]> git.proxmox.com Git - mirror_qemu.git/blame - vl.c
fixed endianness (Jocelyn Mayer)
[mirror_qemu.git] / vl.c
CommitLineData
0824d6fc 1/*
1df912cf 2 * QEMU PC System Emulator
0824d6fc 3 *
1df912cf 4 * Copyright (c) 2003 Fabrice Bellard
0824d6fc 5 *
1df912cf
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
0824d6fc
FB
23 */
24#include <stdlib.h>
25#include <stdio.h>
1df912cf 26#include <stdarg.h>
0824d6fc
FB
27#include <string.h>
28#include <getopt.h>
29#include <inttypes.h>
30#include <unistd.h>
31#include <sys/mman.h>
32#include <fcntl.h>
33#include <signal.h>
34#include <time.h>
35#include <sys/time.h>
36#include <malloc.h>
37#include <termios.h>
38#include <sys/poll.h>
39#include <errno.h>
f1510b2c
FB
40#include <sys/wait.h>
41
42#include <sys/ioctl.h>
43#include <sys/socket.h>
44#include <linux/if.h>
45#include <linux/if_tun.h>
0824d6fc
FB
46
47#include "cpu-i386.h"
48#include "disas.h"
49
50#define DEBUG_LOGFILE "/tmp/vl.log"
f1510b2c
FB
51#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
52
0824d6fc
FB
53//#define DEBUG_UNUSED_IOPORT
54
55#define PHYS_RAM_BASE 0xa8000000
56#define KERNEL_LOAD_ADDR 0x00100000
57#define INITRD_LOAD_ADDR 0x00400000
58#define KERNEL_PARAMS_ADDR 0x00090000
59
60/* from plex86 (BSD license) */
61struct __attribute__ ((packed)) linux_params {
62 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
63 // I just padded out the VESA parts, rather than define them.
64
65 /* 0x000 */ uint8_t orig_x;
66 /* 0x001 */ uint8_t orig_y;
67 /* 0x002 */ uint16_t ext_mem_k;
68 /* 0x004 */ uint16_t orig_video_page;
69 /* 0x006 */ uint8_t orig_video_mode;
70 /* 0x007 */ uint8_t orig_video_cols;
71 /* 0x008 */ uint16_t unused1;
72 /* 0x00a */ uint16_t orig_video_ega_bx;
73 /* 0x00c */ uint16_t unused2;
74 /* 0x00e */ uint8_t orig_video_lines;
75 /* 0x00f */ uint8_t orig_video_isVGA;
76 /* 0x010 */ uint16_t orig_video_points;
77 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
78 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
79 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
80 // is calculated as 0x90000 + cl_offset, bu
81 // only if cl_magic == 0xA33F.
82 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
83
84 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
85 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
86
87 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
88 // Might be truncated?
89 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
90 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
91
92 // System description table truncated to 16 bytes
93 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
94 /* 0x0a0 */ uint16_t sys_description_len;
95 /* 0x0a2 */ uint8_t sys_description_table[14];
96 // [0] machine id
97 // [1] machine submodel id
98 // [2] BIOS revision
99 // [3] bit1: MCA bus
100
101 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
102 /* 0x1e0 */ uint32_t alt_mem_k;
103 /* 0x1e4 */ uint8_t pad4[4];
104 /* 0x1e8 */ uint8_t e820map_entries;
105 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
106 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
107 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
108 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
109 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
110 // (b)zImage-file (in 16 byte units, rounded up)
111 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
112 /* 0x1f8 */ uint16_t ramdisk_flags;
113 /* 0x1fa */ uint16_t vga_mode; // (old one)
114 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
115 /* 0x1fe */ uint8_t pad6[1];
116 /* 0x1ff */ uint8_t aux_device_info;
117 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
118 // aka "reserved" field.
119 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
120 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
121 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
122 // boot loaders, look there.
123 /* 0x210 */ uint8_t loader_type;
124 // 0 for old one.
125 // else 0xTV:
126 // T=0: LILO
127 // T=1: Loadlin
128 // T=2: bootsect-loader
129 // T=3: SYSLINUX
130 // T=4: ETHERBOOT
131 // V=version
132 /* 0x211 */ uint8_t loadflags;
133 // bit0 = 1: kernel is loaded high (bzImage)
134 // bit7 = 1: Heap and pointer (see below) set by boot
135 // loader.
136 /* 0x212 */ uint16_t setup_S_temp1;
137 /* 0x214 */ uint32_t kernel_start;
138 /* 0x218 */ uint32_t initrd_start;
139 /* 0x21c */ uint32_t initrd_size;
140 /* 0x220 */ uint8_t setup_S_temp2[4];
141 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
142 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
143
144 /* 0x2d0 : Int 15, ax=e820 memory map. */
145 // (linux/include/asm-i386/e820.h, 'struct e820entry')
146#define E820MAX 32
147#define E820_RAM 1
148#define E820_RESERVED 2
149#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
150#define E820_NVS 4
151 struct {
152 uint64_t addr;
153 uint64_t size;
154 uint32_t type;
155 } e820map[E820MAX];
156
157 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
158
159 // BIOS Enhanced Disk Drive Services.
