]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - virt/kvm/kvm_main.c
KVM: add missing compat KVM_CLEAR_DIRTY_LOG
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
2fdef3a2 54#include <linux/suspend.h>
6aa8b732 55
e495606d 56#include <asm/processor.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
531810ca 62#include "mmu_lock.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
229456fc
MT
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
fb04a1ed
PX
68#include <linux/kvm_dirty_ring.h>
69
536a6f88
JF
70/* Worst case buffer size needed for holding an integer. */
71#define ITOA_MAX_LEN 12
72
6aa8b732
AK
73MODULE_AUTHOR("Qumranet");
74MODULE_LICENSE("GPL");
75
920552b2 76/* Architectures should define their poll value according to the halt latency */
ec76d819 77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 78module_param(halt_poll_ns, uint, 0644);
ec76d819 79EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 80
aca6ff29 81/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 82unsigned int halt_poll_ns_grow = 2;
039c5d1b 83module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 85
49113d36
NW
86/* The start value to grow halt_poll_ns from */
87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88module_param(halt_poll_ns_grow_start, uint, 0644);
89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
aca6ff29 91/* Default resets per-vcpu halt_poll_ns . */
ec76d819 92unsigned int halt_poll_ns_shrink;
039c5d1b 93module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 95
fa40a821
MT
96/*
97 * Ordering of locks:
98 *
b7d409de 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
100 */
101
0d9ce162 102DEFINE_MUTEX(kvm_lock);
4a937f96 103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 104LIST_HEAD(vm_list);
133de902 105
7f59f492 106static cpumask_var_t cpus_hardware_enabled;
f4fee932 107static int kvm_usage_count;
10474ae8 108static atomic_t hardware_enable_failed;
1b6c0168 109
aaba298c 110static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 111
15ad7146 112static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 114
76f7c879 115struct dentry *kvm_debugfs_dir;
e23a808b 116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 117
09cbcef6 118static const struct file_operations stat_fops_per_vm;
536a6f88 119
bccf2150
AK
120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
de8e5d74 122#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
7ddfd3e0
MZ
125#define KVM_COMPAT(c) .compat_ioctl = (c)
126#else
9cb09e7c
MZ
127/*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
7ddfd3e0
MZ
134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
136
137static int kvm_no_compat_open(struct inode *inode, struct file *file)
138{
139 return is_compat_task() ? -ENODEV : 0;
140}
141#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
1dda606c 143#endif
10474ae8
AG
144static int hardware_enable_all(void);
145static void hardware_disable_all(void);
bccf2150 146
e93f8a0f 147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
286de8f6
CI
152#define KVM_EVENT_CREATE_VM 0
153#define KVM_EVENT_DESTROY_VM 1
154static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155static unsigned long long kvm_createvm_count;
156static unsigned long long kvm_active_vms;
157
e649b3f0
ET
158__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end)
b1394e74
RK
160{
161}
162
a78986aa
SC
163bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164{
165 /*
166 * The metadata used by is_zone_device_page() to determine whether or
167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 * the device has been pinned, e.g. by get_user_pages(). WARN if the
169 * page_count() is zero to help detect bad usage of this helper.
170 */
171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 return false;
173
174 return is_zone_device_page(pfn_to_page(pfn));
175}
176
ba049e93 177bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 178{
a78986aa
SC
179 /*
180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 * perspective they are "normal" pages, albeit with slightly different
182 * usage rules.
183 */
11feeb49 184 if (pfn_valid(pfn))
a78986aa 185 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 186 !is_zero_pfn(pfn) &&
a78986aa 187 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
188
189 return true;
190}
191
005ba37c
SC
192bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193{
194 struct page *page = pfn_to_page(pfn);
195
196 if (!PageTransCompoundMap(page))
197 return false;
198
199 return is_transparent_hugepage(compound_head(page));
200}
201
bccf2150
AK
202/*
203 * Switches to specified vcpu, until a matching vcpu_put()
204 */
ec7660cc 205void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 206{
ec7660cc 207 int cpu = get_cpu();
7495e22b
PB
208
209 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 210 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 211 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 212 put_cpu();
6aa8b732 213}
2f1fe811 214EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 215
313a3dc7 216void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 217{
15ad7146 218 preempt_disable();
313a3dc7 219 kvm_arch_vcpu_put(vcpu);
15ad7146 220 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 221 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 222 preempt_enable();
6aa8b732 223}
2f1fe811 224EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 225
7a97cec2
PB
226/* TODO: merge with kvm_arch_vcpu_should_kick */
227static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228{
229 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231 /*
232 * We need to wait for the VCPU to reenable interrupts and get out of
233 * READING_SHADOW_PAGE_TABLES mode.
234 */
235 if (req & KVM_REQUEST_WAIT)
236 return mode != OUTSIDE_GUEST_MODE;
237
238 /*
239 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 */
241 return mode == IN_GUEST_MODE;
242}
243
d9e368d6
AK
244static void ack_flush(void *_completed)
245{
d9e368d6
AK
246}
247
b49defe8
PB
248static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249{
250 if (unlikely(!cpus))
251 cpus = cpu_online_mask;
252
253 if (cpumask_empty(cpus))
254 return false;
255
256 smp_call_function_many(cpus, ack_flush, NULL, wait);
257 return true;
258}
259
7053df4e 260bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
54163a34 261 struct kvm_vcpu *except,
7053df4e 262 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 263{
597a5f55 264 int i, cpu, me;
d9e368d6 265 struct kvm_vcpu *vcpu;
7053df4e 266 bool called;
6ef7a1bc 267
3cba4130 268 me = get_cpu();
7053df4e 269
988a2cae 270 kvm_for_each_vcpu(i, vcpu, kvm) {
54163a34
SS
271 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 vcpu == except)
7053df4e
VK
273 continue;
274
3cba4130 275 kvm_make_request(req, vcpu);
d9e368d6 276 cpu = vcpu->cpu;
6b7e2d09 277
178f02ff
RK
278 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 continue;
6c6e8360 280
7053df4e 281 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 282 kvm_request_needs_ipi(vcpu, req))
7053df4e 283 __cpumask_set_cpu(cpu, tmp);
49846896 284 }
7053df4e
VK
285
286 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 287 put_cpu();
7053df4e
VK
288
289 return called;
290}
291
54163a34
SS
292bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 struct kvm_vcpu *except)
7053df4e
VK
294{
295 cpumask_var_t cpus;
296 bool called;
7053df4e
VK
297
298 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
54163a34 300 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
7053df4e 301
6ef7a1bc 302 free_cpumask_var(cpus);
49846896 303 return called;
d9e368d6
AK
304}
305
54163a34
SS
306bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307{
308 return kvm_make_all_cpus_request_except(kvm, req, NULL);
309}
a2486020 310EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
54163a34 311
a6d51016 312#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 313void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 314{
4ae3cb3a
LT
315 /*
316 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 * kvm_make_all_cpus_request.
318 */
319 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321 /*
322 * We want to publish modifications to the page tables before reading
323 * mode. Pairs with a memory barrier in arch-specific code.
324 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 *
328 * There is already an smp_mb__after_atomic() before
329 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 * barrier here.
331 */
b08660e5
TL
332 if (!kvm_arch_flush_remote_tlb(kvm)
333 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0193cc90 334 ++kvm->stat.generic.remote_tlb_flush;
a086f6a1 335 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 336}
2ba9f0d8 337EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 338#endif
2e53d63a 339
49846896
RR
340void kvm_reload_remote_mmus(struct kvm *kvm)
341{
445b8236 342 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 343}
2e53d63a 344
6926f95a
SC
345#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347 gfp_t gfp_flags)
348{
349 gfp_flags |= mc->gfp_zero;
350
351 if (mc->kmem_cache)
352 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353 else
354 return (void *)__get_free_page(gfp_flags);
355}
356
357int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358{
359 void *obj;
360
361 if (mc->nobjs >= min)
362 return 0;
363 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365 if (!obj)
366 return mc->nobjs >= min ? 0 : -ENOMEM;
367 mc->objects[mc->nobjs++] = obj;
368 }
369 return 0;
370}
371
372int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373{
374 return mc->nobjs;
375}
376
377void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378{
379 while (mc->nobjs) {
380 if (mc->kmem_cache)
381 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382 else
383 free_page((unsigned long)mc->objects[--mc->nobjs]);
384 }
385}
386
387void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388{
389 void *p;
390
391 if (WARN_ON(!mc->nobjs))
392 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393 else
394 p = mc->objects[--mc->nobjs];
395 BUG_ON(!p);
396 return p;
397}
398#endif
399
8bd826d6 400static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 401{
fb3f0f51
RR
402 mutex_init(&vcpu->mutex);
403 vcpu->cpu = -1;
fb3f0f51
RR
404 vcpu->kvm = kvm;
405 vcpu->vcpu_id = id;
34bb10b7 406 vcpu->pid = NULL;
da4ad88c 407 rcuwait_init(&vcpu->wait);
af585b92 408 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 409
bf9f6ac8
FW
410 vcpu->pre_pcpu = -1;
411 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412
4c088493
R
413 kvm_vcpu_set_in_spin_loop(vcpu, false);
414 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 415 vcpu->preempted = false;
d73eb57b 416 vcpu->ready = false;
d5c48deb 417 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fb3f0f51 418}
fb3f0f51 419
4543bdc0
SC
420void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421{
fb04a1ed 422 kvm_dirty_ring_free(&vcpu->dirty_ring);
4543bdc0 423 kvm_arch_vcpu_destroy(vcpu);
e529ef66 424
9941d224
SC
425 /*
426 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427 * the vcpu->pid pointer, and at destruction time all file descriptors
428 * are already gone.
429 */
430 put_pid(rcu_dereference_protected(vcpu->pid, 1));
431
8bd826d6 432 free_page((unsigned long)vcpu->run);
e529ef66 433 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0
SC
434}
435EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436
e930bffe
AA
437#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439{
440 return container_of(mn, struct kvm, mmu_notifier);
441}
442
e649b3f0
ET
443static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444 struct mm_struct *mm,
445 unsigned long start, unsigned long end)
446{
447 struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 int idx;
449
450 idx = srcu_read_lock(&kvm->srcu);
451 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452 srcu_read_unlock(&kvm->srcu, idx);
453}
454
3039bcc7
SC
455typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456
f922bd9b
SC
457typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458 unsigned long end);
459
3039bcc7
SC
460struct kvm_hva_range {
461 unsigned long start;
462 unsigned long end;
463 pte_t pte;
464 hva_handler_t handler;
f922bd9b 465 on_lock_fn_t on_lock;
3039bcc7
SC
466 bool flush_on_ret;
467 bool may_block;
468};
469
f922bd9b
SC
470/*
471 * Use a dedicated stub instead of NULL to indicate that there is no callback
472 * function/handler. The compiler technically can't guarantee that a real
473 * function will have a non-zero address, and so it will generate code to
474 * check for !NULL, whereas comparing against a stub will be elided at compile
475 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476 */
477static void kvm_null_fn(void)
478{
479
480}
481#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482
3039bcc7
SC
483static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484 const struct kvm_hva_range *range)
485{
8931a454 486 bool ret = false, locked = false;
f922bd9b 487 struct kvm_gfn_range gfn_range;
3039bcc7
SC
488 struct kvm_memory_slot *slot;
489 struct kvm_memslots *slots;
3039bcc7
SC
490 int i, idx;
491
f922bd9b
SC
492 /* A null handler is allowed if and only if on_lock() is provided. */
493 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494 IS_KVM_NULL_FN(range->handler)))
495 return 0;
496
3039bcc7
SC
497 idx = srcu_read_lock(&kvm->srcu);
498
8931a454 499 /* The on_lock() path does not yet support lock elision. */
f922bd9b 500 if (!IS_KVM_NULL_FN(range->on_lock)) {
8931a454
SC
501 locked = true;
502 KVM_MMU_LOCK(kvm);
503
f922bd9b
SC
504 range->on_lock(kvm, range->start, range->end);
505
506 if (IS_KVM_NULL_FN(range->handler))
507 goto out_unlock;
508 }
509
3039bcc7
SC
510 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511 slots = __kvm_memslots(kvm, i);
512 kvm_for_each_memslot(slot, slots) {
513 unsigned long hva_start, hva_end;
514
515 hva_start = max(range->start, slot->userspace_addr);
516 hva_end = min(range->end, slot->userspace_addr +
517 (slot->npages << PAGE_SHIFT));
518 if (hva_start >= hva_end)
519 continue;
520
521 /*
522 * To optimize for the likely case where the address
523 * range is covered by zero or one memslots, don't
524 * bother making these conditional (to avoid writes on
525 * the second or later invocation of the handler).
526 */
527 gfn_range.pte = range->pte;
528 gfn_range.may_block = range->may_block;
529
530 /*
531 * {gfn(page) | page intersects with [hva_start, hva_end)} =
532 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
533 */
534 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536 gfn_range.slot = slot;
537
8931a454
SC
538 if (!locked) {
539 locked = true;
540 KVM_MMU_LOCK(kvm);
541 }
3039bcc7
SC
542 ret |= range->handler(kvm, &gfn_range);
543 }
544 }
545
546 if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547 kvm_flush_remote_tlbs(kvm);
548
f922bd9b 549out_unlock:
8931a454
SC
550 if (locked)
551 KVM_MMU_UNLOCK(kvm);
f922bd9b 552
3039bcc7
SC
553 srcu_read_unlock(&kvm->srcu, idx);
554
555 /* The notifiers are averse to booleans. :-( */
556 return (int)ret;
557}
558
559static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
560 unsigned long start,
561 unsigned long end,
562 pte_t pte,
563 hva_handler_t handler)
564{
565 struct kvm *kvm = mmu_notifier_to_kvm(mn);
566 const struct kvm_hva_range range = {
567 .start = start,
568 .end = end,
569 .pte = pte,
570 .handler = handler,
f922bd9b 571 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
572 .flush_on_ret = true,
573 .may_block = false,
574 };
3039bcc7 575
f922bd9b 576 return __kvm_handle_hva_range(kvm, &range);
3039bcc7
SC
577}
578
579static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
580 unsigned long start,
581 unsigned long end,
582 hva_handler_t handler)
583{
584 struct kvm *kvm = mmu_notifier_to_kvm(mn);
585 const struct kvm_hva_range range = {
586 .start = start,
587 .end = end,
588 .pte = __pte(0),
589 .handler = handler,
f922bd9b 590 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
591 .flush_on_ret = false,
592 .may_block = false,
593 };
3039bcc7 594
f922bd9b 595 return __kvm_handle_hva_range(kvm, &range);
3039bcc7 596}
3da0dd43
IE
597static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598 struct mm_struct *mm,
599 unsigned long address,
600 pte_t pte)
601{
602 struct kvm *kvm = mmu_notifier_to_kvm(mn);
603
501b9185
SC
604 trace_kvm_set_spte_hva(address);
605
c13fda23
SC
606 /*
607 * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608 * and so always runs with an elevated notifier count. This obviates
609 * the need to bump the sequence count.
610 */
611 WARN_ON_ONCE(!kvm->mmu_notifier_count);
612
3039bcc7 613 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
3da0dd43
IE
614}
615
f922bd9b
SC
616static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
617 unsigned long end)
e930bffe 618{
e930bffe
AA
619 /*
620 * The count increase must become visible at unlock time as no
621 * spte can be established without taking the mmu_lock and
622 * count is also read inside the mmu_lock critical section.
623 */
624 kvm->mmu_notifier_count++;
4a42d848 625 if (likely(kvm->mmu_notifier_count == 1)) {
f922bd9b
SC
626 kvm->mmu_notifier_range_start = start;
627 kvm->mmu_notifier_range_end = end;
4a42d848
DS
628 } else {
629 /*
630 * Fully tracking multiple concurrent ranges has dimishing
631 * returns. Keep things simple and just find the minimal range
632 * which includes the current and new ranges. As there won't be
633 * enough information to subtract a range after its invalidate
634 * completes, any ranges invalidated concurrently will
635 * accumulate and persist until all outstanding invalidates
636 * complete.
637 */
638 kvm->mmu_notifier_range_start =
f922bd9b 639 min(kvm->mmu_notifier_range_start, start);
4a42d848 640 kvm->mmu_notifier_range_end =
f922bd9b 641 max(kvm->mmu_notifier_range_end, end);
4a42d848 642 }
f922bd9b 643}
3039bcc7 644
f922bd9b
SC
645static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646 const struct mmu_notifier_range *range)
647{
648 struct kvm *kvm = mmu_notifier_to_kvm(mn);
649 const struct kvm_hva_range hva_range = {
650 .start = range->start,
651 .end = range->end,
652 .pte = __pte(0),
653 .handler = kvm_unmap_gfn_range,
654 .on_lock = kvm_inc_notifier_count,
655 .flush_on_ret = true,
656 .may_block = mmu_notifier_range_blockable(range),
657 };
565f3be2 658
f922bd9b
SC
659 trace_kvm_unmap_hva_range(range->start, range->end);
660
661 __kvm_handle_hva_range(kvm, &hva_range);
93065ac7 662
e649b3f0 663 return 0;
e930bffe
AA
664}
665
f922bd9b
SC
666static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667 unsigned long end)
e930bffe 668{
e930bffe
AA
669 /*
670 * This sequence increase will notify the kvm page fault that
671 * the page that is going to be mapped in the spte could have
672 * been freed.
673 */
674 kvm->mmu_notifier_seq++;
a355aa54 675 smp_wmb();
e930bffe
AA
676 /*
677 * The above sequence increase must be visible before the
a355aa54
PM
678 * below count decrease, which is ensured by the smp_wmb above
679 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
680 */
681 kvm->mmu_notifier_count--;
f922bd9b
SC
682}
683
684static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685 const struct mmu_notifier_range *range)
686{
687 struct kvm *kvm = mmu_notifier_to_kvm(mn);
688 const struct kvm_hva_range hva_range = {
689 .start = range->start,
690 .end = range->end,
691 .pte = __pte(0),
692 .handler = (void *)kvm_null_fn,
693 .on_lock = kvm_dec_notifier_count,
694 .flush_on_ret = false,
695 .may_block = mmu_notifier_range_blockable(range),
696 };
697
698 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe
AA
699
700 BUG_ON(kvm->mmu_notifier_count < 0);
701}
702
703static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704 struct mm_struct *mm,
57128468
ALC
705 unsigned long start,
706 unsigned long end)
e930bffe 707{
501b9185
SC
708 trace_kvm_age_hva(start, end);
709
3039bcc7 710 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
e930bffe
AA
711}
712
1d7715c6
VD
713static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714 struct mm_struct *mm,
715 unsigned long start,
716 unsigned long end)
717{
501b9185
SC
718 trace_kvm_age_hva(start, end);
719
1d7715c6
VD
720 /*
721 * Even though we do not flush TLB, this will still adversely
722 * affect performance on pre-Haswell Intel EPT, where there is
723 * no EPT Access Bit to clear so that we have to tear down EPT
724 * tables instead. If we find this unacceptable, we can always
725 * add a parameter to kvm_age_hva so that it effectively doesn't
726 * do anything on clear_young.
727 *
728 * Also note that currently we never issue secondary TLB flushes
729 * from clear_young, leaving this job up to the regular system
730 * cadence. If we find this inaccurate, we might come up with a
731 * more sophisticated heuristic later.
