]> git.proxmox.com Git - mirror_qemu.git/blame - vl.c
update
[mirror_qemu.git] / vl.c
CommitLineData
0824d6fc 1/*
1df912cf 2 * QEMU PC System Emulator
0824d6fc 3 *
1df912cf 4 * Copyright (c) 2003 Fabrice Bellard
0824d6fc 5 *
1df912cf
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
0824d6fc
FB
23 */
24#include <stdlib.h>
25#include <stdio.h>
1df912cf 26#include <stdarg.h>
0824d6fc
FB
27#include <string.h>
28#include <getopt.h>
29#include <inttypes.h>
30#include <unistd.h>
31#include <sys/mman.h>
32#include <fcntl.h>
33#include <signal.h>
34#include <time.h>
35#include <sys/time.h>
36#include <malloc.h>
37#include <termios.h>
38#include <sys/poll.h>
39#include <errno.h>
f1510b2c
FB
40#include <sys/wait.h>
41
42#include <sys/ioctl.h>
43#include <sys/socket.h>
44#include <linux/if.h>
45#include <linux/if_tun.h>
0824d6fc
FB
46
47#include "cpu-i386.h"
48#include "disas.h"
49
50#define DEBUG_LOGFILE "/tmp/vl.log"
f1510b2c
FB
51#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
52
0824d6fc
FB
53//#define DEBUG_UNUSED_IOPORT
54
55#define PHYS_RAM_BASE 0xa8000000
56#define KERNEL_LOAD_ADDR 0x00100000
57#define INITRD_LOAD_ADDR 0x00400000
58#define KERNEL_PARAMS_ADDR 0x00090000
59
60/* from plex86 (BSD license) */
61struct __attribute__ ((packed)) linux_params {
62 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
63 // I just padded out the VESA parts, rather than define them.
64
65 /* 0x000 */ uint8_t orig_x;
66 /* 0x001 */ uint8_t orig_y;
67 /* 0x002 */ uint16_t ext_mem_k;
68 /* 0x004 */ uint16_t orig_video_page;
69 /* 0x006 */ uint8_t orig_video_mode;
70 /* 0x007 */ uint8_t orig_video_cols;
71 /* 0x008 */ uint16_t unused1;
72 /* 0x00a */ uint16_t orig_video_ega_bx;
73 /* 0x00c */ uint16_t unused2;
74 /* 0x00e */ uint8_t orig_video_lines;
75 /* 0x00f */ uint8_t orig_video_isVGA;
76 /* 0x010 */ uint16_t orig_video_points;
77 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
78 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
79 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
80 // is calculated as 0x90000 + cl_offset, bu
81 // only if cl_magic == 0xA33F.
82 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
83
84 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
85 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
86
87 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
88 // Might be truncated?
89 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
90 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
91
92 // System description table truncated to 16 bytes
93 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
94 /* 0x0a0 */ uint16_t sys_description_len;
95 /* 0x0a2 */ uint8_t sys_description_table[14];
96 // [0] machine id
97 // [1] machine submodel id
98 // [2] BIOS revision
99 // [3] bit1: MCA bus
100
101 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
102 /* 0x1e0 */ uint32_t alt_mem_k;
103 /* 0x1e4 */ uint8_t pad4[4];
104 /* 0x1e8 */ uint8_t e820map_entries;
105 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
106 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
107 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
108 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
109 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
110 // (b)zImage-file (in 16 byte units, rounded up)
111 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
112 /* 0x1f8 */ uint16_t ramdisk_flags;
113 /* 0x1fa */ uint16_t vga_mode; // (old one)
114 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
115 /* 0x1fe */ uint8_t pad6[1];
116 /* 0x1ff */ uint8_t aux_device_info;
117 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
118 // aka "reserved" field.
119 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
120 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
121 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
122 // boot loaders, look there.
123 /* 0x210 */ uint8_t loader_type;
124 // 0 for old one.
125 // else 0xTV:
126 // T=0: LILO
127 // T=1: Loadlin
128 // T=2: bootsect-loader
129 // T=3: SYSLINUX
130 // T=4: ETHERBOOT
131 // V=version
132 /* 0x211 */ uint8_t loadflags;
133 // bit0 = 1: kernel is loaded high (bzImage)
134 // bit7 = 1: Heap and pointer (see below) set by boot
135 // loader.
136 /* 0x212 */ uint16_t setup_S_temp1;
137 /* 0x214 */ uint32_t kernel_start;
138 /* 0x218 */ uint32_t initrd_start;
139 /* 0x21c */ uint32_t initrd_size;
140 /* 0x220 */ uint8_t setup_S_temp2[4];
141 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
142 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
143
144 /* 0x2d0 : Int 15, ax=e820 memory map. */
145 // (linux/include/asm-i386/e820.h, 'struct e820entry')
146#define E820MAX 32
147#define E820_RAM 1
148#define E820_RESERVED 2
149#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
150#define E820_NVS 4
151 struct {
152 uint64_t addr;
153 uint64_t size;
154 uint32_t type;
155 } e820map[E820MAX];
156
157 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
158
159 // BIOS Enhanced Disk Drive Services.
160 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
161 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
162 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
163
164 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
165 /* 0x800 */ uint8_t commandline[0x800];
166
167 /* 0x1000 */
168 uint64_t gdt_table[256];
169 uint64_t idt_table[48];
170};
171
172#define KERNEL_CS 0x10
173#define KERNEL_DS 0x18
174
175typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
176typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
177
178#define MAX_IOPORTS 1024
179
180char phys_ram_file[1024];
181CPUX86State *global_env;
1df912cf 182CPUX86State *cpu_single_env;
0824d6fc
FB
183FILE *logfile = NULL;
184int loglevel;
185IOPortReadFunc *ioport_readb_table[MAX_IOPORTS];
186IOPortWriteFunc *ioport_writeb_table[MAX_IOPORTS];
187IOPortReadFunc *ioport_readw_table[MAX_IOPORTS];
188IOPortWriteFunc *ioport_writew_table[MAX_IOPORTS];
189
190/***********************************************************/
191/* x86 io ports */
192
193uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
194{
195#ifdef DEBUG_UNUSED_IOPORT
196 fprintf(stderr, "inb: port=0x%04x\n", address);
197#endif
198 return 0;
199}
200
201void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
202{
203#ifdef DEBUG_UNUSED_IOPORT
204 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
205#endif
206}
207
208/* default is to make two byte accesses */
209uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
210{
211 uint32_t data;
212 data = ioport_readb_table[address](env, address);
213 data |= ioport_readb_table[address + 1](env, address + 1) << 8;
214 return data;
215}
216
217void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
218{