160 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
161 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
162 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
163
164 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
165 /* 0x800 */ uint8_t commandline[0x800];
166
167 /* 0x1000 */
168 uint64_t gdt_table[256];
169 uint64_t idt_table[48];
170};
171
172#define KERNEL_CS 0x10
173#define KERNEL_DS 0x18
174
175typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
176typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
177
178#define MAX_IOPORTS 1024
179
180char phys_ram_file[1024];
181CPUX86State *global_env;
1df912cf 182CPUX86State *cpu_single_env;
0824d6fc
FB
183FILE *logfile = NULL;
184int loglevel;
185IOPortReadFunc *ioport_readb_table[MAX_IOPORTS];
186IOPortWriteFunc *ioport_writeb_table[MAX_IOPORTS];
187IOPortReadFunc *ioport_readw_table[MAX_IOPORTS];
188IOPortWriteFunc *ioport_writew_table[MAX_IOPORTS];
189
190/***********************************************************/
191/* x86 io ports */
192
193uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
194{
195#ifdef DEBUG_UNUSED_IOPORT
196 fprintf(stderr, "inb: port=0x%04x\n", address);
197#endif
198 return 0;
199}
200
201void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
202{
203#ifdef DEBUG_UNUSED_IOPORT
204 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
205#endif
206}
207
208/* default is to make two byte accesses */
209uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
210{
211 uint32_t data;
212 data = ioport_readb_table[address](env, address);
213 data |= ioport_readb_table[address + 1](env, address + 1) << 8;
214 return data;
215}
216
217void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
218{
219 ioport_writeb_table[address](env, address, data & 0xff);
220 ioport_writeb_table[address + 1](env, address + 1, (data >> 8) & 0xff);
221}
222
223void init_ioports(void)
224{
225 int i;
226
227 for(i = 0; i < MAX_IOPORTS; i++) {
228 ioport_readb_table[i] = default_ioport_readb;
229 ioport_writeb_table[i] = default_ioport_writeb;
230 ioport_readw_table[i] = default_ioport_readw;
231 ioport_writew_table[i] = default_ioport_writew;
232 }
233}
234
235int register_ioport_readb(int start, int length, IOPortReadFunc *func)
236{
237 int i;
238
239 for(i = start; i < start + length; i++)
240 ioport_readb_table[i] = func;
241 return 0;
242}
243
244int register_ioport_writeb(int start, int length, IOPortWriteFunc *func)
245{
246 int i;
247
248 for(i = start; i < start + length; i++)
249 ioport_writeb_table[i] = func;
250 return 0;
251}
252
f1510b2c
FB
253int register_ioport_readw(int start, int length, IOPortReadFunc *func)
254{
255 int i;
256
257 for(i = start; i < start + length; i += 2)
258 ioport_readw_table[i] = func;
259 return 0;
260}
261
262int register_ioport_writew(int start, int length, IOPortWriteFunc *func)
263{
264 int i;
265
266 for(i = start; i < start + length; i += 2)
267 ioport_writew_table[i] = func;
268 return 0;
269}
270
0824d6fc
FB
271void pstrcpy(char *buf, int buf_size, const char *str)
272{
273 int c;
274 char *q = buf;
275
276 if (buf_size <= 0)
277 return;
278
279 for(;;) {
280 c = *str++;
281 if (c == 0 || q >= buf + buf_size - 1)
282 break;
283 *q++ = c;
284 }
285 *q = '\0';
286}
287
288/* strcat and truncate. */
289char *pstrcat(char *buf, int buf_size, const char *s)
290{
291 int len;
292 len = strlen(buf);
293 if (len < buf_size)
294 pstrcpy(buf + len, buf_size - len, s);
295 return buf;
296}
297
298int load_kernel(const char *filename, uint8_t *addr)
299{
300 int fd, size, setup_sects;
301 uint8_t bootsect[512];
302
303 fd = open(filename, O_RDONLY);
304 if (fd < 0)
305 return -1;
306 if (read(fd, bootsect, 512) != 512)
307 goto fail;
308 setup_sects = bootsect[0x1F1];
309 if (!setup_sects)
310 setup_sects = 4;
311 /* skip 16 bit setup code */
312 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
313 size = read(fd, addr, 16 * 1024 * 1024);
314 if (size < 0)
315 goto fail;
316 close(fd);
317 return size;
318 fail:
319 close(fd);
320 return -1;
321}
322
323/* return the size or -1 if error */
324int load_image(const char *filename, uint8_t *addr)
325{
326 int fd, size;
327 fd = open(filename, O_RDONLY);
328 if (fd < 0)
329 return -1;
330 size = lseek(fd, 0, SEEK_END);
331 lseek(fd, 0, SEEK_SET);
332 if (read(fd, addr, size) != size) {
333 close(fd);
334 return -1;
335 }
336 close(fd);
337 return size;
338}
339
340void cpu_x86_outb(CPUX86State *env, int addr, int val)
341{
342 ioport_writeb_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
343}
344
345void cpu_x86_outw(CPUX86State *env, int addr, int val)
346{
347 ioport_writew_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
348}
349
350void cpu_x86_outl(CPUX86State *env, int addr, int val)
351{
352 fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
353}
354
355int cpu_x86_inb(CPUX86State *env, int addr)
356{
357 return ioport_readb_table[addr & (MAX_IOPORTS - 1)](env, addr);
358}
359
360int cpu_x86_inw(CPUX86State *env, int addr)
361{
362 return ioport_readw_table[addr & (MAX_IOPORTS - 1)](env, addr);
363}
364
365int cpu_x86_inl(CPUX86State *env, int addr)
366{
367 fprintf(stderr, "inl: port=0x%04x\n", addr);
368 return 0;
369}
370
371/***********************************************************/
372void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
373{
374}
375
376void hw_error(const char *fmt, ...)
377{
378 va_list ap;
379
380 va_start(ap, fmt);
381 fprintf(stderr, "qemu: hardware error: ");
382 vfprintf(stderr, fmt, ap);
383 fprintf(stderr, "\n");
384#ifdef TARGET_I386
385 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
386#endif
387 va_end(ap);
388 abort();
389}
390
391/***********************************************************/
392/* vga emulation */
393static uint8_t vga_index;
394static uint8_t vga_regs[256];
395static int last_cursor_pos;
396
397void update_console_messages(void)
398{
399 int c, i, cursor_pos, eol;
400
401 cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
402 eol = 0;
403 for(i = last_cursor_pos; i < cursor_pos; i++) {
404 c = phys_ram_base[0xb8000 + (i) * 2];
405 if (c >= ' ') {
406 putchar(c);
407 eol = 0;
408 } else {
409 if (!eol)
410 putchar('\n');
411 eol = 1;
412 }
413 }
414 fflush(stdout);
415 last_cursor_pos = cursor_pos;
416}
417
418/* just to see first Linux console messages, we intercept cursor position */
419void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
420{
421 switch(addr) {
422 case 0x3d4:
423 vga_index = data;
