]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - zfs/module/zfs/zfs_ctldir.c
UBUNTU: SAUCE: (noup) Update spl to 0.6.5.9-1, zfs to 0.6.5.9-2
[mirror_ubuntu-artful-kernel.git] / zfs / module / zfs / zfs_ctldir.c
CommitLineData
87d546d8
TG
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 */
32
33/*
34 * ZFS control directory (a.k.a. ".zfs")
35 *
36 * This directory provides a common location for all ZFS meta-objects.
37 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
38 * expand in the future. The elements are built dynamically, as the hierarchy
39 * does not actually exist on disk.
40 *
41 * For 'snapshot', we don't want to have all snapshots always mounted, because
42 * this would take up a huge amount of space in /etc/mnttab. We have three
43 * types of objects:
44 *
45 * ctldir ------> snapshotdir -------> snapshot
46 * |
47 * |
48 * V
49 * mounted fs
50 *
51 * The 'snapshot' node contains just enough information to lookup '..' and act
52 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
53 * perform an automount of the underlying filesystem and return the
54 * corresponding inode.
55 *
56 * All mounts are handled automatically by an user mode helper which invokes
57 * the mount mount procedure. Unmounts are handled by allowing the mount
58 * point to expire so the kernel may automatically unmount it.
59 *
60 * The '.zfs', '.zfs/snapshot', and all directories created under
61 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
62 * share the same zfs_sb_t as the head filesystem (what '.zfs' lives under).
63 *
64 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
65 * (ie: snapshots) are complete ZFS filesystems and have their own unique
66 * zfs_sb_t. However, the fsid reported by these mounts will be the same
67 * as that used by the parent zfs_sb_t to make NFS happy.
68 */
69
70#include <sys/types.h>
71#include <sys/param.h>
72#include <sys/time.h>
73#include <sys/systm.h>
74#include <sys/sysmacros.h>
75#include <sys/pathname.h>
76#include <sys/vfs.h>
77#include <sys/vfs_opreg.h>
78#include <sys/zfs_ctldir.h>
79#include <sys/zfs_ioctl.h>
80#include <sys/zfs_vfsops.h>
81#include <sys/zfs_vnops.h>
82#include <sys/stat.h>
83#include <sys/dmu.h>
84#include <sys/dmu_objset.h>
85#include <sys/dsl_destroy.h>
86#include <sys/dsl_deleg.h>
87#include <sys/mount.h>
88#include <sys/zpl.h>
89#include "zfs_namecheck.h"
90
91/*
92 * Two AVL trees are maintained which contain all currently automounted
93 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
94 * entry which MUST:
95 *
96 * - be attached to both trees, and
97 * - be unique, no duplicate entries are allowed.
98 *
99 * The zfs_snapshots_by_name tree is indexed by the full dataset name
100 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
101 * objsetid. This allows for fast lookups either by name or objsetid.
102 */
103static avl_tree_t zfs_snapshots_by_name;
104static avl_tree_t zfs_snapshots_by_objsetid;
105static krwlock_t zfs_snapshot_lock;
106
107/*
108 * Control Directory Tunables (.zfs)
109 */
110int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
111int zfs_admin_snapshot = 0;
112
113/*
114 * Dedicated task queue for unmounting snapshots.
115 */
116static taskq_t *zfs_expire_taskq;
117
118typedef struct {
119 char *se_name; /* full snapshot name */
120 char *se_path; /* full mount path */
121 spa_t *se_spa; /* pool spa */
122 uint64_t se_objsetid; /* snapshot objset id */
123 struct dentry *se_root_dentry; /* snapshot root dentry */
124 taskqid_t se_taskqid; /* scheduled unmount taskqid */
125 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
126 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
127 refcount_t se_refcount; /* reference count */
128} zfs_snapentry_t;
129
130static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
131
132/*
133 * Allocate a new zfs_snapentry_t being careful to make a copy of the
134 * the snapshot name and provided mount point. No reference is taken.
135 */
136static zfs_snapentry_t *
137zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
138 uint64_t objsetid, struct dentry *root_dentry)
139{
140 zfs_snapentry_t *se;
141
142 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
143
144 se->se_name = strdup(full_name);
145 se->se_path = strdup(full_path);
146 se->se_spa = spa;
147 se->se_objsetid = objsetid;
148 se->se_root_dentry = root_dentry;
149 se->se_taskqid = -1;
150
151 refcount_create(&se->se_refcount);
152
153 return (se);
154}
155
156/*
157 * Free a zfs_snapentry_t the called must ensure there are no active
158 * references.
159 */
160static void
161zfsctl_snapshot_free(zfs_snapentry_t *se)
162{
163 refcount_destroy(&se->se_refcount);
164 strfree(se->se_name);
165 strfree(se->se_path);
166
167 kmem_free(se, sizeof (zfs_snapentry_t));
168}
169
170/*
171 * Hold a reference on the zfs_snapentry_t.
