 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
f7784b8e 1054 if (r)
b7f69c55 1055 goto out_slots;
f7784b8e 1056
a47d2b07 1057 /* actual memory is freed via old in kvm_free_memslot below */
f64c0398 1058 if (change == KVM_MR_DELETE) {
bc6678a3 1059 new.dirty_bitmap = NULL;
db3fe4eb 1060 memset(&new.arch, 0, sizeof(new.arch));
bc6678a3
MT
1061 }
1062
31fc4f95 1063 update_memslots(slots, &new, change);
f481b069 1064 old_memslots = install_new_memslots(kvm, as_id, slots);
3ad82a7e 1065
f36f3f28 1066 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
82ce2c96 1067
a47d2b07 1068 kvm_free_memslot(kvm, &old, &new);
74496134 1069 kvfree(old_memslots);
6aa8b732
AK
1070 return 0;
1071
e40f193f 1072out_slots:
74496134 1073 kvfree(slots);
f78e0e2e 1074out_free:
a47d2b07 1075 kvm_free_memslot(kvm, &new, &old);
6aa8b732
AK
1076out:
1077 return r;
210c7c4d 1078}
f78e0e2e
SY
1079EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080
1081int kvm_set_memory_region(struct kvm *kvm,
09170a49 1082 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1083{
1084 int r;
1085
79fac95e 1086 mutex_lock(&kvm->slots_lock);
47ae31e2 1087 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1088 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1089 return r;
1090}
210c7c4d
IE
1091EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092
7940876e
SH
1093static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094 struct kvm_userspace_memory_region *mem)
210c7c4d 1095{
f481b069 1096 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1097 return -EINVAL;
09170a49 1098
47ae31e2 1099 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1100}
1101
5bb064dc
ZX
1102int kvm_get_dirty_log(struct kvm *kvm,
1103 struct kvm_dirty_log *log, int *is_dirty)
6aa8b732 1104{
9f6b8029 1105 struct kvm_memslots *slots;
6aa8b732 1106 struct kvm_memory_slot *memslot;
843574a3 1107 int i, as_id, id;
87bf6e7d 1108 unsigned long n;
6aa8b732
AK
1109 unsigned long any = 0;
1110
f481b069
PB
1111 as_id = log->slot >> 16;
1112 id = (u16)log->slot;
1113 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1114 return -EINVAL;
6aa8b732 1115
f481b069
PB
1116 slots = __kvm_memslots(kvm, as_id);
1117 memslot = id_to_memslot(slots, id);
6aa8b732 1118 if (!memslot->dirty_bitmap)
843574a3 1119 return -ENOENT;
6aa8b732 1120
87bf6e7d 1121 n = kvm_dirty_bitmap_bytes(memslot);
6aa8b732 1122
cd1a4a98 1123 for (i = 0; !any && i < n/sizeof(long); ++i)
6aa8b732
AK
1124 any = memslot->dirty_bitmap[i];
1125
6aa8b732 1126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
843574a3 1127 return -EFAULT;
6aa8b732 1128
5bb064dc
ZX
1129 if (any)
1130 *is_dirty = 1;
843574a3 1131 return 0;
6aa8b732 1132}
2ba9f0d8 1133EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1134
ba0513b5
MS
1135#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136/**
1137 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
2a31b9db 1138 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1139 * @kvm: pointer to kvm instance
1140 * @log: slot id and address to which we copy the log
1141 * @is_dirty: flag set if any page is dirty
1142 *
1143 * We need to keep it in mind that VCPU threads can write to the bitmap
1144 * concurrently. So, to avoid losing track of dirty pages we keep the
1145 * following order:
1146 *
1147 * 1. Take a snapshot of the bit and clear it if needed.
1148 * 2. Write protect the corresponding page.
1149 * 3. Copy the snapshot to the userspace.
1150 * 4. Upon return caller flushes TLB's if needed.
1151 *
1152 * Between 2 and 4, the guest may write to the page using the remaining TLB
1153 * entry. This is not a problem because the page is reported dirty using
1154 * the snapshot taken before and step 4 ensures that writes done after
1155 * exiting to userspace will be logged for the next call.
1156 *
1157 */
1158int kvm_get_dirty_log_protect(struct kvm *kvm,
8fe65a82 1159 struct kvm_dirty_log *log, bool *flush)
ba0513b5 1160{
9f6b8029 1161 struct kvm_memslots *slots;
ba0513b5 1162 struct kvm_memory_slot *memslot;
58d6db34 1163 int i, as_id, id;
ba0513b5
MS
1164 unsigned long n;
1165 unsigned long *dirty_bitmap;
1166 unsigned long *dirty_bitmap_buffer;
1167
f481b069
PB
1168 as_id = log->slot >> 16;
1169 id = (u16)log->slot;
1170 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1171 return -EINVAL;
ba0513b5 1172
f481b069
PB
1173 slots = __kvm_memslots(kvm, as_id);
1174 memslot = id_to_memslot(slots, id);
ba0513b5
MS
1175
1176 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1177 if (!dirty_bitmap)
58d6db34 1178 return -ENOENT;
ba0513b5
MS
1179
1180 n = kvm_dirty_bitmap_bytes(memslot);
2a31b9db
PB
1181 *flush = false;
1182 if (kvm->manual_dirty_log_protect) {
1183 /*
1184 * Unlike kvm_get_dirty_log, we always return false in *flush,
1185 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1186 * is some code duplication between this function and
1187 * kvm_get_dirty_log, but hopefully all architecture
1188 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1189 * can be eliminated.
1190 */
1191 dirty_bitmap_buffer = dirty_bitmap;
1192 } else {
1193 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1194 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1195
2a31b9db
PB
1196 spin_lock(&kvm->mmu_lock);
1197 for (i = 0; i < n / sizeof(long); i++) {
1198 unsigned long mask;
1199 gfn_t offset;
ba0513b5 1200
2a31b9db
PB
1201 if (!dirty_bitmap[i])
1202 continue;
1203
1204 *flush = true;
1205 mask = xchg(&dirty_bitmap[i], 0);
1206 dirty_bitmap_buffer[i] = mask;
1207
a67794ca
LT
1208 offset = i * BITS_PER_LONG;
1209 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210 offset, mask);
2a31b9db
PB
1211 }
1212 spin_unlock(&kvm->mmu_lock);
1213 }
1214
1215 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216 return -EFAULT;
1217 return 0;
1218}
1219EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220
1221/**
1222 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223 * and reenable dirty page tracking for the corresponding pages.
1224 * @kvm: pointer to kvm instance
1225 * @log: slot id and address from which to fetch the bitmap of dirty pages
1226 */
1227int kvm_clear_dirty_log_protect(struct kvm *kvm,
1228 struct kvm_clear_dirty_log *log, bool *flush)
1229{
1230 struct kvm_memslots *slots;
1231 struct kvm_memory_slot *memslot;
98938aa8 1232 int as_id, id;
2a31b9db 1233 gfn_t offset;
98938aa8 1234 unsigned long i, n;
2a31b9db
PB
1235 unsigned long *dirty_bitmap;
1236 unsigned long *dirty_bitmap_buffer;
1237
1238 as_id = log->slot >> 16;
1239 id = (u16)log->slot;
1240 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1241 return -EINVAL;
1242
76d58e0f 1243 if (log->first_page & 63)
2a31b9db
PB
1244 return -EINVAL;
1245
1246 slots = __kvm_memslots(kvm, as_id);
1247 memslot = id_to_memslot(slots, id);
1248
1249 dirty_bitmap = memslot->dirty_bitmap;
1250 if (!dirty_bitmap)
1251 return -ENOENT;
1252
1253 n = kvm_dirty_bitmap_bytes(memslot);
98938aa8
TB
1254
1255 if (log->first_page > memslot->npages ||
76d58e0f
PB
1256 log->num_pages > memslot->npages - log->first_page ||
1257 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1258 return -EINVAL;
98938aa8 1259
8fe65a82 1260 *flush = false;
2a31b9db
PB
1261 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1262 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1263 return -EFAULT;
ba0513b5 1264
2a31b9db
PB
1265 spin_lock(&kvm->mmu_lock);
1266 for (offset = log->first_page,
1267 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1268 i++, offset += BITS_PER_LONG) {
1269 unsigned long mask = *dirty_bitmap_buffer++;
1270 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1271 if (!mask)
ba0513b5
MS
1272 continue;
1273
2a31b9db 1274 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1275
2a31b9db
PB
1276 /*
1277 * mask contains the bits that really have been cleared. This
1278 * never includes any bits beyond the length of the memslot (if
1279 * the length is not aligned to 64 pages), therefore it is not
1280 * a problem if userspace sets them in log->dirty_bitmap.
1281 */
58d2930f 1282 if (mask) {
2a31b9db 1283 *flush = true;
58d2930f
TY
1284 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1285 offset, mask);
1286 }
ba0513b5 1287 }
ba0513b5 1288 spin_unlock(&kvm->mmu_lock);
2a31b9db 1289
58d6db34 1290 return 0;
ba0513b5 1291}
2a31b9db 1292EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
ba0513b5
MS
1293#endif
1294
db3fe4eb
TY
1295bool kvm_largepages_enabled(void)
1296{
1297 return largepages_enabled;
1298}
1299
54dee993
MT
1300void kvm_disable_largepages(void)
1301{
1302 largepages_enabled = false;
1303}
1304EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1305
49c7754c
GN
1306struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1307{
1308 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1309}
a1f4d395 1310EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1311
8e73485c
PB
1312struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1313{
1314 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1315}
1316
33e94154 1317bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1318{
bf3e05bc 1319 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1320
bbacc0c1 1321 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
bf3e05bc 1322 memslot->flags & KVM_MEMSLOT_INVALID)
33e94154 1323 return false;
e0d62c7f 1324
33e94154 1325 return true;
e0d62c7f
IE
1326}
1327EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1328
8f0b1ab6
JR
1329unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1330{
1331 struct vm_area_struct *vma;
1332 unsigned long addr, size;
1333
1334 size = PAGE_SIZE;
1335
1336 addr = gfn_to_hva(kvm, gfn);
1337 if (kvm_is_error_hva(addr))
1338 return PAGE_SIZE;
1339
1340 down_read(&current->mm->mmap_sem);
1341 vma = find_vma(current->mm, addr);
1342 if (!vma)
1343 goto out;
1344
1345 size = vma_kernel_pagesize(vma);
1346
1347out:
1348 up_read(&current->mm->mmap_sem);
1349
1350 return size;
1351}
1352
4d8b81ab
XG
1353static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1354{
1355 return slot->flags & KVM_MEM_READONLY;
1356}
1357
4d8b81ab
XG
1358static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1359 gfn_t *nr_pages, bool write)
539cb660 1360{
bc6678a3 1361 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 1362 return KVM_HVA_ERR_BAD;
48987781 1363
4d8b81ab
XG
1364 if (memslot_is_readonly(slot) && write)
1365 return KVM_HVA_ERR_RO_BAD;
48987781
XG
1366
1367 if (nr_pages)
1368 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1369
4d8b81ab 1370 return __gfn_to_hva_memslot(slot, gfn);
539cb660 1371}
48987781 1372
4d8b81ab
XG
1373static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1374 gfn_t *nr_pages)
1375{
1376 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 1377}
48987781 1378
4d8b81ab 1379unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 1380 gfn_t gfn)
4d8b81ab
XG
1381{
1382 return gfn_to_hva_many(slot, gfn, NULL);
1383}
1384EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1385
48987781
XG
1386unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1387{
49c7754c 1388 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 1389}
0d150298 1390EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 1391
8e73485c
PB
1392unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1393{
1394 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1395}
1396EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1397
86ab8cff 1398/*
970c0d4b
WY
1399 * Return the hva of a @gfn and the R/W attribute if possible.
1400 *
1401 * @slot: the kvm_memory_slot which contains @gfn
1402 * @gfn: the gfn to be translated
1403 * @writable: used to return the read/write attribute of the @slot if the hva
1404 * is valid and @writable is not NULL
86ab8cff 1405 */
64d83126
CD
1406unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1407 gfn_t gfn, bool *writable)
86ab8cff 1408{
a2ac07fe
GN
1409 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1410
1411 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
1412 *writable = !memslot_is_readonly(slot);
1413
a2ac07fe 1414 return hva;
86ab8cff
XG
1415}
1416
64d83126
CD
1417unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1418{
1419 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1420
1421 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1422}
1423
8e73485c
PB
1424unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1425{
1426 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1427
1428 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1429}
1430
fafc3dba
HY
1431static inline int check_user_page_hwpoison(unsigned long addr)
1432{
0d731759 1433 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 1434
0d731759 1435 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
1436 return rc == -EHWPOISON;
1437}
1438
2fc84311 1439/*
b9b33da2
PB
1440 * The fast path to get the writable pfn which will be stored in @pfn,
1441 * true indicates success, otherwise false is returned. It's also the
1442 * only part that runs if we can are in atomic context.