219 ioport_writeb_table[address](env, address, data & 0xff);
220 ioport_writeb_table[address + 1](env, address + 1, (data >> 8) & 0xff);
221}
222
223void init_ioports(void)
224{
225 int i;
226
227 for(i = 0; i < MAX_IOPORTS; i++) {
228 ioport_readb_table[i] = default_ioport_readb;
229 ioport_writeb_table[i] = default_ioport_writeb;
230 ioport_readw_table[i] = default_ioport_readw;
231 ioport_writew_table[i] = default_ioport_writew;
232 }
233}
234
235int register_ioport_readb(int start, int length, IOPortReadFunc *func)
236{
237 int i;
238
239 for(i = start; i < start + length; i++)
240 ioport_readb_table[i] = func;
241 return 0;
242}
243
244int register_ioport_writeb(int start, int length, IOPortWriteFunc *func)
245{
246 int i;
247
248 for(i = start; i < start + length; i++)
249 ioport_writeb_table[i] = func;
250 return 0;
251}
252
f1510b2c
FB
253int register_ioport_readw(int start, int length, IOPortReadFunc *func)
254{
255 int i;
256
257 for(i = start; i < start + length; i += 2)
258 ioport_readw_table[i] = func;
259 return 0;
260}
261
262int register_ioport_writew(int start, int length, IOPortWriteFunc *func)
263{
264 int i;
265
266 for(i = start; i < start + length; i += 2)
267 ioport_writew_table[i] = func;
268 return 0;
269}
270
0824d6fc
FB
271void pstrcpy(char *buf, int buf_size, const char *str)
272{
273 int c;
274 char *q = buf;
275
276 if (buf_size <= 0)
277 return;
278
279 for(;;) {
280 c = *str++;
281 if (c == 0 || q >= buf + buf_size - 1)
282 break;
283 *q++ = c;
284 }
285 *q = '\0';
286}
287
288/* strcat and truncate. */
289char *pstrcat(char *buf, int buf_size, const char *s)
290{
291 int len;
292 len = strlen(buf);
293 if (len < buf_size)
294 pstrcpy(buf + len, buf_size - len, s);
295 return buf;
296}
297
298int load_kernel(const char *filename, uint8_t *addr)
299{
300 int fd, size, setup_sects;
301 uint8_t bootsect[512];
302
303 fd = open(filename, O_RDONLY);
304 if (fd < 0)
305 return -1;
306 if (read(fd, bootsect, 512) != 512)
307 goto fail;
308 setup_sects = bootsect[0x1F1];
309 if (!setup_sects)
310 setup_sects = 4;
311 /* skip 16 bit setup code */
312 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
313 size = read(fd, addr, 16 * 1024 * 1024);
314 if (size < 0)
315 goto fail;
316 close(fd);
317 return size;
318 fail:
319 close(fd);
320 return -1;
321}
322
323/* return the size or -1 if error */
324int load_image(const char *filename, uint8_t *addr)
325{
326 int fd, size;
327 fd = open(filename, O_RDONLY);
328 if (fd < 0)
329 return -1;
330 size = lseek(fd, 0, SEEK_END);
331 lseek(fd, 0, SEEK_SET);
332 if (read(fd, addr, size) != size) {
333 close(fd);
334 return -1;
335 }
336 close(fd);
337 return size;
338}
339
340void cpu_x86_outb(CPUX86State *env, int addr, int val)
341{
342 ioport_writeb_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
343}
344
345void cpu_x86_outw(CPUX86State *env, int addr, int val)
346{
347 ioport_writew_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
348}
349
350void cpu_x86_outl(CPUX86State *env, int addr, int val)
351{
352 fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
353}
354
355int cpu_x86_inb(CPUX86State *env, int addr)
356{
357 return ioport_readb_table[addr & (MAX_IOPORTS - 1)](env, addr);
358}
359
360int cpu_x86_inw(CPUX86State *env, int addr)
361{
362 return ioport_readw_table[addr & (MAX_IOPORTS - 1)](env, addr);
363}
364
365int cpu_x86_inl(CPUX86State *env, int addr)
366{
367 fprintf(stderr, "inl: port=0x%04x\n", addr);
368 return 0;
369}
370
371/***********************************************************/
372void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
373{
374}
375
376void hw_error(const char *fmt, ...)
377{
378 va_list ap;
379
380 va_start(ap, fmt);
381 fprintf(stderr, "qemu: hardware error: ");
382 vfprintf(stderr, fmt, ap);
383 fprintf(stderr, "\n");
384#ifdef TARGET_I386
385 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
386#endif
387 va_end(ap);
388 abort();
389}
390
391/***********************************************************/
392/* vga emulation */
393static uint8_t vga_index;
394static uint8_t vga_regs[256];
395static int last_cursor_pos;
396
397void update_console_messages(void)
398{
399 int c, i, cursor_pos, eol;
400
401 cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
402 eol = 0;
403 for(i = last_cursor_pos; i < cursor_pos; i++) {
404 c = phys_ram_base[0xb8000 + (i) * 2];
405 if (c >= ' ') {
406 putchar(c);
407 eol = 0;
408 } else {
409 if (!eol)
410 putchar('\n');
411 eol = 1;
412 }
413 }
414 fflush(stdout);
415 last_cursor_pos = cursor_pos;
416}
417
418/* just to see first Linux console messages, we intercept cursor position */
419void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
420{
421 switch(addr) {
422 case 0x3d4:
423 vga_index = data;
424 break;
425 case 0x3d5:
426 vga_regs[vga_index] = data;
427 if (vga_index == 0x0f)
428 update_console_messages();
429 break;
430 }
431
432}
433
434/***********************************************************/
435/* cmos emulation */
436
437#define RTC_SECONDS 0
438#define RTC_SECONDS_ALARM 1
439#define RTC_MINUTES 2
440#define RTC_MINUTES_ALARM 3
441#define RTC_HOURS 4
442#define RTC_HOURS_ALARM 5
443#define RTC_ALARM_DONT_CARE 0xC0
444
445#define RTC_DAY_OF_WEEK 6
446#define RTC_DAY_OF_MONTH 7
447#define RTC_MONTH 8
448#define RTC_YEAR 9
449
450#define RTC_REG_A 10
451#define RTC_REG_B 11
452#define RTC_REG_C 12
453#define RTC_REG_D 13
454
455/* PC cmos mappings */
456#define REG_EQUIPMENT_BYTE 0x14
457
458uint8_t cmos_data[128];
459uint8_t cmos_index;
460
461void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
462{
463 if (addr == 0x70) {
464 cmos_index = data & 0x7f;
465 }
466}
467
468uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
469{
470 int ret;
471
472 if (addr == 0x70) {
473 return 0xff;
474 } else {
475 /* toggle update-in-progress bit for Linux (same hack as
476 plex86) */
477 ret = cmos_data[cmos_index];
478 if (cmos_index == RTC_REG_A)
479 cmos_data[RTC_REG_A] ^= 0x80;
480 else if (cmos_index == RTC_REG_C)
481 cmos_data[RTC_REG_C] = 0x00;
482 return ret;
483 }
484}
485
486
487static inline int to_bcd(int a)
488{
489 return ((a / 10) << 4) | (a % 10);
490}
491
492void cmos_init(void)
493{
494 struct tm *tm;
495 time_t ti;
496
497 ti = time(NULL);
498 tm = gmtime(&ti);
499 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
500 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
501 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
502 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
503 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
504 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon);
505 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
506
507 cmos_data[RTC_REG_A] = 0x26;
508 cmos_data[RTC_REG_B] = 0x02;