172 */
173static void
174zfsctl_snapshot_hold(zfs_snapentry_t *se)
175{
176 refcount_add(&se->se_refcount, NULL);
177}
178
179/*
180 * Release a reference on the zfs_snapentry_t. When the number of
181 * references drops to zero the structure will be freed.
182 */
183static void
184zfsctl_snapshot_rele(zfs_snapentry_t *se)
185{
186 if (refcount_remove(&se->se_refcount, NULL) == 0)
187 zfsctl_snapshot_free(se);
188}
189
190/*
191 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
192 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
193 * of the trees a reference is held.
194 */
195static void
196zfsctl_snapshot_add(zfs_snapentry_t *se)
197{
198 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
199 refcount_add(&se->se_refcount, NULL);
200 avl_add(&zfs_snapshots_by_name, se);
201 avl_add(&zfs_snapshots_by_objsetid, se);
202}
203
204/*
205 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
206 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
207 * this can result in the structure being freed if that was the last
208 * remaining reference.
209 */
210static void
211zfsctl_snapshot_remove(zfs_snapentry_t *se)
212{
213 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
214 avl_remove(&zfs_snapshots_by_name, se);
215 avl_remove(&zfs_snapshots_by_objsetid, se);
216 zfsctl_snapshot_rele(se);
217}
218
219/*
220 * Snapshot name comparison function for the zfs_snapshots_by_name.
221 */
222static int
223snapentry_compare_by_name(const void *a, const void *b)
224{
225 const zfs_snapentry_t *se_a = a;
226 const zfs_snapentry_t *se_b = b;
227 int ret;
228
229 ret = strcmp(se_a->se_name, se_b->se_name);
230
231 if (ret < 0)
232 return (-1);
233 else if (ret > 0)
234 return (1);
235 else
236 return (0);
237}
238
239/*
240 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
241 */
242static int
243snapentry_compare_by_objsetid(const void *a, const void *b)
244{
245 const zfs_snapentry_t *se_a = a;
246 const zfs_snapentry_t *se_b = b;
247
248 if (se_a->se_spa != se_b->se_spa)
249 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
250
251 if (se_a->se_objsetid < se_b->se_objsetid)
252 return (-1);
253 else if (se_a->se_objsetid > se_b->se_objsetid)
254 return (1);
255 else
256 return (0);
257}
258
259/*
260 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
261 * is found a pointer to the zfs_snapentry_t is returned and a reference
262 * taken on the structure. The caller is responsible for dropping the
263 * reference with zfsctl_snapshot_rele(). If the snapname is not found
264 * NULL will be returned.
265 */
266static zfs_snapentry_t *
267zfsctl_snapshot_find_by_name(char *snapname)
268{
269 zfs_snapentry_t *se, search;
270
271 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
272
273 search.se_name = snapname;
274 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
275 if (se)
276 refcount_add(&se->se_refcount, NULL);
277
278 return (se);
279}
280
281/*
282 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
283 * rather than the snapname. In all other respects it behaves the same
284 * as zfsctl_snapshot_find_by_name().
285 */
286static zfs_snapentry_t *
287zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
288{
289 zfs_snapentry_t *se, search;
290
291 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
292
293 search.se_spa = spa;
294 search.se_objsetid = objsetid;
295 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
296 if (se)
297 refcount_add(&se->se_refcount, NULL);
298
299 return (se);
300}
301
302/*
303 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
304 * removed, renamed, and added back to the new correct location in the tree.
305 */
306static int
307zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
308{
309 zfs_snapentry_t *se;
310
311 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
312
313 se = zfsctl_snapshot_find_by_name(old_snapname);
314 if (se == NULL)
315 return (ENOENT);
316
317 zfsctl_snapshot_remove(se);
318 strfree(se->se_name);
319 se->se_name = strdup(new_snapname);
320 zfsctl_snapshot_add(se);
321 zfsctl_snapshot_rele(se);
322
323 return (0);
324}
325
326/*
327 * Delayed task responsible for unmounting an expired automounted snapshot.
328 */
329static void
330snapentry_expire(void *data)
331{
332 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
333 spa_t *spa = se->se_spa;
334 uint64_t objsetid = se->se_objsetid;
335
336 if (zfs_expire_snapshot <= 0) {
337 zfsctl_snapshot_rele(se);
338 return;
339 }
340
341 se->se_taskqid = -1;
342 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
343 zfsctl_snapshot_rele(se);
344
345 /*
346 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
347 * This can occur when the snapshot is busy.