732 */
3039bcc7 733 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
734}
735
8ee53820
AA
736static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737 struct mm_struct *mm,
738 unsigned long address)
739{
501b9185
SC
740 trace_kvm_test_age_hva(address);
741
3039bcc7
SC
742 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
743 kvm_test_age_gfn);
8ee53820
AA
744}
745
85db06e5
MT
746static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747 struct mm_struct *mm)
748{
749 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
750 int idx;
751
752 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 753 kvm_arch_flush_shadow_all(kvm);
eda2beda 754 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
755}
756
e930bffe 757static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e649b3f0 758 .invalidate_range = kvm_mmu_notifier_invalidate_range,
e930bffe
AA
759 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
760 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
761 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 762 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 763 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 764 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 765 .release = kvm_mmu_notifier_release,
e930bffe 766};
4c07b0a4
AK
767
768static int kvm_init_mmu_notifier(struct kvm *kvm)
769{
770 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772}
773
774#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
775
776static int kvm_init_mmu_notifier(struct kvm *kvm)
777{
778 return 0;
779}
780
e930bffe
AA
781#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
782
2fdef3a2
SS
783#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784static int kvm_pm_notifier_call(struct notifier_block *bl,
785 unsigned long state,
786 void *unused)
787{
788 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
789
790 return kvm_arch_pm_notifier(kvm, state);
791}
792
793static void kvm_init_pm_notifier(struct kvm *kvm)
794{
795 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
796 /* Suspend KVM before we suspend ftrace, RCU, etc. */
797 kvm->pm_notifier.priority = INT_MAX;
798 register_pm_notifier(&kvm->pm_notifier);
799}
800
801static void kvm_destroy_pm_notifier(struct kvm *kvm)
802{
803 unregister_pm_notifier(&kvm->pm_notifier);
804}
805#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
806static void kvm_init_pm_notifier(struct kvm *kvm)
807{
808}
809
810static void kvm_destroy_pm_notifier(struct kvm *kvm)
811{
812}
813#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
814
a47d2b07 815static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
816{
817 int i;
a47d2b07 818 struct kvm_memslots *slots;
bf3e05bc 819
b12ce36a 820 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
821 if (!slots)
822 return NULL;
823
bf3e05bc 824 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
36947254 825 slots->id_to_index[i] = -1;
a47d2b07
PB
826
827 return slots;
828}
829
830static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
831{
832 if (!memslot->dirty_bitmap)
833 return;
834
835 kvfree(memslot->dirty_bitmap);
836 memslot->dirty_bitmap = NULL;
837}
838
e96c81ee 839static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 840{
e96c81ee 841 kvm_destroy_dirty_bitmap(slot);
a47d2b07 842
e96c81ee 843 kvm_arch_free_memslot(kvm, slot);
a47d2b07 844
e96c81ee
SC
845 slot->flags = 0;
846 slot->npages = 0;
a47d2b07
PB
847}
848
849static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
850{
851 struct kvm_memory_slot *memslot;
852
853 if (!slots)
854 return;
855
856 kvm_for_each_memslot(memslot, slots)
e96c81ee 857 kvm_free_memslot(kvm, memslot);
a47d2b07
PB
858
859 kvfree(slots);
bf3e05bc
XG
860}
861
bc9e9e67
JZ
862static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
863{
864 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
865 case KVM_STATS_TYPE_INSTANT:
866 return 0444;
867 case KVM_STATS_TYPE_CUMULATIVE:
868 case KVM_STATS_TYPE_PEAK:
869 default:
870 return 0644;
871 }
872}
873
874
536a6f88
JF
875static void kvm_destroy_vm_debugfs(struct kvm *kvm)
876{
877 int i;
bc9e9e67
JZ
878 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
879 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
880
881 if (!kvm->debugfs_dentry)
882 return;
883
884 debugfs_remove_recursive(kvm->debugfs_dentry);
885
9d5a1dce
LC
886 if (kvm->debugfs_stat_data) {
887 for (i = 0; i < kvm_debugfs_num_entries; i++)
888 kfree(kvm->debugfs_stat_data[i]);
889 kfree(kvm->debugfs_stat_data);
890 }
536a6f88
JF
891}
892
893static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
894{
895 char dir_name[ITOA_MAX_LEN * 2];
896 struct kvm_stat_data *stat_data;
bc9e9e67
JZ
897 const struct _kvm_stats_desc *pdesc;
898 int i;
899 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
900 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
901
902 if (!debugfs_initialized())
903 return 0;
904
905 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 906 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
907
908 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
909 sizeof(*kvm->debugfs_stat_data),
b12ce36a 910 GFP_KERNEL_ACCOUNT);
536a6f88
JF
911 if (!kvm->debugfs_stat_data)
912 return -ENOMEM;
913
bc9e9e67
JZ
914 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
915 pdesc = &kvm_vm_stats_desc[i];
b12ce36a 916 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
917 if (!stat_data)
918 return -ENOMEM;
919
920 stat_data->kvm = kvm;
bc9e9e67
JZ
921 stat_data->desc = pdesc;
922 stat_data->kind = KVM_STAT_VM;
923 kvm->debugfs_stat_data[i] = stat_data;
924 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
925 kvm->debugfs_dentry, stat_data,
926 &stat_fops_per_vm);
927 }
928
929 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
930 pdesc = &kvm_vcpu_stats_desc[i];
b12ce36a 931 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
932 if (!stat_data)
933 return -ENOMEM;
934
935 stat_data->kvm = kvm;
bc9e9e67
JZ
936 stat_data->desc = pdesc;
937 stat_data->kind = KVM_STAT_VCPU;
004d62eb 938 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
bc9e9e67 939 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
09cbcef6
MP
940 kvm->debugfs_dentry, stat_data,
941 &stat_fops_per_vm);
536a6f88
JF
942 }
943 return 0;
944}
945
1aa9b957
JS
946/*
947 * Called after the VM is otherwise initialized, but just before adding it to
948 * the vm_list.
949 */
950int __weak kvm_arch_post_init_vm(struct kvm *kvm)
951{
952 return 0;
953}
954
955/*
956 * Called just after removing the VM from the vm_list, but before doing any
957 * other destruction.
958 */
959void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
960{
961}
962
e08b9637 963static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 964{
d89f5eff 965 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
966 int r = -ENOMEM;
967 int i;
6aa8b732 968
d89f5eff
JK
969 if (!kvm)
970 return ERR_PTR(-ENOMEM);
971
531810ca 972 KVM_MMU_LOCK_INIT(kvm);
f1f10076 973 mmgrab(current->mm);
e9ad4ec8
PB
974 kvm->mm = current->mm;
975 kvm_eventfd_init(kvm);
976 mutex_init(&kvm->lock);
977 mutex_init(&kvm->irq_lock);
978 mutex_init(&kvm->slots_lock);
b10a038e 979 mutex_init(&kvm->slots_arch_lock);
e9ad4ec8
PB
980 INIT_LIST_HEAD(&kvm->devices);
981
1e702d9a
AW
982 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
983
8a44119a
PB
984 if (init_srcu_struct(&kvm->srcu))
985 goto out_err_no_srcu;
986 if (init_srcu_struct(&kvm->irq_srcu))
987 goto out_err_no_irq_srcu;
988
e2d3fcaf 989 refcount_set(&kvm->users_count, 1);
f481b069 990 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 991 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 992
4bd518f1 993 if (!slots)
a97b0e77 994 goto out_err_no_arch_destroy_vm;
0e32958e 995 /* Generations must be different for each address space. */
164bf7e5 996 slots->generation = i;
4bd518f1 997 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 998 }
00f034a1 999
e93f8a0f 1000 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 1001 rcu_assign_pointer(kvm->buses[i],
b12ce36a 1002 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 1003 if (!kvm->buses[i])
a97b0e77 1004 goto out_err_no_arch_destroy_vm;
e93f8a0f 1005 }
e930bffe 1006
acd05785
DM
1007 kvm->max_halt_poll_ns = halt_poll_ns;
1008
e08b9637 1009 r = kvm_arch_init_vm(kvm, type);
d89f5eff 1010 if (r)
a97b0e77 1011 goto out_err_no_arch_destroy_vm;
10474ae8
AG
1012
1013 r = hardware_enable_all();
1014 if (r)
719d93cd 1015 goto out_err_no_disable;
10474ae8 1016
c77dcacb 1017#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 1018 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 1019#endif
6aa8b732 1020
74b5c5bf 1021 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
1022 if (r)
1023 goto out_err_no_mmu_notifier;
1024
1025 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
1026 if (r)
1027 goto out_err;
1028
0d9ce162 1029 mutex_lock(&kvm_lock);
5e58cfe4 1030 list_add(&kvm->vm_list, &vm_list);
0d9ce162 1031 mutex_unlock(&kvm_lock);
d89f5eff 1032
2ecd9d29 1033 preempt_notifier_inc();
2fdef3a2 1034 kvm_init_pm_notifier(kvm);
2ecd9d29 1035
f17abe9a 1036 return kvm;
10474ae8
AG
1037
1038out_err:
1aa9b957
JS
1039#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1040 if (kvm->mmu_notifier.ops)
1041 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1042#endif
1043out_err_no_mmu_notifier:
10474ae8 1044 hardware_disable_all();
719d93cd 1045out_err_no_disable:
a97b0e77 1046 kvm_arch_destroy_vm(kvm);
a97b0e77 1047out_err_no_arch_destroy_vm:
e2d3fcaf 1048 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 1049 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 1050 kfree(kvm_get_bus(kvm, i));
f481b069 1051 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1052 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
1053 cleanup_srcu_struct(&kvm->irq_srcu);
1054out_err_no_irq_srcu:
1055 cleanup_srcu_struct(&kvm->srcu);
1056out_err_no_srcu:
d89f5eff 1057 kvm_arch_free_vm(kvm);
e9ad4ec8 1058 mmdrop(current->mm);
10474ae8 1059 return ERR_PTR(r);
f17abe9a
AK
1060}
1061
07f0a7bd
SW
1062static void kvm_destroy_devices(struct kvm *kvm)
1063{
e6e3b5a6 1064 struct kvm_device *dev, *tmp;
07f0a7bd 1065
a28ebea2
CD
1066 /*
1067 * We do not need to take the kvm->lock here, because nobody else
1068 * has a reference to the struct kvm at this point and therefore
1069 * cannot access the devices list anyhow.
1070 */
e6e3b5a6
GT
1071 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1072 list_del(&dev->vm_node);
07f0a7bd
SW
1073 dev->ops->destroy(dev);
1074 }
1075}
1076
f17abe9a
AK
1077static void kvm_destroy_vm(struct kvm *kvm)
1078{
e93f8a0f 1079 int i;
6d4e4c4f
AK
1080 struct mm_struct *mm = kvm->mm;
1081
2fdef3a2 1082 kvm_destroy_pm_notifier(kvm);
286de8f6 1083 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1084 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1085 kvm_arch_sync_events(kvm);
0d9ce162 1086 mutex_lock(&kvm_lock);
133de902 1087 list_del(&kvm->vm_list);
0d9ce162 1088 mutex_unlock(&kvm_lock);
1aa9b957
JS
1089 kvm_arch_pre_destroy_vm(kvm);
1090
399ec807 1091 kvm_free_irq_routing(kvm);
df630b8c 1092 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1093 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1094
4a12f951
CB
1095 if (bus)
1096 kvm_io_bus_destroy(bus);
df630b8c
PX
1097 kvm->buses[i] = NULL;
1098 }
980da6ce 1099 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
1100#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1101 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 1102#else
2df72e9b 1103 kvm_arch_flush_shadow_all(kvm);
5f94c174 1104#endif
d19a9cd2 1105 kvm_arch_destroy_vm(kvm);
07f0a7bd 1106 kvm_destroy_devices(kvm);
f481b069 1107 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1108 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 1109 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
1110 cleanup_srcu_struct(&kvm->srcu);
1111 kvm_arch_free_vm(kvm);
2ecd9d29 1112 preempt_notifier_dec();
10474ae8 1113 hardware_disable_all();
6d4e4c4f 1114 mmdrop(mm);
f17abe9a
AK
1115}
1116
d39f13b0
IE
1117void kvm_get_kvm(struct kvm *kvm)
1118{
e3736c3e 1119 refcount_inc(&kvm->users_count);
d39f13b0
IE
1120}
1121EXPORT_SYMBOL_GPL(kvm_get_kvm);
1122
1123void kvm_put_kvm(struct kvm *kvm)
1124{
e3736c3e 1125 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1126 kvm_destroy_vm(kvm);
1127}
1128EXPORT_SYMBOL_GPL(kvm_put_kvm);
1129
149487bd
SC
1130/*
1131 * Used to put a reference that was taken on behalf of an object associated
1132 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1133 * of the new file descriptor fails and the reference cannot be transferred to
1134 * its final owner. In such cases, the caller is still actively using @kvm and
1135 * will fail miserably if the refcount unexpectedly hits zero.
1136 */
1137void kvm_put_kvm_no_destroy(struct kvm *kvm)
1138{
1139 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1140}
1141EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1142
f17abe9a
AK
1143static int kvm_vm_release(struct inode *inode, struct file *filp)
1144{
1145 struct kvm *kvm = filp->private_data;
1146
721eecbf
GH
1147 kvm_irqfd_release(kvm);
1148
d39f13b0 1149 kvm_put_kvm(kvm);
6aa8b732
AK
1150 return 0;
1151}
1152
515a0127
TY
1153/*
1154 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1155 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1156 */
3c9bd400 1157static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1158{
515a0127 1159 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1160
b12ce36a 1161 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1162 if (!memslot->dirty_bitmap)
1163 return -ENOMEM;
1164
a36a57b1
TY
1165 return 0;
1166}
1167
bf3e05bc 1168/*
0577d1ab
SC
1169 * Delete a memslot by decrementing the number of used slots and shifting all
1170 * other entries in the array forward one spot.
bf3e05bc 1171 */
0577d1ab
SC
1172static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1173 struct kvm_memory_slot *memslot)
bf3e05bc 1174{
063584d4 1175 struct kvm_memory_slot *mslots = slots->memslots;
0577d1ab 1176 int i;
f85e2cb5 1177
0577d1ab
SC
1178 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1179 return;
0e60b079 1180
0577d1ab
SC
1181 slots->used_slots--;
1182
0774a964
SC
1183 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1184 atomic_set(&slots->lru_slot, 0);
1185
0577d1ab 1186 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
7f379cff
IM
1187 mslots[i] = mslots[i + 1];
1188 slots->id_to_index[mslots[i].id] = i;
7f379cff 1189 }
0577d1ab
SC
1190 mslots[i] = *memslot;
1191 slots->id_to_index[memslot->id] = -1;
1192}
1193
1194/*
1195 * "Insert" a new memslot by incrementing the number of used slots. Returns
1196 * the new slot's initial index into the memslots array.
1197 */
1198static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1199{
1200 return slots->used_slots++;
1201}
1202
1203/*
1204 * Move a changed memslot backwards in the array by shifting existing slots
1205 * with a higher GFN toward the front of the array. Note, the changed memslot
1206 * itself is not preserved in the array, i.e. not swapped at this time, only
1207 * its new index into the array is tracked. Returns the changed memslot's
1208 * current index into the memslots array.
1209 */
1210static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1211 struct kvm_memory_slot *memslot)
1212{
1213 struct kvm_memory_slot *mslots = slots->memslots;
1214 int i;
1215
1216 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1217 WARN_ON_ONCE(!slots->used_slots))
1218 return -1;
efbeec70
PB
1219
1220 /*
0577d1ab
SC
1221 * Move the target memslot backward in the array by shifting existing
1222 * memslots with a higher GFN (than the target memslot) towards the
1223 * front of the array.
efbeec70 1224 */
0577d1ab
SC
1225 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1226 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1227 break;
1228
1229 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
f85e2cb5 1230
0577d1ab
SC
1231 /* Shift the next memslot forward one and update its index. */
1232 mslots[i] = mslots[i + 1];
1233 slots->id_to_index[mslots[i].id] = i;
1234 }
1235 return i;
1236}
1237
1238/*
1239 * Move a changed memslot forwards in the array by shifting existing slots with
1240 * a lower GFN toward the back of the array. Note, the changed memslot itself
1241 * is not preserved in the array, i.e. not swapped at this time, only its new
1242 * index into the array is tracked. Returns the changed memslot's final index
1243 * into the memslots array.
1244 */
1245static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1246 struct kvm_memory_slot *memslot,
1247 int start)
1248{
1249 struct kvm_memory_slot *mslots = slots->memslots;
1250 int i;
1251
1252 for (i = start; i > 0; i--) {
1253 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1254 break;
1255
1256 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1257
1258 /* Shift the next memslot back one and update its index. */
1259 mslots[i] = mslots[i - 1];
1260 slots->id_to_index[mslots[i].id] = i;
1261 }
1262 return i;
1263}
1264
1265/*
1266 * Re-sort memslots based on their GFN to account for an added, deleted, or
1267 * moved memslot. Sorting memslots by GFN allows using a binary search during
1268 * memslot lookup.
1269 *
1270 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1271 * at memslots[0] has the highest GFN.
1272 *
1273 * The sorting algorithm takes advantage of having initially sorted memslots
1274 * and knowing the position of the changed memslot. Sorting is also optimized
1275 * by not swapping the updated memslot and instead only shifting other memslots
1276 * and tracking the new index for the update memslot. Only once its final
1277 * index is known is the updated memslot copied into its position in the array.
1278 *
1279 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1280 * the end of the array.
1281 *
1282 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1283 * end of the array and then it forward to its correct location.
1284 *
1285 * - When moving a memslot, the algorithm first moves the updated memslot
1286 * backward to handle the scenario where the memslot's GFN was changed to a
1287 * lower value. update_memslots() then falls through and runs the same flow
1288 * as creating a memslot to move the memslot forward to handle the scenario
1289 * where its GFN was changed to a higher value.
1290 *
1291 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1292 * historical reasons. Originally, invalid memslots where denoted by having
1293 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1294 * to the end of the array. The current algorithm uses dedicated logic to
1295 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1296 *
1297 * The other historical motiviation for highest->lowest was to improve the
1298 * performance of memslot lookup. KVM originally used a linear search starting
1299 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1300 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1301 * single memslot above the 4gb boundary. As the largest memslot is also the
1302 * most likely to be referenced, sorting it to the front of the array was
1303 * advantageous. The current binary search starts from the middle of the array
1304 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1305 */
1306static void update_memslots(struct kvm_memslots *slots,
1307 struct kvm_memory_slot *memslot,
1308 enum kvm_mr_change change)
1309{
1310 int i;
1311
1312 if (change == KVM_MR_DELETE) {
1313 kvm_memslot_delete(slots, memslot);
1314 } else {
1315 if (change == KVM_MR_CREATE)
1316 i = kvm_memslot_insert_back(slots);
1317 else
1318 i = kvm_memslot_move_backward(slots, memslot);
1319 i = kvm_memslot_move_forward(slots, memslot, i);
1320
1321 /*
1322 * Copy the memslot to its new position in memslots and update
1323 * its index accordingly.
1324 */
1325 slots->memslots[i] = *memslot;
1326 slots->id_to_index[memslot->id] = i;
1327 }
bf3e05bc
XG
1328}
1329
09170a49 1330static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1331{
4d8b81ab
XG
1332 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1333
0f8a4de3 1334#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1335 valid_flags |= KVM_MEM_READONLY;
1336#endif
1337
1338 if (mem->flags & ~valid_flags)
a50d64d6
XG
1339 return -EINVAL;
1340
1341 return 0;
1342}
1343
7ec4fb44 1344static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 1345 int as_id, struct kvm_memslots *slots)
7ec4fb44 1346{
f481b069 1347 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 1348 u64 gen = old_memslots->generation;
7ec4fb44 1349
361209e0
SC
1350 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1351 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1352
f481b069 1353 rcu_assign_pointer(kvm->memslots[as_id], slots);
b10a038e
BG
1354
1355 /*
1356 * Acquired in kvm_set_memslot. Must be released before synchronize
1357 * SRCU below in order to avoid deadlock with another thread
1358 * acquiring the slots_arch_lock in an srcu critical section.
1359 */
1360 mutex_unlock(&kvm->slots_arch_lock);
1361
7ec4fb44 1362 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1363
ee3d1570 1364 /*
361209e0 1365 * Increment the new memslot generation a second time, dropping the
00116795 1366 * update in-progress flag and incrementing the generation based on
361209e0
SC
1367 * the number of address spaces. This provides a unique and easily
1368 * identifiable generation number while the memslots are in flux.
1369 */
1370 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1371
1372 /*
4bd518f1
PB
1373 * Generations must be unique even across address spaces. We do not need
1374 * a global counter for that, instead the generation space is evenly split
1375 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1376 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1377 * use generations 1, 3, 5, ...
ee3d1570 1378 */
164bf7e5 1379 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1380
15248258 1381 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1382
15248258 1383 slots->generation = gen;
e59dbe09
TY
1384
1385 return old_memslots;
7ec4fb44
GN
1386}
1387
ddc12f2a
BG
1388static size_t kvm_memslots_size(int slots)
1389{
1390 return sizeof(struct kvm_memslots) +
1391 (sizeof(struct kvm_memory_slot) * slots);
1392}
1393
1394static void kvm_copy_memslots(struct kvm_memslots *to,
1395 struct kvm_memslots *from)
1396{
1397 memcpy(to, from, kvm_memslots_size(from->used_slots));
1398}
1399
36947254
SC
1400/*
1401 * Note, at a minimum, the current number of used slots must be allocated, even
1402 * when deleting a memslot, as we need a complete duplicate of the memslots for
1403 * use when invalidating a memslot prior to deleting/moving the memslot.
1404 */
1405static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1406 enum kvm_mr_change change)
1407{
1408 struct kvm_memslots *slots;
ddc12f2a 1409 size_t new_size;
36947254
SC
1410
1411 if (change == KVM_MR_CREATE)
ddc12f2a 1412 new_size = kvm_memslots_size(old->used_slots + 1);
36947254 1413 else
ddc12f2a 1414 new_size = kvm_memslots_size(old->used_slots);
36947254
SC
1415
1416 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1417 if (likely(slots))
ddc12f2a 1418 kvm_copy_memslots(slots, old);
36947254
SC
1419
1420 return slots;
1421}
1422
cf47f50b
SC
1423static int kvm_set_memslot(struct kvm *kvm,
1424 const struct kvm_userspace_memory_region *mem,
9d4c197c 1425 struct kvm_memory_slot *old,
cf47f50b
SC
1426 struct kvm_memory_slot *new, int as_id,
1427 enum kvm_mr_change change)
1428{
1429 struct kvm_memory_slot *slot;
1430 struct kvm_memslots *slots;
1431 int r;
1432
b10a038e
BG
1433 /*
1434 * Released in install_new_memslots.