509 cmos_data[RTC_REG_C] = 0x00;
510 cmos_data[RTC_REG_D] = 0x80;
511
512 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
513
514 register_ioport_writeb(0x70, 2, cmos_ioport_write);
515 register_ioport_readb(0x70, 2, cmos_ioport_read);
516}
517
518/***********************************************************/
519/* 8259 pic emulation */
520
521typedef struct PicState {
522 uint8_t last_irr; /* edge detection */
523 uint8_t irr; /* interrupt request register */
524 uint8_t imr; /* interrupt mask register */
525 uint8_t isr; /* interrupt service register */
526 uint8_t priority_add; /* used to compute irq priority */
527 uint8_t irq_base;
528 uint8_t read_reg_select;
529 uint8_t special_mask;
530 uint8_t init_state;
531 uint8_t auto_eoi;
532 uint8_t rotate_on_autoeoi;
533 uint8_t init4; /* true if 4 byte init */
534} PicState;
535
536/* 0 is master pic, 1 is slave pic */
537PicState pics[2];
538int pic_irq_requested;
539
540/* set irq level. If an edge is detected, then the IRR is set to 1 */
541static inline void pic_set_irq1(PicState *s, int irq, int level)
542{
543 int mask;
544 mask = 1 << irq;
545 if (level) {
546 if ((s->last_irr & mask) == 0)
547 s->irr |= mask;
548 s->last_irr |= mask;
549 } else {
550 s->last_irr &= ~mask;
551 }
552}
553
554static inline int get_priority(PicState *s, int mask)
555{
556 int priority;
557 if (mask == 0)
558 return -1;
559 priority = 7;
560 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
561 priority--;
562 return priority;
563}
564
565/* return the pic wanted interrupt. return -1 if none */
566static int pic_get_irq(PicState *s)
567{
568 int mask, cur_priority, priority;
569
570 mask = s->irr & ~s->imr;
571 priority = get_priority(s, mask);
572 if (priority < 0)
573 return -1;
574 /* compute current priority */
575 cur_priority = get_priority(s, s->isr);
576 if (priority > cur_priority) {
577 /* higher priority found: an irq should be generated */
578 return priority;
579 } else {
580 return -1;
581 }
582}
583
584void pic_set_irq(int irq, int level)
585{
586 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
587}
588
589/* can be called at any time outside cpu_exec() to raise irqs if
590 necessary */
591void pic_handle_irq(void)
592{
593 int irq2, irq;
594
595 /* first look at slave pic */
596 irq2 = pic_get_irq(&pics[1]);
597 if (irq2 >= 0) {
598 /* if irq request by slave pic, signal master PIC */
599 pic_set_irq1(&pics[0], 2, 1);
600 pic_set_irq1(&pics[0], 2, 0);
601 }
602 /* look at requested irq */
603 irq = pic_get_irq(&pics[0]);
604 if (irq >= 0) {
605 if (irq == 2) {
606 /* from slave pic */
607 pic_irq_requested = 8 + irq2;
608 } else {
609 /* from master pic */
610 pic_irq_requested = irq;
611 }
612 global_env->hard_interrupt_request = 1;
613 }
614}
615
616int cpu_x86_get_pic_interrupt(CPUX86State *env)
617{
618 int irq, irq2, intno;
619
620 /* signal the pic that the irq was acked by the CPU */
621 irq = pic_irq_requested;
622 if (irq >= 8) {
623 irq2 = irq & 7;
624 pics[1].isr |= (1 << irq2);
625 pics[1].irr &= ~(1 << irq2);
626 irq = 2;
627 intno = pics[1].irq_base + irq2;
628 } else {
629 intno = pics[0].irq_base + irq;
630 }
631 pics[0].isr |= (1 << irq);
632 pics[0].irr &= ~(1 << irq);
633 return intno;
634}
635
636void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
637{
638 PicState *s;
639 int priority;
640
641 s = &pics[addr >> 7];
642 addr &= 1;
643 if (addr == 0) {
644 if (val & 0x10) {
645 /* init */
646 memset(s, 0, sizeof(PicState));
647 s->init_state = 1;
648 s->init4 = val & 1;
649 if (val & 0x02)
650 hw_error("single mode not supported");
651 if (val & 0x08)
652 hw_error("level sensitive irq not supported");
653 } else if (val & 0x08) {
654 if (val & 0x02)
655 s->read_reg_select = val & 1;
656 if (val & 0x40)
657 s->special_mask = (val >> 5) & 1;
658 } else {
659 switch(val) {
660 case 0x00:
661 case 0x80:
662 s->rotate_on_autoeoi = val >> 7;
663 break;
664 case 0x20: /* end of interrupt */
665 case 0xa0:
666 priority = get_priority(s, s->isr);
667 if (priority >= 0) {
668 s->isr &= ~(1 << ((priority + s->priority_add) & 7));
669 }
670 if (val == 0xa0)
671 s->priority_add = (s->priority_add + 1) & 7;
672 break;
673 case 0x60 ... 0x67:
674 priority = val & 7;
675 s->isr &= ~(1 << priority);
676 break;
677 case 0xc0 ... 0xc7:
678 s->priority_add = (val + 1) & 7;
679 break;
680 case 0xe0 ... 0xe7:
681 priority = val & 7;
682 s->isr &= ~(1 << priority);
683 s->priority_add = (priority + 1) & 7;
684 break;
685 }
686 }
687 } else {
688 switch(s->init_state) {
689 case 0:
690 /* normal mode */
691 s->imr = val;
692 break;
693 case 1:
694 s->irq_base = val & 0xf8;
695 s->init_state = 2;
696 break;
697 case 2:
698 if (s->init4) {
699 s->init_state = 3;
700 } else {
701 s->init_state = 0;
702 }
703 break;
704 case 3:
705 s->auto_eoi = (val >> 1) & 1;
706 s->init_state = 0;
707 break;
708 }
709 }
710}
711
712uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr)
713{
714 PicState *s;
715 s = &pics[addr >> 7];
716 addr &= 1;
717 if (addr == 0) {
718 if (s->read_reg_select)
719 return s->isr;
720 else
721 return s->irr;
722 } else {
723 return s->imr;
724 }
725}
726
727void pic_init(void)
728{
729 register_ioport_writeb(0x20, 2, pic_ioport_write);
730 register_ioport_readb(0x20, 2, pic_ioport_read);
731 register_ioport_writeb(0xa0, 2, pic_ioport_write);
732 register_ioport_readb(0xa0, 2, pic_ioport_read);
733}
734
735/***********************************************************/
736/* 8253 PIT emulation */
737
738#define PIT_FREQ 1193182
739
740#define RW_STATE_LSB 0
741#define RW_STATE_MSB 1
742#define RW_STATE_WORD0 2
743#define RW_STATE_WORD1 3
744#define RW_STATE_LATCHED_WORD0 4
745#define RW_STATE_LATCHED_WORD1 5
746
747typedef struct PITChannelState {
87858c89 748 int count; /* can be 65536 */
0824d6fc
FB
749 uint16_t latched_count;
750 uint8_t rw_state;
751 uint8_t mode;
752 uint8_t bcd; /* not supported */
753 uint8_t gate; /* timer start */
754 int64_t count_load_time;
87858c89 755 int64_t count_last_edge_check_time;
0824d6fc
FB
756} PITChannelState;
757
758PITChannelState pit_channels[3];
759int speaker_data_on;
87858c89 760int pit_min_timer_count = 0;
0824d6fc
FB
761
762int64_t ticks_per_sec;
763
764int64_t get_clock(void)
765{
766 struct timeval tv;
767 gettimeofday(&tv, NULL);
768 return tv.tv_sec * 1000000LL + tv.tv_usec;
769}
770
771int64_t cpu_get_ticks(void)
772{
773 int64_t val;
774 asm("rdtsc" : "=A" (val));
775 return val;
776}
777
778void cpu_calibrate_ticks(void)
779{
780 int64_t usec, ticks;
781
782 usec = get_clock();
783 ticks = cpu_get_ticks();
784 usleep(50 * 1000);
785 usec = get_clock() - usec;
786 ticks = cpu_get_ticks() - ticks;
787 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
788}
789
87858c89
FB