348 */
349 rw_enter(&zfs_snapshot_lock, RW_READER);
350 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
351 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
352 zfsctl_snapshot_rele(se);
353 }
354 rw_exit(&zfs_snapshot_lock);
355}
356
357/*
358 * Cancel an automatic unmount of a snapname. This callback is responsible
359 * for dropping the reference on the zfs_snapentry_t which was taken when
360 * during dispatch.
361 */
362static void
363zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
364{
365 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
366
367 if (taskq_cancel_id(zfs_expire_taskq, se->se_taskqid) == 0) {
368 se->se_taskqid = -1;
369 zfsctl_snapshot_rele(se);
370 }
371}
372
373/*
374 * Dispatch the unmount task for delayed handling with a hold protecting it.
375 */
376static void
377zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
378{
379 ASSERT3S(se->se_taskqid, ==, -1);
380
381 if (delay <= 0)
382 return;
383
384 zfsctl_snapshot_hold(se);
385 se->se_taskqid = taskq_dispatch_delay(zfs_expire_taskq,
386 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
387}
388
389/*
390 * Schedule an automatic unmount of objset id to occur in delay seconds from
391 * now. Any previous delayed unmount will be cancelled in favor of the
392 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
393 * and held until the outstanding task is handled or cancelled.
394 */
395int
396zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
397{
398 zfs_snapentry_t *se;
399 int error = ENOENT;
400
401 rw_enter(&zfs_snapshot_lock, RW_READER);
402 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
403 zfsctl_snapshot_unmount_cancel(se);
404 zfsctl_snapshot_unmount_delay_impl(se, delay);
405 zfsctl_snapshot_rele(se);
406 error = 0;
407 }
408 rw_exit(&zfs_snapshot_lock);
409
410 return (error);
411}
412
413/*
414 * Check if snapname is currently mounted. Returned non-zero when mounted
415 * and zero when unmounted.
416 */
417static boolean_t
418zfsctl_snapshot_ismounted(char *snapname)
419{
420 zfs_snapentry_t *se;
421 boolean_t ismounted = B_FALSE;
422
423 rw_enter(&zfs_snapshot_lock, RW_READER);
424 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
425 zfsctl_snapshot_rele(se);
426 ismounted = B_TRUE;
427 }
428 rw_exit(&zfs_snapshot_lock);
429
430 return (ismounted);
431}
432
433/*
434 * Check if the given inode is a part of the virtual .zfs directory.
435 */
436boolean_t
437zfsctl_is_node(struct inode *ip)
438{
439 return (ITOZ(ip)->z_is_ctldir);
440}
441
442/*
443 * Check if the given inode is a .zfs/snapshots/snapname directory.
444 */
445boolean_t
446zfsctl_is_snapdir(struct inode *ip)
447{
448 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
449}
450
451/*
452 * Allocate a new inode with the passed id and ops.
453 */
454static struct inode *
455zfsctl_inode_alloc(zfs_sb_t *zsb, uint64_t id,
456 const struct file_operations *fops, const struct inode_operations *ops)
457{
458 struct timespec now = current_fs_time(zsb->z_sb);
459 struct inode *ip;
460 znode_t *zp;
461
462 ip = new_inode(zsb->z_sb);
463 if (ip == NULL)
464 return (NULL);
465
466 zp = ITOZ(ip);
467 ASSERT3P(zp->z_dirlocks, ==, NULL);
468 ASSERT3P(zp->z_acl_cached, ==, NULL);
469 ASSERT3P(zp->z_xattr_cached, ==, NULL);
470 zp->z_id = id;
471 zp->z_unlinked = 0;
472 zp->z_atime_dirty = 0;
473 zp->z_zn_prefetch = 0;
474 zp->z_moved = 0;
475 zp->z_sa_hdl = NULL;
476 zp->z_blksz = 0;
477 zp->z_seq = 0;
478 zp->z_mapcnt = 0;
479 zp->z_gen = 0;
480 zp->z_size = 0;
481 zp->z_links = 0;
482 zp->z_pflags = 0;
483 zp->z_uid = 0;
484 zp->z_gid = 0;
485 zp->z_mode = 0;
486 zp->z_sync_cnt = 0;
487 zp->z_is_mapped = B_FALSE;
488 zp->z_is_ctldir = B_TRUE;
489 zp->z_is_sa = B_FALSE;
490 zp->z_is_stale = B_FALSE;
491 ip->i_ino = id;
492 ip->i_mode = (S_IFDIR | S_IRUGO | S_IXUGO);
493 ip->i_uid = SUID_TO_KUID(0);
494 ip->i_gid = SGID_TO_KGID(0);
495 ip->i_blkbits = SPA_MINBLOCKSHIFT;
496 ip->i_atime = now;
497 ip->i_mtime = now;
498 ip->i_ctime = now;
499 ip->i_fop = fops;
500 ip->i_op = ops;
501
502 if (insert_inode_locked(ip)) {
503 unlock_new_inode(ip);
504 iput(ip);
505 return (NULL);
506 }
507
508 mutex_enter(&zsb->z_znodes_lock);
509 list_insert_tail(&zsb->z_all_znodes, zp);
510 zsb->z_nr_znodes++;
511 membar_producer();
512 mutex_exit(&zsb->z_znodes_lock);
513
514 unlock_new_inode(ip);
515
516 return (ip);
517}
518
519/*
520 * Lookup the inode with given id, it will be allocated if needed.