1435 *
1436 * Must be held from before the current memslots are copied until
1437 * after the new memslots are installed with rcu_assign_pointer,
1438 * then released before the synchronize srcu in install_new_memslots.
1439 *
1440 * When modifying memslots outside of the slots_lock, must be held
1441 * before reading the pointer to the current memslots until after all
1442 * changes to those memslots are complete.
1443 *
1444 * These rules ensure that installing new memslots does not lose
1445 * changes made to the previous memslots.
1446 */
1447 mutex_lock(&kvm->slots_arch_lock);
1448
36947254 1449 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
b10a038e
BG
1450 if (!slots) {
1451 mutex_unlock(&kvm->slots_arch_lock);
cf47f50b 1452 return -ENOMEM;
b10a038e 1453 }
cf47f50b
SC
1454
1455 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1456 /*
1457 * Note, the INVALID flag needs to be in the appropriate entry
1458 * in the freshly allocated memslots, not in @old or @new.
1459 */
1460 slot = id_to_memslot(slots, old->id);
1461 slot->flags |= KVM_MEMSLOT_INVALID;
1462
1463 /*
b10a038e
BG
1464 * We can re-use the memory from the old memslots.
1465 * It will be overwritten with a copy of the new memslots
1466 * after reacquiring the slots_arch_lock below.
cf47f50b
SC
1467 */
1468 slots = install_new_memslots(kvm, as_id, slots);
1469
1470 /* From this point no new shadow pages pointing to a deleted,
1471 * or moved, memslot will be created.
1472 *
1473 * validation of sp->gfn happens in:
1474 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1475 * - kvm_is_visible_gfn (mmu_check_root)
1476 */
1477 kvm_arch_flush_shadow_memslot(kvm, slot);
b10a038e
BG
1478
1479 /* Released in install_new_memslots. */
1480 mutex_lock(&kvm->slots_arch_lock);
1481
1482 /*
1483 * The arch-specific fields of the memslots could have changed
1484 * between releasing the slots_arch_lock in
1485 * install_new_memslots and here, so get a fresh copy of the
1486 * slots.
1487 */
1488 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
cf47f50b
SC
1489 }
1490
1491 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1492 if (r)
1493 goto out_slots;
1494
1495 update_memslots(slots, new, change);
1496 slots = install_new_memslots(kvm, as_id, slots);
1497
1498 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1499
1500 kvfree(slots);
1501 return 0;
1502
1503out_slots:
b10a038e
BG
1504 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1505 slot = id_to_memslot(slots, old->id);
1506 slot->flags &= ~KVM_MEMSLOT_INVALID;
cf47f50b 1507 slots = install_new_memslots(kvm, as_id, slots);
b10a038e
BG
1508 } else {
1509 mutex_unlock(&kvm->slots_arch_lock);
1510 }
cf47f50b
SC
1511 kvfree(slots);
1512 return r;
1513}
1514
5c0b4f3d
SC
1515static int kvm_delete_memslot(struct kvm *kvm,
1516 const struct kvm_userspace_memory_region *mem,
1517 struct kvm_memory_slot *old, int as_id)
1518{
1519 struct kvm_memory_slot new;
1520 int r;
1521
1522 if (!old->npages)
1523 return -EINVAL;
1524
1525 memset(&new, 0, sizeof(new));
1526 new.id = old->id;
9e9eb226
PX
1527 /*
1528 * This is only for debugging purpose; it should never be referenced
1529 * for a removed memslot.
1530 */
1531 new.as_id = as_id;
5c0b4f3d
SC
1532
1533 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1534 if (r)
1535 return r;
1536
e96c81ee 1537 kvm_free_memslot(kvm, old);
5c0b4f3d
SC
1538 return 0;
1539}
1540
6aa8b732
AK
1541/*
1542 * Allocate some memory and give it an address in the guest physical address
1543 * space.
1544 *
1545 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1546 *
02d5d55b 1547 * Must be called holding kvm->slots_lock for write.
6aa8b732 1548 */
f78e0e2e 1549int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1550 const struct kvm_userspace_memory_region *mem)
6aa8b732 1551{
6aa8b732 1552 struct kvm_memory_slot old, new;
163da372 1553 struct kvm_memory_slot *tmp;
f64c0398 1554 enum kvm_mr_change change;
163da372
SC
1555 int as_id, id;
1556 int r;
6aa8b732 1557
a50d64d6
XG
1558 r = check_memory_region_flags(mem);
1559 if (r)
71a4c30b 1560 return r;
a50d64d6 1561
f481b069
PB
1562 as_id = mem->slot >> 16;
1563 id = (u16)mem->slot;
1564
6aa8b732
AK
1565 /* General sanity checks */
1566 if (mem->memory_size & (PAGE_SIZE - 1))
71a4c30b 1567 return -EINVAL;
6aa8b732 1568 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1569 return -EINVAL;
fa3d315a 1570 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 1571 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 1572 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 1573 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 1574 mem->memory_size))
71a4c30b 1575 return -EINVAL;
f481b069 1576 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1577 return -EINVAL;
6aa8b732 1578 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1579 return -EINVAL;
6aa8b732 1580
5c0b4f3d
SC
1581 /*
1582 * Make a full copy of the old memslot, the pointer will become stale
1583 * when the memslots are re-sorted by update_memslots(), and the old
1584 * memslot needs to be referenced after calling update_memslots(), e.g.
0dff0846 1585 * to free its resources and for arch specific behavior.
5c0b4f3d 1586 */
0577d1ab
SC
1587 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1588 if (tmp) {
1589 old = *tmp;
1590 tmp = NULL;
1591 } else {
1592 memset(&old, 0, sizeof(old));
1593 old.id = id;
1594 }
163da372 1595
5c0b4f3d
SC
1596 if (!mem->memory_size)
1597 return kvm_delete_memslot(kvm, mem, &old, as_id);
1598
9e9eb226 1599 new.as_id = as_id;
f481b069 1600 new.id = id;
163da372
SC
1601 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1602 new.npages = mem->memory_size >> PAGE_SHIFT;
6aa8b732 1603 new.flags = mem->flags;
414de7ab 1604 new.userspace_addr = mem->userspace_addr;
6aa8b732 1605
163da372
SC
1606 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1607 return -EINVAL;
1608
5c0b4f3d
SC
1609 if (!old.npages) {
1610 change = KVM_MR_CREATE;
163da372
SC
1611 new.dirty_bitmap = NULL;
1612 memset(&new.arch, 0, sizeof(new.arch));
5c0b4f3d
SC
1613 } else { /* Modify an existing slot. */
1614 if ((new.userspace_addr != old.userspace_addr) ||
163da372 1615 (new.npages != old.npages) ||
5c0b4f3d 1616 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
71a4c30b 1617 return -EINVAL;
09170a49 1618
163da372 1619 if (new.base_gfn != old.base_gfn)
5c0b4f3d
SC
1620 change = KVM_MR_MOVE;
1621 else if (new.flags != old.flags)
1622 change = KVM_MR_FLAGS_ONLY;
1623 else /* Nothing to change. */
1624 return 0;
163da372
SC
1625
1626 /* Copy dirty_bitmap and arch from the current memslot. */
1627 new.dirty_bitmap = old.dirty_bitmap;
1628 memcpy(&new.arch, &old.arch, sizeof(new.arch));
09170a49 1629 }
6aa8b732 1630
f64c0398 1631 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee 1632 /* Check for overlaps */
163da372
SC
1633 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1634 if (tmp->id == id)
0a706bee 1635 continue;
163da372
SC
1636 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1637 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
71a4c30b 1638 return -EEXIST;
0a706bee 1639 }
6aa8b732 1640 }
6aa8b732 1641
414de7ab
SC
1642 /* Allocate/free page dirty bitmap as needed */
1643 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1644 new.dirty_bitmap = NULL;
044c59c4 1645 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
3c9bd400 1646 r = kvm_alloc_dirty_bitmap(&new);
71a4c30b
SC
1647 if (r)
1648 return r;
3c9bd400
JZ
1649
1650 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1651 bitmap_set(new.dirty_bitmap, 0, new.npages);
6aa8b732
AK
1652 }
1653
cf47f50b
SC
1654 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1655 if (r)
1656 goto out_bitmap;
82ce2c96 1657
5c0b4f3d
SC
1658 if (old.dirty_bitmap && !new.dirty_bitmap)
1659 kvm_destroy_dirty_bitmap(&old);
6aa8b732
AK
1660 return 0;
1661
bd0e96fd
SC
1662out_bitmap:
1663 if (new.dirty_bitmap && !old.dirty_bitmap)
1664 kvm_destroy_dirty_bitmap(&new);
6aa8b732 1665 return r;
210c7c4d 1666}
f78e0e2e
SY
1667EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1668
1669int kvm_set_memory_region(struct kvm *kvm,
09170a49 1670 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1671{
1672 int r;
1673
79fac95e 1674 mutex_lock(&kvm->slots_lock);
47ae31e2 1675 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1676 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1677 return r;
1678}
210c7c4d
IE
1679EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1680
7940876e
SH
1681static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1682 struct kvm_userspace_memory_region *mem)
210c7c4d 1683{
f481b069 1684 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1685 return -EINVAL;
09170a49 1686
47ae31e2 1687 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1688}
1689
0dff0846 1690#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1691/**
1692 * kvm_get_dirty_log - get a snapshot of dirty pages
1693 * @kvm: pointer to kvm instance
1694 * @log: slot id and address to which we copy the log
1695 * @is_dirty: set to '1' if any dirty pages were found
1696 * @memslot: set to the associated memslot, always valid on success
1697 */
1698int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1699 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1700{
9f6b8029 1701 struct kvm_memslots *slots;
843574a3 1702 int i, as_id, id;
87bf6e7d 1703 unsigned long n;
6aa8b732
AK
1704 unsigned long any = 0;
1705
b2cc64c4
PX
1706 /* Dirty ring tracking is exclusive to dirty log tracking */
1707 if (kvm->dirty_ring_size)
1708 return -ENXIO;
1709
2a49f61d
SC
1710 *memslot = NULL;
1711 *is_dirty = 0;
1712
f481b069
PB
1713 as_id = log->slot >> 16;
1714 id = (u16)log->slot;
1715 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1716 return -EINVAL;
6aa8b732 1717
f481b069 1718 slots = __kvm_memslots(kvm, as_id);
2a49f61d 1719 *memslot = id_to_memslot(slots, id);
0577d1ab 1720 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 1721 return -ENOENT;
6aa8b732 1722
2a49f61d
SC
1723 kvm_arch_sync_dirty_log(kvm, *memslot);
1724
1725 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 1726
cd1a4a98 1727 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 1728 any = (*memslot)->dirty_bitmap[i];
6aa8b732 1729
2a49f61d 1730 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 1731 return -EFAULT;
6aa8b732 1732
5bb064dc
ZX
1733 if (any)
1734 *is_dirty = 1;
843574a3 1735 return 0;
6aa8b732 1736}
2ba9f0d8 1737EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1738
0dff0846 1739#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1740/**
b8b00220 1741 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1742 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1743 * @kvm: pointer to kvm instance
1744 * @log: slot id and address to which we copy the log
ba0513b5
MS
1745 *
1746 * We need to keep it in mind that VCPU threads can write to the bitmap
1747 * concurrently. So, to avoid losing track of dirty pages we keep the
1748 * following order:
1749 *
1750 * 1. Take a snapshot of the bit and clear it if needed.
1751 * 2. Write protect the corresponding page.
1752 * 3. Copy the snapshot to the userspace.
1753 * 4. Upon return caller flushes TLB's if needed.
1754 *
1755 * Between 2 and 4, the guest may write to the page using the remaining TLB
1756 * entry. This is not a problem because the page is reported dirty using
1757 * the snapshot taken before and step 4 ensures that writes done after
1758 * exiting to userspace will be logged for the next call.
1759 *
1760 */
0dff0846 1761static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 1762{
9f6b8029 1763 struct kvm_memslots *slots;
ba0513b5 1764 struct kvm_memory_slot *memslot;
58d6db34 1765 int i, as_id, id;
ba0513b5
MS
1766 unsigned long n;
1767 unsigned long *dirty_bitmap;
1768 unsigned long *dirty_bitmap_buffer;
0dff0846 1769 bool flush;
ba0513b5 1770
b2cc64c4
PX
1771 /* Dirty ring tracking is exclusive to dirty log tracking */
1772 if (kvm->dirty_ring_size)
1773 return -ENXIO;
1774
f481b069
PB
1775 as_id = log->slot >> 16;
1776 id = (u16)log->slot;
1777 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1778 return -EINVAL;
ba0513b5 1779
f481b069
PB
1780 slots = __kvm_memslots(kvm, as_id);
1781 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1782 if (!memslot || !memslot->dirty_bitmap)
1783 return -ENOENT;
ba0513b5
MS
1784
1785 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1786
0dff0846
SC
1787 kvm_arch_sync_dirty_log(kvm, memslot);
1788
ba0513b5 1789 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 1790 flush = false;
2a31b9db
PB
1791 if (kvm->manual_dirty_log_protect) {
1792 /*
1793 * Unlike kvm_get_dirty_log, we always return false in *flush,
1794 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1795 * is some code duplication between this function and
1796 * kvm_get_dirty_log, but hopefully all architecture
1797 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1798 * can be eliminated.
1799 */
1800 dirty_bitmap_buffer = dirty_bitmap;
1801 } else {
1802 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1803 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1804
531810ca 1805 KVM_MMU_LOCK(kvm);
2a31b9db
PB
1806 for (i = 0; i < n / sizeof(long); i++) {
1807 unsigned long mask;
1808 gfn_t offset;
ba0513b5 1809
2a31b9db
PB
1810 if (!dirty_bitmap[i])
1811 continue;
1812
0dff0846 1813 flush = true;
2a31b9db
PB
1814 mask = xchg(&dirty_bitmap[i], 0);
1815 dirty_bitmap_buffer[i] = mask;
1816
a67794ca
LT
1817 offset = i * BITS_PER_LONG;
1818 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1819 offset, mask);
2a31b9db 1820 }
531810ca 1821 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
1822 }
1823
0dff0846
SC
1824 if (flush)
1825 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1826
2a31b9db
PB
1827 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1828 return -EFAULT;
1829 return 0;
1830}
0dff0846
SC
1831
1832
1833/**
1834 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1835 * @kvm: kvm instance
1836 * @log: slot id and address to which we copy the log
1837 *
1838 * Steps 1-4 below provide general overview of dirty page logging. See
1839 * kvm_get_dirty_log_protect() function description for additional details.
1840 *
1841 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1842 * always flush the TLB (step 4) even if previous step failed and the dirty
1843 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1844 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1845 * writes will be marked dirty for next log read.
1846 *
1847 * 1. Take a snapshot of the bit and clear it if needed.
1848 * 2. Write protect the corresponding page.
1849 * 3. Copy the snapshot to the userspace.
1850 * 4. Flush TLB's if needed.
1851 */
1852static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1853 struct kvm_dirty_log *log)
1854{
1855 int r;
1856
1857 mutex_lock(&kvm->slots_lock);
1858
1859 r = kvm_get_dirty_log_protect(kvm, log);
1860
1861 mutex_unlock(&kvm->slots_lock);
1862 return r;
1863}
2a31b9db
PB
1864
1865/**
1866 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1867 * and reenable dirty page tracking for the corresponding pages.
1868 * @kvm: pointer to kvm instance
1869 * @log: slot id and address from which to fetch the bitmap of dirty pages
1870 */
0dff0846
SC
1871static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1872 struct kvm_clear_dirty_log *log)
2a31b9db
PB
1873{
1874 struct kvm_memslots *slots;
1875 struct kvm_memory_slot *memslot;
98938aa8 1876 int as_id, id;
2a31b9db 1877 gfn_t offset;
98938aa8 1878 unsigned long i, n;
2a31b9db
PB
1879 unsigned long *dirty_bitmap;
1880 unsigned long *dirty_bitmap_buffer;
0dff0846 1881 bool flush;
2a31b9db 1882
b2cc64c4
PX
1883 /* Dirty ring tracking is exclusive to dirty log tracking */
1884 if (kvm->dirty_ring_size)
1885 return -ENXIO;
1886
2a31b9db
PB
1887 as_id = log->slot >> 16;
1888 id = (u16)log->slot;
1889 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1890 return -EINVAL;
1891
76d58e0f 1892 if (log->first_page & 63)
2a31b9db
PB
1893 return -EINVAL;
1894
1895 slots = __kvm_memslots(kvm, as_id);
1896 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1897 if (!memslot || !memslot->dirty_bitmap)
1898 return -ENOENT;
2a31b9db
PB
1899
1900 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 1901
4ddc9204 1902 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
1903
1904 if (log->first_page > memslot->npages ||
76d58e0f
PB
1905 log->num_pages > memslot->npages - log->first_page ||
1906 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1907 return -EINVAL;
98938aa8 1908
0dff0846
SC
1909 kvm_arch_sync_dirty_log(kvm, memslot);
1910
1911 flush = false;
2a31b9db
PB
1912 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1913 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1914 return -EFAULT;
ba0513b5 1915
531810ca 1916 KVM_MMU_LOCK(kvm);
53eac7a8
PX
1917 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1918 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
1919 i++, offset += BITS_PER_LONG) {
1920 unsigned long mask = *dirty_bitmap_buffer++;
1921 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1922 if (!mask)
ba0513b5
MS
1923 continue;
1924
2a31b9db 1925 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1926
2a31b9db
PB
1927 /*
1928 * mask contains the bits that really have been cleared. This
1929 * never includes any bits beyond the length of the memslot (if
1930 * the length is not aligned to 64 pages), therefore it is not
1931 * a problem if userspace sets them in log->dirty_bitmap.
1932 */
58d2930f 1933 if (mask) {
0dff0846 1934 flush = true;
58d2930f
TY
1935 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1936 offset, mask);
1937 }
ba0513b5 1938 }
531810ca 1939 KVM_MMU_UNLOCK(kvm);
2a31b9db 1940
0dff0846
SC
1941 if (flush)
1942 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1943
58d6db34 1944 return 0;
ba0513b5 1945}
0dff0846
SC
1946
1947static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1948 struct kvm_clear_dirty_log *log)
1949{
1950 int r;
1951
1952 mutex_lock(&kvm->slots_lock);
1953
1954 r = kvm_clear_dirty_log_protect(kvm, log);
1955
1956 mutex_unlock(&kvm->slots_lock);
1957 return r;
1958}
1959#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1960
49c7754c
GN
1961struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1962{
1963 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1964}
a1f4d395 1965EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1966
8e73485c
PB
1967struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1968{
1969 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1970}
e72436bc 1971EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
8e73485c 1972
33e94154 1973bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1974{
bf3e05bc 1975 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1976
c36b7150 1977 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
1978}
1979EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1980
995decb6
VK
1981bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1982{
1983 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1984
1985 return kvm_is_visible_memslot(memslot);
1986}
1987EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1988
f9b84e19 1989unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
1990{
1991 struct vm_area_struct *vma;
1992 unsigned long addr, size;
1993
1994 size = PAGE_SIZE;
1995
42cde48b 1996 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
1997 if (kvm_is_error_hva(addr))
1998 return PAGE_SIZE;
1999
d8ed45c5 2000 mmap_read_lock(current->mm);
8f0b1ab6
JR
2001 vma = find_vma(current->mm, addr);
2002 if (!vma)
2003 goto out;
2004
2005 size = vma_kernel_pagesize(vma);
2006
2007out:
d8ed45c5 2008 mmap_read_unlock(current->mm);
8f0b1ab6
JR
2009
2010 return size;
2011}
2012
4d8b81ab
XG
2013static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2014{
2015 return slot->flags & KVM_MEM_READONLY;
2016}
2017
4d8b81ab
XG
2018static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2019 gfn_t *nr_pages, bool write)
539cb660 2020{
bc6678a3 2021 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 2022 return KVM_HVA_ERR_BAD;
48987781 2023
4d8b81ab
XG
2024 if (memslot_is_readonly(slot) && write)
2025 return KVM_HVA_ERR_RO_BAD;
48987781
XG
2026
2027 if (nr_pages)
2028 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2029
4d8b81ab 2030 return __gfn_to_hva_memslot(slot, gfn);
539cb660 2031}
48987781 2032
4d8b81ab
XG
2033static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2034 gfn_t *nr_pages)
2035{
2036 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 2037}
48987781 2038
4d8b81ab 2039unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 2040 gfn_t gfn)
4d8b81ab
XG
2041{
2042 return gfn_to_hva_many(slot, gfn, NULL);
2043}
2044EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2045
48987781
XG
2046unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2047{
49c7754c 2048 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 2049}
0d150298 2050EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 2051
8e73485c
PB
2052unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2053{
2054 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2055}
2056EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2057
86ab8cff 2058/*
970c0d4b
WY
2059 * Return the hva of a @gfn and the R/W attribute if possible.
