]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - zfs/module/zfs/zfs_ctldir.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / zfs / module / zfs / zfs_ctldir.c
CommitLineData
87d546d8
TG
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 */
32
33/*
34 * ZFS control directory (a.k.a. ".zfs")
35 *
36 * This directory provides a common location for all ZFS meta-objects.
37 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
38 * expand in the future. The elements are built dynamically, as the hierarchy
39 * does not actually exist on disk.
40 *
41 * For 'snapshot', we don't want to have all snapshots always mounted, because
42 * this would take up a huge amount of space in /etc/mnttab. We have three
43 * types of objects:
44 *
45 * ctldir ------> snapshotdir -------> snapshot
46 * |
47 * |
48 * V
49 * mounted fs
50 *
51 * The 'snapshot' node contains just enough information to lookup '..' and act
52 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
53 * perform an automount of the underlying filesystem and return the
54 * corresponding inode.
55 *
56 * All mounts are handled automatically by an user mode helper which invokes
57 * the mount mount procedure. Unmounts are handled by allowing the mount
58 * point to expire so the kernel may automatically unmount it.
59 *
60 * The '.zfs', '.zfs/snapshot', and all directories created under
61 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
62 * share the same zfs_sb_t as the head filesystem (what '.zfs' lives under).
63 *
64 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
65 * (ie: snapshots) are complete ZFS filesystems and have their own unique
66 * zfs_sb_t. However, the fsid reported by these mounts will be the same
67 * as that used by the parent zfs_sb_t to make NFS happy.
68 */
69
70#include <sys/types.h>
71#include <sys/param.h>
72#include <sys/time.h>
73#include <sys/systm.h>
74#include <sys/sysmacros.h>
75#include <sys/pathname.h>
76#include <sys/vfs.h>
77#include <sys/vfs_opreg.h>
78#include <sys/zfs_ctldir.h>
79#include <sys/zfs_ioctl.h>
80#include <sys/zfs_vfsops.h>
81#include <sys/zfs_vnops.h>
82#include <sys/stat.h>
83#include <sys/dmu.h>
84#include <sys/dmu_objset.h>
85#include <sys/dsl_destroy.h>
86#include <sys/dsl_deleg.h>
87#include <sys/mount.h>
88#include <sys/zpl.h>
89#include "zfs_namecheck.h"
90
91/*
92 * Two AVL trees are maintained which contain all currently automounted
93 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
94 * entry which MUST:
95 *
96 * - be attached to both trees, and
97 * - be unique, no duplicate entries are allowed.
98 *
99 * The zfs_snapshots_by_name tree is indexed by the full dataset name
100 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
101 * objsetid. This allows for fast lookups either by name or objsetid.
102 */
103static avl_tree_t zfs_snapshots_by_name;
104static avl_tree_t zfs_snapshots_by_objsetid;
105static krwlock_t zfs_snapshot_lock;
106
107/*
108 * Control Directory Tunables (.zfs)
109 */
110int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
111int zfs_admin_snapshot = 0;
112
113/*
114 * Dedicated task queue for unmounting snapshots.
115 */
116static taskq_t *zfs_expire_taskq;
117
118typedef struct {
119 char *se_name; /* full snapshot name */
120 char *se_path; /* full mount path */
121 spa_t *se_spa; /* pool spa */
122 uint64_t se_objsetid; /* snapshot objset id */
123 struct dentry *se_root_dentry; /* snapshot root dentry */
124 taskqid_t se_taskqid; /* scheduled unmount taskqid */
125 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
126 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
127 refcount_t se_refcount; /* reference count */
128} zfs_snapentry_t;
129
130static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
131
132/*
133 * Allocate a new zfs_snapentry_t being careful to make a copy of the
134 * the snapshot name and provided mount point. No reference is taken.
135 */
136static zfs_snapentry_t *
137zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
138 uint64_t objsetid, struct dentry *root_dentry)
139{
140 zfs_snapentry_t *se;
141
142 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
143
144 se->se_name = strdup(full_name);
145 se->se_path = strdup(full_path);
146 se->se_spa = spa;
147 se->se_objsetid = objsetid;
148 se->se_root_dentry = root_dentry;
149 se->se_taskqid = -1;
150
151 refcount_create(&se->se_refcount);
152
153 return (se);
154}
155
156/*
157 * Free a zfs_snapentry_t the called must ensure there are no active
158 * references.