424 break;
425 case 0x3d5:
426 vga_regs[vga_index] = data;
427 if (vga_index == 0x0f)
428 update_console_messages();
429 break;
430 }
431
432}
433
434/***********************************************************/
435/* cmos emulation */
436
437#define RTC_SECONDS 0
438#define RTC_SECONDS_ALARM 1
439#define RTC_MINUTES 2
440#define RTC_MINUTES_ALARM 3
441#define RTC_HOURS 4
442#define RTC_HOURS_ALARM 5
443#define RTC_ALARM_DONT_CARE 0xC0
444
445#define RTC_DAY_OF_WEEK 6
446#define RTC_DAY_OF_MONTH 7
447#define RTC_MONTH 8
448#define RTC_YEAR 9
449
450#define RTC_REG_A 10
451#define RTC_REG_B 11
452#define RTC_REG_C 12
453#define RTC_REG_D 13
454
455/* PC cmos mappings */
456#define REG_EQUIPMENT_BYTE 0x14
457
458uint8_t cmos_data[128];
459uint8_t cmos_index;
460
461void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
462{
463 if (addr == 0x70) {
464 cmos_index = data & 0x7f;
465 }
466}
467
468uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
469{
470 int ret;
471
472 if (addr == 0x70) {
473 return 0xff;
474 } else {
475 /* toggle update-in-progress bit for Linux (same hack as
476 plex86) */
477 ret = cmos_data[cmos_index];
478 if (cmos_index == RTC_REG_A)
479 cmos_data[RTC_REG_A] ^= 0x80;
480 else if (cmos_index == RTC_REG_C)
481 cmos_data[RTC_REG_C] = 0x00;
482 return ret;
483 }
484}
485
486
487static inline int to_bcd(int a)
488{
489 return ((a / 10) << 4) | (a % 10);
490}
491
492void cmos_init(void)
493{
494 struct tm *tm;
495 time_t ti;
496
497 ti = time(NULL);
498 tm = gmtime(&ti);
499 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
500 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
501 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
502 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
503 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
504 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon);
505 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
506
507 cmos_data[RTC_REG_A] = 0x26;
508 cmos_data[RTC_REG_B] = 0x02;
509 cmos_data[RTC_REG_C] = 0x00;
510 cmos_data[RTC_REG_D] = 0x80;
511
512 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
513
514 register_ioport_writeb(0x70, 2, cmos_ioport_write);
515 register_ioport_readb(0x70, 2, cmos_ioport_read);
516}
517
518/***********************************************************/
519/* 8259 pic emulation */
520
521typedef struct PicState {
522 uint8_t last_irr; /* edge detection */
523 uint8_t irr; /* interrupt request register */
524 uint8_t imr; /* interrupt mask register */
525 uint8_t isr; /* interrupt service register */
526 uint8_t priority_add; /* used to compute irq priority */
527 uint8_t irq_base;
528 uint8_t read_reg_select;
529 uint8_t special_mask;
530 uint8_t init_state;
531 uint8_t auto_eoi;
532 uint8_t rotate_on_autoeoi;
533 uint8_t init4; /* true if 4 byte init */
534} PicState;
535
536/* 0 is master pic, 1 is slave pic */
537PicState pics[2];
538int pic_irq_requested;
539
540/* set irq level. If an edge is detected, then the IRR is set to 1 */
541static inline void pic_set_irq1(PicState *s, int irq, int level)
542{
543 int mask;
544 mask = 1 << irq;
545 if (level) {
546 if ((s->last_irr & mask) == 0)
547 s->irr |= mask;
548 s->last_irr |= mask;
549 } else {
550 s->last_irr &= ~mask;
551 }
552}
553
554static inline int get_priority(PicState *s, int mask)
555{
556 int priority;
557 if (mask == 0)
558 return -1;
559 priority = 7;
560 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
561 priority--;
562 return priority;
563}
564
565/* return the pic wanted interrupt. return -1 if none */
566static int pic_get_irq(PicState *s)
567{
568 int mask, cur_priority, priority;
569
570 mask = s->irr & ~s->imr;
571 priority = get_priority(s, mask);
572 if (priority < 0)
573 return -1;
574 /* compute current priority */
575 cur_priority = get_priority(s, s->isr);
576 if (priority > cur_priority) {
577 /* higher priority found: an irq should be generated */
578 return priority;
579 } else {
580 return -1;
581 }
582}
583
584void pic_set_irq(int irq, int level)
585{
586 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
587}
588
589/* can be called at any time outside cpu_exec() to raise irqs if
590 necessary */
591void pic_handle_irq(void)
592{
593 int irq2, irq;
594
595 /* first look at slave pic */
596 irq2 = pic_get_irq(&pics[1]);
597 if (irq2 >= 0) {
598 /* if irq request by slave pic, signal master PIC */
599 pic_set_irq1(&pics[0], 2, 1);
600 pic_set_irq1(&pics[0], 2, 0);
601 }
602 /* look at requested irq */
603 irq = pic_get_irq(&pics[0]);
604 if (irq >= 0) {
605 if (irq == 2) {
606 /* from slave pic */
607 pic_irq_requested = 8 + irq2;
608 } else {
609 /* from master pic */
610 pic_irq_requested = irq;
611 }
612 global_env->hard_interrupt_request = 1;
613 }
614}
615
616int cpu_x86_get_pic_interrupt(CPUX86State *env)
617{
618 int irq, irq2, intno;
619
620 /* signal the pic that the irq was acked by the CPU */
621 irq = pic_irq_requested;
622 if (irq >= 8) {
623 irq2 = irq & 7;
624 pics[1].isr |= (1 << irq2);
625 pics[1].irr &= ~(1 << irq2);
626 irq = 2;
627 intno = pics[1].irq_base + irq2;
628 } else {
629 intno = pics[0].irq_base + irq;
630 }
631 pics[0].isr |= (1 << irq);
632 pics[0].irr &= ~(1 << irq);
633 return intno;
634}
635
636void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
637{
638 PicState *s;
639 int priority;
640
641 s = &pics[addr >> 7];
642 addr &= 1;
643 if (addr == 0) {
644 if (val & 0x10) {
645 /* init */
646 memset(s, 0, sizeof(PicState));
647 s->init_state = 1;
648 s->init4 = val & 1;
649 if (val & 0x02)
650 hw_error("single mode not supported");
651 if (val & 0x08)
652 hw_error("level sensitive irq not supported");
653 } else if (val & 0x08) {
654 if (val & 0x02)
655 s->read_reg_select = val & 1;
656 if (val & 0x40)
657 s->special_mask = (val >> 5) & 1;
658 } else {
659 switch(val) {
660 case 0x00:
661 case 0x80:
662 s->rotate_on_autoeoi = val >> 7;
663 break;
664 case 0x20: /* end of interrupt */
665 case 0xa0:
666 priority = get_priority(s, s->isr);
667 if (priority >= 0) {
668 s->isr &= ~(1 << ((priority + s->priority_add) & 7));
669 }
670 if (val == 0xa0)
671 s->priority_add = (s->priority_add + 1) & 7;
672 break;
673 case 0x60 ... 0x67:
674 priority = val & 7;
675 s->isr &= ~(1 << priority);
676 break;
677 case 0xc0 ... 0xc7:
678 s->priority_add = (val + 1) & 7;
679 break;
680 case 0xe0 ... 0xe7:
681 priority = val & 7;
682 s->isr &= ~(1 << priority);
683 s->priority_add = (priority + 1) & 7;
684 break;
685 }
686 }