521 */
522static struct inode *
523zfsctl_inode_lookup(zfs_sb_t *zsb, uint64_t id,
524 const struct file_operations *fops, const struct inode_operations *ops)
525{
526 struct inode *ip = NULL;
527
528 while (ip == NULL) {
529 ip = ilookup(zsb->z_sb, (unsigned long)id);
530 if (ip)
531 break;
532
533 /* May fail due to concurrent zfsctl_inode_alloc() */
534 ip = zfsctl_inode_alloc(zsb, id, fops, ops);
535 }
536
537 return (ip);
538}
539
540/*
541 * Create the '.zfs' directory. This directory is cached as part of the VFS
542 * structure. This results in a hold on the zfs_sb_t. The code in zfs_umount()
543 * therefore checks against a vfs_count of 2 instead of 1. This reference
544 * is removed when the ctldir is destroyed in the unmount. All other entities
545 * under the '.zfs' directory are created dynamically as needed.
546 *
547 * Because the dynamically created '.zfs' directory entries assume the use
548 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
549 */
550int
551zfsctl_create(zfs_sb_t *zsb)
552{
553#if defined(CONFIG_64BIT)
554 ASSERT(zsb->z_ctldir == NULL);
555
556 zsb->z_ctldir = zfsctl_inode_alloc(zsb, ZFSCTL_INO_ROOT,
557 &zpl_fops_root, &zpl_ops_root);
558 if (zsb->z_ctldir == NULL)
559 return (SET_ERROR(ENOENT));
560
561 return (0);
562#else
563 return (SET_ERROR(EOPNOTSUPP));
564#endif /* CONFIG_64BIT */
565}
566
567/*
568 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
569 * Only called when the filesystem is unmounted.
570 */
571void
572zfsctl_destroy(zfs_sb_t *zsb)
573{
574 if (zsb->z_issnap) {
575 zfs_snapentry_t *se;
576 spa_t *spa = zsb->z_os->os_spa;
577 uint64_t objsetid = dmu_objset_id(zsb->z_os);
578
579 rw_enter(&zfs_snapshot_lock, RW_WRITER);
580 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid))
581 != NULL) {
582 zfsctl_snapshot_unmount_cancel(se);
583 zfsctl_snapshot_remove(se);
584 zfsctl_snapshot_rele(se);
585 }
586 rw_exit(&zfs_snapshot_lock);
587 } else if (zsb->z_ctldir) {
588 iput(zsb->z_ctldir);
589 zsb->z_ctldir = NULL;
590 }
591}
592
593/*
594 * Given a root znode, retrieve the associated .zfs directory.
595 * Add a hold to the vnode and return it.
596 */
597struct inode *
598zfsctl_root(znode_t *zp)
599{
600 ASSERT(zfs_has_ctldir(zp));
601 igrab(ZTOZSB(zp)->z_ctldir);
602 return (ZTOZSB(zp)->z_ctldir);
603}
604/*
605 * Generate a long fid which includes the root object and objset of a
606 * snapshot but not the generation number. For the root object the
607 * generation number is ignored when zero to avoid needing to open
608 * the dataset when generating fids for the snapshot names.
609 */
610static int
611zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
612{
613 zfs_sb_t *zsb = ITOZSB(ip);
614 zfid_short_t *zfid = (zfid_short_t *)fidp;
615 zfid_long_t *zlfid = (zfid_long_t *)fidp;
616 uint32_t gen = 0;
617 uint64_t object;
618 uint64_t objsetid;
619 int i;
620
621 object = zsb->z_root;
622 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
623 zfid->zf_len = LONG_FID_LEN;
624
625 for (i = 0; i < sizeof (zfid->zf_object); i++)
626 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
627
628 for (i = 0; i < sizeof (zfid->zf_gen); i++)
629 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
630
631 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
632 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
633
634 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
635 zlfid->zf_setgen[i] = 0;
636
637 return (0);
638}
639
640/*
641 * Generate an appropriate fid for an entry in the .zfs directory.