2fc84311 1443 */
b9b33da2
PB
1444static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1445 bool *writable, kvm_pfn_t *pfn)
954bbbc2 1446{
8d4e1288 1447 struct page *page[1];
2fc84311 1448 int npages;
954bbbc2 1449
12ce13fe
XG
1450 /*
1451 * Fast pin a writable pfn only if it is a write fault request
1452 * or the caller allows to map a writable pfn for a read fault
1453 * request.
1454 */
1455 if (!(write_fault || writable))
1456 return false;
612819c3 1457
2fc84311
XG
1458 npages = __get_user_pages_fast(addr, 1, 1, page);
1459 if (npages == 1) {
1460 *pfn = page_to_pfn(page[0]);
612819c3 1461
2fc84311
XG
1462 if (writable)
1463 *writable = true;
1464 return true;
1465 }
af585b92 1466
2fc84311
XG
1467 return false;
1468}
612819c3 1469
2fc84311
XG
1470/*
1471 * The slow path to get the pfn of the specified host virtual address,
1472 * 1 indicates success, -errno is returned if error is detected.
1473 */
1474static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 1475 bool *writable, kvm_pfn_t *pfn)
2fc84311 1476{
ce53053c
AV
1477 unsigned int flags = FOLL_HWPOISON;
1478 struct page *page;
2fc84311 1479 int npages = 0;
612819c3 1480
2fc84311
XG
1481 might_sleep();
1482
1483 if (writable)
1484 *writable = write_fault;
1485
ce53053c
AV
1486 if (write_fault)
1487 flags |= FOLL_WRITE;
1488 if (async)
1489 flags |= FOLL_NOWAIT;
d4944b0e 1490
ce53053c 1491 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
1492 if (npages != 1)
1493 return npages;
1494
1495 /* map read fault as writable if possible */
12ce13fe 1496 if (unlikely(!write_fault) && writable) {
ce53053c 1497 struct page *wpage;
2fc84311 1498
ce53053c 1499 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
2fc84311 1500 *writable = true;
ce53053c
AV
1501 put_page(page);
1502 page = wpage;
612819c3 1503 }
887c08ac 1504 }
ce53053c 1505 *pfn = page_to_pfn(page);
2fc84311
XG
1506 return npages;
1507}
539cb660 1508
4d8b81ab
XG
1509static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1510{
1511 if (unlikely(!(vma->vm_flags & VM_READ)))
1512 return false;
2e2e3738 1513
4d8b81ab
XG
1514 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1515 return false;
887c08ac 1516
4d8b81ab
XG
1517 return true;
1518}
bf998156 1519
92176a8e
PB
1520static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1521 unsigned long addr, bool *async,
a340b3e2
KA
1522 bool write_fault, bool *writable,
1523 kvm_pfn_t *p_pfn)
92176a8e 1524{
add6a0cd
PB
1525 unsigned long pfn;
1526 int r;
1527
1528 r = follow_pfn(vma, addr, &pfn);
1529 if (r) {
1530 /*
1531 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1532 * not call the fault handler, so do it here.
1533 */
1534 bool unlocked = false;
1535 r = fixup_user_fault(current, current->mm, addr,
1536 (write_fault ? FAULT_FLAG_WRITE : 0),
1537 &unlocked);
1538 if (unlocked)
1539 return -EAGAIN;
1540 if (r)
1541 return r;
1542
1543 r = follow_pfn(vma, addr, &pfn);
1544 if (r)
1545 return r;
1546
1547 }
1548
a340b3e2
KA
1549 if (writable)
1550 *writable = true;
add6a0cd
PB
1551
1552 /*
1553 * Get a reference here because callers of *hva_to_pfn* and
1554 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1555 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1556 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1557 * simply do nothing for reserved pfns.
1558 *
1559 * Whoever called remap_pfn_range is also going to call e.g.
1560 * unmap_mapping_range before the underlying pages are freed,
1561 * causing a call to our MMU notifier.
1562 */
1563 kvm_get_pfn(pfn);
1564
1565 *p_pfn = pfn;
92176a8e
PB
1566 return 0;
1567}
1568
12ce13fe
XG
1569/*
1570 * Pin guest page in memory and return its pfn.
1571 * @addr: host virtual address which maps memory to the guest
1572 * @atomic: whether this function can sleep
1573 * @async: whether this function need to wait IO complete if the
1574 * host page is not in the memory
1575 * @write_fault: whether we should get a writable host page
1576 * @writable: whether it allows to map a writable host page for !@write_fault
1577 *
1578 * The function will map a writable host page for these two cases:
1579 * 1): @write_fault = true
1580 * 2): @write_fault = false && @writable, @writable will tell the caller
1581 * whether the mapping is writable.
1582 */
ba049e93 1583static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
1584 bool write_fault, bool *writable)
1585{
1586 struct vm_area_struct *vma;
ba049e93 1587 kvm_pfn_t pfn = 0;
92176a8e 1588 int npages, r;
2e2e3738 1589
2fc84311
XG
1590 /* we can do it either atomically or asynchronously, not both */
1591 BUG_ON(atomic && async);
8d4e1288 1592
b9b33da2 1593 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
1594 return pfn;
1595
1596 if (atomic)
1597 return KVM_PFN_ERR_FAULT;
1598
1599 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1600 if (npages == 1)
1601 return pfn;
8d4e1288 1602
2fc84311
XG
1603 down_read(&current->mm->mmap_sem);
1604 if (npages == -EHWPOISON ||
1605 (!async && check_user_page_hwpoison(addr))) {
1606 pfn = KVM_PFN_ERR_HWPOISON;
1607 goto exit;
1608 }
1609
add6a0cd 1610retry:
2fc84311
XG
1611 vma = find_vma_intersection(current->mm, addr, addr + 1);
1612
1613 if (vma == NULL)
1614 pfn = KVM_PFN_ERR_FAULT;
92176a8e 1615 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 1616 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
add6a0cd
PB
1617 if (r == -EAGAIN)
1618 goto retry;
92176a8e
PB
1619 if (r < 0)
1620 pfn = KVM_PFN_ERR_FAULT;
2fc84311 1621 } else {
4d8b81ab 1622 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
1623 *async = true;
1624 pfn = KVM_PFN_ERR_FAULT;
1625 }
1626exit:
1627 up_read(&current->mm->mmap_sem);
2e2e3738 1628 return pfn;
35149e21
AL
1629}
1630
ba049e93
DW
1631kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1632 bool atomic, bool *async, bool write_fault,
1633 bool *writable)
887c08ac 1634{
4d8b81ab
XG
1635 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1636
b2740d35
PB
1637 if (addr == KVM_HVA_ERR_RO_BAD) {
1638 if (writable)
1639 *writable = false;
4d8b81ab 1640 return KVM_PFN_ERR_RO_FAULT;
b2740d35 1641 }
4d8b81ab 1642
b2740d35
PB
1643 if (kvm_is_error_hva(addr)) {
1644 if (writable)
1645 *writable = false;
81c52c56 1646 return KVM_PFN_NOSLOT;
b2740d35 1647 }
4d8b81ab
XG
1648
1649 /* Do not map writable pfn in the readonly memslot. */
1650 if (writable && memslot_is_readonly(slot)) {
1651 *writable = false;
1652 writable = NULL;
1653 }
1654
1655 return hva_to_pfn(addr, atomic, async, write_fault,
1656 writable);
887c08ac 1657}
3520469d 1658EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 1659
ba049e93 1660kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
1661 bool *writable)
1662{
e37afc6e
PB
1663 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1664 write_fault, writable);
612819c3
MT
1665}
1666EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1667
ba049e93 1668kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1669{
4d8b81ab 1670 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
506f0d6f 1671}
e37afc6e 1672EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 1673
ba049e93 1674kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1675{
4d8b81ab 1676 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
506f0d6f 1677}
037d92dc 1678EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 1679
ba049e93 1680kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1681{
1682 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1683}
1684EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1685
ba049e93 1686kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1687{
1688 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1689}
1690EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1691
ba049e93 1692kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1693{
1694 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1695}
1696EXPORT_SYMBOL_GPL(gfn_to_pfn);
1697
ba049e93 1698kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1699{
1700 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1701}
1702EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1703
d9ef13c2
PB
1704int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1705 struct page **pages, int nr_pages)
48987781
XG
1706{
1707 unsigned long addr;
076b925d 1708 gfn_t entry = 0;
48987781 1709
d9ef13c2 1710 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
1711 if (kvm_is_error_hva(addr))
1712 return -1;
1713
1714 if (entry < nr_pages)
1715 return 0;
1716
1717 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1718}
1719EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1720
ba049e93 1721static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 1722{
81c52c56 1723 if (is_error_noslot_pfn(pfn))
cb9aaa30 1724 return KVM_ERR_PTR_BAD_PAGE;
a2766325 1725
bf4bea8e 1726 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 1727 WARN_ON(1);
6cede2e6 1728 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 1729 }
a2766325
XG
1730
1731 return pfn_to_page(pfn);
1732}
1733
35149e21
AL
1734struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1735{
ba049e93 1736 kvm_pfn_t pfn;
2e2e3738
AL
1737
1738 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 1739
a2766325 1740 return kvm_pfn_to_page(pfn);
954bbbc2
AK
1741}
1742EXPORT_SYMBOL_GPL(gfn_to_page);
1743
8e73485c
PB
1744struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1745{
ba049e93 1746 kvm_pfn_t pfn;
8e73485c
PB
1747
1748 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1749
1750 return kvm_pfn_to_page(pfn);
1751}
1752EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1753
b4231d61
IE
1754void kvm_release_page_clean(struct page *page)
1755{
32cad84f
XG
1756 WARN_ON(is_error_page(page));
1757
35149e21 1758 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
1759}
1760EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1761
ba049e93 1762void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 1763{
bf4bea8e 1764 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 1765 put_page(pfn_to_page(pfn));
35149e21
AL
1766}
1767EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1768
b4231d61 1769void kvm_release_page_dirty(struct page *page)
8a7ae055 1770{
a2766325
XG
1771 WARN_ON(is_error_page(page));
1772
35149e21
AL
1773 kvm_release_pfn_dirty(page_to_pfn(page));
1774}
1775EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1776
f7a6509f 1777void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
1778{
1779 kvm_set_pfn_dirty(pfn);
1780 kvm_release_pfn_clean(pfn);
1781}
f7a6509f 1782EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 1783
ba049e93 1784void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 1785{
bf4bea8e 1786 if (!kvm_is_reserved_pfn(pfn)) {
2e2e3738 1787 struct page *page = pfn_to_page(pfn);
f95ef0cd 1788
2e2e3738
AL
1789 if (!PageReserved(page))
1790 SetPageDirty(page);
1791 }
8a7ae055 1792}
35149e21
AL
1793EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1794
ba049e93 1795void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 1796{
bf4bea8e 1797 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 1798 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
1799}
1800EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1801
ba049e93 1802void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 1803{
bf4bea8e 1804 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 1805 get_page(pfn_to_page(pfn));
35149e21
AL
1806}
1807EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 1808
195aefde
IE
1809static int next_segment(unsigned long len, int offset)
1810{
1811 if (len > PAGE_SIZE - offset)
1812 return PAGE_SIZE - offset;
1813 else
1814 return len;
1815}
1816
8e73485c
PB
1817static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1818 void *data, int offset, int len)
195aefde 1819{
e0506bcb
IE
1820 int r;
1821 unsigned long addr;
195aefde 1822
8e73485c 1823 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
1824 if (kvm_is_error_hva(addr))
1825 return -EFAULT;
3180a7fc 1826 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 1827 if (r)
195aefde 1828 return -EFAULT;
195aefde
IE
1829 return 0;
1830}
8e73485c
PB
1831
1832int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1833 int len)
1834{
1835 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1836
1837 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1838}
195aefde
IE
1839EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1840
8e73485c
PB
1841int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1842 int offset, int len)
1843{
1844 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1845
1846 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1847}
1848EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1849