687 } else {
688 switch(s->init_state) {
689 case 0:
690 /* normal mode */
691 s->imr = val;
692 break;
693 case 1:
694 s->irq_base = val & 0xf8;
695 s->init_state = 2;
696 break;
697 case 2:
698 if (s->init4) {
699 s->init_state = 3;
700 } else {
701 s->init_state = 0;
702 }
703 break;
704 case 3:
705 s->auto_eoi = (val >> 1) & 1;
706 s->init_state = 0;
707 break;
708 }
709 }
710}
711
712uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr)
713{
714 PicState *s;
715 s = &pics[addr >> 7];
716 addr &= 1;
717 if (addr == 0) {
718 if (s->read_reg_select)
719 return s->isr;
720 else
721 return s->irr;
722 } else {
723 return s->imr;
724 }
725}
726
727void pic_init(void)
728{
729 register_ioport_writeb(0x20, 2, pic_ioport_write);
730 register_ioport_readb(0x20, 2, pic_ioport_read);
731 register_ioport_writeb(0xa0, 2, pic_ioport_write);
732 register_ioport_readb(0xa0, 2, pic_ioport_read);
733}
734
735/***********************************************************/
736/* 8253 PIT emulation */
737
738#define PIT_FREQ 1193182
739
740#define RW_STATE_LSB 0
741#define RW_STATE_MSB 1
742#define RW_STATE_WORD0 2
743#define RW_STATE_WORD1 3
744#define RW_STATE_LATCHED_WORD0 4
745#define RW_STATE_LATCHED_WORD1 5
746
747typedef struct PITChannelState {
748 uint16_t count;
749 uint16_t latched_count;
750 uint8_t rw_state;
751 uint8_t mode;
752 uint8_t bcd; /* not supported */
753 uint8_t gate; /* timer start */
754 int64_t count_load_time;
755} PITChannelState;
756
757PITChannelState pit_channels[3];
758int speaker_data_on;
759
760int64_t ticks_per_sec;
761
762int64_t get_clock(void)
763{
764 struct timeval tv;
765 gettimeofday(&tv, NULL);
766 return tv.tv_sec * 1000000LL + tv.tv_usec;
767}
768
769int64_t cpu_get_ticks(void)
770{
771 int64_t val;
772 asm("rdtsc" : "=A" (val));
773 return val;
774}
775
776void cpu_calibrate_ticks(void)
777{
778 int64_t usec, ticks;
779
780 usec = get_clock();
781 ticks = cpu_get_ticks();
782 usleep(50 * 1000);
783 usec = get_clock() - usec;
784 ticks = cpu_get_ticks() - ticks;
785 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
786}
787
788static int pit_get_count(PITChannelState *s)
789{
790 int64_t d;
791 int counter;
792
793 d = ((cpu_get_ticks() - s->count_load_time) * PIT_FREQ) /
794 ticks_per_sec;
795 switch(s->mode) {
796 case 0:
797 case 1:
798 case 4:
799 case 5:
800 counter = (s->count - d) & 0xffff;
801 break;
802 default:
803 counter = s->count - (d % s->count);
804 break;
805 }
806 return counter;
807}
808
809/* get pit output bit */
810static int pit_get_out(PITChannelState *s)
811{
812 int64_t d;
813 int out;
814
815 d = ((cpu_get_ticks() - s->count_load_time) * PIT_FREQ) /
816 ticks_per_sec;
817 switch(s->mode) {
818 default:
819 case 0:
820 out = (d >= s->count);
821 break;
822 case 1:
823 out = (d < s->count);
824 break;
825 case 2:
826 if ((d % s->count) == 0 && d != 0)
827 out = 1;
828 else
829 out = 0;
830 break;
831 case 3:
832 out = (d % s->count) < (s->count >> 1);
833 break;
834 case 4:
835 case 5:
836 out = (d == s->count);
837 break;
838 }
839 return out;
840}
841
842void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
843{
844 int channel, access;
845 PITChannelState *s;
846
847 addr &= 3;
848 if (addr == 3) {
849 channel = val >> 6;
850 if (channel == 3)
851 return;
852 s = &pit_channels[channel];
853 access = (val >> 4) & 3;
854 switch(access) {
855 case 0:
856 s->latched_count = pit_get_count(s);
857 s->rw_state = RW_STATE_LATCHED_WORD0;
858 break;
859 default:
860 s->rw_state = access - 1 + RW_STATE_LSB;
861 break;
862 }
863 s->mode = (val >> 1) & 7;
864 s->bcd = val & 1;
865 } else {
866 s = &pit_channels[addr];
867 switch(s->rw_state) {
868 case RW_STATE_LSB:
869 s->count_load_time = cpu_get_ticks();
870 s->count = val;
871 break;
872 case RW_STATE_MSB:
873 s->count_load_time = cpu_get_ticks();
874 s->count = (val << 8);
875 break;
876 case RW_STATE_WORD0:
877 case RW_STATE_WORD1:
878 if (s->rw_state & 1) {
879 s->count_load_time = cpu_get_ticks();
880 s->count = (s->latched_count & 0xff) | (val << 8);
881 } else {
882 s->latched_count = val;
883 }
884 s->rw_state ^= 1;
885 break;
886 }
887 }
888}
889
890uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
891{
892 int ret, count;
893 PITChannelState *s;
894
895 addr &= 3;
896 s = &pit_channels[addr];
897 switch(s->rw_state) {
898 case RW_STATE_LSB:
899 case RW_STATE_MSB:
900 case RW_STATE_WORD0:
901 case RW_STATE_WORD1:
902 count = pit_get_count(s);
903 if (s->rw_state & 1)
904 ret = (count >> 8) & 0xff;
905 else
906 ret = count & 0xff;
907 if (s->rw_state & 2)
908 s->rw_state ^= 1;
909 break;
910 default:
911 case RW_STATE_LATCHED_WORD0:
912 case RW_STATE_LATCHED_WORD1:
913 if (s->rw_state & 1)
914 ret = s->latched_count >> 8;
915 else
916 ret = s->latched_count & 0xff;
917 s->rw_state ^= 1;
918 break;
919 }
920 return ret;
921}
922
923void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
924{
925 speaker_data_on = (val >> 1) & 1;
926 pit_channels[2].gate = val & 1;
927}
928
929uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
930{
931 int out;
932 out = pit_get_out(&pit_channels[2]);
933 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
934}
935
936void pit_init(void)
937{
938 pit_channels[0].gate = 1;
939 pit_channels[1].gate = 1;
940 pit_channels[2].gate = 0;
941
942 register_ioport_writeb(0x40, 4, pit_ioport_write);
943 register_ioport_readb(0x40, 3, pit_ioport_read);
944
945 register_ioport_readb(0x61, 1, speaker_ioport_read);
946 register_ioport_writeb(0x61, 1, speaker_ioport_write);
947 cpu_calibrate_ticks();
948}
949
950/***********************************************************/
951/* serial port emulation */
952
953#define UART_IRQ 4
954
955#define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
956
957#define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
958#define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
959#define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
960#define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
961
962#define UART_IIR_NO_INT 0x01 /* No interrupts pending */
963#define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
964
965#define UART_IIR_MSI 0x00 /* Modem status interrupt */
966#define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
967#define UART_IIR_RDI 0x04 /* Receiver data interrupt */
968#define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
969
970#define UART_LSR_TEMT 0x40 /* Transmitter empty */
971#define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