642 */
643int
644zfsctl_fid(struct inode *ip, fid_t *fidp)
645{
646 znode_t *zp = ITOZ(ip);
647 zfs_sb_t *zsb = ITOZSB(ip);
648 uint64_t object = zp->z_id;
649 zfid_short_t *zfid;
650 int i;
651
652 ZFS_ENTER(zsb);
653
654 if (fidp->fid_len < SHORT_FID_LEN) {
655 fidp->fid_len = SHORT_FID_LEN;
656 ZFS_EXIT(zsb);
657 return (SET_ERROR(ENOSPC));
658 }
659
660 if (zfsctl_is_snapdir(ip)) {
661 ZFS_EXIT(zsb);
662 return (zfsctl_snapdir_fid(ip, fidp));
663 }
664
665 zfid = (zfid_short_t *)fidp;
666
667 zfid->zf_len = SHORT_FID_LEN;
668
669 for (i = 0; i < sizeof (zfid->zf_object); i++)
670 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
671
672 /* .zfs znodes always have a generation number of 0 */
673 for (i = 0; i < sizeof (zfid->zf_gen); i++)
674 zfid->zf_gen[i] = 0;
675
676 ZFS_EXIT(zsb);
677 return (0);
678}
679
680/*
681 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
682 */
683static int
684zfsctl_snapshot_name(zfs_sb_t *zsb, const char *snap_name, int len,
685 char *full_name)
686{
687 objset_t *os = zsb->z_os;
688
689 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
690 return (SET_ERROR(EILSEQ));
691
692 dmu_objset_name(os, full_name);
693 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
694 return (SET_ERROR(ENAMETOOLONG));
695
696 (void) strcat(full_name, "@");
697 (void) strcat(full_name, snap_name);
698
699 return (0);
700}
701
702/*
703 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
704 */
705static int
706zfsctl_snapshot_path(struct path *path, int len, char *full_path)
707{
708 char *path_buffer, *path_ptr;
709 int path_len, error = 0;
710
711 path_buffer = kmem_alloc(len, KM_SLEEP);
712
713 path_ptr = d_path(path, path_buffer, len);
714 if (IS_ERR(path_ptr)) {
715 error = -PTR_ERR(path_ptr);
716 goto out;
717 }
718
719 path_len = path_buffer + len - 1 - path_ptr;
720 if (path_len > len) {
721 error = SET_ERROR(EFAULT);
722 goto out;
723 }
724
725 memcpy(full_path, path_ptr, path_len);
726 full_path[path_len] = '\0';
727out:
728 kmem_free(path_buffer, len);
729
730 return (error);
731}
732
733/*
734 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
735 */
736static int
737zfsctl_snapshot_path_objset(zfs_sb_t *zsb, uint64_t objsetid,
738 int path_len, char *full_path)
739{
740 objset_t *os = zsb->z_os;
741 fstrans_cookie_t cookie;
742 char *snapname;
743 boolean_t case_conflict;
744 uint64_t id, pos = 0;
745 int error = 0;
746
747 if (zsb->z_mntopts->z_mntpoint == NULL)
748 return (ENOENT);
749
750 cookie = spl_fstrans_mark();
751 snapname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
752
753 while (error == 0) {
754 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
755 error = dmu_snapshot_list_next(zsb->z_os, MAXNAMELEN,
756 snapname, &id, &pos, &case_conflict);
757 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
758 if (error)
759 goto out;
760
761 if (id == objsetid)
762 break;
763 }
764
765 memset(full_path, 0, path_len);
766 snprintf(full_path, path_len - 1, "%s/.zfs/snapshot/%s",
767 zsb->z_mntopts->z_mntpoint, snapname);
768out:
769 kmem_free(snapname, MAXNAMELEN);
770 spl_fstrans_unmark(cookie);
771
772 return (error);
773}
774
775/*
776 * Special case the handling of "..".
777 */
778int
779zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
780 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
781{
782 zfs_sb_t *zsb = ITOZSB(dip);
783 int error = 0;
784
785 ZFS_ENTER(zsb);
786
787 if (strcmp(name, "..") == 0) {
788 *ipp = dip->i_sb->s_root->d_inode;
789 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
790 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIR,
791 &zpl_fops_snapdir, &zpl_ops_snapdir);
792 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
793 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SHARES,
794 &zpl_fops_shares, &zpl_ops_shares);
795 } else {
796 *ipp = NULL;
797 }
798
799 if (*ipp == NULL)
800 error = SET_ERROR(ENOENT);
801
802 ZFS_EXIT(zsb);
803
804 return (error);
805}
806
807/*
808 * Lookup entry point for the 'snapshot' directory. Try to open the
809 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
810 * Perform a mount of the associated dataset on top of the inode.