195aefde
IE
1850int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1851{
1852 gfn_t gfn = gpa >> PAGE_SHIFT;
1853 int seg;
1854 int offset = offset_in_page(gpa);
1855 int ret;
1856
1857 while ((seg = next_segment(len, offset)) != 0) {
1858 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1859 if (ret < 0)
1860 return ret;
1861 offset = 0;
1862 len -= seg;
1863 data += seg;
1864 ++gfn;
1865 }
1866 return 0;
1867}
1868EXPORT_SYMBOL_GPL(kvm_read_guest);
1869
8e73485c 1870int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 1871{
7ec54588 1872 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 1873 int seg;
7ec54588 1874 int offset = offset_in_page(gpa);
8e73485c
PB
1875 int ret;
1876
1877 while ((seg = next_segment(len, offset)) != 0) {
1878 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1879 if (ret < 0)
1880 return ret;
1881 offset = 0;
1882 len -= seg;
1883 data += seg;
1884 ++gfn;
1885 }
1886 return 0;
1887}
1888EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 1889
8e73485c
PB
1890static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1891 void *data, int offset, unsigned long len)
1892{
1893 int r;
1894 unsigned long addr;
1895
1896 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
1897 if (kvm_is_error_hva(addr))
1898 return -EFAULT;
0aac03f0 1899 pagefault_disable();
3180a7fc 1900 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 1901 pagefault_enable();
7ec54588
MT
1902 if (r)
1903 return -EFAULT;
1904 return 0;
1905}
7ec54588 1906
8e73485c
PB
1907int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1908 unsigned long len)
1909{
1910 gfn_t gfn = gpa >> PAGE_SHIFT;
1911 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1912 int offset = offset_in_page(gpa);
1913
1914 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1915}
1916EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1917
1918int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1919 void *data, unsigned long len)
1920{
1921 gfn_t gfn = gpa >> PAGE_SHIFT;
1922 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1923 int offset = offset_in_page(gpa);
1924
1925 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1926}
1927EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1928
1929static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1930 const void *data, int offset, int len)
195aefde 1931{
e0506bcb
IE
1932 int r;
1933 unsigned long addr;
195aefde 1934
251eb841 1935 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
1936 if (kvm_is_error_hva(addr))
1937 return -EFAULT;
8b0cedff 1938 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 1939 if (r)
195aefde 1940 return -EFAULT;
bc009e43 1941 mark_page_dirty_in_slot(memslot, gfn);
195aefde
IE
1942 return 0;
1943}
8e73485c
PB
1944
1945int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1946 const void *data, int offset, int len)
1947{
1948 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1949
1950 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1951}
195aefde
IE
1952EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1953
8e73485c
PB
1954int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1955 const void *data, int offset, int len)
1956{
1957 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1958
1959 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1960}
1961EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1962
195aefde
IE
1963int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1964 unsigned long len)
1965{
1966 gfn_t gfn = gpa >> PAGE_SHIFT;
1967 int seg;
1968 int offset = offset_in_page(gpa);
1969 int ret;
1970
1971 while ((seg = next_segment(len, offset)) != 0) {
1972 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1973 if (ret < 0)
1974 return ret;
1975 offset = 0;
1976 len -= seg;
1977 data += seg;
1978 ++gfn;
1979 }
1980 return 0;
1981}
ff651cb6 1982EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 1983
8e73485c
PB
1984int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1985 unsigned long len)
1986{
1987 gfn_t gfn = gpa >> PAGE_SHIFT;
1988 int seg;
1989 int offset = offset_in_page(gpa);
1990 int ret;
1991
1992 while ((seg = next_segment(len, offset)) != 0) {
1993 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1994 if (ret < 0)
1995 return ret;
1996 offset = 0;
1997 len -= seg;
1998 data += seg;
1999 ++gfn;
2000 }
2001 return 0;
2002}
2003EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2004
5a2d4365
PB
2005static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2006 struct gfn_to_hva_cache *ghc,
2007 gpa_t gpa, unsigned long len)
49c7754c 2008{
49c7754c 2009 int offset = offset_in_page(gpa);
8f964525
AH
2010 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2011 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2012 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2013 gfn_t nr_pages_avail;
f1b9dd5e 2014 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
49c7754c
GN
2015
2016 ghc->gpa = gpa;
2017 ghc->generation = slots->generation;
8f964525 2018 ghc->len = len;
f1b9dd5e
JM
2019 ghc->hva = KVM_HVA_ERR_BAD;
2020
2021 /*
2022 * If the requested region crosses two memslots, we still
2023 * verify that the entire region is valid here.
2024 */
2025 while (!r && start_gfn <= end_gfn) {
2026 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2027 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2028 &nr_pages_avail);
2029 if (kvm_is_error_hva(ghc->hva))
2030 r = -EFAULT;
2031 start_gfn += nr_pages_avail;
2032 }
2033
2034 /* Use the slow path for cross page reads and writes. */
2035 if (!r && nr_pages_needed == 1)
49c7754c 2036 ghc->hva += offset;
f1b9dd5e 2037 else
8f964525 2038 ghc->memslot = NULL;
f1b9dd5e
JM
2039
2040 return r;
49c7754c 2041}
5a2d4365 2042
4e335d9e 2043int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2044 gpa_t gpa, unsigned long len)
2045{
4e335d9e 2046 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2047 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2048}
4e335d9e 2049EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2050
4e335d9e 2051int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2052 void *data, unsigned int offset,
2053 unsigned long len)
49c7754c 2054{
4e335d9e 2055 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2056 int r;
4ec6e863 2057 gpa_t gpa = ghc->gpa + offset;
49c7754c 2058
4ec6e863 2059 BUG_ON(len + offset > ghc->len);
8f964525 2060
49c7754c 2061 if (slots->generation != ghc->generation)
5a2d4365 2062 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
8f964525
AH
2063
2064 if (unlikely(!ghc->memslot))
4e335d9e 2065 return kvm_write_guest(kvm, gpa, data, len);
49c7754c
GN
2066
2067 if (kvm_is_error_hva(ghc->hva))
2068 return -EFAULT;
2069
4ec6e863 2070 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2071 if (r)
2072 return -EFAULT;
4ec6e863 2073 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2074
2075 return 0;
2076}
4e335d9e 2077EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2078
4e335d9e
PB
2079int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2080 void *data, unsigned long len)
4ec6e863 2081{
4e335d9e 2082 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2083}
4e335d9e 2084EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2085
4e335d9e
PB
2086int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2087 void *data, unsigned long len)
e03b644f 2088{
4e335d9e 2089 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f
GN
2090 int r;
2091
8f964525
AH
2092 BUG_ON(len > ghc->len);
2093
e03b644f 2094 if (slots->generation != ghc->generation)
5a2d4365 2095 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
8f964525
AH
2096
2097 if (unlikely(!ghc->memslot))
4e335d9e 2098 return kvm_read_guest(kvm, ghc->gpa, data, len);
e03b644f
GN
2099
2100 if (kvm_is_error_hva(ghc->hva))
2101 return -EFAULT;
2102
2103 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2104 if (r)
2105 return -EFAULT;
2106
2107 return 0;
2108}
4e335d9e 2109EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2110
195aefde
IE
2111int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2112{
8a3caa6d
HC
2113 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2114
2115 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2116}
2117EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2118
2119int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2120{
2121 gfn_t gfn = gpa >> PAGE_SHIFT;
2122 int seg;
2123 int offset = offset_in_page(gpa);
2124 int ret;
2125
bfda0e84 2126 while ((seg = next_segment(len, offset)) != 0) {
195aefde
IE
2127 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2128 if (ret < 0)
2129 return ret;
2130 offset = 0;
2131 len -= seg;
2132 ++gfn;
2133 }
2134 return 0;
2135}
2136EXPORT_SYMBOL_GPL(kvm_clear_guest);
2137
bc009e43 2138static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
7940876e 2139 gfn_t gfn)
6aa8b732 2140{
7e9d619d
RR
2141 if (memslot && memslot->dirty_bitmap) {
2142 unsigned long rel_gfn = gfn - memslot->base_gfn;
6aa8b732 2143
b74ca3b3 2144 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2145 }
2146}
2147
49c7754c
GN
2148void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2149{
2150 struct kvm_memory_slot *memslot;
2151
2152 memslot = gfn_to_memslot(kvm, gfn);
bc009e43 2153 mark_page_dirty_in_slot(memslot, gfn);
49c7754c 2154}
2ba9f0d8 2155EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2156
8e73485c
PB
2157void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2158{
2159 struct kvm_memory_slot *memslot;
2160
2161 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2162 mark_page_dirty_in_slot(memslot, gfn);
2163}
2164EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2165
20b7035c
JS
2166void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2167{
2168 if (!vcpu->sigset_active)
2169 return;
2170
2171 /*
2172 * This does a lockless modification of ->real_blocked, which is fine
2173 * because, only current can change ->real_blocked and all readers of
2174 * ->real_blocked don't care as long ->real_blocked is always a subset
2175 * of ->blocked.
2176 */
2177 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2178}
2179
2180void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2181{
2182 if (!vcpu->sigset_active)
2183 return;
2184
2185 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2186 sigemptyset(&current->real_blocked);
2187}
2188
aca6ff29
WL
2189static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2190{
dee339b5 2191 unsigned int old, val, grow, grow_start;
aca6ff29 2192
2cbd7824 2193 old = val = vcpu->halt_poll_ns;
dee339b5 2194 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 2195 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
2196 if (!grow)
2197 goto out;
2198
dee339b5
NW
2199 val *= grow;
2200 if (val < grow_start)
2201 val = grow_start;
aca6ff29 2202
313f636d
DM
2203 if (val > halt_poll_ns)
2204 val = halt_poll_ns;
2205
aca6ff29 2206 vcpu->halt_poll_ns = val;
7fa08e71 2207out:
2cbd7824 2208 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
2209}
2210
2211static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2212{
6b6de68c 2213 unsigned int old, val, shrink;
aca6ff29 2214
2cbd7824 2215 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
2216 shrink = READ_ONCE(halt_poll_ns_shrink);
2217 if (shrink == 0)
aca6ff29
WL
2218 val = 0;
2219 else
6b6de68c 2220 val /= shrink;
aca6ff29
WL
2221
2222 vcpu->halt_poll_ns = val;
2cbd7824 2223 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
2224}
2225
f7819512
PB
2226static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2227{
50c28f21
JS
2228 int ret = -EINTR;
2229 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2230
f7819512
PB
2231 if (kvm_arch_vcpu_runnable(vcpu)) {
2232 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 2233 goto out;
f7819512
PB
2234 }
2235 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 2236 goto out;
f7819512 2237 if (signal_pending(current))
50c28f21 2238 goto out;
f7819512 2239
50c28f21
JS
2240 ret = 0;
2241out:
2242 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2243 return ret;
f7819512
PB
2244}
2245
b6958ce4
ED
2246/*
2247 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2248 */
8776e519 2249void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 2250{
f7819512 2251 ktime_t start, cur;
8577370f 2252 DECLARE_SWAITQUEUE(wait);
f7819512 2253 bool waited = false;
aca6ff29 2254 u64 block_ns;
f7819512
PB
2255
2256 start = cur = ktime_get();
19020f8a
WL
2257 if (vcpu->halt_poll_ns) {
2258 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 2259
62bea5bf 2260 ++vcpu->stat.halt_attempted_poll;
f7819512
PB
2261 do {
2262 /*
2263 * This sets KVM_REQ_UNHALT if an interrupt
2264 * arrives.