972#define UART_LSR_BI 0x10 /* Break interrupt indicator */
973#define UART_LSR_FE 0x08 /* Frame error indicator */
974#define UART_LSR_PE 0x04 /* Parity error indicator */
975#define UART_LSR_OE 0x02 /* Overrun error indicator */
976#define UART_LSR_DR 0x01 /* Receiver data ready */
977
978typedef struct SerialState {
979 uint8_t divider;
980 uint8_t rbr; /* receive register */
981 uint8_t ier;
982 uint8_t iir; /* read only */
983 uint8_t lcr;
984 uint8_t mcr;
985 uint8_t lsr; /* read only */
986 uint8_t msr;
987 uint8_t scr;
988} SerialState;
989
990SerialState serial_ports[1];
991
992void serial_update_irq(void)
993{
994 SerialState *s = &serial_ports[0];
995
996 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
997 s->iir = UART_IIR_RDI;
998 } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
999 s->iir = UART_IIR_THRI;
1000 } else {
1001 s->iir = UART_IIR_NO_INT;
1002 }
1003 if (s->iir != UART_IIR_NO_INT) {
1004 pic_set_irq(UART_IRQ, 1);
1005 } else {
1006 pic_set_irq(UART_IRQ, 0);
1007 }
1008}
1009
1010void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1011{
1012 SerialState *s = &serial_ports[0];
1013 unsigned char ch;
1014 int ret;
1015
1016 addr &= 7;
1017 switch(addr) {
1018 default:
1019 case 0:
1020 if (s->lcr & UART_LCR_DLAB) {
1021 s->divider = (s->divider & 0xff00) | val;
1022 } else {
1023 s->lsr &= ~UART_LSR_THRE;
1024 serial_update_irq();
1025
1026 ch = val;
1027 do {
1028 ret = write(1, &ch, 1);
1029 } while (ret != 1);
1030 s->lsr |= UART_LSR_THRE;
1031 s->lsr |= UART_LSR_TEMT;
1032 serial_update_irq();
1033 }
1034 break;
1035 case 1:
1036 if (s->lcr & UART_LCR_DLAB) {
1037 s->divider = (s->divider & 0x00ff) | (val << 8);
1038 } else {
1039 s->ier = val;
1040 serial_update_irq();
1041 }
1042 break;
1043 case 2:
1044 break;
1045 case 3:
1046 s->lcr = val;
1047 break;
1048 case 4:
1049 s->mcr = val;
1050 break;
1051 case 5:
1052 break;
1053 case 6:
1054 s->msr = val;
1055 break;
1056 case 7:
1057 s->scr = val;
1058 break;
1059 }
1060}
1061
1062uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1063{
1064 SerialState *s = &serial_ports[0];
1065 uint32_t ret;
1066
1067 addr &= 7;
1068 switch(addr) {
1069 default:
1070 case 0:
1071 if (s->lcr & UART_LCR_DLAB) {
1072 ret = s->divider & 0xff;
1073 } else {
1074 ret = s->rbr;
1075 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1076 serial_update_irq();
1077 }
1078 break;
1079 case 1:
1080 if (s->lcr & UART_LCR_DLAB) {
1081 ret = (s->divider >> 8) & 0xff;
1082 } else {
1083 ret = s->ier;
1084 }
1085 break;
1086 case 2:
1087 ret = s->iir;
1088 break;
1089 case 3:
1090 ret = s->lcr;
1091 break;
1092 case 4:
1093 ret = s->mcr;
1094 break;
1095 case 5:
1096 ret = s->lsr;
1097 break;
1098 case 6:
1099 ret = s->msr;
1100 break;
1101 case 7:
1102 ret = s->scr;
1103 break;
1104 }
1105 return ret;
1106}
1107
1108#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1109static int term_got_escape;
1110
1111void term_print_help(void)
1112{
1113 printf("\n"
1114 "C-a h print this help\n"
1115 "C-a x exit emulatior\n"
1116 "C-a b send break (magic sysrq)\n"
1117 "C-a C-a send C-a\n"
1118 );
1119}
1120
1121/* called when a char is received */
1122void serial_received_byte(SerialState *s, int ch)
1123{
1124 if (term_got_escape) {
1125 term_got_escape = 0;
1126 switch(ch) {
1127 case 'h':
1128 term_print_help();
1129 break;
1130 case 'x':
1131 exit(0);
1132 break;
1133 case 'b':
1134 /* send break */
1135 s->rbr = 0;
1136 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1137 serial_update_irq();
1138 break;
1139 case TERM_ESCAPE:
1140 goto send_char;
1141 }
1142 } else if (ch == TERM_ESCAPE) {
1143 term_got_escape = 1;
1144 } else {
1145 send_char:
1146 s->rbr = ch;
1147 s->lsr |= UART_LSR_DR;
1148 serial_update_irq();
1149 }
1150}
1151
1152/* init terminal so that we can grab keys */
1153static struct termios oldtty;
1154
1155static void term_exit(void)
1156{
1157 tcsetattr (0, TCSANOW, &oldtty);
1158}
1159
1160static void term_init(void)
1161{
1162 struct termios tty;
1163
1164 tcgetattr (0, &tty);
1165 oldtty = tty;
1166
1167 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1168 |INLCR|IGNCR|ICRNL|IXON);
1169 tty.c_oflag |= OPOST;
1170 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1171 tty.c_cflag &= ~(CSIZE|PARENB);
1172 tty.c_cflag |= CS8;
1173 tty.c_cc[VMIN] = 1;
1174 tty.c_cc[VTIME] = 0;
1175
1176 tcsetattr (0, TCSANOW, &tty);
1177
1178 atexit(term_exit);
1179
1180 fcntl(0, F_SETFL, O_NONBLOCK);
1181}
1182
1183void serial_init(void)
1184{
1185 SerialState *s = &serial_ports[0];
1186
1187 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1188
1189 register_ioport_writeb(0x3f8, 8, serial_ioport_write);
1190 register_ioport_readb(0x3f8, 8, serial_ioport_read);
1191
1192 term_init();
1193}
1194
f1510b2c
FB
1195/***********************************************************/
1196/* ne2000 emulation */
1197
1198//#define DEBUG_NE2000
1199
1200#define NE2000_IOPORT 0x300
1201#define NE2000_IRQ 9
1202
1203#define MAX_ETH_FRAME_SIZE 1514
1204
1205#define E8390_CMD 0x00 /* The command register (for all pages) */
1206/* Page 0 register offsets. */
1207#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1208#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1209#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1210#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1211#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1212#define EN0_TSR 0x04 /* Transmit status reg RD */
1213#define EN0_TPSR 0x04 /* Transmit starting page WR */
1214#define EN0_NCR 0x05 /* Number of collision reg RD */
1215#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1216#define EN0_FIFO 0x06 /* FIFO RD */
1217#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1218#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1219#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1220#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1221#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1222#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1223#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1224#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1225#define EN0_RSR 0x0c /* rx status reg RD */
1226#define EN0_RXCR 0x0c /* RX configuration reg WR */
1227#define EN0_TXCR 0x0d /* TX configuration reg WR */
1228#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1229#define EN0_DCFG 0x0e /* Data configuration reg WR */
1230#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1231#define EN0_IMR 0x0f /* Interrupt mask reg WR */