159 */
160static void
161zfsctl_snapshot_free(zfs_snapentry_t *se)
162{
163 refcount_destroy(&se->se_refcount);
164 strfree(se->se_name);
165 strfree(se->se_path);
166
167 kmem_free(se, sizeof (zfs_snapentry_t));
168}
169
170/*
171 * Hold a reference on the zfs_snapentry_t.
172 */
173static void
174zfsctl_snapshot_hold(zfs_snapentry_t *se)
175{
176 refcount_add(&se->se_refcount, NULL);
177}
178
179/*
180 * Release a reference on the zfs_snapentry_t. When the number of
181 * references drops to zero the structure will be freed.
182 */
183static void
184zfsctl_snapshot_rele(zfs_snapentry_t *se)
185{
186 if (refcount_remove(&se->se_refcount, NULL) == 0)
187 zfsctl_snapshot_free(se);
188}
189
190/*
191 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
192 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
193 * of the trees a reference is held.
194 */
195static void
196zfsctl_snapshot_add(zfs_snapentry_t *se)
197{
198 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
199 refcount_add(&se->se_refcount, NULL);
200 avl_add(&zfs_snapshots_by_name, se);
201 avl_add(&zfs_snapshots_by_objsetid, se);
202}
203
204/*
205 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
206 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
207 * this can result in the structure being freed if that was the last
208 * remaining reference.
209 */
210static void
211zfsctl_snapshot_remove(zfs_snapentry_t *se)
212{
213 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
214 avl_remove(&zfs_snapshots_by_name, se);
215 avl_remove(&zfs_snapshots_by_objsetid, se);
216 zfsctl_snapshot_rele(se);
217}
218
219/*
220 * Snapshot name comparison function for the zfs_snapshots_by_name.
221 */
222static int
223snapentry_compare_by_name(const void *a, const void *b)
224{
225 const zfs_snapentry_t *se_a = a;
226 const zfs_snapentry_t *se_b = b;
227 int ret;
228
229 ret = strcmp(se_a->se_name, se_b->se_name);
230
231 if (ret < 0)
232 return (-1);
233 else if (ret > 0)
234 return (1);
235 else
236 return (0);
237}
238
239/*
240 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
241 */
242static int
243snapentry_compare_by_objsetid(const void *a, const void *b)
244{
245 const zfs_snapentry_t *se_a = a;
246 const zfs_snapentry_t *se_b = b;
247
248 if (se_a->se_spa != se_b->se_spa)
249 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
250
251 if (se_a->se_objsetid < se_b->se_objsetid)
252 return (-1);
253 else if (se_a->se_objsetid > se_b->se_objsetid)
254 return (1);
255 else
256 return (0);
257}
258
259/*
260 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
261 * is found a pointer to the zfs_snapentry_t is returned and a reference
262 * taken on the structure. The caller is responsible for dropping the
263 * reference with zfsctl_snapshot_rele(). If the snapname is not found
264 * NULL will be returned.
265 */
266static zfs_snapentry_t *
267zfsctl_snapshot_find_by_name(char *snapname)
268{
269 zfs_snapentry_t *se, search;
270
271 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
272
273 search.se_name = snapname;
274 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
275 if (se)
276 refcount_add(&se->se_refcount, NULL);
277
278 return (se);
279}
280
281/*
282 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
283 * rather than the snapname. In all other respects it behaves the same
284 * as zfsctl_snapshot_find_by_name().
285 */
286static zfs_snapentry_t *
287zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
288{
289 zfs_snapentry_t *se, search;
290
291 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
292
293 search.se_spa = spa;
294 search.se_objsetid = objsetid;
295 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
296 if (se)
297 refcount_add(&se->se_refcount, NULL);
298
299 return (se);
300}
301
302/*
303 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
304 * removed, renamed, and added back to the new correct location in the tree.
305 */
306static int
307zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
308{
309 zfs_snapentry_t *se;
310
311 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
312
313 se = zfsctl_snapshot_find_by_name(old_snapname);
314 if (se == NULL)
315 return (ENOENT);
316
317 zfsctl_snapshot_remove(se);
318 strfree(se->se_name);
319 se->se_name = strdup(new_snapname);
320 zfsctl_snapshot_add(se);
321 zfsctl_snapshot_rele(se);
322
323 return (0);
324}
325
326/*
327 * Delayed task responsible for unmounting an expired automounted snapshot.