2265 */
2266 if (kvm_vcpu_check_block(vcpu) < 0) {
2267 ++vcpu->stat.halt_successful_poll;
3491caf2
CB
2268 if (!vcpu_valid_wakeup(vcpu))
2269 ++vcpu->stat.halt_poll_invalid;
f7819512
PB
2270 goto out;
2271 }
2272 cur = ktime_get();
2273 } while (single_task_running() && ktime_before(cur, stop));
2274 }
e5c239cf 2275
3217f7c2
CD
2276 kvm_arch_vcpu_blocking(vcpu);
2277
e5c239cf 2278 for (;;) {
b3dae109 2279 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
e5c239cf 2280
f7819512 2281 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
2282 break;
2283
f7819512 2284 waited = true;
b6958ce4 2285 schedule();
b6958ce4 2286 }
d3bef15f 2287
8577370f 2288 finish_swait(&vcpu->wq, &wait);
f7819512
PB
2289 cur = ktime_get();
2290
3217f7c2 2291 kvm_arch_vcpu_unblocking(vcpu);
f7819512 2292out:
aca6ff29
WL
2293 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2294
2086d320
CB
2295 if (!vcpu_valid_wakeup(vcpu))
2296 shrink_halt_poll_ns(vcpu);
2297 else if (halt_poll_ns) {
aca6ff29
WL
2298 if (block_ns <= vcpu->halt_poll_ns)
2299 ;
2300 /* we had a long block, shrink polling */
2086d320 2301 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
aca6ff29
WL
2302 shrink_halt_poll_ns(vcpu);
2303 /* we had a short halt and our poll time is too small */
2304 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2305 block_ns < halt_poll_ns)
2306 grow_halt_poll_ns(vcpu);
edb9272f
WL
2307 } else
2308 vcpu->halt_poll_ns = 0;
aca6ff29 2309
3491caf2
CB
2310 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2311 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 2312}
2ba9f0d8 2313EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 2314
178f02ff 2315bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 2316{
8577370f 2317 struct swait_queue_head *wqp;
b6d33834
CD
2318
2319 wqp = kvm_arch_vcpu_wq(vcpu);
5e0018b3 2320 if (swq_has_sleeper(wqp)) {
b3dae109 2321 swake_up_one(wqp);
b6d33834 2322 ++vcpu->stat.halt_wakeup;
178f02ff 2323 return true;
b6d33834
CD
2324 }
2325
178f02ff 2326 return false;
dd1a4cc1
RK
2327}
2328EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2329
0266c894 2330#ifndef CONFIG_S390
dd1a4cc1
RK
2331/*
2332 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2333 */
2334void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2335{
2336 int me;
2337 int cpu = vcpu->cpu;
2338
178f02ff
RK
2339 if (kvm_vcpu_wake_up(vcpu))
2340 return;
2341
b6d33834
CD
2342 me = get_cpu();
2343 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2344 if (kvm_arch_vcpu_should_kick(vcpu))
2345 smp_send_reschedule(cpu);
2346 put_cpu();
2347}
a20ed54d 2348EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 2349#endif /* !CONFIG_S390 */
b6d33834 2350
fa93384f 2351int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
2352{
2353 struct pid *pid;
2354 struct task_struct *task = NULL;
fa93384f 2355 int ret = 0;
41628d33
KW
2356
2357 rcu_read_lock();
2358 pid = rcu_dereference(target->pid);
2359 if (pid)
27fbe64b 2360 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
2361 rcu_read_unlock();
2362 if (!task)
c45c528e 2363 return ret;
c45c528e 2364 ret = yield_to(task, 1);
41628d33 2365 put_task_struct(task);
c45c528e
R
2366
2367 return ret;
41628d33
KW
2368}
2369EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2370
06e48c51
R
2371/*
2372 * Helper that checks whether a VCPU is eligible for directed yield.
2373 * Most eligible candidate to yield is decided by following heuristics:
2374 *
2375 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2376 * (preempted lock holder), indicated by @in_spin_loop.
2377 * Set at the beiginning and cleared at the end of interception/PLE handler.
2378 *
2379 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2380 * chance last time (mostly it has become eligible now since we have probably
2381 * yielded to lockholder in last iteration. This is done by toggling
2382 * @dy_eligible each time a VCPU checked for eligibility.)
2383 *
2384 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2385 * to preempted lock-holder could result in wrong VCPU selection and CPU
2386 * burning. Giving priority for a potential lock-holder increases lock
2387 * progress.
2388 *
2389 * Since algorithm is based on heuristics, accessing another VCPU data without
2390 * locking does not harm. It may result in trying to yield to same VCPU, fail
2391 * and continue with next VCPU and so on.
2392 */
7940876e 2393static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 2394{
4a55dd72 2395#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
2396 bool eligible;
2397
2398 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 2399 vcpu->spin_loop.dy_eligible;
06e48c51
R
2400
2401 if (vcpu->spin_loop.in_spin_loop)
2402 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2403
2404 return eligible;
4a55dd72
SW
2405#else
2406 return true;
06e48c51 2407#endif
4a55dd72 2408}
c45c528e 2409
199b5763 2410void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 2411{
217ece61
RR
2412 struct kvm *kvm = me->kvm;
2413 struct kvm_vcpu *vcpu;
2414 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2415 int yielded = 0;
c45c528e 2416 int try = 3;
217ece61
RR
2417 int pass;
2418 int i;
d255f4f2 2419
4c088493 2420 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
2421 /*
2422 * We boost the priority of a VCPU that is runnable but not
2423 * currently running, because it got preempted by something
2424 * else and called schedule in __vcpu_run. Hopefully that
2425 * VCPU is holding the lock that we need and will release it.
2426 * We approximate round-robin by starting at the last boosted VCPU.
2427 */
c45c528e 2428 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 2429 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 2430 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
2431 i = last_boosted_vcpu;
2432 continue;
2433 } else if (pass && i > last_boosted_vcpu)
2434 break;
6aa7de05 2435 if (!READ_ONCE(vcpu->preempted))
7bc7ae25 2436 continue;
217ece61
RR
2437 if (vcpu == me)
2438 continue;
8577370f 2439 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
217ece61 2440 continue;
199b5763
LM
2441 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2442 continue;
06e48c51
R
2443 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2444 continue;
c45c528e
R
2445
2446 yielded = kvm_vcpu_yield_to(vcpu);
2447 if (yielded > 0) {
217ece61 2448 kvm->last_boosted_vcpu = i;
217ece61 2449 break;
c45c528e
R
2450 } else if (yielded < 0) {
2451 try--;
2452 if (!try)
2453 break;
217ece61 2454 }
217ece61
RR
2455 }
2456 }
4c088493 2457 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
2458
2459 /* Ensure vcpu is not eligible during next spinloop */
2460 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
2461}
2462EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2463
1499fa80 2464static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 2465{
11bac800 2466 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
2467 struct page *page;
2468
e4a533a4 2469 if (vmf->pgoff == 0)
039576c0 2470 page = virt_to_page(vcpu->run);
09566765 2471#ifdef CONFIG_X86
e4a533a4 2472 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 2473 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 2474#endif
4b4357e0 2475#ifdef CONFIG_KVM_MMIO
5f94c174
LV
2476 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2477 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 2478#endif
039576c0 2479 else
5b1c1493 2480 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 2481 get_page(page);
e4a533a4
NP
2482 vmf->page = page;
2483 return 0;
9a2bb7f4
AK
2484}
2485
f0f37e2f 2486static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 2487 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
2488};
2489
2490static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2491{
2492 vma->vm_ops = &kvm_vcpu_vm_ops;
2493 return 0;
2494}
2495
bccf2150
AK
2496static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2497{
2498 struct kvm_vcpu *vcpu = filp->private_data;
2499
45b5939e 2500 debugfs_remove_recursive(vcpu->debugfs_dentry);
66c0b394 2501 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
2502 return 0;
2503}
2504
3d3aab1b 2505static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
2506 .release = kvm_vcpu_release,
2507 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 2508 .mmap = kvm_vcpu_mmap,
6038f373 2509 .llseek = noop_llseek,
7ddfd3e0 2510 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
2511};
2512
2513/*
2514 * Allocates an inode for the vcpu.
2515 */
2516static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2517{
e46b4692
MY
2518 char name[8 + 1 + ITOA_MAX_LEN + 1];
2519
2520 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2521 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
2522}
2523
45b5939e
LC
2524static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2525{
2526 char dir_name[ITOA_MAX_LEN * 2];
2527 int ret;
2528
2529 if (!kvm_arch_has_vcpu_debugfs())
2530 return 0;
2531
2532 if (!debugfs_initialized())
2533 return 0;
2534
2535 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2536 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2537 vcpu->kvm->debugfs_dentry);
2538 if (!vcpu->debugfs_dentry)
2539 return -ENOMEM;
2540
2541 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2542 if (ret < 0) {
2543 debugfs_remove_recursive(vcpu->debugfs_dentry);
2544 return ret;
2545 }
2546
2547 return 0;
2548}
2549
c5ea7660
AK
2550/*
2551 * Creates some virtual cpus. Good luck creating more than one.
2552 */
73880c80 2553static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
2554{
2555 int r;
e09fefde 2556 struct kvm_vcpu *vcpu;
c5ea7660 2557
0b1b1dfd 2558 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
2559 return -EINVAL;
2560
6c7caebc
PB
2561 mutex_lock(&kvm->lock);
2562 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2563 mutex_unlock(&kvm->lock);
2564 return -EINVAL;
2565 }
2566
2567 kvm->created_vcpus++;
2568 mutex_unlock(&kvm->lock);
2569
73880c80 2570 vcpu = kvm_arch_vcpu_create(kvm, id);
6c7caebc
PB
2571 if (IS_ERR(vcpu)) {
2572 r = PTR_ERR(vcpu);
2573 goto vcpu_decrement;
2574 }
c5ea7660 2575
15ad7146
AK
2576 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2577
26e5215f
AK
2578 r = kvm_arch_vcpu_setup(vcpu);
2579 if (r)
d780592b 2580 goto vcpu_destroy;
26e5215f 2581
45b5939e
LC
2582 r = kvm_create_vcpu_debugfs(vcpu);
2583 if (r)
2584 goto vcpu_destroy;
2585
11ec2804 2586 mutex_lock(&kvm->lock);
e09fefde
DH
2587 if (kvm_get_vcpu_by_id(kvm, id)) {
2588 r = -EEXIST;
2589 goto unlock_vcpu_destroy;
2590 }
73880c80
GN
2591
2592 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
c5ea7660 2593
fb3f0f51 2594 /* Now it's all set up, let userspace reach it */
66c0b394 2595 kvm_get_kvm(kvm);
bccf2150 2596 r = create_vcpu_fd(vcpu);
73880c80
GN
2597 if (r < 0) {
2598 kvm_put_kvm(kvm);
d780592b 2599 goto unlock_vcpu_destroy;
73880c80
GN
2600 }
2601
2602 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
dd489240
PB
2603
2604 /*
2605 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2606 * before kvm->online_vcpu's incremented value.
2607 */
73880c80
GN
2608 smp_wmb();
2609 atomic_inc(&kvm->online_vcpus);
2610
73880c80 2611 mutex_unlock(&kvm->lock);
42897d86 2612 kvm_arch_vcpu_postcreate(vcpu);
fb3f0f51 2613 return r;
39c3b86e 2614
d780592b 2615unlock_vcpu_destroy:
7d8fece6 2616 mutex_unlock(&kvm->lock);
45b5939e 2617 debugfs_remove_recursive(vcpu->debugfs_dentry);
d780592b 2618vcpu_destroy:
d40ccc62 2619 kvm_arch_vcpu_destroy(vcpu);
6c7caebc
PB
2620vcpu_decrement:
2621 mutex_lock(&kvm->lock);
2622 kvm->created_vcpus--;
2623 mutex_unlock(&kvm->lock);
c5ea7660
AK
2624 return r;
2625}
2626
1961d276
AK
2627static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2628{
2629 if (sigset) {
2630 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2631 vcpu->sigset_active = 1;
2632 vcpu->sigset = *sigset;
2633 } else
2634 vcpu->sigset_active = 0;
2635 return 0;
2636}
2637
bccf2150
AK
2638static long kvm_vcpu_ioctl(struct file *filp,
2639 unsigned int ioctl, unsigned long arg)
6aa8b732 2640{
bccf2150 2641 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 2642 void __user *argp = (void __user *)arg;
313a3dc7 2643 int r;
fa3795a7
DH
2644 struct kvm_fpu *fpu = NULL;
2645 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 2646
6d4e4c4f
AK
2647 if (vcpu->kvm->mm != current->mm)
2648 return -EIO;
2122ff5e 2649
2ea75be3
DM
2650 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2651 return -EINVAL;
2652
2122ff5e 2653 /*
5cb0944c
PB
2654 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2655 * execution; mutex_lock() would break them.