1232#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1233
1234#define EN1_PHYS 0x11
1235#define EN1_CURPAG 0x17
1236#define EN1_MULT 0x18
1237
1238/* Register accessed at EN_CMD, the 8390 base addr. */
1239#define E8390_STOP 0x01 /* Stop and reset the chip */
1240#define E8390_START 0x02 /* Start the chip, clear reset */
1241#define E8390_TRANS 0x04 /* Transmit a frame */
1242#define E8390_RREAD 0x08 /* Remote read */
1243#define E8390_RWRITE 0x10 /* Remote write */
1244#define E8390_NODMA 0x20 /* Remote DMA */
1245#define E8390_PAGE0 0x00 /* Select page chip registers */
1246#define E8390_PAGE1 0x40 /* using the two high-order bits */
1247#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1248
1249/* Bits in EN0_ISR - Interrupt status register */
1250#define ENISR_RX 0x01 /* Receiver, no error */
1251#define ENISR_TX 0x02 /* Transmitter, no error */
1252#define ENISR_RX_ERR 0x04 /* Receiver, with error */
1253#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1254#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1255#define ENISR_COUNTERS 0x20 /* Counters need emptying */
1256#define ENISR_RDC 0x40 /* remote dma complete */
1257#define ENISR_RESET 0x80 /* Reset completed */
1258#define ENISR_ALL 0x3f /* Interrupts we will enable */
1259
1260/* Bits in received packet status byte and EN0_RSR*/
1261#define ENRSR_RXOK 0x01 /* Received a good packet */
1262#define ENRSR_CRC 0x02 /* CRC error */
1263#define ENRSR_FAE 0x04 /* frame alignment error */
1264#define ENRSR_FO 0x08 /* FIFO overrun */
1265#define ENRSR_MPA 0x10 /* missed pkt */
1266#define ENRSR_PHY 0x20 /* physical/multicast address */
1267#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1268#define ENRSR_DEF 0x80 /* deferring */
1269
1270/* Transmitted packet status, EN0_TSR. */
1271#define ENTSR_PTX 0x01 /* Packet transmitted without error */
1272#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1273#define ENTSR_COL 0x04 /* The transmit collided at least once. */
1274#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1275#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1276#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1277#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1278#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1279
1280#define NE2000_MEM_SIZE 32768
1281
1282typedef struct NE2000State {
1283 uint8_t cmd;
1284 uint32_t start;
1285 uint32_t stop;
1286 uint8_t boundary;
1287 uint8_t tsr;
1288 uint8_t tpsr;
1289 uint16_t tcnt;
1290 uint16_t rcnt;
1291 uint32_t rsar;
1292 uint8_t isr;
1293 uint8_t dcfg;
1294 uint8_t imr;
1295 uint8_t phys[6]; /* mac address */
1296 uint8_t curpag;
1297 uint8_t mult[8]; /* multicast mask array */
1298 uint8_t mem[NE2000_MEM_SIZE];
1299} NE2000State;
1300
1301NE2000State ne2000_state;
1302int net_fd = -1;
1303char network_script[1024];
1304
1305void ne2000_reset(void)
1306{
1307 NE2000State *s = &ne2000_state;
1308 int i;
1309
1310 s->isr = ENISR_RESET;
1311 s->mem[0] = 0x52;
1312 s->mem[1] = 0x54;
1313 s->mem[2] = 0x00;
1314 s->mem[3] = 0x12;
1315 s->mem[4] = 0x34;
1316 s->mem[5] = 0x56;
1317 s->mem[14] = 0x57;
1318 s->mem[15] = 0x57;
1319
1320 /* duplicate prom data */
1321 for(i = 15;i >= 0; i--) {
1322 s->mem[2 * i] = s->mem[i];
1323 s->mem[2 * i + 1] = s->mem[i];
1324 }
1325}
1326
1327void ne2000_update_irq(NE2000State *s)
1328{
1329 int isr;
1330 isr = s->isr & s->imr;
1331 if (isr)
1332 pic_set_irq(NE2000_IRQ, 1);
1333 else
1334 pic_set_irq(NE2000_IRQ, 0);
1335}
1336
1337int net_init(void)
1338{
1339 struct ifreq ifr;
1340 int fd, ret, pid, status;
1341
1342 fd = open("/dev/net/tun", O_RDWR);
1343 if (fd < 0) {
1344 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1345 return -1;
1346 }
1347 memset(&ifr, 0, sizeof(ifr));
1348 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1349 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1350 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1351 if (ret != 0) {
1352 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1353 close(fd);
1354 return -1;
1355 }
1356 printf("connected to host network interface: %s\n", ifr.ifr_name);
1357 fcntl(fd, F_SETFL, O_NONBLOCK);
1358 net_fd = fd;
1359
1360 /* try to launch network init script */
1361 pid = fork();
1362 if (pid >= 0) {
1363 if (pid == 0) {
1364 execl(network_script, network_script, ifr.ifr_name, NULL);
1365 exit(1);
1366 }
1367 while (waitpid(pid, &status, 0) != pid);
1368 if (!WIFEXITED(status) ||
1369 WEXITSTATUS(status) != 0) {
1370 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1371 network_script, ifr.ifr_name);
1372 }
1373 }
1374 return 0;
1375}
1376
1377void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1378{
1379#ifdef DEBUG_NE2000
1380 printf("NE2000: sending packet size=%d\n", size);
1381#endif
1382 write(net_fd, buf, size);
1383}
1384
1385/* return true if the NE2000 can receive more data */
1386int ne2000_can_receive(NE2000State *s)
1387{
1388 int avail, index, boundary;
1389
1390 if (s->cmd & E8390_STOP)
1391 return 0;
1392 index = s->curpag << 8;
1393 boundary = s->boundary << 8;
1394 if (index < boundary)
1395 avail = boundary - index;
1396 else
1397 avail = (s->stop - s->start) - (index - boundary);
1398 if (avail < (MAX_ETH_FRAME_SIZE + 4))
1399 return 0;
1400 return 1;
1401}
1402
1403void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1404{
1405 uint8_t *p;
1406 int total_len, next, avail, len, index;
1407
1408#if defined(DEBUG_NE2000)
1409 printf("NE2000: received len=%d\n", size);
1410#endif
1411
1412 index = s->curpag << 8;
1413 /* 4 bytes for header */
1414 total_len = size + 4;
1415 /* address for next packet (4 bytes for CRC) */
1416 next = index + ((total_len + 4 + 255) & ~0xff);
1417 if (next >= s->stop)
1418 next -= (s->stop - s->start);
1419 /* prepare packet header */
1420 p = s->mem + index;
1421 p[0] = ENRSR_RXOK; /* receive status */
1422 p[1] = next >> 8;
1423 p[2] = total_len;
1424 p[3] = total_len >> 8;
1425 index += 4;
1426
1427 /* write packet data */
1428 while (size > 0) {
1429 avail = s->stop - index;
1430 len = size;
1431 if (len > avail)
1432 len = avail;
1433 memcpy(s->mem + index, buf, len);
1434 buf += len;
1435 index += len;
1436 if (index == s->stop)
1437 index = s->start;
1438 size -= len;
1439 }
1440 s->curpag = next >> 8;
1441
1442 /* now we can signal we have receive something */
1443 s->isr |= ENISR_RX;
1444 ne2000_update_irq(s);
1445}
1446
1447void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1448{