2060 *
2061 * @slot: the kvm_memory_slot which contains @gfn
2062 * @gfn: the gfn to be translated
2063 * @writable: used to return the read/write attribute of the @slot if the hva
2064 * is valid and @writable is not NULL
86ab8cff 2065 */
64d83126
CD
2066unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2067 gfn_t gfn, bool *writable)
86ab8cff 2068{
a2ac07fe
GN
2069 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2070
2071 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
2072 *writable = !memslot_is_readonly(slot);
2073
a2ac07fe 2074 return hva;
86ab8cff
XG
2075}
2076
64d83126
CD
2077unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2078{
2079 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2080
2081 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2082}
2083
8e73485c
PB
2084unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2085{
2086 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2087
2088 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2089}
2090
fafc3dba
HY
2091static inline int check_user_page_hwpoison(unsigned long addr)
2092{
0d731759 2093 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 2094
0d731759 2095 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
2096 return rc == -EHWPOISON;
2097}
2098
2fc84311 2099/*
b9b33da2
PB
2100 * The fast path to get the writable pfn which will be stored in @pfn,
2101 * true indicates success, otherwise false is returned. It's also the
311497e0 2102 * only part that runs if we can in atomic context.
2fc84311 2103 */
b9b33da2
PB
2104static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2105 bool *writable, kvm_pfn_t *pfn)
954bbbc2 2106{
8d4e1288 2107 struct page *page[1];
954bbbc2 2108
12ce13fe
XG
2109 /*
2110 * Fast pin a writable pfn only if it is a write fault request
2111 * or the caller allows to map a writable pfn for a read fault
2112 * request.
2113 */
2114 if (!(write_fault || writable))
2115 return false;
612819c3 2116
dadbb612 2117 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 2118 *pfn = page_to_pfn(page[0]);
612819c3 2119
2fc84311
XG
2120 if (writable)
2121 *writable = true;
2122 return true;
2123 }
af585b92 2124
2fc84311
XG
2125 return false;
2126}
612819c3 2127
2fc84311
XG
2128/*
2129 * The slow path to get the pfn of the specified host virtual address,
2130 * 1 indicates success, -errno is returned if error is detected.
2131 */
2132static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 2133 bool *writable, kvm_pfn_t *pfn)
2fc84311 2134{
ce53053c
AV
2135 unsigned int flags = FOLL_HWPOISON;
2136 struct page *page;
2fc84311 2137 int npages = 0;
612819c3 2138
2fc84311
XG
2139 might_sleep();
2140
2141 if (writable)
2142 *writable = write_fault;
2143
ce53053c
AV
2144 if (write_fault)
2145 flags |= FOLL_WRITE;
2146 if (async)
2147 flags |= FOLL_NOWAIT;
d4944b0e 2148
ce53053c 2149 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2150 if (npages != 1)
2151 return npages;
2152
2153 /* map read fault as writable if possible */
12ce13fe 2154 if (unlikely(!write_fault) && writable) {
ce53053c 2155 struct page *wpage;
2fc84311 2156
dadbb612 2157 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2158 *writable = true;
ce53053c
AV
2159 put_page(page);
2160 page = wpage;
612819c3 2161 }
887c08ac 2162 }
ce53053c 2163 *pfn = page_to_pfn(page);
2fc84311
XG
2164 return npages;
2165}
539cb660 2166
4d8b81ab
XG
2167static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2168{
2169 if (unlikely(!(vma->vm_flags & VM_READ)))
2170 return false;
2e2e3738 2171
4d8b81ab
XG
2172 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2173 return false;
887c08ac 2174
4d8b81ab
XG
2175 return true;
2176}
bf998156 2177
f8be156b
NP
2178static int kvm_try_get_pfn(kvm_pfn_t pfn)
2179{
2180 if (kvm_is_reserved_pfn(pfn))
2181 return 1;
2182 return get_page_unless_zero(pfn_to_page(pfn));
2183}
2184
92176a8e
PB
2185static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2186 unsigned long addr, bool *async,
a340b3e2
KA
2187 bool write_fault, bool *writable,
2188 kvm_pfn_t *p_pfn)
92176a8e 2189{
a9545779 2190 kvm_pfn_t pfn;
bd2fae8d
PB
2191 pte_t *ptep;
2192 spinlock_t *ptl;
add6a0cd
PB
2193 int r;
2194
9fd6dad1 2195 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2196 if (r) {
2197 /*
2198 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2199 * not call the fault handler, so do it here.
2200 */
2201 bool unlocked = false;
64019a2e 2202 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2203 (write_fault ? FAULT_FLAG_WRITE : 0),
2204 &unlocked);
a8387d0b
PB
2205 if (unlocked)
2206 return -EAGAIN;
add6a0cd
PB
2207 if (r)
2208 return r;
2209
9fd6dad1 2210 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2211 if (r)
2212 return r;
bd2fae8d 2213 }
add6a0cd 2214
bd2fae8d
PB
2215 if (write_fault && !pte_write(*ptep)) {
2216 pfn = KVM_PFN_ERR_RO_FAULT;
2217 goto out;
add6a0cd
PB
2218 }
2219
a340b3e2 2220 if (writable)
bd2fae8d
PB
2221 *writable = pte_write(*ptep);
2222 pfn = pte_pfn(*ptep);
add6a0cd
PB
2223
2224 /*
2225 * Get a reference here because callers of *hva_to_pfn* and
2226 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2227 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2228 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2229 * simply do nothing for reserved pfns.
2230 *
2231 * Whoever called remap_pfn_range is also going to call e.g.
2232 * unmap_mapping_range before the underlying pages are freed,
2233 * causing a call to our MMU notifier.
f8be156b
NP
2234 *
2235 * Certain IO or PFNMAP mappings can be backed with valid
2236 * struct pages, but be allocated without refcounting e.g.,
2237 * tail pages of non-compound higher order allocations, which
2238 * would then underflow the refcount when the caller does the
2239 * required put_page. Don't allow those pages here.
add6a0cd 2240 */
f8be156b
NP
2241 if (!kvm_try_get_pfn(pfn))
2242 r = -EFAULT;
add6a0cd 2243
bd2fae8d
PB
2244out:
2245 pte_unmap_unlock(ptep, ptl);
add6a0cd 2246 *p_pfn = pfn;
f8be156b
NP
2247
2248 return r;
92176a8e
PB
2249}
2250
12ce13fe
XG
2251/*
2252 * Pin guest page in memory and return its pfn.
2253 * @addr: host virtual address which maps memory to the guest
2254 * @atomic: whether this function can sleep
2255 * @async: whether this function need to wait IO complete if the
2256 * host page is not in the memory
2257 * @write_fault: whether we should get a writable host page
2258 * @writable: whether it allows to map a writable host page for !@write_fault
2259 *
2260 * The function will map a writable host page for these two cases:
2261 * 1): @write_fault = true
2262 * 2): @write_fault = false && @writable, @writable will tell the caller
2263 * whether the mapping is writable.
2264 */
ba049e93 2265static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
2266 bool write_fault, bool *writable)
2267{
2268 struct vm_area_struct *vma;
ba049e93 2269 kvm_pfn_t pfn = 0;
92176a8e 2270 int npages, r;
2e2e3738 2271
2fc84311
XG
2272 /* we can do it either atomically or asynchronously, not both */
2273 BUG_ON(atomic && async);
8d4e1288 2274
b9b33da2 2275 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2276 return pfn;
2277
2278 if (atomic)
2279 return KVM_PFN_ERR_FAULT;
2280
2281 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2282 if (npages == 1)
2283 return pfn;
8d4e1288 2284
d8ed45c5 2285 mmap_read_lock(current->mm);
2fc84311
XG
2286 if (npages == -EHWPOISON ||
2287 (!async && check_user_page_hwpoison(addr))) {
2288 pfn = KVM_PFN_ERR_HWPOISON;
2289 goto exit;
2290 }
2291
a8387d0b 2292retry:
fc98c03b 2293 vma = vma_lookup(current->mm, addr);
2fc84311
XG
2294
2295 if (vma == NULL)
2296 pfn = KVM_PFN_ERR_FAULT;
92176a8e 2297 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 2298 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
a8387d0b
PB
2299 if (r == -EAGAIN)
2300 goto retry;
92176a8e
PB
2301 if (r < 0)
2302 pfn = KVM_PFN_ERR_FAULT;
2fc84311 2303 } else {
4d8b81ab 2304 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
2305 *async = true;
2306 pfn = KVM_PFN_ERR_FAULT;
2307 }
2308exit:
d8ed45c5 2309 mmap_read_unlock(current->mm);
2e2e3738 2310 return pfn;
35149e21
AL
2311}
2312
ba049e93
DW
2313kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2314 bool atomic, bool *async, bool write_fault,
4a42d848 2315 bool *writable, hva_t *hva)
887c08ac 2316{
4d8b81ab
XG
2317 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2318
4a42d848
DS
2319 if (hva)
2320 *hva = addr;
2321
b2740d35
PB
2322 if (addr == KVM_HVA_ERR_RO_BAD) {
2323 if (writable)
2324 *writable = false;
4d8b81ab 2325 return KVM_PFN_ERR_RO_FAULT;
b2740d35 2326 }
4d8b81ab 2327
b2740d35
PB
2328 if (kvm_is_error_hva(addr)) {
2329 if (writable)
2330 *writable = false;
81c52c56 2331 return KVM_PFN_NOSLOT;
b2740d35 2332 }
4d8b81ab
XG
2333
2334 /* Do not map writable pfn in the readonly memslot. */
2335 if (writable && memslot_is_readonly(slot)) {
2336 *writable = false;
2337 writable = NULL;
2338 }
2339
2340 return hva_to_pfn(addr, atomic, async, write_fault,
2341 writable);
887c08ac 2342}
3520469d 2343EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 2344
ba049e93 2345kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
2346 bool *writable)
2347{
e37afc6e 2348 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
4a42d848 2349 write_fault, writable, NULL);
612819c3
MT
2350}
2351EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2352
ba049e93 2353kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2354{
4a42d848 2355 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
506f0d6f 2356}
e37afc6e 2357EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 2358
ba049e93 2359kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2360{
4a42d848 2361 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
506f0d6f 2362}
037d92dc 2363EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 2364
ba049e93 2365kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2366{
2367 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2368}
2369EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2370
ba049e93 2371kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
2372{
2373 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2374}
2375EXPORT_SYMBOL_GPL(gfn_to_pfn);
2376
ba049e93 2377kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2378{
2379 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2380}
2381EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2382
d9ef13c2
PB
2383int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2384 struct page **pages, int nr_pages)
48987781
XG
2385{
2386 unsigned long addr;
076b925d 2387 gfn_t entry = 0;
48987781 2388
d9ef13c2 2389 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
2390 if (kvm_is_error_hva(addr))
2391 return -1;
2392
2393 if (entry < nr_pages)
2394 return 0;
2395
dadbb612 2396 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
2397}
2398EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2399
ba049e93 2400static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 2401{
81c52c56 2402 if (is_error_noslot_pfn(pfn))
cb9aaa30 2403 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2404
bf4bea8e 2405 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 2406 WARN_ON(1);
6cede2e6 2407 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 2408 }
a2766325
XG
2409
2410 return pfn_to_page(pfn);
2411}
2412
35149e21
AL
2413struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2414{
ba049e93 2415 kvm_pfn_t pfn;
2e2e3738
AL
2416
2417 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2418
a2766325 2419 return kvm_pfn_to_page(pfn);
954bbbc2
AK
2420}
2421EXPORT_SYMBOL_GPL(gfn_to_page);
2422
91724814
BO
2423void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2424{
2425 if (pfn == 0)
2426 return;
2427
2428 if (cache)
2429 cache->pfn = cache->gfn = 0;
2430
2431 if (dirty)
2432 kvm_release_pfn_dirty(pfn);
2433 else
2434 kvm_release_pfn_clean(pfn);
2435}
2436
2437static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2438 struct gfn_to_pfn_cache *cache, u64 gen)
2439{
2440 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2441
2442 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2443 cache->gfn = gfn;
2444 cache->dirty = false;
2445 cache->generation = gen;
2446}
2447
1eff70a9 2448static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
91724814
BO
2449 struct kvm_host_map *map,
2450 struct gfn_to_pfn_cache *cache,
2451 bool atomic)
e45adf66
KA
2452{
2453 kvm_pfn_t pfn;
2454 void *hva = NULL;
2455 struct page *page = KVM_UNMAPPED_PAGE;
1eff70a9 2456 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
91724814 2457 u64 gen = slots->generation;
e45adf66
KA
2458
2459 if (!map)
2460 return -EINVAL;
2461
91724814
BO
2462 if (cache) {
2463 if (!cache->pfn || cache->gfn != gfn ||
2464 cache->generation != gen) {
2465 if (atomic)
2466 return -EAGAIN;
2467 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2468 }
2469 pfn = cache->pfn;
2470 } else {
2471 if (atomic)
2472 return -EAGAIN;
2473 pfn = gfn_to_pfn_memslot(slot, gfn);
2474 }
e45adf66
KA
2475 if (is_error_noslot_pfn(pfn))
2476 return -EINVAL;
2477
2478 if (pfn_valid(pfn)) {
2479 page = pfn_to_page(pfn);
91724814
BO
2480 if (atomic)
2481 hva = kmap_atomic(page);
2482 else
2483 hva = kmap(page);
d30b214d 2484#ifdef CONFIG_HAS_IOMEM
91724814 2485 } else if (!atomic) {
e45adf66 2486 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
91724814
BO
2487 } else {
2488 return -EINVAL;
d30b214d 2489#endif
e45adf66
KA
2490 }
2491
2492 if (!hva)
2493 return -EFAULT;
2494
2495 map->page = page;
2496 map->hva = hva;
2497 map->pfn = pfn;
2498 map->gfn = gfn;
2499
2500 return 0;
2501}
2502
91724814
BO
2503int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2504 struct gfn_to_pfn_cache *cache, bool atomic)
1eff70a9 2505{
91724814
BO
2506 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2507 cache, atomic);
1eff70a9
BO
2508}
2509EXPORT_SYMBOL_GPL(kvm_map_gfn);
2510
e45adf66
KA
2511int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2512{
91724814
BO
2513 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2514 NULL, false);
e45adf66
KA
2515}
2516EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2517
28bd726a
PX
2518static void __kvm_unmap_gfn(struct kvm *kvm,
2519 struct kvm_memory_slot *memslot,
91724814
BO
2520 struct kvm_host_map *map,
2521 struct gfn_to_pfn_cache *cache,
2522 bool dirty, bool atomic)
e45adf66
KA
2523{
2524 if (!map)
2525 return;
2526
2527 if (!map->hva)
2528 return;
2529
91724814
BO
2530 if (map->page != KVM_UNMAPPED_PAGE) {
2531 if (atomic)
2532 kunmap_atomic(map->hva);
2533 else
2534 kunmap(map->page);
2535 }
eb1f2f38 2536#ifdef CONFIG_HAS_IOMEM
91724814 2537 else if (!atomic)
e45adf66 2538 memunmap(map->hva);
91724814
BO
2539 else
2540 WARN_ONCE(1, "Unexpected unmapping in atomic context");
eb1f2f38 2541#endif
e45adf66 2542
91724814 2543 if (dirty)
28bd726a 2544 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
91724814
BO
2545
2546 if (cache)
2547 cache->dirty |= dirty;
2548 else
2549 kvm_release_pfn(map->pfn, dirty, NULL);
e45adf66
KA
2550
2551 map->hva = NULL;
2552 map->page = NULL;
2553}
1eff70a9 2554
91724814
BO
2555int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2556 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1eff70a9 2557{
28bd726a 2558 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
91724814 2559 cache, dirty, atomic);
1eff70a9
BO
2560 return 0;
2561}
2562EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2563
2564void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2565{
28bd726a
PX
2566 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2567 map, NULL, dirty, false);
1eff70a9 2568}
e45adf66
KA
2569EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2570
8e73485c
PB
2571struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2572{
ba049e93 2573 kvm_pfn_t pfn;
8e73485c
PB
2574
2575 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2576
2577 return kvm_pfn_to_page(pfn);
2578}
2579EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2580
b4231d61
IE
2581void kvm_release_page_clean(struct page *page)
2582{
32cad84f
XG
2583 WARN_ON(is_error_page(page));
2584
35149e21 2585 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
2586}
2587EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2588
ba049e93 2589void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2590{
bf4bea8e 2591 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 2592 put_page(pfn_to_page(pfn));
35149e21
AL
2593}
2594EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2595
b4231d61 2596void kvm_release_page_dirty(struct page *page)
8a7ae055 2597{
a2766325
XG
2598 WARN_ON(is_error_page(page));
2599
35149e21
AL
2600 kvm_release_pfn_dirty(page_to_pfn(page));
2601}
2602EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2603
f7a6509f 2604void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
2605{
2606 kvm_set_pfn_dirty(pfn);
2607 kvm_release_pfn_clean(pfn);
2608}
f7a6509f 2609EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2610
ba049e93 2611void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2612{
d29c03a5
ML
2613 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2614 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2615}
35149e21
AL
2616EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2617
ba049e93 2618void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2619{
a78986aa 2620 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2621 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2622}
2623EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2624
ba049e93 2625void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 2626{
bf4bea8e 2627 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 2628 get_page(pfn_to_page(pfn));
35149e21
AL
2629}
2630EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 2631
195aefde
IE
2632static int next_segment(unsigned long len, int offset)
2633{
2634 if (len > PAGE_SIZE - offset)
2635 return PAGE_SIZE - offset;
2636 else
2637 return len;
2638}
2639
8e73485c
PB
2640static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2641 void *data, int offset, int len)
195aefde 2642{
e0506bcb
IE
2643 int r;
2644 unsigned long addr;
195aefde 2645
8e73485c 2646 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2647 if (kvm_is_error_hva(addr))
2648 return -EFAULT;
3180a7fc 2649 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2650 if (r)
195aefde 2651 return -EFAULT;
195aefde
IE
2652 return 0;
2653}
8e73485c
PB
2654
2655int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2656 int len)
2657{
2658 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2659
2660 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2661}
195aefde
IE
2662EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2663
8e73485c
PB
2664int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2665 int offset, int len)
2666{
2667 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2668
2669 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2670}
2671EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2672
195aefde
IE
2673int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2674{
2675 gfn_t gfn = gpa >> PAGE_SHIFT;
2676 int seg;
2677 int offset = offset_in_page(gpa);
2678 int ret;
2679
2680 while ((seg = next_segment(len, offset)) != 0) {
2681 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2682 if (ret < 0)
2683 return ret;
2684 offset = 0;
2685 len -= seg;
2686 data += seg;
2687 ++gfn;
2688 }
2689 return 0;
2690}
2691EXPORT_SYMBOL_GPL(kvm_read_guest);
2692
8e73485c 2693int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2694{
7ec54588 2695 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2696 int seg;
7ec54588 2697 int offset = offset_in_page(gpa);
8e73485c
PB
2698 int ret;
2699
2700 while ((seg = next_segment(len, offset)) != 0) {
2701 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2702 if (ret < 0)
2703 return ret;
2704 offset = 0;
2705 len -= seg;
2706 data += seg;
2707 ++gfn;
2708 }
2709 return 0;
2710}
2711EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2712
8e73485c
PB
2713static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2714 void *data, int offset, unsigned long len)
2715{
2716 int r;
2717 unsigned long addr;
2718
2719 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2720 if (kvm_is_error_hva(addr))
2721 return -EFAULT;
0aac03f0 2722 pagefault_disable();
3180a7fc 2723 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2724 pagefault_enable();
7ec54588
MT
2725 if (r)
2726 return -EFAULT;
2727 return 0;
2728}
7ec54588 2729
8e73485c
PB
2730int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2731 void *data, unsigned long len)
2732{
2733 gfn_t gfn = gpa >> PAGE_SHIFT;
2734 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2735 int offset = offset_in_page(gpa);
2736
2737 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2738}
2739EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2740
28bd726a
PX
2741static int __kvm_write_guest_page(struct kvm *kvm,
2742 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 2743 const void *data, int offset, int len)
195aefde 2744{
e0506bcb
IE
2745 int r;
2746 unsigned long addr;
195aefde 2747
251eb841 2748 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2749 if (kvm_is_error_hva(addr))
2750 return -EFAULT;
8b0cedff 2751 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2752 if (r)
195aefde 2753 return -EFAULT;
28bd726a 2754 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
2755 return 0;
2756}
8e73485c
PB
2757
2758int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2759 const void *data, int offset, int len)
2760{
2761 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2762
28bd726a 2763 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 2764}
195aefde
IE
2765EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2766
8e73485c
PB
2767int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2768 const void *data, int offset, int len)
2769{
2770 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2771
28bd726a 2772 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
2773}
2774EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2775
195aefde
IE
2776int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2777 unsigned long len)
2778{
2779 gfn_t gfn = gpa >> PAGE_SHIFT;
2780 int seg;
2781 int offset = offset_in_page(gpa);
2782 int ret;
2783
2784 while ((seg = next_segment(len, offset)) != 0) {
2785 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2786 if (ret < 0)
2787 return ret;
2788 offset = 0;
2789 len -= seg;
2790 data += seg;
2791 ++gfn;
2792 }
2793 return 0;
2794}
ff651cb6 2795EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2796
8e73485c
PB
2797int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2798 unsigned long len)
2799{
2800 gfn_t gfn = gpa >> PAGE_SHIFT;
2801 int seg;
2802 int offset = offset_in_page(gpa);
2803 int ret;
2804
2805 while ((seg = next_segment(len, offset)) != 0) {
2806 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2807 if (ret < 0)
2808 return ret;
2809 offset = 0;
2810 len -= seg;
2811 data += seg;
2812 ++gfn;
2813 }
2814 return 0;
2815}
2816EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2817
5a2d4365
PB
2818static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2819 struct gfn_to_hva_cache *ghc,
2820 gpa_t gpa, unsigned long len)
49c7754c 2821{
49c7754c 2822 int offset = offset_in_page(gpa);
8f964525
AH
2823 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2824 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2825 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2826 gfn_t nr_pages_avail;
49c7754c 2827
6ad1e29f 2828 /* Update ghc->generation before performing any error checks. */
49c7754c 2829 ghc->generation = slots->generation;
6ad1e29f
SC
2830
2831 if (start_gfn > end_gfn) {
2832 ghc->hva = KVM_HVA_ERR_BAD;
2833 return -EINVAL;
2834 }
f1b9dd5e
JM
2835
2836 /*
2837 * If the requested region crosses two memslots, we still
2838 * verify that the entire region is valid here.