2122ff5e 2656 */
5cb0944c
PB
2657 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2658 if (r != -ENOIOCTLCMD)
9fc77441 2659 return r;
2122ff5e 2660
ec7660cc
CD
2661 if (mutex_lock_killable(&vcpu->mutex))
2662 return -EINTR;
6aa8b732 2663 switch (ioctl) {
0e4524a5
CB
2664 case KVM_RUN: {
2665 struct pid *oldpid;
f0fe5108
AK
2666 r = -EINVAL;
2667 if (arg)
2668 goto out;
0e4524a5 2669 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 2670 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 2671 /* The thread running this VCPU changed. */
bd2a6394 2672 struct pid *newpid;
f95ef0cd 2673
bd2a6394
CD
2674 r = kvm_arch_vcpu_run_pid_change(vcpu);
2675 if (r)
2676 break;
2677
2678 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
2679 rcu_assign_pointer(vcpu->pid, newpid);
2680 if (oldpid)
2681 synchronize_rcu();
2682 put_pid(oldpid);
2683 }
b6c7a5dc 2684 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
64be5007 2685 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 2686 break;
0e4524a5 2687 }
6aa8b732 2688 case KVM_GET_REGS: {
3e4bb3ac 2689 struct kvm_regs *kvm_regs;
6aa8b732 2690
3e4bb3ac 2691 r = -ENOMEM;
b12ce36a 2692 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 2693 if (!kvm_regs)
6aa8b732 2694 goto out;
3e4bb3ac
XZ
2695 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2696 if (r)
2697 goto out_free1;
6aa8b732 2698 r = -EFAULT;
3e4bb3ac
XZ
2699 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2700 goto out_free1;
6aa8b732 2701 r = 0;
3e4bb3ac
XZ
2702out_free1:
2703 kfree(kvm_regs);
6aa8b732
AK
2704 break;
2705 }
2706 case KVM_SET_REGS: {
3e4bb3ac 2707 struct kvm_regs *kvm_regs;
6aa8b732 2708
3e4bb3ac 2709 r = -ENOMEM;
ff5c2c03
SL
2710 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2711 if (IS_ERR(kvm_regs)) {
2712 r = PTR_ERR(kvm_regs);
6aa8b732 2713 goto out;
ff5c2c03 2714 }
3e4bb3ac 2715 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 2716 kfree(kvm_regs);
6aa8b732
AK
2717 break;
2718 }
2719 case KVM_GET_SREGS: {
b12ce36a
BG
2720 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2721 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
2722 r = -ENOMEM;
2723 if (!kvm_sregs)
2724 goto out;
2725 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
2726 if (r)
2727 goto out;
2728 r = -EFAULT;
fa3795a7 2729 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
2730 goto out;
2731 r = 0;
2732 break;
2733 }
2734 case KVM_SET_SREGS: {
ff5c2c03
SL
2735 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2736 if (IS_ERR(kvm_sregs)) {
2737 r = PTR_ERR(kvm_sregs);
18595411 2738 kvm_sregs = NULL;
6aa8b732 2739 goto out;
ff5c2c03 2740 }
fa3795a7 2741 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
2742 break;
2743 }
62d9f0db
MT
2744 case KVM_GET_MP_STATE: {
2745 struct kvm_mp_state mp_state;
2746
2747 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2748 if (r)
2749 goto out;
2750 r = -EFAULT;
893bdbf1 2751 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
2752 goto out;
2753 r = 0;
2754 break;
2755 }
2756 case KVM_SET_MP_STATE: {
2757 struct kvm_mp_state mp_state;
2758
2759 r = -EFAULT;
893bdbf1 2760 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
2761 goto out;
2762 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
2763 break;
2764 }
6aa8b732
AK
2765 case KVM_TRANSLATE: {
2766 struct kvm_translation tr;
2767
2768 r = -EFAULT;
893bdbf1 2769 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 2770 goto out;
8b006791 2771 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
2772 if (r)
2773 goto out;
2774 r = -EFAULT;
893bdbf1 2775 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
2776 goto out;
2777 r = 0;
2778 break;
2779 }
d0bfb940
JK
2780 case KVM_SET_GUEST_DEBUG: {
2781 struct kvm_guest_debug dbg;
6aa8b732
AK
2782
2783 r = -EFAULT;
893bdbf1 2784 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 2785 goto out;
d0bfb940 2786 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
2787 break;
2788 }
1961d276
AK
2789 case KVM_SET_SIGNAL_MASK: {
2790 struct kvm_signal_mask __user *sigmask_arg = argp;
2791 struct kvm_signal_mask kvm_sigmask;
2792 sigset_t sigset, *p;
2793
2794 p = NULL;
2795 if (argp) {
2796 r = -EFAULT;
2797 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 2798 sizeof(kvm_sigmask)))
1961d276
AK
2799 goto out;
2800 r = -EINVAL;
893bdbf1 2801 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
2802 goto out;
2803 r = -EFAULT;
2804 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 2805 sizeof(sigset)))
1961d276
AK
2806 goto out;
2807 p = &sigset;
2808 }
376d41ff 2809 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
2810 break;
2811 }
b8836737 2812 case KVM_GET_FPU: {
b12ce36a 2813 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
2814 r = -ENOMEM;
2815 if (!fpu)
2816 goto out;
2817 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
2818 if (r)
2819 goto out;
2820 r = -EFAULT;
fa3795a7 2821 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
2822 goto out;
2823 r = 0;
2824 break;
2825 }
2826 case KVM_SET_FPU: {
ff5c2c03
SL
2827 fpu = memdup_user(argp, sizeof(*fpu));
2828 if (IS_ERR(fpu)) {
2829 r = PTR_ERR(fpu);
18595411 2830 fpu = NULL;
b8836737 2831 goto out;
ff5c2c03 2832 }
fa3795a7 2833 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
2834 break;
2835 }
bccf2150 2836 default:
313a3dc7 2837 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
2838 }
2839out:
ec7660cc 2840 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
2841 kfree(fpu);
2842 kfree(kvm_sregs);
bccf2150
AK
2843 return r;
2844}
2845
de8e5d74 2846#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
2847static long kvm_vcpu_compat_ioctl(struct file *filp,
2848 unsigned int ioctl, unsigned long arg)
2849{
2850 struct kvm_vcpu *vcpu = filp->private_data;
2851 void __user *argp = compat_ptr(arg);
2852 int r;
2853
2854 if (vcpu->kvm->mm != current->mm)
2855 return -EIO;
2856
2857 switch (ioctl) {
2858 case KVM_SET_SIGNAL_MASK: {
2859 struct kvm_signal_mask __user *sigmask_arg = argp;
2860 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
2861 sigset_t sigset;
2862
2863 if (argp) {
2864 r = -EFAULT;
2865 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 2866 sizeof(kvm_sigmask)))
1dda606c
AG
2867 goto out;
2868 r = -EINVAL;
3968cf62 2869 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
2870 goto out;
2871 r = -EFAULT;
3968cf62 2872 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
1dda606c 2873 goto out;
760a9a30
AC
2874 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2875 } else
2876 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
2877 break;
2878 }
2879 default:
2880 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2881 }
2882
2883out:
2884 return r;
2885}
2886#endif
2887
852b6d57
SW
2888static int kvm_device_ioctl_attr(struct kvm_device *dev,
2889 int (*accessor)(struct kvm_device *dev,
2890 struct kvm_device_attr *attr),
2891 unsigned long arg)
2892{
2893 struct kvm_device_attr attr;
2894
2895 if (!accessor)
2896 return -EPERM;
2897
2898 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2899 return -EFAULT;
2900
2901 return accessor(dev, &attr);
2902}
2903
2904static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2905 unsigned long arg)
2906{
2907 struct kvm_device *dev = filp->private_data;
2908
ddba9180
SC
2909 if (dev->kvm->mm != current->mm)
2910 return -EIO;
2911
852b6d57
SW
2912 switch (ioctl) {
2913 case KVM_SET_DEVICE_ATTR:
2914 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2915 case KVM_GET_DEVICE_ATTR:
2916 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2917 case KVM_HAS_DEVICE_ATTR:
2918 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2919 default:
2920 if (dev->ops->ioctl)
2921 return dev->ops->ioctl(dev, ioctl, arg);
2922
2923 return -ENOTTY;
2924 }
2925}
2926
852b6d57
SW
2927static int kvm_device_release(struct inode *inode, struct file *filp)
2928{
2929 struct kvm_device *dev = filp->private_data;
2930 struct kvm *kvm = dev->kvm;
2931
852b6d57
SW
2932 kvm_put_kvm(kvm);
2933 return 0;
2934}
2935
2936static const struct file_operations kvm_device_fops = {
2937 .unlocked_ioctl = kvm_device_ioctl,
2938 .release = kvm_device_release,
7ddfd3e0 2939 KVM_COMPAT(kvm_device_ioctl),
852b6d57
SW
2940};
2941
2942struct kvm_device *kvm_device_from_filp(struct file *filp)
2943{
2944 if (filp->f_op != &kvm_device_fops)
2945 return NULL;
2946
2947 return filp->private_data;
2948}
2949
d60eacb0 2950static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 2951#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
2952 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2953 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 2954#endif
d60eacb0
WD
2955};
2956
2957int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2958{
2959 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2960 return -ENOSPC;
2961
2962 if (kvm_device_ops_table[type] != NULL)
2963 return -EEXIST;
2964
2965 kvm_device_ops_table[type] = ops;
2966 return 0;
2967}
2968
571ee1b6
WL
2969void kvm_unregister_device_ops(u32 type)
2970{
2971 if (kvm_device_ops_table[type] != NULL)
2972 kvm_device_ops_table[type] = NULL;
2973}
2974
852b6d57
SW
2975static int kvm_ioctl_create_device(struct kvm *kvm,
2976 struct kvm_create_device *cd)
2977{
2978 struct kvm_device_ops *ops = NULL;
2979 struct kvm_device *dev;
2980 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 2981 int type;
852b6d57
SW
2982 int ret;
2983
d60eacb0
WD
2984 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2985 return -ENODEV;
2986
1d487e9b
PB
2987 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2988 ops = kvm_device_ops_table[type];
d60eacb0 2989 if (ops == NULL)
852b6d57 2990 return -ENODEV;
852b6d57
SW
2991
2992 if (test)
2993 return 0;
2994
b12ce36a 2995 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
2996 if (!dev)
2997 return -ENOMEM;
2998
2999 dev->ops = ops;
3000 dev->kvm = kvm;
852b6d57 3001
a28ebea2 3002 mutex_lock(&kvm->lock);
1d487e9b 3003 ret = ops->create(dev, type);
852b6d57 3004 if (ret < 0) {
a28ebea2 3005 mutex_unlock(&kvm->lock);
852b6d57
SW
3006 kfree(dev);
3007 return ret;
3008 }
a28ebea2
CD
3009 list_add(&dev->vm_node, &kvm->devices);
3010 mutex_unlock(&kvm->lock);
852b6d57 3011
023e9fdd
CD
3012 if (ops->init)
3013 ops->init(dev);
3014
cfa39381 3015 kvm_get_kvm(kvm);
24009b05 3016 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3017 if (ret < 0) {
cfa39381 3018 kvm_put_kvm(kvm);
a28ebea2
CD
3019 mutex_lock(&kvm->lock);
3020 list_del(&dev->vm_node);
3021 mutex_unlock(&kvm->lock);
a0f1d21c 3022 ops->destroy(dev);
852b6d57
SW
3023 return ret;
3024 }
3025
852b6d57
SW
3026 cd->fd = ret;
3027 return 0;
3028}
3029
92b591a4
AG
3030static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3031{
3032 switch (arg) {
3033 case KVM_CAP_USER_MEMORY:
3034 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3035 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
3036 case KVM_CAP_INTERNAL_ERROR_DATA:
3037#ifdef CONFIG_HAVE_KVM_MSI
3038 case KVM_CAP_SIGNAL_MSI:
3039#endif
297e2105 3040#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 3041 case KVM_CAP_IRQFD:
92b591a4
AG
3042 case KVM_CAP_IRQFD_RESAMPLE:
3043#endif
e9ea5069 3044 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 3045 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 3046 case KVM_CAP_ENABLE_CAP_VM:
2a31b9db
PB
3047#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3048 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3049#endif
92b591a4 3050 return 1;
4b4357e0 3051#ifdef CONFIG_KVM_MMIO
30422558
PB
3052 case KVM_CAP_COALESCED_MMIO:
3053 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
3054 case KVM_CAP_COALESCED_PIO:
3055 return 1;
30422558 3056#endif
92b591a4
AG
3057#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3058 case KVM_CAP_IRQ_ROUTING:
3059 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
3060#endif
3061#if KVM_ADDRESS_SPACE_NUM > 1
3062 case KVM_CAP_MULTI_ADDRESS_SPACE:
3063 return KVM_ADDRESS_SPACE_NUM;
92b591a4 3064#endif
0b1b1dfd
GK
3065 case KVM_CAP_MAX_VCPU_ID:
3066 return KVM_MAX_VCPU_ID;
92b591a4
AG
3067 default:
3068 break;
3069 }
3070 return kvm_vm_ioctl_check_extension(kvm, arg);
3071}
3072
e5d83c74
PB
3073int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3074 struct kvm_enable_cap *cap)
3075{
3076 return -EINVAL;
3077}
3078
3079static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3080 struct kvm_enable_cap *cap)
3081{
3082 switch (cap->cap) {
2a31b9db
PB
3083#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3084 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3085 if (cap->flags || (cap->args[0] & ~1))