790/* compute with 96 bit intermediate result: (a*b)/c */
791static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
792{
793 union {
794 uint64_t ll;
795 struct {
796#ifdef WORDS_BIGENDIAN
797 uint32_t high, low;
798#else
799 uint32_t low, high;
800#endif
801 } l;
802 } u, res;
803 uint64_t rl, rh;
804
805 u.ll = a;
806 rl = (uint64_t)u.l.low * (uint64_t)b;
807 rh = (uint64_t)u.l.high * (uint64_t)b;
808 rh += (rl >> 32);
809 res.l.high = rh / c;
810 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
811 return res.ll;
812}
813
0824d6fc
FB
814static int pit_get_count(PITChannelState *s)
815{
87858c89 816 uint64_t d;
0824d6fc
FB
817 int counter;
818
87858c89 819 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
0824d6fc
FB
820 switch(s->mode) {
821 case 0:
822 case 1:
823 case 4:
824 case 5:
825 counter = (s->count - d) & 0xffff;
826 break;
827 default:
828 counter = s->count - (d % s->count);
829 break;
830 }
831 return counter;
832}
833
834/* get pit output bit */
835static int pit_get_out(PITChannelState *s)
836{
87858c89 837 uint64_t d;
0824d6fc
FB
838 int out;
839
87858c89 840 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
0824d6fc
FB
841 switch(s->mode) {
842 default:
843 case 0:
844 out = (d >= s->count);
845 break;
846 case 1:
847 out = (d < s->count);
848 break;
849 case 2:
850 if ((d % s->count) == 0 && d != 0)
851 out = 1;
852 else
853 out = 0;
854 break;
855 case 3:
856 out = (d % s->count) < (s->count >> 1);
857 break;
858 case 4:
859 case 5:
860 out = (d == s->count);
861 break;
862 }
863 return out;
864}
865
87858c89
FB
866/* get the number of 0 to 1 transitions we had since we call this
867 function */
868/* XXX: maybe better to use ticks precision to avoid getting edges
869 twice if checks are done at very small intervals */
870static int pit_get_out_edges(PITChannelState *s)
871{
872 uint64_t d1, d2;
873 int64_t ticks;
874 int ret, v;
875
876 ticks = cpu_get_ticks();
877 d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time,
878 PIT_FREQ, ticks_per_sec);
879 d2 = muldiv64(ticks - s->count_load_time,
880 PIT_FREQ, ticks_per_sec);
881 s->count_last_edge_check_time = ticks;
882 switch(s->mode) {
883 default:
884 case 0:
885 if (d1 < s->count && d2 >= s->count)
886 ret = 1;
887 else
888 ret = 0;
889 break;
890 case 1:
891 ret = 0;
892 break;
893 case 2:
894 d1 /= s->count;
895 d2 /= s->count;
896 ret = d2 - d1;
897 break;
898 case 3:
899 v = s->count - (s->count >> 1);
900 d1 = (d1 + v) / s->count;
901 d2 = (d2 + v) / s->count;
902 ret = d2 - d1;
903 break;
904 case 4:
905 case 5:
906 if (d1 < s->count && d2 >= s->count)
907 ret = 1;
908 else
909 ret = 0;
910 break;
911 }
912 return ret;
913}
914
915static inline void pit_load_count(PITChannelState *s, int val)
916{
917 if (val == 0)
918 val = 0x10000;
919 s->count_load_time = cpu_get_ticks();
920 s->count_last_edge_check_time = s->count_load_time;
921 s->count = val;
922 if (s == &pit_channels[0] && val <= pit_min_timer_count) {
923 fprintf(stderr,
924 "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n",
925 PIT_FREQ / pit_min_timer_count);
926 }
927}
928
0824d6fc
FB
929void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
930{
931 int channel, access;
932 PITChannelState *s;
87858c89 933
0824d6fc
FB
934 addr &= 3;
935 if (addr == 3) {
936 channel = val >> 6;
937 if (channel == 3)
938 return;
939 s = &pit_channels[channel];
940 access = (val >> 4) & 3;
941 switch(access) {
942 case 0:
943 s->latched_count = pit_get_count(s);
944 s->rw_state = RW_STATE_LATCHED_WORD0;
945 break;
946 default:
87858c89
FB
947 s->mode = (val >> 1) & 7;
948 s->bcd = val & 1;
0824d6fc
FB
949 s->rw_state = access - 1 + RW_STATE_LSB;
950 break;
951 }
0824d6fc
FB
952 } else {
953 s = &pit_channels[addr];
954 switch(s->rw_state) {
955 case RW_STATE_LSB:
87858c89 956 pit_load_count(s, val);
0824d6fc
FB
957 break;
958 case RW_STATE_MSB:
87858c89 959 pit_load_count(s, val << 8);
0824d6fc
FB
960 break;
961 case RW_STATE_WORD0:
962 case RW_STATE_WORD1:
963 if (s->rw_state & 1) {
87858c89 964 pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
0824d6fc
FB
965 } else {
966 s->latched_count = val;
967 }
968 s->rw_state ^= 1;
969 break;
970 }
971 }
972}
973
974uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
975{
976 int ret, count;
977 PITChannelState *s;
978
979 addr &= 3;
980 s = &pit_channels[addr];
981 switch(s->rw_state) {
982 case RW_STATE_LSB:
983 case RW_STATE_MSB:
984 case RW_STATE_WORD0:
985 case RW_STATE_WORD1:
986 count = pit_get_count(s);
987 if (s->rw_state & 1)
988 ret = (count >> 8) & 0xff;
989 else
990 ret = count & 0xff;
991 if (s->rw_state & 2)
992 s->rw_state ^= 1;
993 break;
994 default:
995 case RW_STATE_LATCHED_WORD0:
996 case RW_STATE_LATCHED_WORD1:
997 if (s->rw_state & 1)
998 ret = s->latched_count >> 8;
999 else
1000 ret = s->latched_count & 0xff;
1001 s->rw_state ^= 1;
1002 break;
1003 }
1004 return ret;
1005}
1006
1007void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1008{
1009 speaker_data_on = (val >> 1) & 1;
1010 pit_channels[2].gate = val & 1;
1011}
1012
1013uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1014{
1015 int out;
1016 out = pit_get_out(&pit_channels[2]);
1017 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
1018}
1019
1020void pit_init(void)
1021{
87858c89
FB
1022 PITChannelState *s;
1023 int i;
1024
1025 cpu_calibrate_ticks();
1026
1027 for(i = 0;i < 3; i++) {
1028 s = &pit_channels[i];
1029 s->mode = 3;
1030 s->gate = (i != 2);
1031 pit_load_count(s, 0);
1032 }
1033
0824d6fc
FB
1034 register_ioport_writeb(0x40, 4, pit_ioport_write);
1035 register_ioport_readb(0x40, 3, pit_ioport_read);
1036
1037 register_ioport_readb(0x61, 1, speaker_ioport_read);
1038 register_ioport_writeb(0x61, 1, speaker_ioport_write);
0824d6fc
FB
1039}
1040
1041/***********************************************************/
1042/* serial port emulation */
1043
1044#define UART_IRQ 4
1045
1046#define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
1047
1048#define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
1049#define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
1050#define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
1051#define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
1052
1053#define UART_IIR_NO_INT 0x01 /* No interrupts pending */
1054#define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
1055
1056#define UART_IIR_MSI 0x00 /* Modem status interrupt */
1057#define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
1058#define UART_IIR_RDI 0x04 /* Receiver data interrupt */
1059#define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
1060
1061#define UART_LSR_TEMT 0x40 /* Transmitter empty */
1062#define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