328 */
329static void
330snapentry_expire(void *data)
331{
332 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
333 spa_t *spa = se->se_spa;
334 uint64_t objsetid = se->se_objsetid;
335
336 if (zfs_expire_snapshot <= 0) {
337 zfsctl_snapshot_rele(se);
338 return;
339 }
340
341 se->se_taskqid = -1;
342 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
343 zfsctl_snapshot_rele(se);
344
345 /*
346 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
347 * This can occur when the snapshot is busy.
348 */
349 rw_enter(&zfs_snapshot_lock, RW_READER);
350 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
351 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
352 zfsctl_snapshot_rele(se);
353 }
354 rw_exit(&zfs_snapshot_lock);
355}
356
357/*
358 * Cancel an automatic unmount of a snapname. This callback is responsible
359 * for dropping the reference on the zfs_snapentry_t which was taken when
360 * during dispatch.
361 */
362static void
363zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
364{
365 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
366
367 if (taskq_cancel_id(zfs_expire_taskq, se->se_taskqid) == 0) {
368 se->se_taskqid = -1;
369 zfsctl_snapshot_rele(se);
370 }
371}
372
373/*
374 * Dispatch the unmount task for delayed handling with a hold protecting it.
375 */
376static void
377zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
378{
379 ASSERT3S(se->se_taskqid, ==, -1);
380
381 if (delay <= 0)
382 return;
383
384 zfsctl_snapshot_hold(se);
385 se->se_taskqid = taskq_dispatch_delay(zfs_expire_taskq,
386 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
387}
388
389/*
390 * Schedule an automatic unmount of objset id to occur in delay seconds from
391 * now. Any previous delayed unmount will be cancelled in favor of the
392 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
393 * and held until the outstanding task is handled or cancelled.
394 */
395int
396zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
397{
398 zfs_snapentry_t *se;
399 int error = ENOENT;
400
401 rw_enter(&zfs_snapshot_lock, RW_READER);
402 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
403 zfsctl_snapshot_unmount_cancel(se);
404 zfsctl_snapshot_unmount_delay_impl(se, delay);
405 zfsctl_snapshot_rele(se);
406 error = 0;
407 }
408 rw_exit(&zfs_snapshot_lock);
409
410 return (error);
411}
412
413/*
414 * Check if snapname is currently mounted. Returned non-zero when mounted
415 * and zero when unmounted.
416 */
417static boolean_t
418zfsctl_snapshot_ismounted(char *snapname)
419{
420 zfs_snapentry_t *se;
421 boolean_t ismounted = B_FALSE;
422
423 rw_enter(&zfs_snapshot_lock, RW_READER);
424 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
425 zfsctl_snapshot_rele(se);
426 ismounted = B_TRUE;
427 }
428 rw_exit(&zfs_snapshot_lock);
429
430 return (ismounted);
431}
432
433/*
434 * Check if the given inode is a part of the virtual .zfs directory.
435 */
436boolean_t
437zfsctl_is_node(struct inode *ip)
438{
439 return (ITOZ(ip)->z_is_ctldir);
440}
441
442/*
443 * Check if the given inode is a .zfs/snapshots/snapname directory.
444 */
445boolean_t
446zfsctl_is_snapdir(struct inode *ip)
447{
448 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
449}
450
451/*
452 * Allocate a new inode with the passed id and ops.