3086 return -EINVAL;
3087 kvm->manual_dirty_log_protect = cap->args[0];
3088 return 0;
3089#endif
e5d83c74
PB
3090 default:
3091 return kvm_vm_ioctl_enable_cap(kvm, cap);
3092 }
3093}
3094
bccf2150
AK
3095static long kvm_vm_ioctl(struct file *filp,
3096 unsigned int ioctl, unsigned long arg)
3097{
3098 struct kvm *kvm = filp->private_data;
3099 void __user *argp = (void __user *)arg;
1fe779f8 3100 int r;
bccf2150 3101
6d4e4c4f
AK
3102 if (kvm->mm != current->mm)
3103 return -EIO;
bccf2150
AK
3104 switch (ioctl) {
3105 case KVM_CREATE_VCPU:
3106 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 3107 break;
e5d83c74
PB
3108 case KVM_ENABLE_CAP: {
3109 struct kvm_enable_cap cap;
3110
3111 r = -EFAULT;
3112 if (copy_from_user(&cap, argp, sizeof(cap)))
3113 goto out;
3114 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3115 break;
3116 }
6fc138d2
IE
3117 case KVM_SET_USER_MEMORY_REGION: {
3118 struct kvm_userspace_memory_region kvm_userspace_mem;
3119
3120 r = -EFAULT;
3121 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 3122 sizeof(kvm_userspace_mem)))
6fc138d2
IE
3123 goto out;
3124
47ae31e2 3125 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
3126 break;
3127 }
3128 case KVM_GET_DIRTY_LOG: {
3129 struct kvm_dirty_log log;
3130
3131 r = -EFAULT;
893bdbf1 3132 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 3133 goto out;
2c6f5df9 3134 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
3135 break;
3136 }
2a31b9db
PB
3137#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3138 case KVM_CLEAR_DIRTY_LOG: {
3139 struct kvm_clear_dirty_log log;
3140
3141 r = -EFAULT;
3142 if (copy_from_user(&log, argp, sizeof(log)))
3143 goto out;
3144 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3145 break;
3146 }
3147#endif
4b4357e0 3148#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3149 case KVM_REGISTER_COALESCED_MMIO: {
3150 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3151
5f94c174 3152 r = -EFAULT;
893bdbf1 3153 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3154 goto out;
5f94c174 3155 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
3156 break;
3157 }
3158 case KVM_UNREGISTER_COALESCED_MMIO: {
3159 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3160
5f94c174 3161 r = -EFAULT;
893bdbf1 3162 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3163 goto out;
5f94c174 3164 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
3165 break;
3166 }
3167#endif
721eecbf
GH
3168 case KVM_IRQFD: {
3169 struct kvm_irqfd data;
3170
3171 r = -EFAULT;
893bdbf1 3172 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 3173 goto out;
d4db2935 3174 r = kvm_irqfd(kvm, &data);
721eecbf
GH
3175 break;
3176 }
d34e6b17
GH
3177 case KVM_IOEVENTFD: {
3178 struct kvm_ioeventfd data;
3179
3180 r = -EFAULT;
893bdbf1 3181 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
3182 goto out;
3183 r = kvm_ioeventfd(kvm, &data);
3184 break;
3185 }
07975ad3
JK
3186#ifdef CONFIG_HAVE_KVM_MSI
3187 case KVM_SIGNAL_MSI: {
3188 struct kvm_msi msi;
3189
3190 r = -EFAULT;
893bdbf1 3191 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
3192 goto out;
3193 r = kvm_send_userspace_msi(kvm, &msi);
3194 break;
3195 }
23d43cf9
CD
3196#endif
3197#ifdef __KVM_HAVE_IRQ_LINE
3198 case KVM_IRQ_LINE_STATUS:
3199 case KVM_IRQ_LINE: {
3200 struct kvm_irq_level irq_event;
3201
3202 r = -EFAULT;
893bdbf1 3203 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
3204 goto out;
3205
aa2fbe6d
YZ
3206 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3207 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
3208 if (r)
3209 goto out;
3210
3211 r = -EFAULT;
3212 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 3213 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
3214 goto out;
3215 }
3216
3217 r = 0;
3218 break;
3219 }
73880c80 3220#endif
aa8d5944
AG
3221#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3222 case KVM_SET_GSI_ROUTING: {
3223 struct kvm_irq_routing routing;
3224 struct kvm_irq_routing __user *urouting;
f8c1b85b 3225 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
3226
3227 r = -EFAULT;
3228 if (copy_from_user(&routing, argp, sizeof(routing)))
3229 goto out;
3230 r = -EINVAL;
5c0aea0e
DH
3231 if (!kvm_arch_can_set_irq_routing(kvm))
3232 goto out;
caf1ff26 3233 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
3234 goto out;
3235 if (routing.flags)
3236 goto out;
f8c1b85b
PB
3237 if (routing.nr) {
3238 r = -ENOMEM;
42bc47b3
KC
3239 entries = vmalloc(array_size(sizeof(*entries),
3240 routing.nr));
f8c1b85b
PB
3241 if (!entries)
3242 goto out;
3243 r = -EFAULT;
3244 urouting = argp;
3245 if (copy_from_user(entries, urouting->entries,
3246 routing.nr * sizeof(*entries)))
3247 goto out_free_irq_routing;
3248 }
aa8d5944
AG
3249 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3250 routing.flags);
a642a175 3251out_free_irq_routing:
aa8d5944
AG
3252 vfree(entries);
3253 break;
3254 }
3255#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
3256 case KVM_CREATE_DEVICE: {
3257 struct kvm_create_device cd;
3258
3259 r = -EFAULT;
3260 if (copy_from_user(&cd, argp, sizeof(cd)))
3261 goto out;
3262
3263 r = kvm_ioctl_create_device(kvm, &cd);
3264 if (r)
3265 goto out;
3266
3267 r = -EFAULT;
3268 if (copy_to_user(argp, &cd, sizeof(cd)))
3269 goto out;
3270
3271 r = 0;
3272 break;
3273 }
92b591a4
AG
3274 case KVM_CHECK_EXTENSION:
3275 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3276 break;
f17abe9a 3277 default:
1fe779f8 3278 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
3279 }
3280out:
3281 return r;
3282}
3283
de8e5d74 3284#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
3285struct compat_kvm_dirty_log {
3286 __u32 slot;
3287 __u32 padding1;
3288 union {
3289 compat_uptr_t dirty_bitmap; /* one bit per page */
3290 __u64 padding2;
3291 };
3292};
3293
3294static long kvm_vm_compat_ioctl(struct file *filp,
3295 unsigned int ioctl, unsigned long arg)
3296{
3297 struct kvm *kvm = filp->private_data;
3298 int r;
3299
3300 if (kvm->mm != current->mm)
3301 return -EIO;
3302 switch (ioctl) {
3303 case KVM_GET_DIRTY_LOG: {
3304 struct compat_kvm_dirty_log compat_log;
3305 struct kvm_dirty_log log;
3306
6ff5894c
AB
3307 if (copy_from_user(&compat_log, (void __user *)arg,
3308 sizeof(compat_log)))
f6a3b168 3309 return -EFAULT;
6ff5894c
AB
3310 log.slot = compat_log.slot;
3311 log.padding1 = compat_log.padding1;
3312 log.padding2 = compat_log.padding2;
3313 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3314
3315 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
3316 break;
3317 }
3318 default:
3319 r = kvm_vm_ioctl(filp, ioctl, arg);
3320 }
6ff5894c
AB
3321 return r;
3322}
3323#endif
3324
3d3aab1b 3325static struct file_operations kvm_vm_fops = {
f17abe9a
AK
3326 .release = kvm_vm_release,
3327 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 3328 .llseek = noop_llseek,
7ddfd3e0 3329 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
3330};
3331
e08b9637 3332static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 3333{
aac87636 3334 int r;
f17abe9a 3335 struct kvm *kvm;
506cfba9 3336 struct file *file;
f17abe9a 3337
e08b9637 3338 kvm = kvm_create_vm(type);
d6d28168
AK
3339 if (IS_ERR(kvm))
3340 return PTR_ERR(kvm);
4b4357e0 3341#ifdef CONFIG_KVM_MMIO
6ce5a090 3342 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
3343 if (r < 0)
3344 goto put_kvm;
6ce5a090 3345#endif
506cfba9 3346 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
3347 if (r < 0)
3348 goto put_kvm;
3349
506cfba9
AV
3350 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3351 if (IS_ERR(file)) {
3352 put_unused_fd(r);
78588335
ME
3353 r = PTR_ERR(file);
3354 goto put_kvm;
506cfba9 3355 }
536a6f88 3356
525df861
PB
3357 /*
3358 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3359 * already set, with ->release() being kvm_vm_release(). In error
3360 * cases it will be called by the final fput(file) and will take
3361 * care of doing kvm_put_kvm(kvm).
3362 */
536a6f88 3363 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
3364 put_unused_fd(r);
3365 fput(file);
536a6f88
JF
3366 return -ENOMEM;
3367 }
286de8f6 3368 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 3369
506cfba9 3370 fd_install(r, file);
aac87636 3371 return r;
78588335
ME
3372
3373put_kvm:
3374 kvm_put_kvm(kvm);
3375 return r;
f17abe9a
AK
3376}
3377
3378static long kvm_dev_ioctl(struct file *filp,
3379 unsigned int ioctl, unsigned long arg)
3380{
07c45a36 3381 long r = -EINVAL;
f17abe9a
AK
3382
3383 switch (ioctl) {
3384 case KVM_GET_API_VERSION:
f0fe5108
AK
3385 if (arg)
3386 goto out;
f17abe9a
AK
3387 r = KVM_API_VERSION;
3388 break;
3389 case KVM_CREATE_VM:
e08b9637 3390 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 3391 break;
018d00d2 3392 case KVM_CHECK_EXTENSION:
784aa3d7 3393 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 3394 break;
07c45a36 3395 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
3396 if (arg)
3397 goto out;
adb1ff46
AK
3398 r = PAGE_SIZE; /* struct kvm_run */
3399#ifdef CONFIG_X86
3400 r += PAGE_SIZE; /* pio data page */
5f94c174 3401#endif
4b4357e0 3402#ifdef CONFIG_KVM_MMIO
5f94c174 3403 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 3404#endif
07c45a36 3405 break;
d4c9ff2d
FEL
3406 case KVM_TRACE_ENABLE:
3407 case KVM_TRACE_PAUSE:
3408 case KVM_TRACE_DISABLE:
2023a29c 3409 r = -EOPNOTSUPP;
d4c9ff2d 3410 break;
6aa8b732 3411 default:
043405e1 3412 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
3413 }
3414out:
3415 return r;
3416}
3417
6aa8b732 3418static struct file_operations kvm_chardev_ops = {
6aa8b732 3419 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 3420 .llseek = noop_llseek,
7ddfd3e0 3421 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
3422};
3423
3424static struct miscdevice kvm_dev = {
bbe4432e 3425 KVM_MINOR,
6aa8b732
AK
3426 "kvm",
3427 &kvm_chardev_ops,
3428};
3429
75b7127c 3430static void hardware_enable_nolock(void *junk)
1b6c0168
AK
3431{
3432 int cpu = raw_smp_processor_id();
10474ae8 3433 int r;
1b6c0168 3434
7f59f492 3435 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3436 return;
10474ae8 3437
7f59f492 3438 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 3439
13a34e06 3440 r = kvm_arch_hardware_enable();
10474ae8
AG
3441
3442 if (r) {
3443 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3444 atomic_inc(&hardware_enable_failed);
1170adc6 3445 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 3446 }
1b6c0168
AK
3447}
3448
8c18b2d2 3449static int kvm_starting_cpu(unsigned int cpu)
75b7127c 3450{
4a937f96 3451 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3452 if (kvm_usage_count)
3453 hardware_enable_nolock(NULL);
4a937f96 3454 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3455 return 0;
75b7127c
TY
3456}
3457
3458static void hardware_disable_nolock(void *junk)
1b6c0168
AK
3459{
3460 int cpu = raw_smp_processor_id();
3461
7f59f492 3462 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3463 return;
7f59f492 3464 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 3465 kvm_arch_hardware_disable();
1b6c0168
AK
3466}
3467
8c18b2d2 3468static int kvm_dying_cpu(unsigned int cpu)
75b7127c 3469{
4a937f96 3470 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3471 if (kvm_usage_count)
3472 hardware_disable_nolock(NULL);
4a937f96 3473 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3474 return 0;
75b7127c
TY
3475}
3476
10474ae8
AG
3477static void hardware_disable_all_nolock(void)
3478{
3479 BUG_ON(!kvm_usage_count);
3480
3481 kvm_usage_count--;
3482 if (!kvm_usage_count)
75b7127c 3483 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
3484}
3485
3486static void hardware_disable_all(void)
3487{
4a937f96 3488 raw_spin_lock(&kvm_count_lock);
10474ae8 3489 hardware_disable_all_nolock();
4a937f96 3490 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3491}
3492
3493static int hardware_enable_all(void)
3494{
3495 int r = 0;
3496
4a937f96 3497 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
3498
3499 kvm_usage_count++;
3500 if (kvm_usage_count == 1) {
3501 atomic_set(&hardware_enable_failed, 0);
75b7127c 3502 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
3503
3504 if (atomic_read(&hardware_enable_failed)) {
3505 hardware_disable_all_nolock();
3506 r = -EBUSY;
3507 }
3508 }
3509
4a937f96 3510 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3511
3512 return r;
3513}
3514
9a2b85c6 3515static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 3516 void *v)
9a2b85c6 3517{
8e1c1815
SY
3518 /*
3519 * Some (well, at least mine) BIOSes hang on reboot if
3520 * in vmx root mode.