2839 */
6ad1e29f 2840 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2841 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2842 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2843 &nr_pages_avail);
2844 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2845 return -EFAULT;
f1b9dd5e
JM
2846 }
2847
2848 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2849 if (nr_pages_needed == 1)
49c7754c 2850 ghc->hva += offset;
f1b9dd5e 2851 else
8f964525 2852 ghc->memslot = NULL;
f1b9dd5e 2853
6ad1e29f
SC
2854 ghc->gpa = gpa;
2855 ghc->len = len;
2856 return 0;
49c7754c 2857}
5a2d4365 2858
4e335d9e 2859int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2860 gpa_t gpa, unsigned long len)
2861{
4e335d9e 2862 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2863 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2864}
4e335d9e 2865EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2866
4e335d9e 2867int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2868 void *data, unsigned int offset,
2869 unsigned long len)
49c7754c 2870{
4e335d9e 2871 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2872 int r;
4ec6e863 2873 gpa_t gpa = ghc->gpa + offset;
49c7754c 2874
4ec6e863 2875 BUG_ON(len + offset > ghc->len);
8f964525 2876
dc9ce71e
SC
2877 if (slots->generation != ghc->generation) {
2878 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2879 return -EFAULT;
2880 }
8f964525 2881
49c7754c
GN
2882 if (kvm_is_error_hva(ghc->hva))
2883 return -EFAULT;
2884
fcfbc617
SC
2885 if (unlikely(!ghc->memslot))
2886 return kvm_write_guest(kvm, gpa, data, len);
2887
4ec6e863 2888 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2889 if (r)
2890 return -EFAULT;
28bd726a 2891 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2892
2893 return 0;
2894}
4e335d9e 2895EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2896
4e335d9e
PB
2897int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2898 void *data, unsigned long len)
4ec6e863 2899{
4e335d9e 2900 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2901}
4e335d9e 2902EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2903
0958f0ce
VK
2904int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2905 void *data, unsigned int offset,
2906 unsigned long len)
e03b644f 2907{
4e335d9e 2908 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 2909 int r;
0958f0ce 2910 gpa_t gpa = ghc->gpa + offset;
e03b644f 2911
0958f0ce 2912 BUG_ON(len + offset > ghc->len);
8f964525 2913
dc9ce71e
SC
2914 if (slots->generation != ghc->generation) {
2915 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2916 return -EFAULT;
2917 }
8f964525 2918
e03b644f
GN
2919 if (kvm_is_error_hva(ghc->hva))
2920 return -EFAULT;
2921
fcfbc617 2922 if (unlikely(!ghc->memslot))
0958f0ce 2923 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 2924
0958f0ce 2925 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
2926 if (r)
2927 return -EFAULT;
2928
2929 return 0;
2930}
0958f0ce
VK
2931EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2932
2933int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2934 void *data, unsigned long len)
2935{
2936 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2937}
4e335d9e 2938EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2939
195aefde
IE
2940int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2941{
2f541442 2942 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
2943 gfn_t gfn = gpa >> PAGE_SHIFT;
2944 int seg;
2945 int offset = offset_in_page(gpa);
2946 int ret;
2947
bfda0e84 2948 while ((seg = next_segment(len, offset)) != 0) {
2f541442 2949 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2950 if (ret < 0)
2951 return ret;
2952 offset = 0;
2953 len -= seg;
2954 ++gfn;
2955 }
2956 return 0;
2957}
2958EXPORT_SYMBOL_GPL(kvm_clear_guest);
2959
28bd726a
PX
2960void mark_page_dirty_in_slot(struct kvm *kvm,
2961 struct kvm_memory_slot *memslot,
2962 gfn_t gfn)
6aa8b732 2963{
044c59c4 2964 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 2965 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 2966 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 2967
fb04a1ed
PX
2968 if (kvm->dirty_ring_size)
2969 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2970 slot, rel_gfn);
2971 else
2972 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2973 }
2974}
a6a0b05d 2975EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 2976
49c7754c
GN
2977void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2978{
2979 struct kvm_memory_slot *memslot;
2980
2981 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 2982 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 2983}
2ba9f0d8 2984EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2985
8e73485c
PB
2986void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2987{
2988 struct kvm_memory_slot *memslot;
2989
2990 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 2991 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
2992}
2993EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2994
20b7035c
JS
2995void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2996{
2997 if (!vcpu->sigset_active)
2998 return;
2999
3000 /*
3001 * This does a lockless modification of ->real_blocked, which is fine
3002 * because, only current can change ->real_blocked and all readers of
3003 * ->real_blocked don't care as long ->real_blocked is always a subset
3004 * of ->blocked.
3005 */
3006 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3007}
3008
3009void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3010{
3011 if (!vcpu->sigset_active)
3012 return;
3013
3014 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3015 sigemptyset(&current->real_blocked);
3016}
3017
aca6ff29
WL
3018static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3019{
dee339b5 3020 unsigned int old, val, grow, grow_start;
aca6ff29 3021
2cbd7824 3022 old = val = vcpu->halt_poll_ns;
dee339b5 3023 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3024 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
3025 if (!grow)
3026 goto out;
3027
dee339b5
NW
3028 val *= grow;
3029 if (val < grow_start)
3030 val = grow_start;
aca6ff29 3031
258785ef
DM
3032 if (val > vcpu->kvm->max_halt_poll_ns)
3033 val = vcpu->kvm->max_halt_poll_ns;
313f636d 3034
aca6ff29 3035 vcpu->halt_poll_ns = val;
7fa08e71 3036out:
2cbd7824 3037 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
3038}
3039
3040static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3041{
6b6de68c 3042 unsigned int old, val, shrink;
aca6ff29 3043
2cbd7824 3044 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
3045 shrink = READ_ONCE(halt_poll_ns_shrink);
3046 if (shrink == 0)
aca6ff29
WL
3047 val = 0;
3048 else
6b6de68c 3049 val /= shrink;
aca6ff29
WL
3050
3051 vcpu->halt_poll_ns = val;
2cbd7824 3052 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
3053}
3054
f7819512
PB
3055static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3056{
50c28f21
JS
3057 int ret = -EINTR;
3058 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3059
f7819512
PB
3060 if (kvm_arch_vcpu_runnable(vcpu)) {
3061 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 3062 goto out;
f7819512
PB
3063 }
3064 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 3065 goto out;
f7819512 3066 if (signal_pending(current))
50c28f21 3067 goto out;
084071d5
MT
3068 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3069 goto out;
f7819512 3070
50c28f21
JS
3071 ret = 0;
3072out:
3073 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3074 return ret;
f7819512
PB
3075}
3076
cb953129
DM
3077static inline void
3078update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3079{
3080 if (waited)
0193cc90 3081 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
cb953129 3082 else
0193cc90 3083 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
cb953129
DM
3084}
3085
b6958ce4
ED
3086/*
3087 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3088 */
8776e519 3089void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 3090{
cb953129 3091 ktime_t start, cur, poll_end;
f7819512 3092 bool waited = false;
aca6ff29 3093 u64 block_ns;
f7819512 3094
07ab0f8d
MZ
3095 kvm_arch_vcpu_blocking(vcpu);
3096
cb953129 3097 start = cur = poll_end = ktime_get();
cdd6ad3a 3098 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 3099 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 3100
0193cc90 3101 ++vcpu->stat.generic.halt_attempted_poll;
f7819512
PB
3102 do {
3103 /*
3104 * This sets KVM_REQ_UNHALT if an interrupt
3105 * arrives.
3106 */
3107 if (kvm_vcpu_check_block(vcpu) < 0) {
0193cc90 3108 ++vcpu->stat.generic.halt_successful_poll;
3491caf2 3109 if (!vcpu_valid_wakeup(vcpu))
0193cc90 3110 ++vcpu->stat.generic.halt_poll_invalid;
f7819512
PB
3111 goto out;
3112 }
74775654 3113 cpu_relax();
cb953129 3114 poll_end = cur = ktime_get();
6bd5b743 3115 } while (kvm_vcpu_can_poll(cur, stop));
f7819512 3116 }
e5c239cf 3117
da4ad88c 3118 prepare_to_rcuwait(&vcpu->wait);
e5c239cf 3119 for (;;) {
da4ad88c 3120 set_current_state(TASK_INTERRUPTIBLE);
e5c239cf 3121
f7819512 3122 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
3123 break;
3124
f7819512 3125 waited = true;
b6958ce4 3126 schedule();
b6958ce4 3127 }
da4ad88c 3128 finish_rcuwait(&vcpu->wait);
f7819512 3129 cur = ktime_get();
f7819512 3130out:
07ab0f8d 3131 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
3132 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3133
cb953129
DM
3134 update_halt_poll_stats(
3135 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3136
44551b2f
WL
3137 if (!kvm_arch_no_poll(vcpu)) {
3138 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3139 shrink_halt_poll_ns(vcpu);
acd05785 3140 } else if (vcpu->kvm->max_halt_poll_ns) {
44551b2f
WL
3141 if (block_ns <= vcpu->halt_poll_ns)
3142 ;
3143 /* we had a long block, shrink polling */
acd05785
DM
3144 else if (vcpu->halt_poll_ns &&
3145 block_ns > vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3146 shrink_halt_poll_ns(vcpu);
3147 /* we had a short halt and our poll time is too small */
acd05785
DM
3148 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3149 block_ns < vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3150 grow_halt_poll_ns(vcpu);
3151 } else {
3152 vcpu->halt_poll_ns = 0;
3153 }
3154 }
aca6ff29 3155
3491caf2
CB
3156 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3157 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 3158}
2ba9f0d8 3159EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 3160
178f02ff 3161bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3162{
da4ad88c 3163 struct rcuwait *waitp;
b6d33834 3164
da4ad88c
DB
3165 waitp = kvm_arch_vcpu_get_wait(vcpu);
3166 if (rcuwait_wake_up(waitp)) {
d73eb57b 3167 WRITE_ONCE(vcpu->ready, true);
0193cc90 3168 ++vcpu->stat.generic.halt_wakeup;
178f02ff 3169 return true;
b6d33834
CD
3170 }
3171
178f02ff 3172 return false;
dd1a4cc1
RK
3173}
3174EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3175
0266c894 3176#ifndef CONFIG_S390
dd1a4cc1
RK
3177/*
3178 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3179 */
3180void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3181{
3182 int me;
3183 int cpu = vcpu->cpu;
3184
178f02ff
RK
3185 if (kvm_vcpu_wake_up(vcpu))
3186 return;
3187
b6d33834
CD
3188 me = get_cpu();
3189 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3190 if (kvm_arch_vcpu_should_kick(vcpu))
3191 smp_send_reschedule(cpu);
3192 put_cpu();
3193}
a20ed54d 3194EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3195#endif /* !CONFIG_S390 */
b6d33834 3196
fa93384f 3197int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3198{
3199 struct pid *pid;
3200 struct task_struct *task = NULL;
fa93384f 3201 int ret = 0;
41628d33
KW
3202
3203 rcu_read_lock();
3204 pid = rcu_dereference(target->pid);
3205 if (pid)
27fbe64b 3206 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3207 rcu_read_unlock();
3208 if (!task)
c45c528e 3209 return ret;
c45c528e 3210 ret = yield_to(task, 1);
41628d33 3211 put_task_struct(task);
c45c528e
R
3212
3213 return ret;
41628d33
KW
3214}
3215EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3216
06e48c51
R
3217/*
3218 * Helper that checks whether a VCPU is eligible for directed yield.
3219 * Most eligible candidate to yield is decided by following heuristics:
3220 *
3221 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3222 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3223 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3224 *
3225 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3226 * chance last time (mostly it has become eligible now since we have probably
3227 * yielded to lockholder in last iteration. This is done by toggling
3228 * @dy_eligible each time a VCPU checked for eligibility.)
3229 *
3230 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3231 * to preempted lock-holder could result in wrong VCPU selection and CPU
3232 * burning. Giving priority for a potential lock-holder increases lock
3233 * progress.
3234 *
3235 * Since algorithm is based on heuristics, accessing another VCPU data without
3236 * locking does not harm. It may result in trying to yield to same VCPU, fail
3237 * and continue with next VCPU and so on.
3238 */
7940876e 3239static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 3240{
4a55dd72 3241#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
3242 bool eligible;
3243
3244 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 3245 vcpu->spin_loop.dy_eligible;
06e48c51
R
3246
3247 if (vcpu->spin_loop.in_spin_loop)
3248 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3249
3250 return eligible;
4a55dd72
SW
3251#else
3252 return true;
06e48c51 3253#endif
4a55dd72 3254}
c45c528e 3255
17e433b5
WL
3256/*
3257 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3258 * a vcpu_load/vcpu_put pair. However, for most architectures
3259 * kvm_arch_vcpu_runnable does not require vcpu_load.
3260 */
3261bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3262{
3263 return kvm_arch_vcpu_runnable(vcpu);
3264}
3265
3266static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3267{
3268 if (kvm_arch_dy_runnable(vcpu))
3269 return true;
3270
3271#ifdef CONFIG_KVM_ASYNC_PF
3272 if (!list_empty_careful(&vcpu->async_pf.done))
3273 return true;
3274#endif
3275
3276 return false;
3277}
3278
52acd22f
WL
3279bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3280{
3281 return false;
3282}
3283
199b5763 3284void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 3285{
217ece61
RR
3286 struct kvm *kvm = me->kvm;
3287 struct kvm_vcpu *vcpu;
3288 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3289 int yielded = 0;
c45c528e 3290 int try = 3;
217ece61
RR
3291 int pass;
3292 int i;
d255f4f2 3293
4c088493 3294 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
3295 /*
3296 * We boost the priority of a VCPU that is runnable but not
3297 * currently running, because it got preempted by something
3298 * else and called schedule in __vcpu_run. Hopefully that
3299 * VCPU is holding the lock that we need and will release it.
3300 * We approximate round-robin by starting at the last boosted VCPU.
3301 */
c45c528e 3302 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 3303 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 3304 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
3305 i = last_boosted_vcpu;
3306 continue;
3307 } else if (pass && i > last_boosted_vcpu)
3308 break;
d73eb57b 3309 if (!READ_ONCE(vcpu->ready))
7bc7ae25 3310 continue;
217ece61
RR
3311 if (vcpu == me)
3312 continue;
da4ad88c
DB
3313 if (rcuwait_active(&vcpu->wait) &&
3314 !vcpu_dy_runnable(vcpu))
217ece61 3315 continue;
046ddeed 3316 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
3317 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3318 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 3319 continue;
06e48c51
R
3320 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3321 continue;
c45c528e
R
3322
3323 yielded = kvm_vcpu_yield_to(vcpu);
3324 if (yielded > 0) {
217ece61 3325 kvm->last_boosted_vcpu = i;
217ece61 3326 break;
c45c528e
R
3327 } else if (yielded < 0) {
3328 try--;
3329 if (!try)
3330 break;
217ece61 3331 }
217ece61
RR
3332 }
3333 }
4c088493 3334 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
3335
3336 /* Ensure vcpu is not eligible during next spinloop */
3337 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
3338}
3339EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3340
fb04a1ed
PX
3341static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3342{
3343#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3344 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3345 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3346 kvm->dirty_ring_size / PAGE_SIZE);
3347#else
3348 return false;
3349#endif
3350}
3351
1499fa80 3352static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 3353{
11bac800 3354 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
3355 struct page *page;
3356
e4a533a4 3357 if (vmf->pgoff == 0)
039576c0 3358 page = virt_to_page(vcpu->run);
09566765 3359#ifdef CONFIG_X86
e4a533a4 3360 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 3361 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 3362#endif
4b4357e0 3363#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3364 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3365 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 3366#endif
fb04a1ed
PX
3367 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3368 page = kvm_dirty_ring_get_page(
3369 &vcpu->dirty_ring,
3370 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 3371 else
5b1c1493 3372 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 3373 get_page(page);
e4a533a4
NP
3374 vmf->page = page;
3375 return 0;
9a2bb7f4
AK
3376}
3377
f0f37e2f 3378static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 3379 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
3380};
3381
3382static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3383{
fb04a1ed
PX
3384 struct kvm_vcpu *vcpu = file->private_data;
3385 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3386
3387 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3388 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3389 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3390 return -EINVAL;
3391
9a2bb7f4
AK
3392 vma->vm_ops = &kvm_vcpu_vm_ops;
3393 return 0;
3394}
3395
bccf2150
AK
3396static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3397{
3398 struct kvm_vcpu *vcpu = filp->private_data;
3399
66c0b394 3400 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
3401 return 0;
3402}
3403
3d3aab1b 3404static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
3405 .release = kvm_vcpu_release,
3406 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 3407 .mmap = kvm_vcpu_mmap,
6038f373 3408 .llseek = noop_llseek,
7ddfd3e0 3409 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
3410};
3411
3412/*
3413 * Allocates an inode for the vcpu.
3414 */
3415static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3416{
e46b4692
MY
3417 char name[8 + 1 + ITOA_MAX_LEN + 1];
3418
3419 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3420 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
3421}
3422
3e7093d0 3423static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 3424{
741cbbae 3425#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
d56f5136 3426 struct dentry *debugfs_dentry;
45b5939e 3427 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 3428
45b5939e 3429 if (!debugfs_initialized())
3e7093d0 3430 return;
45b5939e
LC
3431
3432 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
3433 debugfs_dentry = debugfs_create_dir(dir_name,
3434 vcpu->kvm->debugfs_dentry);
45b5939e 3435
d56f5136 3436 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
741cbbae 3437#endif
45b5939e
LC
3438}
3439
c5ea7660
AK
3440/*
3441 * Creates some virtual cpus. Good luck creating more than one.
3442 */
73880c80 3443static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3444{
3445 int r;
e09fefde 3446 struct kvm_vcpu *vcpu;
8bd826d6 3447 struct page *page;
c5ea7660 3448
0b1b1dfd 3449 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
3450 return -EINVAL;
3451
6c7caebc
PB
3452 mutex_lock(&kvm->lock);
3453 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3454 mutex_unlock(&kvm->lock);
3455 return -EINVAL;
3456 }
3457
3458 kvm->created_vcpus++;
3459 mutex_unlock(&kvm->lock);
3460
897cc38e
SC
3461 r = kvm_arch_vcpu_precreate(kvm, id);
3462 if (r)
3463 goto vcpu_decrement;
3464
85f47930 3465 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
3466 if (!vcpu) {
3467 r = -ENOMEM;
6c7caebc
PB
3468 goto vcpu_decrement;
3469 }
c5ea7660 3470
fcd97ad5 3471 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 3472 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
3473 if (!page) {
3474 r = -ENOMEM;
e529ef66 3475 goto vcpu_free;
8bd826d6
SC
3476 }
3477 vcpu->run = page_address(page);
3478
3479 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3480
3481 r = kvm_arch_vcpu_create(vcpu);
3482 if (r)
8bd826d6 3483 goto vcpu_free_run_page;
e529ef66 3484
fb04a1ed
PX
3485 if (kvm->dirty_ring_size) {
3486 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3487 id, kvm->dirty_ring_size);
3488 if (r)
3489 goto arch_vcpu_destroy;
3490 }
3491
11ec2804 3492 mutex_lock(&kvm->lock);
e09fefde
DH
3493 if (kvm_get_vcpu_by_id(kvm, id)) {
3494 r = -EEXIST;
3495 goto unlock_vcpu_destroy;
3496 }
73880c80 3497
8750e72a
RK
3498 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3499 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
c5ea7660 3500
ce55c049
JZ
3501 /* Fill the stats id string for the vcpu */
3502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3503 task_pid_nr(current), id);
3504
fb3f0f51 3505 /* Now it's all set up, let userspace reach it */
66c0b394 3506 kvm_get_kvm(kvm);
bccf2150 3507 r = create_vcpu_fd(vcpu);
73880c80 3508 if (r < 0) {
149487bd 3509 kvm_put_kvm_no_destroy(kvm);
d780592b 3510 goto unlock_vcpu_destroy;
73880c80
GN
3511 }
3512
8750e72a 3513 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
dd489240
PB
3514
3515 /*
3516 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3517 * before kvm->online_vcpu's incremented value.