1063#define UART_LSR_BI 0x10 /* Break interrupt indicator */
1064#define UART_LSR_FE 0x08 /* Frame error indicator */
1065#define UART_LSR_PE 0x04 /* Parity error indicator */
1066#define UART_LSR_OE 0x02 /* Overrun error indicator */
1067#define UART_LSR_DR 0x01 /* Receiver data ready */
1068
1069typedef struct SerialState {
1070 uint8_t divider;
1071 uint8_t rbr; /* receive register */
1072 uint8_t ier;
1073 uint8_t iir; /* read only */
1074 uint8_t lcr;
1075 uint8_t mcr;
1076 uint8_t lsr; /* read only */
1077 uint8_t msr;
1078 uint8_t scr;
1079} SerialState;
1080
1081SerialState serial_ports[1];
1082
1083void serial_update_irq(void)
1084{
1085 SerialState *s = &serial_ports[0];
1086
1087 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1088 s->iir = UART_IIR_RDI;
1089 } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1090 s->iir = UART_IIR_THRI;
1091 } else {
1092 s->iir = UART_IIR_NO_INT;
1093 }
1094 if (s->iir != UART_IIR_NO_INT) {
1095 pic_set_irq(UART_IRQ, 1);
1096 } else {
1097 pic_set_irq(UART_IRQ, 0);
1098 }
1099}
1100
1101void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1102{
1103 SerialState *s = &serial_ports[0];
1104 unsigned char ch;
1105 int ret;
1106
1107 addr &= 7;
1108 switch(addr) {
1109 default:
1110 case 0:
1111 if (s->lcr & UART_LCR_DLAB) {
1112 s->divider = (s->divider & 0xff00) | val;
1113 } else {
1114 s->lsr &= ~UART_LSR_THRE;
1115 serial_update_irq();
1116
1117 ch = val;
1118 do {
1119 ret = write(1, &ch, 1);
1120 } while (ret != 1);
1121 s->lsr |= UART_LSR_THRE;
1122 s->lsr |= UART_LSR_TEMT;
1123 serial_update_irq();
1124 }
1125 break;
1126 case 1:
1127 if (s->lcr & UART_LCR_DLAB) {
1128 s->divider = (s->divider & 0x00ff) | (val << 8);
1129 } else {
1130 s->ier = val;
1131 serial_update_irq();
1132 }
1133 break;
1134 case 2:
1135 break;
1136 case 3:
1137 s->lcr = val;
1138 break;
1139 case 4:
1140 s->mcr = val;
1141 break;
1142 case 5:
1143 break;
1144 case 6:
1145 s->msr = val;
1146 break;
1147 case 7:
1148 s->scr = val;
1149 break;
1150 }
1151}
1152
1153uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1154{
1155 SerialState *s = &serial_ports[0];
1156 uint32_t ret;
1157
1158 addr &= 7;
1159 switch(addr) {
1160 default:
1161 case 0:
1162 if (s->lcr & UART_LCR_DLAB) {
1163 ret = s->divider & 0xff;
1164 } else {
1165 ret = s->rbr;
1166 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1167 serial_update_irq();
1168 }
1169 break;
1170 case 1:
1171 if (s->lcr & UART_LCR_DLAB) {
1172 ret = (s->divider >> 8) & 0xff;
1173 } else {
1174 ret = s->ier;
1175 }
1176 break;
1177 case 2:
1178 ret = s->iir;
1179 break;
1180 case 3:
1181 ret = s->lcr;
1182 break;
1183 case 4:
1184 ret = s->mcr;
1185 break;
1186 case 5:
1187 ret = s->lsr;
1188 break;
1189 case 6:
1190 ret = s->msr;
1191 break;
1192 case 7:
1193 ret = s->scr;
1194 break;
1195 }
1196 return ret;
1197}
1198
1199#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1200static int term_got_escape;
1201
1202void term_print_help(void)
1203{
1204 printf("\n"
1205 "C-a h print this help\n"
1206 "C-a x exit emulatior\n"
1207 "C-a b send break (magic sysrq)\n"
1208 "C-a C-a send C-a\n"
1209 );
1210}
1211
1212/* called when a char is received */
1213void serial_received_byte(SerialState *s, int ch)
1214{
1215 if (term_got_escape) {
1216 term_got_escape = 0;
1217 switch(ch) {
1218 case 'h':
1219 term_print_help();
1220 break;
1221 case 'x':
1222 exit(0);
1223 break;
1224 case 'b':
1225 /* send break */
1226 s->rbr = 0;
1227 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1228 serial_update_irq();
1229 break;
1230 case TERM_ESCAPE:
1231 goto send_char;
1232 }
1233 } else if (ch == TERM_ESCAPE) {
1234 term_got_escape = 1;
1235 } else {
1236 send_char:
1237 s->rbr = ch;
1238 s->lsr |= UART_LSR_DR;
1239 serial_update_irq();
1240 }
1241}
1242
1243/* init terminal so that we can grab keys */
1244static struct termios oldtty;
1245
1246static void term_exit(void)
1247{
1248 tcsetattr (0, TCSANOW, &oldtty);
1249}
1250
1251static void term_init(void)
1252{
1253 struct termios tty;
1254
1255 tcgetattr (0, &tty);
1256 oldtty = tty;
1257
1258 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1259 |INLCR|IGNCR|ICRNL|IXON);
1260 tty.c_oflag |= OPOST;
1261 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1262 tty.c_cflag &= ~(CSIZE|PARENB);
1263 tty.c_cflag |= CS8;
1264 tty.c_cc[VMIN] = 1;
1265 tty.c_cc[VTIME] = 0;
1266
1267 tcsetattr (0, TCSANOW, &tty);
1268
1269 atexit(term_exit);
1270
1271 fcntl(0, F_SETFL, O_NONBLOCK);
1272}
1273
1274void serial_init(void)
1275{
1276 SerialState *s = &serial_ports[0];
1277
1278 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1279
1280 register_ioport_writeb(0x3f8, 8, serial_ioport_write);
1281 register_ioport_readb(0x3f8, 8, serial_ioport_read);
1282
1283 term_init();
1284}
1285
f1510b2c
FB
1286/***********************************************************/
1287/* ne2000 emulation */
1288
1289//#define DEBUG_NE2000
1290
1291#define NE2000_IOPORT 0x300
1292#define NE2000_IRQ 9
1293
1294#define MAX_ETH_FRAME_SIZE 1514
1295
1296#define E8390_CMD 0x00 /* The command register (for all pages) */
1297/* Page 0 register offsets. */
1298#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1299#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1300#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1301#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1302#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1303#define EN0_TSR 0x04 /* Transmit status reg RD */
1304#define EN0_TPSR 0x04 /* Transmit starting page WR */
1305#define EN0_NCR 0x05 /* Number of collision reg RD */
1306#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1307#define EN0_FIFO 0x06 /* FIFO RD */
1308#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1309#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1310#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1311#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1312#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1313#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1314#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1315#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1316#define EN0_RSR 0x0c /* rx status reg RD */
1317#define EN0_RXCR 0x0c /* RX configuration reg WR */
1318#define EN0_TXCR 0x0d /* TX configuration reg WR */
1319#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1320#define EN0_DCFG 0x0e /* Data configuration reg WR */
1321#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1322#define EN0_IMR 0x0f /* Interrupt mask reg WR */
1323#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1324
1325#define EN1_PHYS 0x11
1326#define EN1_CURPAG 0x17
1327#define EN1_MULT 0x18
1328
1329/* Register accessed at EN_CMD, the 8390 base addr. */