811 */
812int
813zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
814 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
815{
816 zfs_sb_t *zsb = ITOZSB(dip);
817 uint64_t id;
818 int error;
819
820 ZFS_ENTER(zsb);
821
822 error = dmu_snapshot_lookup(zsb->z_os, name, &id);
823 if (error) {
824 ZFS_EXIT(zsb);
825 return (error);
826 }
827
828 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIRS - id,
829 &simple_dir_operations, &simple_dir_inode_operations);
830 if (*ipp == NULL)
831 error = SET_ERROR(ENOENT);
832
833 ZFS_EXIT(zsb);
834
835 return (error);
836}
837
838/*
839 * Renaming a directory under '.zfs/snapshot' will automatically trigger
840 * a rename of the snapshot to the new given name. The rename is confined
841 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
842 */
843int
844zfsctl_snapdir_rename(struct inode *sdip, char *snm,
845 struct inode *tdip, char *tnm, cred_t *cr, int flags)
846{
847 zfs_sb_t *zsb = ITOZSB(sdip);
848 char *to, *from, *real, *fsname;
849 int error;
850
851 if (!zfs_admin_snapshot)
852 return (EACCES);
853
854 ZFS_ENTER(zsb);
855
856 to = kmem_alloc(MAXNAMELEN, KM_SLEEP);
857 from = kmem_alloc(MAXNAMELEN, KM_SLEEP);
858 real = kmem_alloc(MAXNAMELEN, KM_SLEEP);
859 fsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
860
861 if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
862 error = dmu_snapshot_realname(zsb->z_os, snm, real,
863 MAXNAMELEN, NULL);
864 if (error == 0) {
865 snm = real;
866 } else if (error != ENOTSUP) {
867 goto out;
868 }
869 }
870
871 dmu_objset_name(zsb->z_os, fsname);
872
873 error = zfsctl_snapshot_name(ITOZSB(sdip), snm, MAXNAMELEN, from);
874 if (error == 0)
875 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm, MAXNAMELEN, to);
876 if (error == 0)
877 error = zfs_secpolicy_rename_perms(from, to, cr);
878 if (error != 0)
879 goto out;
880
881 /*
882 * Cannot move snapshots out of the snapdir.
883 */
884 if (sdip != tdip) {
885 error = SET_ERROR(EINVAL);
886 goto out;
887 }
888
889 /*
890 * No-op when names are identical.
891 */
892 if (strcmp(snm, tnm) == 0) {
893 error = 0;
894 goto out;
895 }
896
897 rw_enter(&zfs_snapshot_lock, RW_WRITER);
898
899 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
900 if (error == 0)
901 (void) zfsctl_snapshot_rename(snm, tnm);
902
903 rw_exit(&zfs_snapshot_lock);
904out:
905 kmem_free(from, MAXNAMELEN);
906 kmem_free(to, MAXNAMELEN);
907 kmem_free(real, MAXNAMELEN);
908 kmem_free(fsname, MAXNAMELEN);
909
910 ZFS_EXIT(zsb);
911
912 return (error);
913}
914
915/*
916 * Removing a directory under '.zfs/snapshot' will automatically trigger
917 * the removal of the snapshot with the given name.
918 */
919int
920zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
921{
922 zfs_sb_t *zsb = ITOZSB(dip);
923 char *snapname, *real;
924 int error;
925
926 if (!zfs_admin_snapshot)
927 return (EACCES);
928
929 ZFS_ENTER(zsb);
930
931 snapname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
932 real = kmem_alloc(MAXNAMELEN, KM_SLEEP);
933
934 if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
935 error = dmu_snapshot_realname(zsb->z_os, name, real,
936 MAXNAMELEN, NULL);
937 if (error == 0) {
938 name = real;
939 } else if (error != ENOTSUP) {
940 goto out;
941 }
942 }
943
944 error = zfsctl_snapshot_name(ITOZSB(dip), name, MAXNAMELEN, snapname);
945 if (error == 0)
946 error = zfs_secpolicy_destroy_perms(snapname, cr);
947 if (error != 0)
948 goto out;
949
950 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
951 if ((error == 0) || (error == ENOENT))
952 error = dsl_destroy_snapshot(snapname, B_FALSE);
953out:
954 kmem_free(snapname, MAXNAMELEN);
955 kmem_free(real, MAXNAMELEN);
956
957 ZFS_EXIT(zsb);
958
959 return (error);
960}
961
962/*
963 * Creating a directory under '.zfs/snapshot' will automatically trigger
964 * the creation of a new snapshot with the given name.
965 */
966int
967zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
968 struct inode **ipp, cred_t *cr, int flags)
969{
970 zfs_sb_t *zsb = ITOZSB(dip);
971 char *dsname;
972 int error;
973
974 if (!zfs_admin_snapshot)
975 return (EACCES);
976
977 dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
978
979 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
980 error = SET_ERROR(EILSEQ);
981 goto out;
982 }
983
984 dmu_objset_name(zsb->z_os, dsname);
985
986 error = zfs_secpolicy_snapshot_perms(dsname, cr);
987 if (error != 0)
988 goto out;
989
990 if (error == 0) {
991 error = dmu_objset_snapshot_one(dsname, dirname);
992 if (error != 0)
993 goto out;
994
995 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
996 0, cr, NULL, NULL);
997 }
998out:
999 kmem_free(dsname, MAXNAMELEN);
1000
1001 return (error);
1002}
1003
1004/*
1005 * Attempt to unmount a snapshot by making a call to user space.