3521 *
3522 * And Intel TXT required VMX off for all cpu when system shutdown.
3523 */
1170adc6 3524 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 3525 kvm_rebooting = true;
75b7127c 3526 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
3527 return NOTIFY_OK;
3528}
3529
3530static struct notifier_block kvm_reboot_notifier = {
3531 .notifier_call = kvm_reboot,
3532 .priority = 0,
3533};
3534
e93f8a0f 3535static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
3536{
3537 int i;
3538
3539 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 3540 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
3541
3542 kvm_iodevice_destructor(pos);
3543 }
e93f8a0f 3544 kfree(bus);
2eeb2e94
GH
3545}
3546
c21fbff1 3547static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 3548 const struct kvm_io_range *r2)
743eeb0b 3549{
8f4216c7
JW
3550 gpa_t addr1 = r1->addr;
3551 gpa_t addr2 = r2->addr;
3552
3553 if (addr1 < addr2)
743eeb0b 3554 return -1;
8f4216c7
JW
3555
3556 /* If r2->len == 0, match the exact address. If r2->len != 0,
3557 * accept any overlapping write. Any order is acceptable for
3558 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3559 * we process all of them.
3560 */
3561 if (r2->len) {
3562 addr1 += r1->len;
3563 addr2 += r2->len;
3564 }
3565
3566 if (addr1 > addr2)
743eeb0b 3567 return 1;
8f4216c7 3568
743eeb0b
SL
3569 return 0;
3570}
3571
a343c9b7
PB
3572static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3573{
c21fbff1 3574 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
3575}
3576
39369f7a 3577static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
3578 gpa_t addr, int len)
3579{
3580 struct kvm_io_range *range, key;
3581 int off;
3582
3583 key = (struct kvm_io_range) {
3584 .addr = addr,
3585 .len = len,
3586 };
3587
3588 range = bsearch(&key, bus->range, bus->dev_count,
3589 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3590 if (range == NULL)
3591 return -ENOENT;
3592
3593 off = range - bus->range;
3594
c21fbff1 3595 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
3596 off--;
3597
3598 return off;
3599}
3600
e32edf4f 3601static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
3602 struct kvm_io_range *range, const void *val)
3603{
3604 int idx;
3605
3606 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3607 if (idx < 0)
3608 return -EOPNOTSUPP;
3609
3610 while (idx < bus->dev_count &&
c21fbff1 3611 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 3612 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
3613 range->len, val))
3614 return idx;
3615 idx++;
3616 }
3617
3618 return -EOPNOTSUPP;
3619}
3620
bda9020e 3621/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 3622int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 3623 int len, const void *val)
2eeb2e94 3624{
90d83dc3 3625 struct kvm_io_bus *bus;
743eeb0b 3626 struct kvm_io_range range;
126a5af5 3627 int r;
743eeb0b
SL
3628
3629 range = (struct kvm_io_range) {
3630 .addr = addr,
3631 .len = len,
3632 };
90d83dc3 3633
e32edf4f 3634 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3635 if (!bus)
3636 return -ENOMEM;
e32edf4f 3637 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
3638 return r < 0 ? r : 0;
3639}
a2420107 3640EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
3641
3642/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
3643int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3644 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
3645{
3646 struct kvm_io_bus *bus;
3647 struct kvm_io_range range;
3648
3649 range = (struct kvm_io_range) {
3650 .addr = addr,
3651 .len = len,
3652 };
3653
e32edf4f 3654 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3655 if (!bus)
3656 return -ENOMEM;
126a5af5
CH
3657
3658 /* First try the device referenced by cookie. */
3659 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 3660 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 3661 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
3662 val))
3663 return cookie;
3664
3665 /*
3666 * cookie contained garbage; fall back to search and return the
3667 * correct cookie value.
3668 */
e32edf4f 3669 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
3670}
3671
e32edf4f
NN
3672static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3673 struct kvm_io_range *range, void *val)
126a5af5
CH
3674{
3675 int idx;
3676
3677 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
3678 if (idx < 0)
3679 return -EOPNOTSUPP;
3680
3681 while (idx < bus->dev_count &&
c21fbff1 3682 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 3683 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
3684 range->len, val))
3685 return idx;
743eeb0b
SL
3686 idx++;
3687 }
3688
bda9020e
MT
3689 return -EOPNOTSUPP;
3690}
2eeb2e94 3691
bda9020e 3692/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 3693int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 3694 int len, void *val)
bda9020e 3695{
90d83dc3 3696 struct kvm_io_bus *bus;
743eeb0b 3697 struct kvm_io_range range;
126a5af5 3698 int r;
743eeb0b
SL
3699
3700 range = (struct kvm_io_range) {
3701 .addr = addr,
3702 .len = len,
3703 };
e93f8a0f 3704
e32edf4f 3705 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3706 if (!bus)
3707 return -ENOMEM;
e32edf4f 3708 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
3709 return r < 0 ? r : 0;
3710}
743eeb0b 3711
79fac95e 3712/* Caller must hold slots_lock. */
743eeb0b
SL
3713int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3714 int len, struct kvm_io_device *dev)
6c474694 3715{
d4c67a7a 3716 int i;
e93f8a0f 3717 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 3718 struct kvm_io_range range;
090b7aff 3719
4a12f951 3720 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
3721 if (!bus)
3722 return -ENOMEM;
3723
6ea34c9b
AK
3724 /* exclude ioeventfd which is limited by maximum fd */
3725 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 3726 return -ENOSPC;
2eeb2e94 3727
90952cd3 3728 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 3729 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
3730 if (!new_bus)
3731 return -ENOMEM;
d4c67a7a
GH
3732
3733 range = (struct kvm_io_range) {
3734 .addr = addr,
3735 .len = len,
3736 .dev = dev,
3737 };
3738
3739 for (i = 0; i < bus->dev_count; i++)
3740 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3741 break;
3742
3743 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3744 new_bus->dev_count++;
3745 new_bus->range[i] = range;
3746 memcpy(new_bus->range + i + 1, bus->range + i,
3747 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
3748 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3749 synchronize_srcu_expedited(&kvm->srcu);
3750 kfree(bus);
090b7aff
GH
3751
3752 return 0;
3753}
3754
79fac95e 3755/* Caller must hold slots_lock. */
90db1043
DH
3756void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3757 struct kvm_io_device *dev)
090b7aff 3758{
90db1043 3759 int i;
e93f8a0f 3760 struct kvm_io_bus *new_bus, *bus;
090b7aff 3761
4a12f951 3762 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 3763 if (!bus)
90db1043 3764 return;
df630b8c 3765
a1300716
AK
3766 for (i = 0; i < bus->dev_count; i++)
3767 if (bus->range[i].dev == dev) {
090b7aff
GH
3768 break;
3769 }
e93f8a0f 3770
90db1043
DH
3771 if (i == bus->dev_count)
3772 return;
a1300716 3773
90952cd3 3774 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 3775 GFP_KERNEL_ACCOUNT);
90db1043
DH
3776 if (!new_bus) {
3777 pr_err("kvm: failed to shrink bus, removing it completely\n");
3778 goto broken;
3779 }
a1300716
AK
3780
3781 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3782 new_bus->dev_count--;
3783 memcpy(new_bus->range + i, bus->range + i + 1,
3784 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f 3785
90db1043 3786broken:
e93f8a0f
MT
3787 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3788 synchronize_srcu_expedited(&kvm->srcu);
3789 kfree(bus);
90db1043 3790 return;
2eeb2e94
GH
3791}
3792
8a39d006
AP
3793struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3794 gpa_t addr)
3795{
3796 struct kvm_io_bus *bus;
3797 int dev_idx, srcu_idx;
3798 struct kvm_io_device *iodev = NULL;
3799
3800 srcu_idx = srcu_read_lock(&kvm->srcu);
3801
3802 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
3803 if (!bus)
3804 goto out_unlock;
8a39d006
AP
3805
3806 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3807 if (dev_idx < 0)
3808 goto out_unlock;
3809
3810 iodev = bus->range[dev_idx].dev;
3811
3812out_unlock:
3813 srcu_read_unlock(&kvm->srcu, srcu_idx);
3814
3815 return iodev;
3816}
3817EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3818
536a6f88
JF
3819static int kvm_debugfs_open(struct inode *inode, struct file *file,
3820 int (*get)(void *, u64 *), int (*set)(void *, u64),
3821 const char *fmt)
3822{
3823 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3824 inode->i_private;
3825
3826 /* The debugfs files are a reference to the kvm struct which
3827 * is still valid when kvm_destroy_vm is called.
3828 * To avoid the race between open and the removal of the debugfs
3829 * directory we test against the users count.