1330#define E8390_STOP 0x01 /* Stop and reset the chip */
1331#define E8390_START 0x02 /* Start the chip, clear reset */
1332#define E8390_TRANS 0x04 /* Transmit a frame */
1333#define E8390_RREAD 0x08 /* Remote read */
1334#define E8390_RWRITE 0x10 /* Remote write */
1335#define E8390_NODMA 0x20 /* Remote DMA */
1336#define E8390_PAGE0 0x00 /* Select page chip registers */
1337#define E8390_PAGE1 0x40 /* using the two high-order bits */
1338#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1339
1340/* Bits in EN0_ISR - Interrupt status register */
1341#define ENISR_RX 0x01 /* Receiver, no error */
1342#define ENISR_TX 0x02 /* Transmitter, no error */
1343#define ENISR_RX_ERR 0x04 /* Receiver, with error */
1344#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1345#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1346#define ENISR_COUNTERS 0x20 /* Counters need emptying */
1347#define ENISR_RDC 0x40 /* remote dma complete */
1348#define ENISR_RESET 0x80 /* Reset completed */
1349#define ENISR_ALL 0x3f /* Interrupts we will enable */
1350
1351/* Bits in received packet status byte and EN0_RSR*/
1352#define ENRSR_RXOK 0x01 /* Received a good packet */
1353#define ENRSR_CRC 0x02 /* CRC error */
1354#define ENRSR_FAE 0x04 /* frame alignment error */
1355#define ENRSR_FO 0x08 /* FIFO overrun */
1356#define ENRSR_MPA 0x10 /* missed pkt */
1357#define ENRSR_PHY 0x20 /* physical/multicast address */
1358#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1359#define ENRSR_DEF 0x80 /* deferring */
1360
1361/* Transmitted packet status, EN0_TSR. */
1362#define ENTSR_PTX 0x01 /* Packet transmitted without error */
1363#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1364#define ENTSR_COL 0x04 /* The transmit collided at least once. */
1365#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1366#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1367#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1368#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1369#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1370
1371#define NE2000_MEM_SIZE 32768
1372
1373typedef struct NE2000State {
1374 uint8_t cmd;
1375 uint32_t start;
1376 uint32_t stop;
1377 uint8_t boundary;
1378 uint8_t tsr;
1379 uint8_t tpsr;
1380 uint16_t tcnt;
1381 uint16_t rcnt;
1382 uint32_t rsar;
1383 uint8_t isr;
1384 uint8_t dcfg;
1385 uint8_t imr;
1386 uint8_t phys[6]; /* mac address */
1387 uint8_t curpag;
1388 uint8_t mult[8]; /* multicast mask array */
1389 uint8_t mem[NE2000_MEM_SIZE];
1390} NE2000State;
1391
1392NE2000State ne2000_state;
1393int net_fd = -1;
1394char network_script[1024];
1395
1396void ne2000_reset(void)
1397{
1398 NE2000State *s = &ne2000_state;
1399 int i;
1400
1401 s->isr = ENISR_RESET;
1402 s->mem[0] = 0x52;
1403 s->mem[1] = 0x54;
1404 s->mem[2] = 0x00;
1405 s->mem[3] = 0x12;
1406 s->mem[4] = 0x34;
1407 s->mem[5] = 0x56;
1408 s->mem[14] = 0x57;
1409 s->mem[15] = 0x57;
1410
1411 /* duplicate prom data */
1412 for(i = 15;i >= 0; i--) {
1413 s->mem[2 * i] = s->mem[i];
1414 s->mem[2 * i + 1] = s->mem[i];
1415 }
1416}
1417
1418void ne2000_update_irq(NE2000State *s)
1419{
1420 int isr;
1421 isr = s->isr & s->imr;
1422 if (isr)
1423 pic_set_irq(NE2000_IRQ, 1);
1424 else
1425 pic_set_irq(NE2000_IRQ, 0);
1426}
1427
1428int net_init(void)
1429{
1430 struct ifreq ifr;
1431 int fd, ret, pid, status;
1432
1433 fd = open("/dev/net/tun", O_RDWR);
1434 if (fd < 0) {
1435 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1436 return -1;
1437 }
1438 memset(&ifr, 0, sizeof(ifr));
1439 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1440 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1441 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1442 if (ret != 0) {
1443 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1444 close(fd);
1445 return -1;
1446 }
1447 printf("connected to host network interface: %s\n", ifr.ifr_name);
1448 fcntl(fd, F_SETFL, O_NONBLOCK);
1449 net_fd = fd;
1450
1451 /* try to launch network init script */
1452 pid = fork();
1453 if (pid >= 0) {
1454 if (pid == 0) {
1455 execl(network_script, network_script, ifr.ifr_name, NULL);
1456 exit(1);
1457 }
1458 while (waitpid(pid, &status, 0) != pid);
1459 if (!WIFEXITED(status) ||
1460 WEXITSTATUS(status) != 0) {
1461 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1462 network_script, ifr.ifr_name);
1463 }
1464 }
1465 return 0;
1466}
1467
1468void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1469{
1470#ifdef DEBUG_NE2000
1471 printf("NE2000: sending packet size=%d\n", size);
1472#endif
1473 write(net_fd, buf, size);
1474}
1475
1476/* return true if the NE2000 can receive more data */
1477int ne2000_can_receive(NE2000State *s)
1478{
1479 int avail, index, boundary;
1480
1481 if (s->cmd & E8390_STOP)
1482 return 0;
1483 index = s->curpag << 8;
1484 boundary = s->boundary << 8;
1485 if (index < boundary)
1486 avail = boundary - index;
1487 else
1488 avail = (s->stop - s->start) - (index - boundary);
1489 if (avail < (MAX_ETH_FRAME_SIZE + 4))
1490 return 0;
1491 return 1;
1492}
1493
1494void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1495{
1496 uint8_t *p;
1497 int total_len, next, avail, len, index;
1498
1499#if defined(DEBUG_NE2000)
1500 printf("NE2000: received len=%d\n", size);
1501#endif
1502
1503 index = s->curpag << 8;
1504 /* 4 bytes for header */
1505 total_len = size + 4;
1506 /* address for next packet (4 bytes for CRC) */
1507 next = index + ((total_len + 4 + 255) & ~0xff);
1508 if (next >= s->stop)
1509 next -= (s->stop - s->start);
1510 /* prepare packet header */
1511 p = s->mem + index;
1512 p[0] = ENRSR_RXOK; /* receive status */
1513 p[1] = next >> 8;
1514 p[2] = total_len;
1515 p[3] = total_len >> 8;
1516 index += 4;
1517
1518 /* write packet data */
1519 while (size > 0) {
1520 avail = s->stop - index;
1521 len = size;
1522 if (len > avail)
1523 len = avail;
1524 memcpy(s->mem + index, buf, len);
1525 buf += len;
1526 index += len;
1527 if (index == s->stop)
1528 index = s->start;
1529 size -= len;
1530 }
1531 s->curpag = next >> 8;
1532
1533 /* now we can signal we have receive something */
1534 s->isr |= ENISR_RX;
1535 ne2000_update_irq(s);
1536}
1537
1538void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1539{
1540 NE2000State *s = &ne2000_state;
1541 int offset, page;
1542
1543 addr &= 0xf;
1544#ifdef DEBUG_NE2000
1545 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1546#endif
1547 if (addr == E8390_CMD) {
1548 /* control register */
1549 s->cmd = val;
1550 if (val & E8390_START) {
1551 /* test specific case: zero length transfert */
1552 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1553 s->rcnt == 0) {
1554 s->isr |= ENISR_RDC;
1555 ne2000_update_irq(s);
87858c89
FB
1556 /* XXX: find a better solution for irqs */