3518 */
73880c80
GN
3519 smp_wmb();
3520 atomic_inc(&kvm->online_vcpus);
3521
73880c80 3522 mutex_unlock(&kvm->lock);
42897d86 3523 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3524 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3525 return r;
39c3b86e 3526
d780592b 3527unlock_vcpu_destroy:
7d8fece6 3528 mutex_unlock(&kvm->lock);
fb04a1ed
PX
3529 kvm_dirty_ring_free(&vcpu->dirty_ring);
3530arch_vcpu_destroy:
d40ccc62 3531 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3532vcpu_free_run_page:
3533 free_page((unsigned long)vcpu->run);
e529ef66
SC
3534vcpu_free:
3535 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3536vcpu_decrement:
3537 mutex_lock(&kvm->lock);
3538 kvm->created_vcpus--;
3539 mutex_unlock(&kvm->lock);
c5ea7660
AK
3540 return r;
3541}
3542
1961d276
AK
3543static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3544{
3545 if (sigset) {
3546 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3547 vcpu->sigset_active = 1;
3548 vcpu->sigset = *sigset;
3549 } else
3550 vcpu->sigset_active = 0;
3551 return 0;
3552}
3553
ce55c049
JZ
3554static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3555 size_t size, loff_t *offset)
3556{
3557 struct kvm_vcpu *vcpu = file->private_data;
3558
3559 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3560 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3561 sizeof(vcpu->stat), user_buffer, size, offset);
3562}
3563
3564static const struct file_operations kvm_vcpu_stats_fops = {
3565 .read = kvm_vcpu_stats_read,
3566 .llseek = noop_llseek,
3567};
3568
3569static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3570{
3571 int fd;
3572 struct file *file;
3573 char name[15 + ITOA_MAX_LEN + 1];
3574
3575 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3576
3577 fd = get_unused_fd_flags(O_CLOEXEC);
3578 if (fd < 0)
3579 return fd;
3580
3581 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3582 if (IS_ERR(file)) {
3583 put_unused_fd(fd);
3584 return PTR_ERR(file);
3585 }
3586 file->f_mode |= FMODE_PREAD;
3587 fd_install(fd, file);
3588
3589 return fd;
3590}
3591
bccf2150
AK
3592static long kvm_vcpu_ioctl(struct file *filp,
3593 unsigned int ioctl, unsigned long arg)
6aa8b732 3594{
bccf2150 3595 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3596 void __user *argp = (void __user *)arg;
313a3dc7 3597 int r;
fa3795a7
DH
3598 struct kvm_fpu *fpu = NULL;
3599 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3600
6d4e4c4f
AK
3601 if (vcpu->kvm->mm != current->mm)
3602 return -EIO;
2122ff5e 3603
2ea75be3
DM
3604 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3605 return -EINVAL;
3606
2122ff5e 3607 /*
5cb0944c
PB
3608 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3609 * execution; mutex_lock() would break them.
2122ff5e 3610 */
5cb0944c
PB
3611 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3612 if (r != -ENOIOCTLCMD)
9fc77441 3613 return r;
2122ff5e 3614
ec7660cc
CD
3615 if (mutex_lock_killable(&vcpu->mutex))
3616 return -EINTR;
6aa8b732 3617 switch (ioctl) {
0e4524a5
CB
3618 case KVM_RUN: {
3619 struct pid *oldpid;
f0fe5108
AK
3620 r = -EINVAL;
3621 if (arg)
3622 goto out;
0e4524a5 3623 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3624 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3625 /* The thread running this VCPU changed. */
bd2a6394 3626 struct pid *newpid;
f95ef0cd 3627
bd2a6394
CD
3628 r = kvm_arch_vcpu_run_pid_change(vcpu);
3629 if (r)
3630 break;
3631
3632 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3633 rcu_assign_pointer(vcpu->pid, newpid);
3634 if (oldpid)
3635 synchronize_rcu();
3636 put_pid(oldpid);
3637 }
1b94f6f8 3638 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 3639 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3640 break;
0e4524a5 3641 }
6aa8b732 3642 case KVM_GET_REGS: {
3e4bb3ac 3643 struct kvm_regs *kvm_regs;
6aa8b732 3644
3e4bb3ac 3645 r = -ENOMEM;
b12ce36a 3646 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3647 if (!kvm_regs)
6aa8b732 3648 goto out;
3e4bb3ac
XZ
3649 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3650 if (r)
3651 goto out_free1;
6aa8b732 3652 r = -EFAULT;
3e4bb3ac
XZ
3653 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3654 goto out_free1;
6aa8b732 3655 r = 0;
3e4bb3ac
XZ
3656out_free1:
3657 kfree(kvm_regs);
6aa8b732
AK
3658 break;
3659 }
3660 case KVM_SET_REGS: {
3e4bb3ac 3661 struct kvm_regs *kvm_regs;
6aa8b732 3662
ff5c2c03
SL
3663 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3664 if (IS_ERR(kvm_regs)) {
3665 r = PTR_ERR(kvm_regs);
6aa8b732 3666 goto out;
ff5c2c03 3667 }
3e4bb3ac 3668 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 3669 kfree(kvm_regs);
6aa8b732
AK
3670 break;
3671 }
3672 case KVM_GET_SREGS: {
b12ce36a
BG
3673 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3674 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3675 r = -ENOMEM;
3676 if (!kvm_sregs)
3677 goto out;
3678 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3679 if (r)
3680 goto out;
3681 r = -EFAULT;
fa3795a7 3682 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
3683 goto out;
3684 r = 0;
3685 break;
3686 }
3687 case KVM_SET_SREGS: {
ff5c2c03
SL
3688 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3689 if (IS_ERR(kvm_sregs)) {
3690 r = PTR_ERR(kvm_sregs);
18595411 3691 kvm_sregs = NULL;
6aa8b732 3692 goto out;
ff5c2c03 3693 }
fa3795a7 3694 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3695 break;
3696 }
62d9f0db
MT
3697 case KVM_GET_MP_STATE: {
3698 struct kvm_mp_state mp_state;
3699
3700 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3701 if (r)
3702 goto out;
3703 r = -EFAULT;
893bdbf1 3704 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
3705 goto out;
3706 r = 0;
3707 break;
3708 }
3709 case KVM_SET_MP_STATE: {
3710 struct kvm_mp_state mp_state;
3711
3712 r = -EFAULT;
893bdbf1 3713 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3714 goto out;
3715 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3716 break;
3717 }
6aa8b732
AK
3718 case KVM_TRANSLATE: {
3719 struct kvm_translation tr;
3720
3721 r = -EFAULT;
893bdbf1 3722 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3723 goto out;
8b006791 3724 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3725 if (r)
3726 goto out;
3727 r = -EFAULT;
893bdbf1 3728 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3729 goto out;
3730 r = 0;
3731 break;
3732 }
d0bfb940
JK
3733 case KVM_SET_GUEST_DEBUG: {
3734 struct kvm_guest_debug dbg;
6aa8b732
AK
3735
3736 r = -EFAULT;
893bdbf1 3737 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3738 goto out;
d0bfb940 3739 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3740 break;
3741 }
1961d276
AK
3742 case KVM_SET_SIGNAL_MASK: {
3743 struct kvm_signal_mask __user *sigmask_arg = argp;
3744 struct kvm_signal_mask kvm_sigmask;
3745 sigset_t sigset, *p;
3746
3747 p = NULL;
3748 if (argp) {
3749 r = -EFAULT;
3750 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3751 sizeof(kvm_sigmask)))
1961d276
AK
3752 goto out;
3753 r = -EINVAL;
893bdbf1 3754 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3755 goto out;
3756 r = -EFAULT;
3757 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3758 sizeof(sigset)))
1961d276
AK
3759 goto out;
3760 p = &sigset;
3761 }
376d41ff 3762 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3763 break;
3764 }
b8836737 3765 case KVM_GET_FPU: {
b12ce36a 3766 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3767 r = -ENOMEM;
3768 if (!fpu)
3769 goto out;
3770 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3771 if (r)
3772 goto out;
3773 r = -EFAULT;
fa3795a7 3774 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3775 goto out;
3776 r = 0;
3777 break;
3778 }
3779 case KVM_SET_FPU: {
ff5c2c03
SL
3780 fpu = memdup_user(argp, sizeof(*fpu));
3781 if (IS_ERR(fpu)) {
3782 r = PTR_ERR(fpu);
18595411 3783 fpu = NULL;
b8836737 3784 goto out;
ff5c2c03 3785 }
fa3795a7 3786 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3787 break;
3788 }
ce55c049
JZ
3789 case KVM_GET_STATS_FD: {
3790 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3791 break;
3792 }
bccf2150 3793 default:
313a3dc7 3794 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3795 }
3796out:
ec7660cc 3797 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3798 kfree(fpu);
3799 kfree(kvm_sregs);
bccf2150
AK
3800 return r;
3801}
3802
de8e5d74 3803#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3804static long kvm_vcpu_compat_ioctl(struct file *filp,
3805 unsigned int ioctl, unsigned long arg)
3806{
3807 struct kvm_vcpu *vcpu = filp->private_data;
3808 void __user *argp = compat_ptr(arg);
3809 int r;
3810
3811 if (vcpu->kvm->mm != current->mm)
3812 return -EIO;
3813
3814 switch (ioctl) {
3815 case KVM_SET_SIGNAL_MASK: {
3816 struct kvm_signal_mask __user *sigmask_arg = argp;
3817 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3818 sigset_t sigset;
3819
3820 if (argp) {
3821 r = -EFAULT;
3822 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3823 sizeof(kvm_sigmask)))
1dda606c
AG
3824 goto out;
3825 r = -EINVAL;
3968cf62 3826 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3827 goto out;
3828 r = -EFAULT;
1393b4aa
PB
3829 if (get_compat_sigset(&sigset,
3830 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 3831 goto out;
760a9a30
AC
3832 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3833 } else
3834 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3835 break;
3836 }
3837 default:
3838 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3839 }
3840
3841out:
3842 return r;
3843}
3844#endif
3845
a1cd3f08
CLG
3846static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3847{
3848 struct kvm_device *dev = filp->private_data;
3849
3850 if (dev->ops->mmap)
3851 return dev->ops->mmap(dev, vma);
3852
3853 return -ENODEV;
3854}
3855
852b6d57
SW
3856static int kvm_device_ioctl_attr(struct kvm_device *dev,
3857 int (*accessor)(struct kvm_device *dev,
3858 struct kvm_device_attr *attr),
3859 unsigned long arg)
3860{
3861 struct kvm_device_attr attr;
3862
3863 if (!accessor)
3864 return -EPERM;
3865
3866 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3867 return -EFAULT;
3868
3869 return accessor(dev, &attr);
3870}
3871
3872static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3873 unsigned long arg)
3874{
3875 struct kvm_device *dev = filp->private_data;
3876
ddba9180
SC
3877 if (dev->kvm->mm != current->mm)
3878 return -EIO;
3879
852b6d57
SW
3880 switch (ioctl) {
3881 case KVM_SET_DEVICE_ATTR:
3882 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3883 case KVM_GET_DEVICE_ATTR:
3884 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3885 case KVM_HAS_DEVICE_ATTR:
3886 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3887 default:
3888 if (dev->ops->ioctl)
3889 return dev->ops->ioctl(dev, ioctl, arg);
3890
3891 return -ENOTTY;
3892 }
3893}
3894
852b6d57
SW
3895static int kvm_device_release(struct inode *inode, struct file *filp)
3896{
3897 struct kvm_device *dev = filp->private_data;
3898 struct kvm *kvm = dev->kvm;
3899
2bde9b3e
CLG
3900 if (dev->ops->release) {
3901 mutex_lock(&kvm->lock);
3902 list_del(&dev->vm_node);
3903 dev->ops->release(dev);
3904 mutex_unlock(&kvm->lock);
3905 }
3906
852b6d57
SW
3907 kvm_put_kvm(kvm);
3908 return 0;
3909}
3910
3911static const struct file_operations kvm_device_fops = {
3912 .unlocked_ioctl = kvm_device_ioctl,
3913 .release = kvm_device_release,
7ddfd3e0 3914 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 3915 .mmap = kvm_device_mmap,
852b6d57
SW
3916};
3917
3918struct kvm_device *kvm_device_from_filp(struct file *filp)
3919{
3920 if (filp->f_op != &kvm_device_fops)
3921 return NULL;
3922
3923 return filp->private_data;
3924}
3925
8538cb22 3926static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 3927#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
3928 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3929 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 3930#endif
d60eacb0
WD
3931};
3932
8538cb22 3933int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
3934{
3935 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3936 return -ENOSPC;
3937
3938 if (kvm_device_ops_table[type] != NULL)
3939 return -EEXIST;
3940
3941 kvm_device_ops_table[type] = ops;
3942 return 0;
3943}
3944
571ee1b6
WL
3945void kvm_unregister_device_ops(u32 type)
3946{
3947 if (kvm_device_ops_table[type] != NULL)
3948 kvm_device_ops_table[type] = NULL;
3949}
3950
852b6d57
SW
3951static int kvm_ioctl_create_device(struct kvm *kvm,
3952 struct kvm_create_device *cd)
3953{
8538cb22 3954 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
3955 struct kvm_device *dev;
3956 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 3957 int type;
852b6d57
SW
3958 int ret;
3959
d60eacb0
WD
3960 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3961 return -ENODEV;
3962
1d487e9b
PB
3963 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3964 ops = kvm_device_ops_table[type];
d60eacb0 3965 if (ops == NULL)
852b6d57 3966 return -ENODEV;
852b6d57
SW
3967
3968 if (test)
3969 return 0;
3970
b12ce36a 3971 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
3972 if (!dev)
3973 return -ENOMEM;
3974
3975 dev->ops = ops;
3976 dev->kvm = kvm;
852b6d57 3977
a28ebea2 3978 mutex_lock(&kvm->lock);
1d487e9b 3979 ret = ops->create(dev, type);
852b6d57 3980 if (ret < 0) {
a28ebea2 3981 mutex_unlock(&kvm->lock);
852b6d57
SW
3982 kfree(dev);
3983 return ret;
3984 }
a28ebea2
CD
3985 list_add(&dev->vm_node, &kvm->devices);
3986 mutex_unlock(&kvm->lock);
852b6d57 3987
023e9fdd
CD
3988 if (ops->init)
3989 ops->init(dev);
3990
cfa39381 3991 kvm_get_kvm(kvm);
24009b05 3992 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3993 if (ret < 0) {
149487bd 3994 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
3995 mutex_lock(&kvm->lock);
3996 list_del(&dev->vm_node);
3997 mutex_unlock(&kvm->lock);
a0f1d21c 3998 ops->destroy(dev);
852b6d57
SW
3999 return ret;
4000 }
4001
852b6d57
SW
4002 cd->fd = ret;
4003 return 0;
4004}
4005
92b591a4
AG
4006static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4007{
4008 switch (arg) {
4009 case KVM_CAP_USER_MEMORY:
4010 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4011 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
4012 case KVM_CAP_INTERNAL_ERROR_DATA:
4013#ifdef CONFIG_HAVE_KVM_MSI
4014 case KVM_CAP_SIGNAL_MSI:
4015#endif
297e2105 4016#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 4017 case KVM_CAP_IRQFD:
92b591a4
AG
4018 case KVM_CAP_IRQFD_RESAMPLE:
4019#endif
e9ea5069 4020 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 4021 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 4022 case KVM_CAP_ENABLE_CAP_VM:
acd05785 4023 case KVM_CAP_HALT_POLL:
92b591a4 4024 return 1;
4b4357e0 4025#ifdef CONFIG_KVM_MMIO
30422558
PB
4026 case KVM_CAP_COALESCED_MMIO:
4027 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
4028 case KVM_CAP_COALESCED_PIO:
4029 return 1;
30422558 4030#endif
3c9bd400
JZ
4031#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4032 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4033 return KVM_DIRTY_LOG_MANUAL_CAPS;
4034#endif
92b591a4
AG
4035#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4036 case KVM_CAP_IRQ_ROUTING:
4037 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
4038#endif
4039#if KVM_ADDRESS_SPACE_NUM > 1
4040 case KVM_CAP_MULTI_ADDRESS_SPACE:
4041 return KVM_ADDRESS_SPACE_NUM;
92b591a4 4042#endif
c110ae57
PB
4043 case KVM_CAP_NR_MEMSLOTS:
4044 return KVM_USER_MEM_SLOTS;
fb04a1ed
PX
4045 case KVM_CAP_DIRTY_LOG_RING:
4046#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4047 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4048#else
4049 return 0;
4050#endif
ce55c049
JZ
4051 case KVM_CAP_BINARY_STATS_FD:
4052 return 1;
92b591a4
AG
4053 default:
4054 break;
4055 }
4056 return kvm_vm_ioctl_check_extension(kvm, arg);
4057}
4058
fb04a1ed
PX
4059static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4060{
4061 int r;
4062
4063 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4064 return -EINVAL;
4065
4066 /* the size should be power of 2 */
4067 if (!size || (size & (size - 1)))
4068 return -EINVAL;
4069
4070 /* Should be bigger to keep the reserved entries, or a page */
4071 if (size < kvm_dirty_ring_get_rsvd_entries() *
4072 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4073 return -EINVAL;
4074
4075 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4076 sizeof(struct kvm_dirty_gfn))
4077 return -E2BIG;
4078
4079 /* We only allow it to set once */
4080 if (kvm->dirty_ring_size)
4081 return -EINVAL;
4082
4083 mutex_lock(&kvm->lock);
4084
4085 if (kvm->created_vcpus) {
4086 /* We don't allow to change this value after vcpu created */
4087 r = -EINVAL;
4088 } else {
4089 kvm->dirty_ring_size = size;
4090 r = 0;
4091 }
4092
4093 mutex_unlock(&kvm->lock);
4094 return r;
4095}
4096
4097static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4098{
4099 int i;
4100 struct kvm_vcpu *vcpu;
4101 int cleared = 0;
4102
4103 if (!kvm->dirty_ring_size)
4104 return -EINVAL;
4105
4106 mutex_lock(&kvm->slots_lock);
4107
4108 kvm_for_each_vcpu(i, vcpu, kvm)
4109 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4110
4111 mutex_unlock(&kvm->slots_lock);
4112
4113 if (cleared)
4114 kvm_flush_remote_tlbs(kvm);
4115
4116 return cleared;
4117}
4118
e5d83c74
PB
4119int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4120 struct kvm_enable_cap *cap)
4121{
4122 return -EINVAL;
4123}
4124
4125static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4126 struct kvm_enable_cap *cap)
4127{
4128 switch (cap->cap) {
2a31b9db 4129#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
4130 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4131 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4132
4133 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4134 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4135
4136 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
4137 return -EINVAL;
4138 kvm->manual_dirty_log_protect = cap->args[0];
4139 return 0;
3c9bd400 4140 }
2a31b9db 4141#endif
acd05785
DM
4142 case KVM_CAP_HALT_POLL: {
4143 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4144 return -EINVAL;
4145
4146 kvm->max_halt_poll_ns = cap->args[0];
4147 return 0;
4148 }
fb04a1ed
PX
4149 case KVM_CAP_DIRTY_LOG_RING:
4150 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
e5d83c74
PB
4151 default:
4152 return kvm_vm_ioctl_enable_cap(kvm, cap);
4153 }
4154}
4155
fcfe1bae
JZ
4156static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4157 size_t size, loff_t *offset)