1006 * There is no assurance that this can or will succeed, is just a
1007 * best effort. In the case where it does fail, perhaps because
1008 * it's in use, the unmount will fail harmlessly.
1009 */
1010int
1011zfsctl_snapshot_unmount(char *snapname, int flags)
1012{
1013 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1014 NULL };
1015 char *envp[] = { NULL };
1016 zfs_snapentry_t *se;
1017 int error;
1018
1019 rw_enter(&zfs_snapshot_lock, RW_READER);
1020 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1021 rw_exit(&zfs_snapshot_lock);
1022 return (ENOENT);
1023 }
1024 rw_exit(&zfs_snapshot_lock);
1025
1026 if (flags & MNT_FORCE)
1027 argv[4] = "-fn";
1028 argv[5] = se->se_path;
1029 dprintf("unmount; path=%s\n", se->se_path);
1030 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1031 zfsctl_snapshot_rele(se);
1032
1033
1034 /*
1035 * The umount system utility will return 256 on error. We must
1036 * assume this error is because the file system is busy so it is
1037 * converted to the more sensible EBUSY.
1038 */
1039 if (error)
1040 error = SET_ERROR(EBUSY);
1041
1042 return (error);
1043}
1044
1045#define MOUNT_BUSY 0x80 /* Mount failed due to EBUSY (from mntent.h) */
1046
1047int
1048zfsctl_snapshot_mount(struct path *path, int flags)
1049{
1050 struct dentry *dentry = path->dentry;
1051 struct inode *ip = dentry->d_inode;
1052 zfs_sb_t *zsb;
1053 zfs_sb_t *snap_zsb;
1054 zfs_snapentry_t *se;
1055 char *full_name, *full_path;
1056 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1057 NULL };
1058 char *envp[] = { NULL };
1059 int error;
1060 struct path spath;
1061
1062 if (ip == NULL)
1063 return (EISDIR);
1064
1065 zsb = ITOZSB(ip);
1066 ZFS_ENTER(zsb);
1067
1068 full_name = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
1069 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1070
1071 error = zfsctl_snapshot_name(zsb, dname(dentry),
1072 MAXNAMELEN, full_name);
1073 if (error)
1074 goto error;
1075
1076 error = zfsctl_snapshot_path(path, MAXPATHLEN, full_path);
1077 if (error)
1078 goto error;
1079
1080 /*
1081 * Multiple concurrent automounts of a snapshot are never allowed.
1082 * The snapshot may be manually mounted as many times as desired.
1083 */
1084 if (zfsctl_snapshot_ismounted(full_name)) {
1085 error = 0;
1086 goto error;
1087 }
1088
1089 /*
1090 * Attempt to mount the snapshot from user space. Normally this
1091 * would be done using the vfs_kern_mount() function, however that
1092 * function is marked GPL-only and cannot be used. On error we
1093 * careful to log the real error to the console and return EISDIR
1094 * to safely abort the automount. This should be very rare.
1095 *
1096 * If the user mode helper happens to return EBUSY, a concurrent
1097 * mount is already in progress in which case the error is ignored.
1098 * Take note that if the program was executed successfully the return
1099 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1100 */
1101 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1102 argv[5] = full_name;
1103 argv[6] = full_path;
1104 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1105 if (error) {
1106 if (!(error & MOUNT_BUSY << 8)) {
1107 cmn_err(CE_WARN, "Unable to automount %s/%s: %d",
1108 full_path, full_name, error);
1109 error = SET_ERROR(EISDIR);
1110 } else {
1111 /*
1112 * EBUSY, this could mean a concurrent mount, or the
1113 * snapshot has already been mounted at completely
1114 * different place. We return 0 so VFS will retry. For
1115 * the latter case the VFS will retry several times
1116 * and return ELOOP, which is probably not a very good
1117 * behavior.
1118 */
1119 error = 0;
1120 }
1121 goto error;
1122 }
1123
1124 /*
1125 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1126 * to identify this as an automounted filesystem.