1557 cpu_x86_interrupt(global_env);
f1510b2c
FB
1558 }
1559 if (val & E8390_TRANS) {
1560 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1561 /* signal end of transfert */
1562 s->tsr = ENTSR_PTX;
1563 s->isr |= ENISR_TX;
1564 ne2000_update_irq(s);
1565 }
1566 }
1567 } else {
1568 page = s->cmd >> 6;
1569 offset = addr | (page << 4);
1570 switch(offset) {
1571 case EN0_STARTPG:
1572 s->start = val << 8;
1573 break;
1574 case EN0_STOPPG:
1575 s->stop = val << 8;
1576 break;
1577 case EN0_BOUNDARY:
1578 s->boundary = val;
1579 break;
1580 case EN0_IMR:
1581 s->imr = val;
1582 ne2000_update_irq(s);
1583 break;
1584 case EN0_TPSR:
1585 s->tpsr = val;
1586 break;
1587 case EN0_TCNTLO:
1588 s->tcnt = (s->tcnt & 0xff00) | val;
1589 break;
1590 case EN0_TCNTHI:
1591 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1592 break;
1593 case EN0_RSARLO:
1594 s->rsar = (s->rsar & 0xff00) | val;
1595 break;
1596 case EN0_RSARHI:
1597 s->rsar = (s->rsar & 0x00ff) | (val << 8);
1598 break;
1599 case EN0_RCNTLO:
1600 s->rcnt = (s->rcnt & 0xff00) | val;
1601 break;
1602 case EN0_RCNTHI:
1603 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1604 break;
1605 case EN0_DCFG:
1606 s->dcfg = val;
1607 break;
1608 case EN0_ISR:
1609 s->isr &= ~val;
1610 ne2000_update_irq(s);
1611 break;
1612 case EN1_PHYS ... EN1_PHYS + 5:
1613 s->phys[offset - EN1_PHYS] = val;
1614 break;
1615 case EN1_CURPAG:
1616 s->curpag = val;
1617 break;
1618 case EN1_MULT ... EN1_MULT + 7:
1619 s->mult[offset - EN1_MULT] = val;
1620 break;
1621 }
1622 }
1623}
1624
1625uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1626{
1627 NE2000State *s = &ne2000_state;
1628 int offset, page, ret;
1629
1630 addr &= 0xf;
1631 if (addr == E8390_CMD) {
1632 ret = s->cmd;
1633 } else {
1634 page = s->cmd >> 6;
1635 offset = addr | (page << 4);
1636 switch(offset) {
1637 case EN0_TSR:
1638 ret = s->tsr;
1639 break;
1640 case EN0_BOUNDARY:
1641 ret = s->boundary;
1642 break;
1643 case EN0_ISR:
1644 ret = s->isr;
1645 break;
1646 case EN1_PHYS ... EN1_PHYS + 5:
1647 ret = s->phys[offset - EN1_PHYS];
1648 break;
1649 case EN1_CURPAG:
1650 ret = s->curpag;
1651 break;
1652 case EN1_MULT ... EN1_MULT + 7:
1653 ret = s->mult[offset - EN1_MULT];
1654 break;
1655 default:
1656 ret = 0x00;
1657 break;
1658 }
1659 }
1660#ifdef DEBUG_NE2000
1661 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1662#endif
1663 return ret;
1664}
1665
1666void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1667{
1668 NE2000State *s = &ne2000_state;
1669 uint8_t *p;
1670
1671#ifdef DEBUG_NE2000
1672 printf("NE2000: asic write val=0x%04x\n", val);
1673#endif
1674 p = s->mem + s->rsar;
1675 if (s->dcfg & 0x01) {
1676 /* 16 bit access */
1677 p[0] = val;
1678 p[1] = val >> 8;
1679 s->rsar += 2;
1680 s->rcnt -= 2;
1681 } else {
1682 /* 8 bit access */
1683 p[0] = val;
1684 s->rsar++;
1685 s->rcnt--;
1686 }
1687 /* wrap */
1688 if (s->rsar == s->stop)
1689 s->rsar = s->start;
1690 if (s->rcnt == 0) {
1691 /* signal end of transfert */
1692 s->isr |= ENISR_RDC;
1693 ne2000_update_irq(s);
1694 }
1695}
1696
1697uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1698{
1699 NE2000State *s = &ne2000_state;
1700 uint8_t *p;
1701 int ret;
1702
1703 p = s->mem + s->rsar;
1704 if (s->dcfg & 0x01) {
1705 /* 16 bit access */
1706 ret = p[0] | (p[1] << 8);
1707 s->rsar += 2;
1708 s->rcnt -= 2;
1709 } else {
1710 /* 8 bit access */
1711 ret = p[0];
1712 s->rsar++;
1713 s->rcnt--;
1714 }
1715 /* wrap */
1716 if (s->rsar == s->stop)
1717 s->rsar = s->start;
1718 if (s->rcnt == 0) {
1719 /* signal end of transfert */
1720 s->isr |= ENISR_RDC;
1721 ne2000_update_irq(s);
1722 }
1723#ifdef DEBUG_NE2000
1724 printf("NE2000: asic read val=0x%04x\n", ret);
1725#endif
1726 return ret;
1727}
1728
1729void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1730{
1731 /* nothing to do (end of reset pulse) */
1732}
1733
1734uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1735{
1736 ne2000_reset();
1737 return 0;
1738}
1739
1740void ne2000_init(void)
1741{
1742 register_ioport_writeb(NE2000_IOPORT, 16, ne2000_ioport_write);
1743 register_ioport_readb(NE2000_IOPORT, 16, ne2000_ioport_read);
1744
1745 register_ioport_writeb(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write);
1746 register_ioport_readb(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read);
1747 register_ioport_writew(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write);
1748 register_ioport_readw(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read);
1749
1750 register_ioport_writeb(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write);
1751 register_ioport_readb(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read);
1752 ne2000_reset();
1753}
1754
1755/***********************************************************/
0824d6fc
FB
1756/* cpu signal handler */
1757static void host_segv_handler(int host_signum, siginfo_t *info,
1758 void *puc)
1759{
1760 if (cpu_signal_handler(host_signum, info, puc))
1761 return;
1762 term_exit();
1763 abort();
1764}
1765
1766static int timer_irq_pending;
87858c89 1767static int timer_irq_count;
0824d6fc
FB
1768
1769static void host_alarm_handler(int host_signum, siginfo_t *info,
1770 void *puc)
1771{
87858c89
FB
1772 /* NOTE: since usually the OS asks a 100 Hz clock, there can be
1773 some drift between cpu_get_ticks() and the interrupt time. So
1774 we queue some interrupts to avoid missing some */
1775 timer_irq_count += pit_get_out_edges(&pit_channels[0]);
1776 if (timer_irq_count) {
1777 if (timer_irq_count > 2)
1778 timer_irq_count = 2;
1779 timer_irq_count--;
1780 /* just exit from the cpu to have a chance to handle timers */
1781 cpu_x86_interrupt(global_env);
1782 timer_irq_pending = 1;
1783 }
0824d6fc
FB
1784}
1785
1786void help(void)
1787{
1788 printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
1789 "usage: vl [-h] bzImage initrd [kernel parameters...]\n"
1790 "\n"
1791 "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
1792 "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
1793 "'initrd' is an initrd image\n"
1794 "-m megs set virtual RAM size to megs MB\n"
f1510b2c 1795 "-n script set network init script [default=%s]\n"
0824d6fc
FB
1796 "-d output log in /tmp/vl.log\n"
1797 "\n"
f1510b2c
FB
1798 "During emulation, use C-a h to get terminal commands:\n",
1799 DEFAULT_NETWORK_SCRIPT);
0824d6fc
FB
1800 term_print_help();
1801 exit(1);
1802}
1803
1804int main(int argc, char **argv)
1805{
1806 int c, ret, initrd_size, i;
1807 struct linux_params *params;
1808 struct sigaction act;
1809 struct itimerval itv;
1810 CPUX86State *env;
87858c89
FB
1811 const char *tmpdir;
1812
0824d6fc
FB
1813 /* we never want that malloc() uses mmap() */
1814 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