4158{
4159 struct kvm *kvm = file->private_data;
4160
4161 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4162 &kvm_vm_stats_desc[0], &kvm->stat,
4163 sizeof(kvm->stat), user_buffer, size, offset);
4164}
4165
4166static const struct file_operations kvm_vm_stats_fops = {
4167 .read = kvm_vm_stats_read,
4168 .llseek = noop_llseek,
4169};
4170
4171static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4172{
4173 int fd;
4174 struct file *file;
4175
4176 fd = get_unused_fd_flags(O_CLOEXEC);
4177 if (fd < 0)
4178 return fd;
4179
4180 file = anon_inode_getfile("kvm-vm-stats",
4181 &kvm_vm_stats_fops, kvm, O_RDONLY);
4182 if (IS_ERR(file)) {
4183 put_unused_fd(fd);
4184 return PTR_ERR(file);
4185 }
4186 file->f_mode |= FMODE_PREAD;
4187 fd_install(fd, file);
4188
4189 return fd;
4190}
4191
bccf2150
AK
4192static long kvm_vm_ioctl(struct file *filp,
4193 unsigned int ioctl, unsigned long arg)
4194{
4195 struct kvm *kvm = filp->private_data;
4196 void __user *argp = (void __user *)arg;
1fe779f8 4197 int r;
bccf2150 4198
6d4e4c4f
AK
4199 if (kvm->mm != current->mm)
4200 return -EIO;
bccf2150
AK
4201 switch (ioctl) {
4202 case KVM_CREATE_VCPU:
4203 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 4204 break;
e5d83c74
PB
4205 case KVM_ENABLE_CAP: {
4206 struct kvm_enable_cap cap;
4207
4208 r = -EFAULT;
4209 if (copy_from_user(&cap, argp, sizeof(cap)))
4210 goto out;
4211 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4212 break;
4213 }
6fc138d2
IE
4214 case KVM_SET_USER_MEMORY_REGION: {
4215 struct kvm_userspace_memory_region kvm_userspace_mem;
4216
4217 r = -EFAULT;
4218 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 4219 sizeof(kvm_userspace_mem)))
6fc138d2
IE
4220 goto out;
4221
47ae31e2 4222 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
4223 break;
4224 }
4225 case KVM_GET_DIRTY_LOG: {
4226 struct kvm_dirty_log log;
4227
4228 r = -EFAULT;
893bdbf1 4229 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 4230 goto out;
2c6f5df9 4231 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
4232 break;
4233 }
2a31b9db
PB
4234#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4235 case KVM_CLEAR_DIRTY_LOG: {
4236 struct kvm_clear_dirty_log log;
4237
4238 r = -EFAULT;
4239 if (copy_from_user(&log, argp, sizeof(log)))
4240 goto out;
4241 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4242 break;
4243 }
4244#endif
4b4357e0 4245#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4246 case KVM_REGISTER_COALESCED_MMIO: {
4247 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4248
5f94c174 4249 r = -EFAULT;
893bdbf1 4250 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4251 goto out;
5f94c174 4252 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
4253 break;
4254 }
4255 case KVM_UNREGISTER_COALESCED_MMIO: {
4256 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4257
5f94c174 4258 r = -EFAULT;
893bdbf1 4259 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4260 goto out;
5f94c174 4261 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
4262 break;
4263 }
4264#endif
721eecbf
GH
4265 case KVM_IRQFD: {
4266 struct kvm_irqfd data;
4267
4268 r = -EFAULT;
893bdbf1 4269 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 4270 goto out;
d4db2935 4271 r = kvm_irqfd(kvm, &data);
721eecbf
GH
4272 break;
4273 }
d34e6b17
GH
4274 case KVM_IOEVENTFD: {
4275 struct kvm_ioeventfd data;
4276
4277 r = -EFAULT;
893bdbf1 4278 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
4279 goto out;
4280 r = kvm_ioeventfd(kvm, &data);
4281 break;
4282 }
07975ad3
JK
4283#ifdef CONFIG_HAVE_KVM_MSI
4284 case KVM_SIGNAL_MSI: {
4285 struct kvm_msi msi;
4286
4287 r = -EFAULT;
893bdbf1 4288 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
4289 goto out;
4290 r = kvm_send_userspace_msi(kvm, &msi);
4291 break;
4292 }
23d43cf9
CD
4293#endif
4294#ifdef __KVM_HAVE_IRQ_LINE
4295 case KVM_IRQ_LINE_STATUS:
4296 case KVM_IRQ_LINE: {
4297 struct kvm_irq_level irq_event;
4298
4299 r = -EFAULT;
893bdbf1 4300 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
4301 goto out;
4302
aa2fbe6d
YZ
4303 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4304 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
4305 if (r)
4306 goto out;
4307
4308 r = -EFAULT;
4309 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 4310 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
4311 goto out;
4312 }
4313
4314 r = 0;
4315 break;
4316 }
73880c80 4317#endif
aa8d5944
AG
4318#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4319 case KVM_SET_GSI_ROUTING: {
4320 struct kvm_irq_routing routing;
4321 struct kvm_irq_routing __user *urouting;
f8c1b85b 4322 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
4323
4324 r = -EFAULT;
4325 if (copy_from_user(&routing, argp, sizeof(routing)))
4326 goto out;
4327 r = -EINVAL;
5c0aea0e
DH
4328 if (!kvm_arch_can_set_irq_routing(kvm))
4329 goto out;
caf1ff26 4330 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
4331 goto out;
4332 if (routing.flags)
4333 goto out;
f8c1b85b 4334 if (routing.nr) {
f8c1b85b 4335 urouting = argp;
7ec28e26
DE
4336 entries = vmemdup_user(urouting->entries,
4337 array_size(sizeof(*entries),
4338 routing.nr));
4339 if (IS_ERR(entries)) {
4340 r = PTR_ERR(entries);
4341 goto out;
4342 }
f8c1b85b 4343 }
aa8d5944
AG
4344 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4345 routing.flags);
7ec28e26 4346 kvfree(entries);
aa8d5944
AG
4347 break;
4348 }
4349#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
4350 case KVM_CREATE_DEVICE: {
4351 struct kvm_create_device cd;
4352
4353 r = -EFAULT;
4354 if (copy_from_user(&cd, argp, sizeof(cd)))
4355 goto out;
4356
4357 r = kvm_ioctl_create_device(kvm, &cd);
4358 if (r)
4359 goto out;
4360
4361 r = -EFAULT;
4362 if (copy_to_user(argp, &cd, sizeof(cd)))
4363 goto out;
4364
4365 r = 0;
4366 break;
4367 }
92b591a4
AG
4368 case KVM_CHECK_EXTENSION:
4369 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4370 break;
fb04a1ed
PX
4371 case KVM_RESET_DIRTY_RINGS:
4372 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4373 break;
fcfe1bae
JZ
4374 case KVM_GET_STATS_FD:
4375 r = kvm_vm_ioctl_get_stats_fd(kvm);
4376 break;
f17abe9a 4377 default:
1fe779f8 4378 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
4379 }
4380out:
4381 return r;
4382}
4383
de8e5d74 4384#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
4385struct compat_kvm_dirty_log {
4386 __u32 slot;
4387 __u32 padding1;
4388 union {
4389 compat_uptr_t dirty_bitmap; /* one bit per page */
4390 __u64 padding2;
4391 };
4392};
4393
8750f9bb
PB
4394struct compat_kvm_clear_dirty_log {
4395 __u32 slot;
4396 __u32 num_pages;
4397 __u64 first_page;
4398 union {
4399 compat_uptr_t dirty_bitmap; /* one bit per page */
4400 __u64 padding2;
4401 };
4402};
4403
6ff5894c
AB
4404static long kvm_vm_compat_ioctl(struct file *filp,
4405 unsigned int ioctl, unsigned long arg)
4406{
4407 struct kvm *kvm = filp->private_data;
4408 int r;
4409
4410 if (kvm->mm != current->mm)
4411 return -EIO;
4412 switch (ioctl) {
8750f9bb
PB
4413#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4414 case KVM_CLEAR_DIRTY_LOG: {
4415 struct compat_kvm_clear_dirty_log compat_log;
4416 struct kvm_clear_dirty_log log;
4417
4418 if (copy_from_user(&compat_log, (void __user *)arg,
4419 sizeof(compat_log)))
4420 return -EFAULT;
4421 log.slot = compat_log.slot;
4422 log.num_pages = compat_log.num_pages;
4423 log.first_page = compat_log.first_page;
4424 log.padding2 = compat_log.padding2;
4425 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4426
4427 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4428 break;
4429 }
4430#endif
6ff5894c
AB
4431 case KVM_GET_DIRTY_LOG: {
4432 struct compat_kvm_dirty_log compat_log;
4433 struct kvm_dirty_log log;
4434
6ff5894c
AB
4435 if (copy_from_user(&compat_log, (void __user *)arg,
4436 sizeof(compat_log)))
f6a3b168 4437 return -EFAULT;
6ff5894c
AB
4438 log.slot = compat_log.slot;
4439 log.padding1 = compat_log.padding1;
4440 log.padding2 = compat_log.padding2;
4441 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4442
4443 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
4444 break;
4445 }
4446 default:
4447 r = kvm_vm_ioctl(filp, ioctl, arg);
4448 }
6ff5894c
AB
4449 return r;
4450}
4451#endif
4452
3d3aab1b 4453static struct file_operations kvm_vm_fops = {
f17abe9a
AK
4454 .release = kvm_vm_release,
4455 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 4456 .llseek = noop_llseek,
7ddfd3e0 4457 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
4458};
4459
54526d1f
NT
4460bool file_is_kvm(struct file *file)
4461{
4462 return file && file->f_op == &kvm_vm_fops;
4463}
4464EXPORT_SYMBOL_GPL(file_is_kvm);
4465
e08b9637 4466static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 4467{
aac87636 4468 int r;
f17abe9a 4469 struct kvm *kvm;
506cfba9 4470 struct file *file;
f17abe9a 4471
e08b9637 4472 kvm = kvm_create_vm(type);
d6d28168
AK
4473 if (IS_ERR(kvm))
4474 return PTR_ERR(kvm);
4b4357e0 4475#ifdef CONFIG_KVM_MMIO
6ce5a090 4476 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
4477 if (r < 0)
4478 goto put_kvm;
6ce5a090 4479#endif
506cfba9 4480 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
4481 if (r < 0)
4482 goto put_kvm;
4483
fcfe1bae
JZ
4484 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4485 "kvm-%d", task_pid_nr(current));
4486
506cfba9
AV
4487 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4488 if (IS_ERR(file)) {
4489 put_unused_fd(r);
78588335
ME
4490 r = PTR_ERR(file);
4491 goto put_kvm;
506cfba9 4492 }
536a6f88 4493
525df861
PB
4494 /*
4495 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4496 * already set, with ->release() being kvm_vm_release(). In error
4497 * cases it will be called by the final fput(file) and will take
4498 * care of doing kvm_put_kvm(kvm).
4499 */
536a6f88 4500 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
4501 put_unused_fd(r);
4502 fput(file);
536a6f88
JF
4503 return -ENOMEM;
4504 }
286de8f6 4505 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 4506
506cfba9 4507 fd_install(r, file);
aac87636 4508 return r;
78588335
ME
4509
4510put_kvm:
4511 kvm_put_kvm(kvm);
4512 return r;
f17abe9a
AK
4513}
4514
4515static long kvm_dev_ioctl(struct file *filp,
4516 unsigned int ioctl, unsigned long arg)
4517{
07c45a36 4518 long r = -EINVAL;
f17abe9a
AK
4519
4520 switch (ioctl) {
4521 case KVM_GET_API_VERSION:
f0fe5108
AK
4522 if (arg)
4523 goto out;
f17abe9a
AK
4524 r = KVM_API_VERSION;
4525 break;
4526 case KVM_CREATE_VM:
e08b9637 4527 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 4528 break;
018d00d2 4529 case KVM_CHECK_EXTENSION:
784aa3d7 4530 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 4531 break;
07c45a36 4532 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
4533 if (arg)
4534 goto out;
adb1ff46
AK
4535 r = PAGE_SIZE; /* struct kvm_run */
4536#ifdef CONFIG_X86
4537 r += PAGE_SIZE; /* pio data page */
5f94c174 4538#endif
4b4357e0 4539#ifdef CONFIG_KVM_MMIO
5f94c174 4540 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 4541#endif
07c45a36 4542 break;
d4c9ff2d
FEL
4543 case KVM_TRACE_ENABLE:
4544 case KVM_TRACE_PAUSE:
4545 case KVM_TRACE_DISABLE:
2023a29c 4546 r = -EOPNOTSUPP;
d4c9ff2d 4547 break;
6aa8b732 4548 default:
043405e1 4549 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
4550 }
4551out:
4552 return r;
4553}
4554
6aa8b732 4555static struct file_operations kvm_chardev_ops = {
6aa8b732 4556 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 4557 .llseek = noop_llseek,
7ddfd3e0 4558 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
4559};
4560
4561static struct miscdevice kvm_dev = {
bbe4432e 4562 KVM_MINOR,
6aa8b732
AK
4563 "kvm",
4564 &kvm_chardev_ops,
4565};
4566
75b7127c 4567static void hardware_enable_nolock(void *junk)
1b6c0168
AK
4568{
4569 int cpu = raw_smp_processor_id();
10474ae8 4570 int r;
1b6c0168 4571
7f59f492 4572 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4573 return;
10474ae8 4574
7f59f492 4575 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 4576
13a34e06 4577 r = kvm_arch_hardware_enable();
10474ae8
AG
4578
4579 if (r) {
4580 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4581 atomic_inc(&hardware_enable_failed);
1170adc6 4582 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 4583 }
1b6c0168
AK
4584}
4585
8c18b2d2 4586static int kvm_starting_cpu(unsigned int cpu)
75b7127c 4587{
4a937f96 4588 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4589 if (kvm_usage_count)
4590 hardware_enable_nolock(NULL);
4a937f96 4591 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4592 return 0;
75b7127c
TY
4593}
4594
4595static void hardware_disable_nolock(void *junk)
1b6c0168
AK
4596{
4597 int cpu = raw_smp_processor_id();
4598
7f59f492 4599 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4600 return;
7f59f492 4601 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 4602 kvm_arch_hardware_disable();
1b6c0168
AK
4603}
4604
8c18b2d2 4605static int kvm_dying_cpu(unsigned int cpu)
75b7127c 4606{
4a937f96 4607 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4608 if (kvm_usage_count)
4609 hardware_disable_nolock(NULL);
4a937f96 4610 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4611 return 0;
75b7127c
TY
4612}
4613
10474ae8
AG
4614static void hardware_disable_all_nolock(void)
4615{
4616 BUG_ON(!kvm_usage_count);
4617
4618 kvm_usage_count--;
4619 if (!kvm_usage_count)
75b7127c 4620 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
4621}
4622
4623static void hardware_disable_all(void)
4624{
4a937f96 4625 raw_spin_lock(&kvm_count_lock);
10474ae8 4626 hardware_disable_all_nolock();
4a937f96 4627 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4628}
4629
4630static int hardware_enable_all(void)
4631{
4632 int r = 0;
4633
4a937f96 4634 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
4635
4636 kvm_usage_count++;
4637 if (kvm_usage_count == 1) {
4638 atomic_set(&hardware_enable_failed, 0);
75b7127c 4639 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
4640
4641 if (atomic_read(&hardware_enable_failed)) {
4642 hardware_disable_all_nolock();
4643 r = -EBUSY;
4644 }
4645 }
4646
4a937f96 4647 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4648
4649 return r;
4650}
4651
9a2b85c6 4652static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 4653 void *v)
9a2b85c6 4654{
8e1c1815
SY
4655 /*
4656 * Some (well, at least mine) BIOSes hang on reboot if
4657 * in vmx root mode.
4658 *
4659 * And Intel TXT required VMX off for all cpu when system shutdown.
4660 */
1170adc6 4661 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 4662 kvm_rebooting = true;
75b7127c 4663 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
4664 return NOTIFY_OK;
4665}
4666
4667static struct notifier_block kvm_reboot_notifier = {
4668 .notifier_call = kvm_reboot,
4669 .priority = 0,
4670};
4671
e93f8a0f 4672static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
4673{
4674 int i;
4675
4676 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 4677 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
4678
4679 kvm_iodevice_destructor(pos);
4680 }
e93f8a0f 4681 kfree(bus);
2eeb2e94
GH
4682}
4683
c21fbff1 4684static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 4685 const struct kvm_io_range *r2)
743eeb0b 4686{
8f4216c7
JW
4687 gpa_t addr1 = r1->addr;
4688 gpa_t addr2 = r2->addr;
4689
4690 if (addr1 < addr2)
743eeb0b 4691 return -1;
8f4216c7
JW
4692
4693 /* If r2->len == 0, match the exact address. If r2->len != 0,
4694 * accept any overlapping write. Any order is acceptable for
4695 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4696 * we process all of them.
4697 */
4698 if (r2->len) {
4699 addr1 += r1->len;
4700 addr2 += r2->len;
4701 }
4702
4703 if (addr1 > addr2)
743eeb0b 4704 return 1;
8f4216c7 4705
743eeb0b
SL
4706 return 0;
4707}
4708
a343c9b7
PB
4709static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4710{
c21fbff1 4711 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
4712}
4713
39369f7a 4714static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
4715 gpa_t addr, int len)
4716{
4717 struct kvm_io_range *range, key;
4718 int off;
4719
4720 key = (struct kvm_io_range) {
4721 .addr = addr,
4722 .len = len,
4723 };
4724
4725 range = bsearch(&key, bus->range, bus->dev_count,
4726 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4727 if (range == NULL)
4728 return -ENOENT;
4729
4730 off = range - bus->range;
4731
c21fbff1 4732 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
4733 off--;
4734
4735 return off;
4736}
4737
e32edf4f 4738static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
4739 struct kvm_io_range *range, const void *val)
4740{
4741 int idx;
4742
4743 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4744 if (idx < 0)
4745 return -EOPNOTSUPP;
4746
4747 while (idx < bus->dev_count &&
c21fbff1 4748 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4749 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4750 range->len, val))
4751 return idx;
4752 idx++;
4753 }
4754
4755 return -EOPNOTSUPP;
4756}
4757
bda9020e 4758/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 4759int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 4760 int len, const void *val)
2eeb2e94 4761{
90d83dc3 4762 struct kvm_io_bus *bus;
743eeb0b 4763 struct kvm_io_range range;
126a5af5 4764 int r;
743eeb0b
SL
4765
4766 range = (struct kvm_io_range) {
4767 .addr = addr,
4768 .len = len,
4769 };
90d83dc3 4770
e32edf4f 4771 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4772 if (!bus)
4773 return -ENOMEM;
e32edf4f 4774 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4775 return r < 0 ? r : 0;
4776}
a2420107 4777EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
4778
4779/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
4780int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4781 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
4782{
4783 struct kvm_io_bus *bus;
4784 struct kvm_io_range range;
4785
4786 range = (struct kvm_io_range) {
4787 .addr = addr,
4788 .len = len,
4789 };
4790
e32edf4f 4791 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4792 if (!bus)
4793 return -ENOMEM;
126a5af5
CH
4794
4795 /* First try the device referenced by cookie. */
4796 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 4797 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 4798 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
4799 val))
4800 return cookie;
4801
4802 /*
4803 * cookie contained garbage; fall back to search and return the
4804 * correct cookie value.