1449 NE2000State *s = &ne2000_state;
1450 int offset, page;
1451
1452 addr &= 0xf;
1453#ifdef DEBUG_NE2000
1454 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1455#endif
1456 if (addr == E8390_CMD) {
1457 /* control register */
1458 s->cmd = val;
1459 if (val & E8390_START) {
1460 /* test specific case: zero length transfert */
1461 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1462 s->rcnt == 0) {
1463 s->isr |= ENISR_RDC;
1464 ne2000_update_irq(s);
1465 }
1466 if (val & E8390_TRANS) {
1467 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1468 /* signal end of transfert */
1469 s->tsr = ENTSR_PTX;
1470 s->isr |= ENISR_TX;
1471 ne2000_update_irq(s);
1472 }
1473 }
1474 } else {
1475 page = s->cmd >> 6;
1476 offset = addr | (page << 4);
1477 switch(offset) {
1478 case EN0_STARTPG:
1479 s->start = val << 8;
1480 break;
1481 case EN0_STOPPG:
1482 s->stop = val << 8;
1483 break;
1484 case EN0_BOUNDARY:
1485 s->boundary = val;
1486 break;
1487 case EN0_IMR:
1488 s->imr = val;
1489 ne2000_update_irq(s);
1490 break;
1491 case EN0_TPSR:
1492 s->tpsr = val;
1493 break;
1494 case EN0_TCNTLO:
1495 s->tcnt = (s->tcnt & 0xff00) | val;
1496 break;
1497 case EN0_TCNTHI:
1498 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1499 break;
1500 case EN0_RSARLO:
1501 s->rsar = (s->rsar & 0xff00) | val;
1502 break;
1503 case EN0_RSARHI:
1504 s->rsar = (s->rsar & 0x00ff) | (val << 8);
1505 break;
1506 case EN0_RCNTLO:
1507 s->rcnt = (s->rcnt & 0xff00) | val;
1508 break;
1509 case EN0_RCNTHI:
1510 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1511 break;
1512 case EN0_DCFG:
1513 s->dcfg = val;
1514 break;
1515 case EN0_ISR:
1516 s->isr &= ~val;
1517 ne2000_update_irq(s);
1518 break;
1519 case EN1_PHYS ... EN1_PHYS + 5:
1520 s->phys[offset - EN1_PHYS] = val;
1521 break;
1522 case EN1_CURPAG:
1523 s->curpag = val;
1524 break;
1525 case EN1_MULT ... EN1_MULT + 7:
1526 s->mult[offset - EN1_MULT] = val;
1527 break;
1528 }
1529 }
1530}
1531
1532uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1533{
1534 NE2000State *s = &ne2000_state;
1535 int offset, page, ret;
1536
1537 addr &= 0xf;
1538 if (addr == E8390_CMD) {
1539 ret = s->cmd;
1540 } else {
1541 page = s->cmd >> 6;
1542 offset = addr | (page << 4);
1543 switch(offset) {
1544 case EN0_TSR:
1545 ret = s->tsr;
1546 break;
1547 case EN0_BOUNDARY:
1548 ret = s->boundary;
1549 break;
1550 case EN0_ISR:
1551 ret = s->isr;
1552 break;
1553 case EN1_PHYS ... EN1_PHYS + 5:
1554 ret = s->phys[offset - EN1_PHYS];
1555 break;
1556 case EN1_CURPAG:
1557 ret = s->curpag;
1558 break;
1559 case EN1_MULT ... EN1_MULT + 7:
1560 ret = s->mult[offset - EN1_MULT];
1561 break;
1562 default:
1563 ret = 0x00;
1564 break;
1565 }
1566 }
1567#ifdef DEBUG_NE2000
1568 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1569#endif
1570 return ret;
1571}
1572
1573void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1574{
1575 NE2000State *s = &ne2000_state;
1576 uint8_t *p;
1577
1578#ifdef DEBUG_NE2000
1579 printf("NE2000: asic write val=0x%04x\n", val);
1580#endif
1581 p = s->mem + s->rsar;
1582 if (s->dcfg & 0x01) {
1583 /* 16 bit access */
1584 p[0] = val;
1585 p[1] = val >> 8;
1586 s->rsar += 2;
1587 s->rcnt -= 2;
1588 } else {
1589 /* 8 bit access */
1590 p[0] = val;
1591 s->rsar++;
1592 s->rcnt--;
1593 }
1594 /* wrap */
1595 if (s->rsar == s->stop)
1596 s->rsar = s->start;
1597 if (s->rcnt == 0) {
1598 /* signal end of transfert */
1599 s->isr |= ENISR_RDC;
1600 ne2000_update_irq(s);
1601 }
1602}
1603
1604uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1605{
1606 NE2000State *s = &ne2000_state;
1607 uint8_t *p;
1608 int ret;
1609
1610 p = s->mem + s->rsar;
1611 if (s->dcfg & 0x01) {
1612 /* 16 bit access */
1613 ret = p[0] | (p[1] << 8);
1614 s->rsar += 2;
1615 s->rcnt -= 2;
1616 } else {
1617 /* 8 bit access */
1618 ret = p[0];
1619 s->rsar++;
1620 s->rcnt--;
1621 }
1622 /* wrap */
1623 if (s->rsar == s->stop)
1624 s->rsar = s->start;
1625 if (s->rcnt == 0) {
1626 /* signal end of transfert */
1627 s->isr |= ENISR_RDC;
1628 ne2000_update_irq(s);
1629 }
1630#ifdef DEBUG_NE2000
1631 printf("NE2000: asic read val=0x%04x\n", ret);
1632#endif
1633 return ret;
1634}
1635
1636void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1637{
1638 /* nothing to do (end of reset pulse) */
1639}
1640
1641uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1642{
1643 ne2000_reset();
1644 return 0;
1645}
1646
1647void ne2000_init(void)
1648{
1649 register_ioport_writeb(NE2000_IOPORT, 16, ne2000_ioport_write);
1650 register_ioport_readb(NE2000_IOPORT, 16, ne2000_ioport_read);
1651
1652 register_ioport_writeb(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write);
1653 register_ioport_readb(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read);
1654 register_ioport_writew(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write);
1655 register_ioport_readw(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read);
1656
1657 register_ioport_writeb(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write);
1658 register_ioport_readb(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read);
1659 ne2000_reset();
1660}
1661
1662/***********************************************************/
0824d6fc
FB
1663/* cpu signal handler */
1664static void host_segv_handler(int host_signum, siginfo_t *info,
1665 void *puc)
1666{
1667 if (cpu_signal_handler(host_signum, info, puc))
1668 return;
1669 term_exit();
1670 abort();
1671}
1672
1673static int timer_irq_pending;
1674
1675static void host_alarm_handler(int host_signum, siginfo_t *info,
1676 void *puc)
1677{
1df912cf 1678 /* just exit from the cpu to have a chance to handle timers */
0824d6fc
FB
1679 cpu_x86_interrupt(global_env);
1680 timer_irq_pending = 1;
1681}
1682
1683void help(void)
1684{
1685 printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
1686 "usage: vl [-h] bzImage initrd [kernel parameters...]\n"
1687 "\n"
1688 "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
1689 "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
1690 "'initrd' is an initrd image\n"
1691 "-m megs set virtual RAM size to megs MB\n"
f1510b2c 1692 "-n script set network init script [default=%s]\n"
0824d6fc
FB
1693 "-d output log in /tmp/vl.log\n"
1694 "\n"
f1510b2c
FB
1695 "During emulation, use C-a h to get terminal commands:\n",
1696 DEFAULT_NETWORK_SCRIPT);
0824d6fc
FB
1697 term_print_help();
1698 exit(1);
1699}
1700
1701int main(int argc, char **argv)
1702{