1815
1816 phys_ram_size = 32 * 1024 * 1024;
f1510b2c 1817 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
0824d6fc 1818 for(;;) {
f1510b2c 1819 c = getopt(argc, argv, "hm:dn:");
0824d6fc
FB
1820 if (c == -1)
1821 break;
1822 switch(c) {
1823 case 'h':
1824 help();
1825 break;
1826 case 'm':
1827 phys_ram_size = atoi(optarg) * 1024 * 1024;
1828 if (phys_ram_size <= 0)
1829 help();
1830 break;
1831 case 'd':
1832 loglevel = 1;
1833 break;
f1510b2c
FB
1834 case 'n':
1835 pstrcpy(network_script, sizeof(network_script), optarg);
1836 break;
0824d6fc
FB
1837 }
1838 }
1839 if (optind + 1 >= argc)
1840 help();
1841
1842 /* init debug */
1843 if (loglevel) {
1844 logfile = fopen(DEBUG_LOGFILE, "w");
1845 if (!logfile) {
1846 perror(DEBUG_LOGFILE);
1847 _exit(1);
1848 }
1849 setvbuf(logfile, NULL, _IOLBF, 0);
1850 }
1851
f1510b2c
FB
1852 /* init network tun interface */
1853 net_init();
1854
0824d6fc 1855 /* init the memory */
87858c89
FB
1856 tmpdir = getenv("VLTMPDIR");
1857 if (!tmpdir)
1858 tmpdir = "/tmp";
1859 snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
0824d6fc 1860 if (mkstemp(phys_ram_file) < 0) {
87858c89
FB
1861 fprintf(stderr, "Could not create temporary memory file '%s'\n",
1862 phys_ram_file);
0824d6fc
FB
1863 exit(1);
1864 }
1865 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
1866 if (phys_ram_fd < 0) {
87858c89
FB
1867 fprintf(stderr, "Could not open temporary memory file '%s'\n",
1868 phys_ram_file);
0824d6fc
FB
1869 exit(1);
1870 }
1871 ftruncate(phys_ram_fd, phys_ram_size);
1872 unlink(phys_ram_file);
1873 phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size,
1874 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
1875 phys_ram_fd, 0);
1876 if (phys_ram_base == MAP_FAILED) {
1877 fprintf(stderr, "Could not map physical memory\n");
1878 exit(1);
1879 }
1880
1881 /* now we can load the kernel */
1882 ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
1883 if (ret < 0) {
1884 fprintf(stderr, "%s: could not load kernel\n", argv[optind]);
1885 exit(1);
1886 }
1887
1888 /* load initrd */
1889 initrd_size = load_image(argv[optind + 1], phys_ram_base + INITRD_LOAD_ADDR);
1890 if (initrd_size < 0) {
1891 fprintf(stderr, "%s: could not load initrd\n", argv[optind + 1]);
1892 exit(1);
1893 }
1894
1895 /* init kernel params */
1896 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
1897 memset(params, 0, sizeof(struct linux_params));
1898 params->mount_root_rdonly = 0;
1899 params->cl_magic = 0xA33F;
1900 params->cl_offset = params->commandline - (uint8_t *)params;
1901 params->ext_mem_k = (phys_ram_size / 1024) - 1024;
1902 for(i = optind + 2; i < argc; i++) {
1903 if (i != optind + 2)
1904 pstrcat(params->commandline, sizeof(params->commandline), " ");
1905 pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
1906 }
1907 params->loader_type = 0x01;
1908 if (initrd_size > 0) {
1909 params->initrd_start = INITRD_LOAD_ADDR;
1910 params->initrd_size = initrd_size;
1911 }
1912 params->orig_video_lines = 25;
1913 params->orig_video_cols = 80;
1914
1915 /* init basic PC hardware */
1916 init_ioports();
1917 register_ioport_writeb(0x80, 1, ioport80_write);
1918
1919 register_ioport_writeb(0x3d4, 2, vga_ioport_write);
1920
1921 cmos_init();
1922 pic_init();
1923 pit_init();
1924 serial_init();
f1510b2c 1925 ne2000_init();
0824d6fc
FB
1926
1927 /* setup cpu signal handlers for MMU / self modifying code handling */
1928 sigfillset(&act.sa_mask);
1929 act.sa_flags = SA_SIGINFO;
1930 act.sa_sigaction = host_segv_handler;
1931 sigaction(SIGSEGV, &act, NULL);
1932 sigaction(SIGBUS, &act, NULL);
1933
1934 act.sa_sigaction = host_alarm_handler;
1935 sigaction(SIGALRM, &act, NULL);
1936
1937 /* init CPU state */
1938 env = cpu_init();
1939 global_env = env;
1df912cf 1940 cpu_single_env = env;
0824d6fc
FB
1941
1942 /* setup basic memory access */
1943 env->cr[0] = 0x00000033;
1944 cpu_x86_init_mmu(env);
1945
1946 memset(params->idt_table, 0, sizeof(params->idt_table));
1947
1948 params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
1949 params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
1950
1951 env->idt.base = (void *)params->idt_table;
1952 env->idt.limit = sizeof(params->idt_table) - 1;
1953 env->gdt.base = (void *)params->gdt_table;
1954 env->gdt.limit = sizeof(params->gdt_table) - 1;
1955
1956 cpu_x86_load_seg(env, R_CS, KERNEL_CS);
1957 cpu_x86_load_seg(env, R_DS, KERNEL_DS);
1958 cpu_x86_load_seg(env, R_ES, KERNEL_DS);
1959 cpu_x86_load_seg(env, R_SS, KERNEL_DS);
1960 cpu_x86_load_seg(env, R_FS, KERNEL_DS);
1961 cpu_x86_load_seg(env, R_GS, KERNEL_DS);
1962
1963 env->eip = KERNEL_LOAD_ADDR;
1964 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
1965 env->eflags = 0x2;
1966
1967 itv.it_interval.tv_sec = 0;
87858c89 1968 itv.it_interval.tv_usec = 1000;
0824d6fc
FB
1969 itv.it_value.tv_sec = 0;
1970 itv.it_value.tv_usec = 10 * 1000;
1971 setitimer(ITIMER_REAL, &itv, NULL);
87858c89
FB
1972 /* we probe the tick duration of the kernel to inform the user if
1973 the emulated kernel requested a too high timer frequency */
1974 getitimer(ITIMER_REAL, &itv);
1975 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
1976 1000000;
0824d6fc
FB
1977
1978 for(;;) {
f1510b2c 1979 struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd;
0824d6fc
FB
1980 int ret, n, timeout;
1981 uint8_t ch;
1982
1983 ret = cpu_x86_exec(env);
1984
1985 /* if hlt instruction, we wait until the next IRQ */
1986 if (ret == EXCP_HLT)
1987 timeout = 10;
1988 else
1989 timeout = 0;
1990 /* poll any events */
f1510b2c
FB
1991 serial_ufd = NULL;
1992 net_ufd = NULL;
0824d6fc
FB
1993 pf = ufds;
1994 if (!(serial_ports[0].lsr & UART_LSR_DR)) {
f1510b2c 1995 serial_ufd = pf;
0824d6fc
FB
1996 pf->fd = 0;
1997 pf->events = POLLIN;
1998 pf++;
1999 }
f1510b2c
FB
2000 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
2001 net_ufd = pf;
2002 pf->fd = net_fd;
2003 pf->events = POLLIN;
2004 pf++;
2005 }
0824d6fc
FB
2006 ret = poll(ufds, pf - ufds, timeout);
2007 if (ret > 0) {
f1510b2c 2008 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
0824d6fc
FB
2009 n = read(0, &ch, 1);
2010 if (n == 1) {
2011 serial_received_byte(&serial_ports[0], ch);
2012 }
2013 }
f1510b2c
FB
2014 if (net_ufd && (net_ufd->revents & POLLIN)) {
2015 uint8_t buf[MAX_ETH_FRAME_SIZE];
2016
2017 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
2018 if (n > 0) {
2019 if (n < 60) {
2020 memset(buf + n, 0, 60 - n);
2021 n = 60;
2022 }
2023 ne2000_receive(&ne2000_state, buf, n);
2024 }
2025 }
0824d6fc
FB
2026 }
2027
1df912cf 2028 /* timer IRQ */
0824d6fc
FB
2029 if (timer_irq_pending) {
2030 pic_set_irq(0, 1);
2031 pic_set_irq(0, 0);
2032 timer_irq_pending = 0;
2033 }
2034
2035 pic_handle_irq();
2036 }
2037
2038 return 0;
2039}