4805 */
e32edf4f 4806 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4807}
4808
e32edf4f
NN
4809static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4810 struct kvm_io_range *range, void *val)
126a5af5
CH
4811{
4812 int idx;
4813
4814 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
4815 if (idx < 0)
4816 return -EOPNOTSUPP;
4817
4818 while (idx < bus->dev_count &&
c21fbff1 4819 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4820 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4821 range->len, val))
4822 return idx;
743eeb0b
SL
4823 idx++;
4824 }
4825
bda9020e
MT
4826 return -EOPNOTSUPP;
4827}
2eeb2e94 4828
bda9020e 4829/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 4830int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 4831 int len, void *val)
bda9020e 4832{
90d83dc3 4833 struct kvm_io_bus *bus;
743eeb0b 4834 struct kvm_io_range range;
126a5af5 4835 int r;
743eeb0b
SL
4836
4837 range = (struct kvm_io_range) {
4838 .addr = addr,
4839 .len = len,
4840 };
e93f8a0f 4841
e32edf4f 4842 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4843 if (!bus)
4844 return -ENOMEM;
e32edf4f 4845 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
4846 return r < 0 ? r : 0;
4847}
743eeb0b 4848
79fac95e 4849/* Caller must hold slots_lock. */
743eeb0b
SL
4850int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4851 int len, struct kvm_io_device *dev)
6c474694 4852{
d4c67a7a 4853 int i;
e93f8a0f 4854 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 4855 struct kvm_io_range range;
090b7aff 4856
4a12f951 4857 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
4858 if (!bus)
4859 return -ENOMEM;
4860
6ea34c9b
AK
4861 /* exclude ioeventfd which is limited by maximum fd */
4862 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 4863 return -ENOSPC;
2eeb2e94 4864
90952cd3 4865 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 4866 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
4867 if (!new_bus)
4868 return -ENOMEM;
d4c67a7a
GH
4869
4870 range = (struct kvm_io_range) {
4871 .addr = addr,
4872 .len = len,
4873 .dev = dev,
4874 };
4875
4876 for (i = 0; i < bus->dev_count; i++)
4877 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4878 break;
4879
4880 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4881 new_bus->dev_count++;
4882 new_bus->range[i] = range;
4883 memcpy(new_bus->range + i + 1, bus->range + i,
4884 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
4885 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4886 synchronize_srcu_expedited(&kvm->srcu);
4887 kfree(bus);
090b7aff
GH
4888
4889 return 0;
4890}
4891
5d3c4c79
SC
4892int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4893 struct kvm_io_device *dev)
090b7aff 4894{
f6588660 4895 int i, j;
e93f8a0f 4896 struct kvm_io_bus *new_bus, *bus;
090b7aff 4897
7c896d37
SC
4898 lockdep_assert_held(&kvm->slots_lock);
4899
4a12f951 4900 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 4901 if (!bus)
5d3c4c79 4902 return 0;
df630b8c 4903
7c896d37 4904 for (i = 0; i < bus->dev_count; i++) {
a1300716 4905 if (bus->range[i].dev == dev) {
090b7aff
GH
4906 break;
4907 }
7c896d37 4908 }
e93f8a0f 4909
90db1043 4910 if (i == bus->dev_count)
5d3c4c79 4911 return 0;
a1300716 4912
90952cd3 4913 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 4914 GFP_KERNEL_ACCOUNT);
f6588660 4915 if (new_bus) {
871c433b 4916 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
4917 new_bus->dev_count--;
4918 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 4919 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
4920 }
4921
4922 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4923 synchronize_srcu_expedited(&kvm->srcu);
4924
4925 /* Destroy the old bus _after_ installing the (null) bus. */
4926 if (!new_bus) {
90db1043 4927 pr_err("kvm: failed to shrink bus, removing it completely\n");
f6588660
RK
4928 for (j = 0; j < bus->dev_count; j++) {
4929 if (j == i)
4930 continue;
4931 kvm_iodevice_destructor(bus->range[j].dev);
4932 }
90db1043 4933 }
a1300716 4934
e93f8a0f 4935 kfree(bus);
5d3c4c79 4936 return new_bus ? 0 : -ENOMEM;
2eeb2e94
GH
4937}
4938
8a39d006
AP
4939struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4940 gpa_t addr)
4941{
4942 struct kvm_io_bus *bus;
4943 int dev_idx, srcu_idx;
4944 struct kvm_io_device *iodev = NULL;
4945
4946 srcu_idx = srcu_read_lock(&kvm->srcu);
4947
4948 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
4949 if (!bus)
4950 goto out_unlock;
8a39d006
AP
4951
4952 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4953 if (dev_idx < 0)
4954 goto out_unlock;
4955
4956 iodev = bus->range[dev_idx].dev;
4957
4958out_unlock:
4959 srcu_read_unlock(&kvm->srcu, srcu_idx);
4960
4961 return iodev;
4962}
4963EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4964
536a6f88
JF
4965static int kvm_debugfs_open(struct inode *inode, struct file *file,
4966 int (*get)(void *, u64 *), int (*set)(void *, u64),
4967 const char *fmt)
4968{
4969 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4970 inode->i_private;
4971
4972 /* The debugfs files are a reference to the kvm struct which
4973 * is still valid when kvm_destroy_vm is called.
4974 * To avoid the race between open and the removal of the debugfs
4975 * directory we test against the users count.
4976 */
e3736c3e 4977 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
4978 return -ENOENT;
4979
833b45de 4980 if (simple_attr_open(inode, file, get,
bc9e9e67 4981 kvm_stats_debugfs_mode(stat_data->desc) & 0222
09cbcef6
MP
4982 ? set : NULL,
4983 fmt)) {
536a6f88
JF
4984 kvm_put_kvm(stat_data->kvm);
4985 return -ENOMEM;
4986 }
4987
4988 return 0;
4989}
4990
4991static int kvm_debugfs_release(struct inode *inode, struct file *file)
4992{
4993 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4994 inode->i_private;
4995
4996 simple_attr_release(inode, file);
4997 kvm_put_kvm(stat_data->kvm);
4998
4999 return 0;
5000}
5001
09cbcef6 5002static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 5003{
bc9e9e67 5004 *val = *(u64 *)((void *)(&kvm->stat) + offset);
536a6f88 5005
09cbcef6
MP
5006 return 0;
5007}
5008
5009static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5010{
bc9e9e67 5011 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
536a6f88
JF
5012
5013 return 0;
5014}
5015
09cbcef6 5016static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 5017{
09cbcef6
MP
5018 int i;
5019 struct kvm_vcpu *vcpu;
ce35ef27 5020
09cbcef6 5021 *val = 0;
ce35ef27 5022
09cbcef6 5023 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5024 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
ce35ef27
SJS
5025
5026 return 0;
5027}
5028
09cbcef6 5029static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 5030{
09cbcef6
MP
5031 int i;
5032 struct kvm_vcpu *vcpu;
536a6f88 5033
09cbcef6 5034 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5035 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
09cbcef6
MP
5036
5037 return 0;
5038}
536a6f88 5039
09cbcef6 5040static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 5041{
09cbcef6 5042 int r = -EFAULT;
536a6f88 5043 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 5044
bc9e9e67 5045 switch (stat_data->kind) {
09cbcef6
MP
5046 case KVM_STAT_VM:
5047 r = kvm_get_stat_per_vm(stat_data->kvm,
bc9e9e67 5048 stat_data->desc->desc.offset, val);
09cbcef6
MP
5049 break;
5050 case KVM_STAT_VCPU:
5051 r = kvm_get_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5052 stat_data->desc->desc.offset, val);
09cbcef6
MP
5053 break;
5054 }
536a6f88 5055
09cbcef6 5056 return r;
536a6f88
JF
5057}
5058
09cbcef6 5059static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 5060{
09cbcef6 5061 int r = -EFAULT;
ce35ef27 5062 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
5063
5064 if (val)
5065 return -EINVAL;
5066
bc9e9e67 5067 switch (stat_data->kind) {
09cbcef6
MP
5068 case KVM_STAT_VM:
5069 r = kvm_clear_stat_per_vm(stat_data->kvm,
bc9e9e67 5070 stat_data->desc->desc.offset);
09cbcef6
MP
5071 break;
5072 case KVM_STAT_VCPU:
5073 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5074 stat_data->desc->desc.offset);
09cbcef6
MP
5075 break;
5076 }
ce35ef27 5077
09cbcef6 5078 return r;
ce35ef27
SJS
5079}
5080
09cbcef6 5081static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
5082{
5083 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
5084 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5085 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
5086}
5087
09cbcef6
MP
5088static const struct file_operations stat_fops_per_vm = {
5089 .owner = THIS_MODULE,
5090 .open = kvm_stat_data_open,
536a6f88 5091 .release = kvm_debugfs_release,
09cbcef6
MP
5092 .read = simple_attr_read,
5093 .write = simple_attr_write,
5094 .llseek = no_llseek,
536a6f88
JF
5095};
5096
8b88b099 5097static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
5098{
5099 unsigned offset = (long)_offset;
ba1389b7 5100 struct kvm *kvm;
536a6f88 5101 u64 tmp_val;
ba1389b7 5102
8b88b099 5103 *val = 0;
0d9ce162 5104 mutex_lock(&kvm_lock);
536a6f88 5105 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5106 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
5107 *val += tmp_val;
5108 }
0d9ce162 5109 mutex_unlock(&kvm_lock);
8b88b099 5110 return 0;
ba1389b7
AK
5111}
5112
ce35ef27
SJS
5113static int vm_stat_clear(void *_offset, u64 val)
5114{
5115 unsigned offset = (long)_offset;
5116 struct kvm *kvm;
ce35ef27
SJS
5117
5118 if (val)
5119 return -EINVAL;
5120
0d9ce162 5121 mutex_lock(&kvm_lock);
ce35ef27 5122 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5123 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 5124 }
0d9ce162 5125 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5126
5127 return 0;
5128}
5129
5130DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
bc9e9e67 5131DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
ba1389b7 5132
8b88b099 5133static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
5134{
5135 unsigned offset = (long)_offset;
1165f5fe 5136 struct kvm *kvm;
536a6f88 5137 u64 tmp_val;
1165f5fe 5138
8b88b099 5139 *val = 0;
0d9ce162 5140 mutex_lock(&kvm_lock);
536a6f88 5141 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5142 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
5143 *val += tmp_val;
5144 }
0d9ce162 5145 mutex_unlock(&kvm_lock);
8b88b099 5146 return 0;
1165f5fe
AK
5147}
5148
ce35ef27
SJS
5149static int vcpu_stat_clear(void *_offset, u64 val)
5150{
5151 unsigned offset = (long)_offset;
5152 struct kvm *kvm;
ce35ef27
SJS
5153
5154 if (val)
5155 return -EINVAL;
5156
0d9ce162 5157 mutex_lock(&kvm_lock);
ce35ef27 5158 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5159 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 5160 }
0d9ce162 5161 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5162
5163 return 0;
5164}
5165
5166DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5167 "%llu\n");
bc9e9e67 5168DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
1165f5fe 5169
286de8f6
CI
5170static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5171{
5172 struct kobj_uevent_env *env;
286de8f6
CI
5173 unsigned long long created, active;
5174
5175 if (!kvm_dev.this_device || !kvm)
5176 return;
5177
0d9ce162 5178 mutex_lock(&kvm_lock);
286de8f6
CI
5179 if (type == KVM_EVENT_CREATE_VM) {
5180 kvm_createvm_count++;
5181 kvm_active_vms++;
5182 } else if (type == KVM_EVENT_DESTROY_VM) {
5183 kvm_active_vms--;
5184 }
5185 created = kvm_createvm_count;
5186 active = kvm_active_vms;
0d9ce162 5187 mutex_unlock(&kvm_lock);
286de8f6 5188
b12ce36a 5189 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
5190 if (!env)
5191 return;
5192
5193 add_uevent_var(env, "CREATED=%llu", created);
5194 add_uevent_var(env, "COUNT=%llu", active);
5195
fdeaf7e3 5196 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 5197 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
5198 kvm->userspace_pid = task_pid_nr(current);
5199 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 5200 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
5201 }
5202 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 5203
8ed0579c 5204 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
b12ce36a 5205 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
5206
5207 if (p) {
5208 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5209 if (!IS_ERR(tmp))
5210 add_uevent_var(env, "STATS_PATH=%s", tmp);
5211 kfree(p);
286de8f6
CI
5212 }
5213 }
5214 /* no need for checks, since we are adding at most only 5 keys */
5215 env->envp[env->envp_idx++] = NULL;
5216 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5217 kfree(env);
286de8f6
CI
5218}
5219
929f45e3 5220static void kvm_init_debug(void)
6aa8b732 5221{
bc9e9e67
JZ
5222 const struct file_operations *fops;
5223 const struct _kvm_stats_desc *pdesc;
5224 int i;
6aa8b732 5225
76f7c879 5226 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 5227
bc9e9e67
JZ
5228 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5229 pdesc = &kvm_vm_stats_desc[i];
5230 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5231 fops = &vm_stat_fops;
5232 else
5233 fops = &vm_stat_readonly_fops;
5234 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5235 kvm_debugfs_dir,
5236 (void *)(long)pdesc->desc.offset, fops);
5237 }
5238
5239 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5240 pdesc = &kvm_vcpu_stats_desc[i];
5241 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5242 fops = &vcpu_stat_fops;
5243 else
5244 fops = &vcpu_stat_readonly_fops;
5245 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5246 kvm_debugfs_dir,
5247 (void *)(long)pdesc->desc.offset, fops);
4f69b680 5248 }
6aa8b732
AK
5249}
5250
fb3600cc 5251static int kvm_suspend(void)
59ae6c6b 5252{
10474ae8 5253 if (kvm_usage_count)
75b7127c 5254 hardware_disable_nolock(NULL);
59ae6c6b
AK
5255 return 0;
5256}
5257
fb3600cc 5258static void kvm_resume(void)
59ae6c6b 5259{
ca84d1a2 5260 if (kvm_usage_count) {
2eb06c30
WL
5261#ifdef CONFIG_LOCKDEP
5262 WARN_ON(lockdep_is_held(&kvm_count_lock));
5263#endif
75b7127c 5264 hardware_enable_nolock(NULL);
ca84d1a2 5265 }
59ae6c6b
AK
5266}
5267
fb3600cc 5268static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
5269 .suspend = kvm_suspend,
5270 .resume = kvm_resume,
5271};
5272
15ad7146
AK
5273static inline
5274struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5275{
5276 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5277}
5278
5279static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5280{
5281 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 5282
046ddeed 5283 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 5284 WRITE_ONCE(vcpu->ready, false);
15ad7146 5285
7495e22b 5286 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 5287 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 5288 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
5289}
5290
5291static void kvm_sched_out(struct preempt_notifier *pn,
5292 struct task_struct *next)
5293{
5294 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5295
3ba9f93b 5296 if (current->on_rq) {
046ddeed 5297 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
5298 WRITE_ONCE(vcpu->ready, true);
5299 }
e9b11c17 5300 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
5301 __this_cpu_write(kvm_running_vcpu, NULL);
5302}
5303
5304/**
5305 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
5306 *
5307 * We can disable preemption locally around accessing the per-CPU variable,
5308 * and use the resolved vcpu pointer after enabling preemption again,
5309 * because even if the current thread is migrated to another CPU, reading
5310 * the per-CPU value later will give us the same value as we update the
5311 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
5312 */
5313struct kvm_vcpu *kvm_get_running_vcpu(void)
5314{
1f03b2bc
MZ
5315 struct kvm_vcpu *vcpu;
5316
5317 preempt_disable();
5318 vcpu = __this_cpu_read(kvm_running_vcpu);
5319 preempt_enable();
5320
5321 return vcpu;
7495e22b 5322}
379a3c8e 5323EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
5324
5325/**
5326 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5327 */
5328struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5329{
5330 return &kvm_running_vcpu;
15ad7146
AK
5331}
5332
b9904085
SC
5333struct kvm_cpu_compat_check {
5334 void *opaque;
5335 int *ret;
5336};
5337
5338static void check_processor_compat(void *data)
f257d6dc 5339{
b9904085
SC
5340 struct kvm_cpu_compat_check *c = data;
5341
5342 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
5343}
5344
0ee75bea 5345int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 5346 struct module *module)
6aa8b732 5347{
b9904085 5348 struct kvm_cpu_compat_check c;
6aa8b732 5349 int r;
002c7f7c 5350 int cpu;
6aa8b732 5351
f8c16bba
ZX
5352 r = kvm_arch_init(opaque);
5353 if (r)
d2308784 5354 goto out_fail;
cb498ea2 5355
7dac16c3
AH
5356 /*
5357 * kvm_arch_init makes sure there's at most one caller
5358 * for architectures that support multiple implementations,
5359 * like intel and amd on x86.
36343f6e
PB
5360 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5361 * conflicts in case kvm is already setup for another implementation.
7dac16c3 5362 */
36343f6e
PB
5363 r = kvm_irqfd_init();
5364 if (r)
5365 goto out_irqfd;
7dac16c3 5366
8437a617 5367 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
5368 r = -ENOMEM;
5369 goto out_free_0;
5370 }
5371
b9904085 5372 r = kvm_arch_hardware_setup(opaque);
6aa8b732 5373 if (r < 0)
faf0be22 5374 goto out_free_1;
6aa8b732 5375
b9904085
SC
5376 c.ret = &r;
5377 c.opaque = opaque;
002c7f7c 5378 for_each_online_cpu(cpu) {
b9904085 5379 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 5380 if (r < 0)
faf0be22 5381 goto out_free_2;
002c7f7c
YS
5382 }
5383
73c1b41e 5384 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 5385 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 5386 if (r)
d2308784 5387 goto out_free_2;
6aa8b732
AK
5388 register_reboot_notifier(&kvm_reboot_notifier);
5389
c16f862d 5390 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
5391 if (!vcpu_align)
5392 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
5393 kvm_vcpu_cache =
5394 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5395 SLAB_ACCOUNT,
5396 offsetof(struct kvm_vcpu, arch),
ce55c049
JZ
5397 offsetofend(struct kvm_vcpu, stats_id)
5398 - offsetof(struct kvm_vcpu, arch),
46515736 5399 NULL);
c16f862d
RR
5400 if (!kvm_vcpu_cache) {
5401 r = -ENOMEM;
fb3600cc 5402 goto out_free_3;
c16f862d
RR
5403 }
5404
af585b92
GN
5405 r = kvm_async_pf_init();
5406 if (r)
5407 goto out_free;
5408
6aa8b732 5409 kvm_chardev_ops.owner = module;
3d3aab1b
CB
5410 kvm_vm_fops.owner = module;
5411 kvm_vcpu_fops.owner = module;
6aa8b732
AK
5412
5413 r = misc_register(&kvm_dev);
5414 if (r) {
1170adc6 5415 pr_err("kvm: misc device register failed\n");
af585b92 5416 goto out_unreg;
6aa8b732
AK
5417 }
5418
fb3600cc
RW
5419 register_syscore_ops(&kvm_syscore_ops);
5420
15ad7146
AK
5421 kvm_preempt_ops.sched_in = kvm_sched_in;
5422 kvm_preempt_ops.sched_out = kvm_sched_out;
5423
929f45e3 5424 kvm_init_debug();
0ea4ed8e 5425
3c3c29fd
PB
5426 r = kvm_vfio_ops_init();
5427 WARN_ON(r);
5428
c7addb90 5429 return 0;
6aa8b732 5430
af585b92
GN
5431out_unreg:
5432 kvm_async_pf_deinit();
6aa8b732 5433out_free:
c16f862d 5434 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 5435out_free_3:
6aa8b732 5436 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5437 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 5438out_free_2:
e9b11c17 5439 kvm_arch_hardware_unsetup();
faf0be22 5440out_free_1:
7f59f492 5441 free_cpumask_var(cpus_hardware_enabled);
d2308784 5442out_free_0:
a0f155e9 5443 kvm_irqfd_exit();
36343f6e 5444out_irqfd:
7dac16c3
AH
5445 kvm_arch_exit();
5446out_fail:
6aa8b732
AK
5447 return r;
5448}
cb498ea2 5449EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 5450
cb498ea2 5451void kvm_exit(void)
6aa8b732 5452{
4bd33b56 5453 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 5454 misc_deregister(&kvm_dev);
c16f862d 5455 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 5456 kvm_async_pf_deinit();
fb3600cc 5457 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 5458 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5459 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 5460 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 5461 kvm_arch_hardware_unsetup();
f8c16bba 5462 kvm_arch_exit();
a0f155e9 5463 kvm_irqfd_exit();
7f59f492 5464 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 5465 kvm_vfio_ops_exit();
6aa8b732 5466}
cb498ea2 5467EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
5468
5469struct kvm_vm_worker_thread_context {
5470 struct kvm *kvm;
5471 struct task_struct *parent;
5472 struct completion init_done;
5473 kvm_vm_thread_fn_t thread_fn;
5474 uintptr_t data;
5475 int err;
5476};
5477
5478static int kvm_vm_worker_thread(void *context)
5479{
5480 /*
5481 * The init_context is allocated on the stack of the parent thread, so
5482 * we have to locally copy anything that is needed beyond initialization
5483 */
5484 struct kvm_vm_worker_thread_context *init_context = context;
5485 struct kvm *kvm = init_context->kvm;
5486 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5487 uintptr_t data = init_context->data;
5488 int err;
5489
5490 err = kthread_park(current);
5491 /* kthread_park(current) is never supposed to return an error */
5492 WARN_ON(err != 0);
5493 if (err)
5494 goto init_complete;
5495
5496 err = cgroup_attach_task_all(init_context->parent, current);
5497 if (err) {
5498 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5499 __func__, err);
5500 goto init_complete;
5501 }
5502
5503 set_user_nice(current, task_nice(init_context->parent));
5504
5505init_complete:
5506 init_context->err = err;
5507 complete(&init_context->init_done);
5508 init_context = NULL;
5509
5510 if (err)
5511 return err;
5512
5513 /* Wait to be woken up by the spawner before proceeding. */
5514 kthread_parkme();
5515
5516 if (!kthread_should_stop())
5517 err = thread_fn(kvm, data);
5518
5519 return err;
5520}
5521
5522int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5523 uintptr_t data, const char *name,
5524 struct task_struct **thread_ptr)
5525{
5526 struct kvm_vm_worker_thread_context init_context = {};
5527 struct task_struct *thread;
5528
5529 *thread_ptr = NULL;
5530 init_context.kvm = kvm;
5531 init_context.parent = current;
5532 init_context.thread_fn = thread_fn;
5533 init_context.data = data;
5534 init_completion(&init_context.init_done);
5535
5536 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5537 "%s-%d", name, task_pid_nr(current));
5538 if (IS_ERR(thread))
5539 return PTR_ERR(thread);
5540
5541 /* kthread_run is never supposed to return NULL */
5542 WARN_ON(thread == NULL);
5543
5544 wait_for_completion(&init_context.init_done);
5545
5546 if (!init_context.err)
5547 *thread_ptr = thread;
5548
5549 return init_context.err;
5550}