1703 int c, ret, initrd_size, i;
1704 struct linux_params *params;
1705 struct sigaction act;
1706 struct itimerval itv;
1707 CPUX86State *env;
1708
1709 /* we never want that malloc() uses mmap() */
1710 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
1711
1712 phys_ram_size = 32 * 1024 * 1024;
f1510b2c 1713 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
0824d6fc 1714 for(;;) {
f1510b2c 1715 c = getopt(argc, argv, "hm:dn:");
0824d6fc
FB
1716 if (c == -1)
1717 break;
1718 switch(c) {
1719 case 'h':
1720 help();
1721 break;
1722 case 'm':
1723 phys_ram_size = atoi(optarg) * 1024 * 1024;
1724 if (phys_ram_size <= 0)
1725 help();
1726 break;
1727 case 'd':
1728 loglevel = 1;
1729 break;
f1510b2c
FB
1730 case 'n':
1731 pstrcpy(network_script, sizeof(network_script), optarg);
1732 break;
0824d6fc
FB
1733 }
1734 }
1735 if (optind + 1 >= argc)
1736 help();
1737
1738 /* init debug */
1739 if (loglevel) {
1740 logfile = fopen(DEBUG_LOGFILE, "w");
1741 if (!logfile) {
1742 perror(DEBUG_LOGFILE);
1743 _exit(1);
1744 }
1745 setvbuf(logfile, NULL, _IOLBF, 0);
1746 }
1747
f1510b2c
FB
1748 /* init network tun interface */
1749 net_init();
1750
0824d6fc
FB
1751 /* init the memory */
1752 strcpy(phys_ram_file, "/tmp/vlXXXXXX");
1753 if (mkstemp(phys_ram_file) < 0) {
1754 fprintf(stderr, "Could not create temporary memory file\n");
1755 exit(1);
1756 }
1757 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
1758 if (phys_ram_fd < 0) {
1759 fprintf(stderr, "Could not open temporary memory file\n");
1760 exit(1);
1761 }
1762 ftruncate(phys_ram_fd, phys_ram_size);
1763 unlink(phys_ram_file);
1764 phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size,
1765 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
1766 phys_ram_fd, 0);
1767 if (phys_ram_base == MAP_FAILED) {
1768 fprintf(stderr, "Could not map physical memory\n");
1769 exit(1);
1770 }
1771
1772 /* now we can load the kernel */
1773 ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
1774 if (ret < 0) {
1775 fprintf(stderr, "%s: could not load kernel\n", argv[optind]);
1776 exit(1);
1777 }
1778
1779 /* load initrd */
1780 initrd_size = load_image(argv[optind + 1], phys_ram_base + INITRD_LOAD_ADDR);
1781 if (initrd_size < 0) {
1782 fprintf(stderr, "%s: could not load initrd\n", argv[optind + 1]);
1783 exit(1);
1784 }
1785
1786 /* init kernel params */
1787 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
1788 memset(params, 0, sizeof(struct linux_params));
1789 params->mount_root_rdonly = 0;
1790 params->cl_magic = 0xA33F;
1791 params->cl_offset = params->commandline - (uint8_t *)params;
1792 params->ext_mem_k = (phys_ram_size / 1024) - 1024;
1793 for(i = optind + 2; i < argc; i++) {
1794 if (i != optind + 2)
1795 pstrcat(params->commandline, sizeof(params->commandline), " ");
1796 pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
1797 }
1798 params->loader_type = 0x01;
1799 if (initrd_size > 0) {
1800 params->initrd_start = INITRD_LOAD_ADDR;
1801 params->initrd_size = initrd_size;
1802 }
1803 params->orig_video_lines = 25;
1804 params->orig_video_cols = 80;
1805
1806 /* init basic PC hardware */
1807 init_ioports();
1808 register_ioport_writeb(0x80, 1, ioport80_write);
1809
1810 register_ioport_writeb(0x3d4, 2, vga_ioport_write);
1811
1812 cmos_init();
1813 pic_init();
1814 pit_init();
1815 serial_init();
f1510b2c 1816 ne2000_init();
0824d6fc
FB
1817
1818 /* setup cpu signal handlers for MMU / self modifying code handling */
1819 sigfillset(&act.sa_mask);
1820 act.sa_flags = SA_SIGINFO;
1821 act.sa_sigaction = host_segv_handler;
1822 sigaction(SIGSEGV, &act, NULL);
1823 sigaction(SIGBUS, &act, NULL);
1824
1825 act.sa_sigaction = host_alarm_handler;
1826 sigaction(SIGALRM, &act, NULL);
1827
1828 /* init CPU state */
1829 env = cpu_init();
1830 global_env = env;
1df912cf 1831 cpu_single_env = env;
0824d6fc
FB
1832
1833 /* setup basic memory access */
1834 env->cr[0] = 0x00000033;
1835 cpu_x86_init_mmu(env);
1836
1837 memset(params->idt_table, 0, sizeof(params->idt_table));
1838
1839 params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
1840 params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
1841
1842 env->idt.base = (void *)params->idt_table;
1843 env->idt.limit = sizeof(params->idt_table) - 1;
1844 env->gdt.base = (void *)params->gdt_table;
1845 env->gdt.limit = sizeof(params->gdt_table) - 1;
1846
1847 cpu_x86_load_seg(env, R_CS, KERNEL_CS);
1848 cpu_x86_load_seg(env, R_DS, KERNEL_DS);
1849 cpu_x86_load_seg(env, R_ES, KERNEL_DS);
1850 cpu_x86_load_seg(env, R_SS, KERNEL_DS);
1851 cpu_x86_load_seg(env, R_FS, KERNEL_DS);
1852 cpu_x86_load_seg(env, R_GS, KERNEL_DS);
1853
1854 env->eip = KERNEL_LOAD_ADDR;
1855 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
1856 env->eflags = 0x2;
1857
1858 itv.it_interval.tv_sec = 0;
1859 itv.it_interval.tv_usec = 10 * 1000;
1860 itv.it_value.tv_sec = 0;
1861 itv.it_value.tv_usec = 10 * 1000;
1862 setitimer(ITIMER_REAL, &itv, NULL);
1863
1864 for(;;) {
f1510b2c 1865 struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd;
0824d6fc
FB
1866 int ret, n, timeout;
1867 uint8_t ch;
1868
1869 ret = cpu_x86_exec(env);
1870
1871 /* if hlt instruction, we wait until the next IRQ */
1872 if (ret == EXCP_HLT)
1873 timeout = 10;
1874 else
1875 timeout = 0;
1876 /* poll any events */
f1510b2c
FB
1877 serial_ufd = NULL;
1878 net_ufd = NULL;
0824d6fc
FB
1879 pf = ufds;
1880 if (!(serial_ports[0].lsr & UART_LSR_DR)) {
f1510b2c 1881 serial_ufd = pf;
0824d6fc
FB
1882 pf->fd = 0;
1883 pf->events = POLLIN;
1884 pf++;
1885 }
f1510b2c
FB
1886 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
1887 net_ufd = pf;
1888 pf->fd = net_fd;
1889 pf->events = POLLIN;
1890 pf++;
1891 }
0824d6fc
FB
1892 ret = poll(ufds, pf - ufds, timeout);
1893 if (ret > 0) {
f1510b2c 1894 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
0824d6fc
FB
1895 n = read(0, &ch, 1);
1896 if (n == 1) {
1897 serial_received_byte(&serial_ports[0], ch);
1898 }
1899 }
f1510b2c
FB
1900 if (net_ufd && (net_ufd->revents & POLLIN)) {
1901 uint8_t buf[MAX_ETH_FRAME_SIZE];
1902
1903 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
1904 if (n > 0) {
1905 if (n < 60) {
1906 memset(buf + n, 0, 60 - n);
1907 n = 60;
1908 }
1909 ne2000_receive(&ne2000_state, buf, n);
1910 }
1911 }
0824d6fc
FB
1912 }
1913
1df912cf 1914 /* timer IRQ */
0824d6fc
FB
1915 if (timer_irq_pending) {
1916 pic_set_irq(0, 1);
1917 pic_set_irq(0, 0);
1918 timer_irq_pending = 0;
1919 }
1920
1921 pic_handle_irq();
1922 }
1923
1924 return 0;
1925}