453 */
454static struct inode *
455zfsctl_inode_alloc(zfs_sb_t *zsb, uint64_t id,
456 const struct file_operations *fops, const struct inode_operations *ops)
457{
df9d7621 458 struct timespec now;
87d546d8
TG
459 struct inode *ip;
460 znode_t *zp;
461
462 ip = new_inode(zsb->z_sb);
463 if (ip == NULL)
464 return (NULL);
465
df9d7621 466 now = current_time(ip);
87d546d8
TG
467 zp = ITOZ(ip);
468 ASSERT3P(zp->z_dirlocks, ==, NULL);
469 ASSERT3P(zp->z_acl_cached, ==, NULL);
470 ASSERT3P(zp->z_xattr_cached, ==, NULL);
471 zp->z_id = id;
472 zp->z_unlinked = 0;
473 zp->z_atime_dirty = 0;
474 zp->z_zn_prefetch = 0;
475 zp->z_moved = 0;
476 zp->z_sa_hdl = NULL;
477 zp->z_blksz = 0;
478 zp->z_seq = 0;
479 zp->z_mapcnt = 0;
480 zp->z_gen = 0;
481 zp->z_size = 0;
482 zp->z_links = 0;
483 zp->z_pflags = 0;
484 zp->z_uid = 0;
485 zp->z_gid = 0;
486 zp->z_mode = 0;
487 zp->z_sync_cnt = 0;
488 zp->z_is_mapped = B_FALSE;
489 zp->z_is_ctldir = B_TRUE;
490 zp->z_is_sa = B_FALSE;
491 zp->z_is_stale = B_FALSE;
492 ip->i_ino = id;
493 ip->i_mode = (S_IFDIR | S_IRUGO | S_IXUGO);
494 ip->i_uid = SUID_TO_KUID(0);
495 ip->i_gid = SGID_TO_KGID(0);
496 ip->i_blkbits = SPA_MINBLOCKSHIFT;
497 ip->i_atime = now;
498 ip->i_mtime = now;
499 ip->i_ctime = now;
500 ip->i_fop = fops;
501 ip->i_op = ops;
5b5f25ca
CIK
502#if defined(IOP_XATTR)
503 ip->i_opflags &= ~IOP_XATTR;
504#endif
87d546d8
TG
505
506 if (insert_inode_locked(ip)) {
507 unlock_new_inode(ip);
508 iput(ip);
509 return (NULL);
510 }
511
512 mutex_enter(&zsb->z_znodes_lock);
513 list_insert_tail(&zsb->z_all_znodes, zp);
514 zsb->z_nr_znodes++;
515 membar_producer();
516 mutex_exit(&zsb->z_znodes_lock);
517
518 unlock_new_inode(ip);
519
520 return (ip);
521}
522
523/*
524 * Lookup the inode with given id, it will be allocated if needed.
525 */
526static struct inode *
527zfsctl_inode_lookup(zfs_sb_t *zsb, uint64_t id,
528 const struct file_operations *fops, const struct inode_operations *ops)
529{
530 struct inode *ip = NULL;
531
532 while (ip == NULL) {
533 ip = ilookup(zsb->z_sb, (unsigned long)id);
534 if (ip)
535 break;
536
537 /* May fail due to concurrent zfsctl_inode_alloc() */
538 ip = zfsctl_inode_alloc(zsb, id, fops, ops);
539 }
540
541 return (ip);
542}
543
544/*
545 * Create the '.zfs' directory. This directory is cached as part of the VFS
546 * structure. This results in a hold on the zfs_sb_t. The code in zfs_umount()
547 * therefore checks against a vfs_count of 2 instead of 1. This reference
548 * is removed when the ctldir is destroyed in the unmount. All other entities
549 * under the '.zfs' directory are created dynamically as needed.
550 *
551 * Because the dynamically created '.zfs' directory entries assume the use
552 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
553 */
554int
555zfsctl_create(zfs_sb_t *zsb)
556{
557#if defined(CONFIG_64BIT)
558 ASSERT(zsb->z_ctldir == NULL);
559
560 zsb->z_ctldir = zfsctl_inode_alloc(zsb, ZFSCTL_INO_ROOT,
561 &zpl_fops_root, &zpl_ops_root);
562 if (zsb->z_ctldir == NULL)
563 return (SET_ERROR(ENOENT));
564
565 return (0);
566#else
567 return (SET_ERROR(EOPNOTSUPP));
568#endif /* CONFIG_64BIT */
569}
570
571/*
572 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
573 * Only called when the filesystem is unmounted.
574 */
575void
576zfsctl_destroy(zfs_sb_t *zsb)
577{
578 if (zsb->z_issnap) {
579 zfs_snapentry_t *se;
580 spa_t *spa = zsb->z_os->os_spa;
581 uint64_t objsetid = dmu_objset_id(zsb->z_os);
582
583 rw_enter(&zfs_snapshot_lock, RW_WRITER);
584 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid))
585 != NULL) {
586 zfsctl_snapshot_unmount_cancel(se);
587 zfsctl_snapshot_remove(se);
588 zfsctl_snapshot_rele(se);
589 }
590 rw_exit(&zfs_snapshot_lock);
591 } else if (zsb->z_ctldir) {
592 iput(zsb->z_ctldir);
593 zsb->z_ctldir = NULL;
594 }
595}
596
597/*
598 * Given a root znode, retrieve the associated .zfs directory.
599 * Add a hold to the vnode and return it.