1127 */
1128 spath = *path;
1129 path_get(&spath);
1130 if (zpl_follow_down_one(&spath)) {
1131 snap_zsb = ITOZSB(spath.dentry->d_inode);
1132 snap_zsb->z_parent = zsb;
1133 dentry = spath.dentry;
1134 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1135
1136 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1137 se = zfsctl_snapshot_alloc(full_name, full_path,
1138 snap_zsb->z_os->os_spa, dmu_objset_id(snap_zsb->z_os),
1139 dentry);
1140 zfsctl_snapshot_add(se);
1141 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1142 rw_exit(&zfs_snapshot_lock);
1143 }
1144 path_put(&spath);
1145error:
1146 kmem_free(full_name, MAXNAMELEN);
1147 kmem_free(full_path, MAXPATHLEN);
1148
1149 ZFS_EXIT(zsb);
1150
1151 return (error);
1152}
1153
1154/*
1155 * Given the objset id of the snapshot return its zfs_sb_t as zsbp.
1156 */
1157int
1158zfsctl_lookup_objset(struct super_block *sb, uint64_t objsetid, zfs_sb_t **zsbp)
1159{
1160 zfs_snapentry_t *se;
1161 int error;
1162 spa_t *spa = ((zfs_sb_t *)(sb->s_fs_info))->z_os->os_spa;
1163
1164 /*
1165 * Verify that the snapshot is mounted then lookup the mounted root
1166 * rather than the covered mount point. This may fail if the
1167 * snapshot has just been unmounted by an unrelated user space
1168 * process. This race cannot occur to an expired mount point
1169 * because we hold the zfs_snapshot_lock to prevent the race.
1170 */
1171 rw_enter(&zfs_snapshot_lock, RW_READER);
1172 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
1173 zfs_sb_t *zsb;
1174
1175 zsb = ITOZSB(se->se_root_dentry->d_inode);
1176 ASSERT3U(dmu_objset_id(zsb->z_os), ==, objsetid);
1177
1178 if (time_after(jiffies, zsb->z_snap_defer_time +
1179 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1180 zsb->z_snap_defer_time = jiffies;
1181 zfsctl_snapshot_unmount_cancel(se);
1182 zfsctl_snapshot_unmount_delay_impl(se,
1183 zfs_expire_snapshot);
1184 }
1185
1186 *zsbp = zsb;
1187 zfsctl_snapshot_rele(se);
1188 error = SET_ERROR(0);
1189 } else {
1190 error = SET_ERROR(ENOENT);
1191 }
1192 rw_exit(&zfs_snapshot_lock);
1193
1194 /*
1195 * Automount the snapshot given the objset id by constructing the
1196 * full mount point and performing a traversal.
1197 */
1198 if (error == ENOENT) {
1199 struct path path;
1200 char *mnt;
1201
1202 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1203 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1204 MAXPATHLEN, mnt);
1205 if (error) {
1206 kmem_free(mnt, MAXPATHLEN);
1207 return (SET_ERROR(error));
1208 }
1209
1210 error = kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1211 if (error == 0) {
1212 *zsbp = ITOZSB(path.dentry->d_inode);
1213 path_put(&path);
1214 }
1215
1216 kmem_free(mnt, MAXPATHLEN);
1217 }
1218
1219 return (error);
1220}
1221
1222int
1223zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1224 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1225{
1226 zfs_sb_t *zsb = ITOZSB(dip);
1227 struct inode *ip;
1228 znode_t *dzp;
1229 int error;
1230
1231 ZFS_ENTER(zsb);
1232
1233 if (zsb->z_shares_dir == 0) {
1234 ZFS_EXIT(zsb);
1235 return (SET_ERROR(ENOTSUP));
1236 }
1237
1238 error = zfs_zget(zsb, zsb->z_shares_dir, &dzp);
1239 if (error) {
1240 ZFS_EXIT(zsb);
1241 return (error);
1242 }
1243
1244 error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
1245
1246 iput(ZTOI(dzp));
1247 ZFS_EXIT(zsb);
1248
1249 return (error);
1250}
1251
1252
1253/*
1254 * Initialize the various pieces we'll need to create and manipulate .zfs
1255 * directories. Currently this is unused but available.
1256 */
1257void
1258zfsctl_init(void)
1259{
1260 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1261 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1262 se_node_name));
1263 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1264 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1265 se_node_objsetid));
1266 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1267
1268 zfs_expire_taskq = taskq_create("z_unmount", 1, defclsyspri,
1269 1, 8, TASKQ_PREPOPULATE);
1270}
1271
1272/*
1273 * Cleanup the various pieces we needed for .zfs directories. In particular
1274 * ensure the expiry timer is canceled safely.
1275 */
1276void
1277zfsctl_fini(void)
1278{
1279 taskq_destroy(zfs_expire_taskq);
1280
1281 avl_destroy(&zfs_snapshots_by_name);
1282 avl_destroy(&zfs_snapshots_by_objsetid);
1283 rw_destroy(&zfs_snapshot_lock);
1284}
1285
1286module_param(zfs_admin_snapshot, int, 0644);
1287MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1288
1289module_param(zfs_expire_snapshot, int, 0644);
1290MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");