3830 */
e3736c3e 3831 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
3832 return -ENOENT;
3833
3834 if (simple_attr_open(inode, file, get, set, fmt)) {
3835 kvm_put_kvm(stat_data->kvm);
3836 return -ENOMEM;
3837 }
3838
3839 return 0;
3840}
3841
3842static int kvm_debugfs_release(struct inode *inode, struct file *file)
3843{
3844 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3845 inode->i_private;
3846
3847 simple_attr_release(inode, file);
3848 kvm_put_kvm(stat_data->kvm);
3849
3850 return 0;
3851}
3852
3853static int vm_stat_get_per_vm(void *data, u64 *val)
3854{
3855 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3856
8a7e75d4 3857 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
536a6f88
JF
3858
3859 return 0;
3860}
3861
ce35ef27
SJS
3862static int vm_stat_clear_per_vm(void *data, u64 val)
3863{
3864 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3865
3866 if (val)
3867 return -EINVAL;
3868
3869 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3870
3871 return 0;
3872}
3873
536a6f88
JF
3874static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3875{
3876 __simple_attr_check_format("%llu\n", 0ull);
3877 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
ce35ef27 3878 vm_stat_clear_per_vm, "%llu\n");
536a6f88
JF
3879}
3880
3881static const struct file_operations vm_stat_get_per_vm_fops = {
3882 .owner = THIS_MODULE,
3883 .open = vm_stat_get_per_vm_open,
3884 .release = kvm_debugfs_release,
3885 .read = simple_attr_read,
3886 .write = simple_attr_write,
3bed8888 3887 .llseek = no_llseek,
536a6f88
JF
3888};
3889
3890static int vcpu_stat_get_per_vm(void *data, u64 *val)
3891{
3892 int i;
3893 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3894 struct kvm_vcpu *vcpu;
3895
3896 *val = 0;
3897
3898 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
8a7e75d4 3899 *val += *(u64 *)((void *)vcpu + stat_data->offset);
536a6f88
JF
3900
3901 return 0;
3902}
3903
ce35ef27
SJS
3904static int vcpu_stat_clear_per_vm(void *data, u64 val)
3905{
3906 int i;
3907 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3908 struct kvm_vcpu *vcpu;
3909
3910 if (val)
3911 return -EINVAL;
3912
3913 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3914 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3915
3916 return 0;
3917}
3918
536a6f88
JF
3919static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3920{
3921 __simple_attr_check_format("%llu\n", 0ull);
3922 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
ce35ef27 3923 vcpu_stat_clear_per_vm, "%llu\n");
536a6f88
JF
3924}
3925
3926static const struct file_operations vcpu_stat_get_per_vm_fops = {
3927 .owner = THIS_MODULE,
3928 .open = vcpu_stat_get_per_vm_open,
3929 .release = kvm_debugfs_release,
3930 .read = simple_attr_read,
3931 .write = simple_attr_write,
3bed8888 3932 .llseek = no_llseek,
536a6f88
JF
3933};
3934
3935static const struct file_operations *stat_fops_per_vm[] = {
3936 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3937 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3938};
3939
8b88b099 3940static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
3941{
3942 unsigned offset = (long)_offset;
ba1389b7 3943 struct kvm *kvm;
536a6f88
JF
3944 struct kvm_stat_data stat_tmp = {.offset = offset};
3945 u64 tmp_val;
ba1389b7 3946
8b88b099 3947 *val = 0;
2f303b74 3948 spin_lock(&kvm_lock);
536a6f88
JF
3949 list_for_each_entry(kvm, &vm_list, vm_list) {
3950 stat_tmp.kvm = kvm;
3951 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3952 *val += tmp_val;
3953 }
2f303b74 3954 spin_unlock(&kvm_lock);
8b88b099 3955 return 0;
ba1389b7
AK
3956}
3957
ce35ef27
SJS
3958static int vm_stat_clear(void *_offset, u64 val)
3959{
3960 unsigned offset = (long)_offset;
3961 struct kvm *kvm;
3962 struct kvm_stat_data stat_tmp = {.offset = offset};
3963
3964 if (val)
3965 return -EINVAL;
3966
3967 spin_lock(&kvm_lock);
3968 list_for_each_entry(kvm, &vm_list, vm_list) {
3969 stat_tmp.kvm = kvm;
3970 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3971 }
3972 spin_unlock(&kvm_lock);
3973
3974 return 0;
3975}
3976
3977DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
ba1389b7 3978
8b88b099 3979static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
3980{
3981 unsigned offset = (long)_offset;
1165f5fe 3982 struct kvm *kvm;
536a6f88
JF
3983 struct kvm_stat_data stat_tmp = {.offset = offset};
3984 u64 tmp_val;
1165f5fe 3985
8b88b099 3986 *val = 0;
2f303b74 3987 spin_lock(&kvm_lock);
536a6f88
JF
3988 list_for_each_entry(kvm, &vm_list, vm_list) {
3989 stat_tmp.kvm = kvm;
3990 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3991 *val += tmp_val;
3992 }
2f303b74 3993 spin_unlock(&kvm_lock);
8b88b099 3994 return 0;
1165f5fe
AK
3995}
3996
ce35ef27
SJS
3997static int vcpu_stat_clear(void *_offset, u64 val)
3998{
3999 unsigned offset = (long)_offset;
4000 struct kvm *kvm;
4001 struct kvm_stat_data stat_tmp = {.offset = offset};
4002
4003 if (val)
4004 return -EINVAL;
4005
4006 spin_lock(&kvm_lock);
4007 list_for_each_entry(kvm, &vm_list, vm_list) {
4008 stat_tmp.kvm = kvm;
4009 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4010 }
4011 spin_unlock(&kvm_lock);
4012
4013 return 0;
4014}
4015
4016DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4017 "%llu\n");
ba1389b7 4018
828c0950 4019static const struct file_operations *stat_fops[] = {
ba1389b7
AK
4020 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4021 [KVM_STAT_VM] = &vm_stat_fops,
4022};
1165f5fe 4023
286de8f6
CI
4024static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4025{
4026 struct kobj_uevent_env *env;
286de8f6
CI
4027 unsigned long long created, active;
4028
4029 if (!kvm_dev.this_device || !kvm)
4030 return;
4031
4032 spin_lock(&kvm_lock);
4033 if (type == KVM_EVENT_CREATE_VM) {
4034 kvm_createvm_count++;
4035 kvm_active_vms++;
4036 } else if (type == KVM_EVENT_DESTROY_VM) {
4037 kvm_active_vms--;
4038 }
4039 created = kvm_createvm_count;
4040 active = kvm_active_vms;
4041 spin_unlock(&kvm_lock);
4042
b12ce36a 4043 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
4044 if (!env)
4045 return;
4046
4047 add_uevent_var(env, "CREATED=%llu", created);
4048 add_uevent_var(env, "COUNT=%llu", active);
4049
fdeaf7e3 4050 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 4051 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
4052 kvm->userspace_pid = task_pid_nr(current);
4053 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 4054 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
4055 }
4056 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 4057
8ed0579c 4058 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
b12ce36a 4059 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
4060
4061 if (p) {
4062 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4063 if (!IS_ERR(tmp))
4064 add_uevent_var(env, "STATS_PATH=%s", tmp);
4065 kfree(p);
286de8f6
CI
4066 }
4067 }
4068 /* no need for checks, since we are adding at most only 5 keys */
4069 env->envp[env->envp_idx++] = NULL;
4070 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4071 kfree(env);
286de8f6
CI
4072}
4073
929f45e3 4074static void kvm_init_debug(void)
6aa8b732
AK
4075{
4076 struct kvm_stats_debugfs_item *p;
4077
76f7c879 4078 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 4079
536a6f88
JF
4080 kvm_debugfs_num_entries = 0;
4081 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
929f45e3
GKH
4082 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4083 (void *)(long)p->offset,
4084 stat_fops[p->kind]);
4f69b680 4085 }
6aa8b732
AK
4086}
4087
fb3600cc 4088static int kvm_suspend(void)
59ae6c6b 4089{
10474ae8 4090 if (kvm_usage_count)
75b7127c 4091 hardware_disable_nolock(NULL);
59ae6c6b
AK
4092 return 0;
4093}
4094
fb3600cc 4095static void kvm_resume(void)
59ae6c6b 4096{
ca84d1a2 4097 if (kvm_usage_count) {
6706dae9 4098 lockdep_assert_held(&kvm_count_lock);
75b7127c 4099 hardware_enable_nolock(NULL);
ca84d1a2 4100 }
59ae6c6b
AK
4101}
4102
fb3600cc 4103static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
4104 .suspend = kvm_suspend,
4105 .resume = kvm_resume,
4106};
4107
15ad7146
AK
4108static inline
4109struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4110{
4111 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4112}
4113
4114static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4115{
4116 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 4117
3a08a8f9
R
4118 if (vcpu->preempted)
4119 vcpu->preempted = false;
15ad7146 4120
e790d9ef
RK
4121 kvm_arch_sched_in(vcpu, cpu);
4122
e9b11c17 4123 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
4124}
4125
4126static void kvm_sched_out(struct preempt_notifier *pn,
4127 struct task_struct *next)
4128{
4129 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4130
3a08a8f9
R
4131 if (current->state == TASK_RUNNING)
4132 vcpu->preempted = true;
e9b11c17 4133 kvm_arch_vcpu_put(vcpu);
15ad7146
AK
4134}
4135
0ee75bea 4136int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 4137 struct module *module)
6aa8b732
AK
4138{
4139 int r;
002c7f7c 4140 int cpu;
6aa8b732 4141
f8c16bba
ZX
4142 r = kvm_arch_init(opaque);
4143 if (r)
d2308784 4144 goto out_fail;
cb498ea2 4145
7dac16c3
AH
4146 /*
4147 * kvm_arch_init makes sure there's at most one caller
4148 * for architectures that support multiple implementations,
4149 * like intel and amd on x86.
36343f6e
PB
4150 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4151 * conflicts in case kvm is already setup for another implementation.
7dac16c3 4152 */
36343f6e
PB
4153 r = kvm_irqfd_init();
4154 if (r)
4155 goto out_irqfd;
7dac16c3 4156
8437a617 4157 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
4158 r = -ENOMEM;
4159 goto out_free_0;
4160 }
4161
e9b11c17 4162 r = kvm_arch_hardware_setup();
6aa8b732 4163 if (r < 0)
7f59f492 4164 goto out_free_0a;
6aa8b732 4165
002c7f7c
YS
4166 for_each_online_cpu(cpu) {
4167 smp_call_function_single(cpu,
e9b11c17 4168 kvm_arch_check_processor_compat,
8691e5a8 4169 &r, 1);
002c7f7c 4170 if (r < 0)
d2308784 4171 goto out_free_1;
002c7f7c
YS
4172 }
4173
73c1b41e 4174 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 4175 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 4176 if (r)
d2308784 4177 goto out_free_2;
6aa8b732
AK
4178 register_reboot_notifier(&kvm_reboot_notifier);
4179
c16f862d 4180 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
4181 if (!vcpu_align)
4182 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
4183 kvm_vcpu_cache =
4184 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4185 SLAB_ACCOUNT,
4186 offsetof(struct kvm_vcpu, arch),
4187 sizeof_field(struct kvm_vcpu, arch),
4188 NULL);
c16f862d
RR
4189 if (!kvm_vcpu_cache) {
4190 r = -ENOMEM;
fb3600cc 4191 goto out_free_3;
c16f862d
RR
4192 }
4193
af585b92
GN
4194 r = kvm_async_pf_init();
4195 if (r)
4196 goto out_free;
4197
6aa8b732 4198 kvm_chardev_ops.owner = module;
3d3aab1b
CB
4199 kvm_vm_fops.owner = module;
4200 kvm_vcpu_fops.owner = module;
6aa8b732
AK
4201
4202 r = misc_register(&kvm_dev);
4203 if (r) {
1170adc6 4204 pr_err("kvm: misc device register failed\n");
af585b92 4205 goto out_unreg;
6aa8b732
AK
4206 }
4207
fb3600cc
RW
4208 register_syscore_ops(&kvm_syscore_ops);
4209
15ad7146
AK
4210 kvm_preempt_ops.sched_in = kvm_sched_in;
4211 kvm_preempt_ops.sched_out = kvm_sched_out;
4212
929f45e3 4213 kvm_init_debug();
0ea4ed8e 4214
3c3c29fd
PB
4215 r = kvm_vfio_ops_init();
4216 WARN_ON(r);
4217
c7addb90 4218 return 0;
6aa8b732 4219
af585b92
GN
4220out_unreg:
4221 kvm_async_pf_deinit();
6aa8b732 4222out_free:
c16f862d 4223 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 4224out_free_3:
6aa8b732 4225 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4226 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 4227out_free_2:
d2308784 4228out_free_1:
e9b11c17 4229 kvm_arch_hardware_unsetup();
7f59f492
RR
4230out_free_0a:
4231 free_cpumask_var(cpus_hardware_enabled);
d2308784 4232out_free_0:
a0f155e9 4233 kvm_irqfd_exit();
36343f6e 4234out_irqfd:
7dac16c3
AH
4235 kvm_arch_exit();
4236out_fail:
6aa8b732
AK
4237 return r;
4238}
cb498ea2 4239EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 4240
cb498ea2 4241void kvm_exit(void)
6aa8b732 4242{
4bd33b56 4243 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 4244 misc_deregister(&kvm_dev);
c16f862d 4245 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 4246 kvm_async_pf_deinit();
fb3600cc 4247 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 4248 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4249 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 4250 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 4251 kvm_arch_hardware_unsetup();
f8c16bba 4252 kvm_arch_exit();
a0f155e9 4253 kvm_irqfd_exit();
7f59f492 4254 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 4255 kvm_vfio_ops_exit();
6aa8b732 4256}
cb498ea2 4257EXPORT_SYMBOL_GPL(kvm_exit);