600 */
601struct inode *
602zfsctl_root(znode_t *zp)
603{
604 ASSERT(zfs_has_ctldir(zp));
605 igrab(ZTOZSB(zp)->z_ctldir);
606 return (ZTOZSB(zp)->z_ctldir);
607}
608/*
609 * Generate a long fid which includes the root object and objset of a
610 * snapshot but not the generation number. For the root object the
611 * generation number is ignored when zero to avoid needing to open
612 * the dataset when generating fids for the snapshot names.
613 */
614static int
615zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
616{
617 zfs_sb_t *zsb = ITOZSB(ip);
618 zfid_short_t *zfid = (zfid_short_t *)fidp;
619 zfid_long_t *zlfid = (zfid_long_t *)fidp;
620 uint32_t gen = 0;
621 uint64_t object;
622 uint64_t objsetid;
623 int i;
624
625 object = zsb->z_root;
626 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
627 zfid->zf_len = LONG_FID_LEN;
628
629 for (i = 0; i < sizeof (zfid->zf_object); i++)
630 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
631
632 for (i = 0; i < sizeof (zfid->zf_gen); i++)
633 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
634
635 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
636 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
637
638 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
639 zlfid->zf_setgen[i] = 0;
640
641 return (0);
642}
643
644/*
645 * Generate an appropriate fid for an entry in the .zfs directory.
646 */
647int
648zfsctl_fid(struct inode *ip, fid_t *fidp)
649{
650 znode_t *zp = ITOZ(ip);
651 zfs_sb_t *zsb = ITOZSB(ip);
652 uint64_t object = zp->z_id;
653 zfid_short_t *zfid;
654 int i;
655
656 ZFS_ENTER(zsb);
657
658 if (fidp->fid_len < SHORT_FID_LEN) {
659 fidp->fid_len = SHORT_FID_LEN;
660 ZFS_EXIT(zsb);
661 return (SET_ERROR(ENOSPC));
662 }
663
664 if (zfsctl_is_snapdir(ip)) {
665 ZFS_EXIT(zsb);
666 return (zfsctl_snapdir_fid(ip, fidp));
667 }
668
669 zfid = (zfid_short_t *)fidp;
670
671 zfid->zf_len = SHORT_FID_LEN;
672
673 for (i = 0; i < sizeof (zfid->zf_object); i++)
674 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
675
676 /* .zfs znodes always have a generation number of 0 */
677 for (i = 0; i < sizeof (zfid->zf_gen); i++)
678 zfid->zf_gen[i] = 0;
679
680 ZFS_EXIT(zsb);
681 return (0);
682}
683
684/*
685 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
686 */
687static int
688zfsctl_snapshot_name(zfs_sb_t *zsb, const char *snap_name, int len,
689 char *full_name)
690{
691 objset_t *os = zsb->z_os;
692
693 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
694 return (SET_ERROR(EILSEQ));
695
696 dmu_objset_name(os, full_name);
697 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
698 return (SET_ERROR(ENAMETOOLONG));
699
700 (void) strcat(full_name, "@");
701 (void) strcat(full_name, snap_name);
702
703 return (0);
704}
705
706/*
707 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
708 */
709static int
710zfsctl_snapshot_path(struct path *path, int len, char *full_path)
711{
712 char *path_buffer, *path_ptr;
713 int path_len, error = 0;
714
715 path_buffer = kmem_alloc(len, KM_SLEEP);
716
717 path_ptr = d_path(path, path_buffer, len);
718 if (IS_ERR(path_ptr)) {
719 error = -PTR_ERR(path_ptr);
720 goto out;
721 }
722
723 path_len = path_buffer + len - 1 - path_ptr;
724 if (path_len > len) {
725 error = SET_ERROR(EFAULT);
726 goto out;
727 }
728
729 memcpy(full_path, path_ptr, path_len);
730 full_path[path_len] = '\0';
731out:
732 kmem_free(path_buffer, len);
733
734 return (error);
735}
736
737/*
738 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
739 */
740static int
741zfsctl_snapshot_path_objset(zfs_sb_t *zsb, uint64_t objsetid,
742 int path_len, char *full_path)
743{
744 objset_t *os = zsb->z_os;
745 fstrans_cookie_t cookie;
746 char *snapname;
747 boolean_t case_conflict;
748 uint64_t id, pos = 0;
749 int error = 0;
750
751 if (zsb->z_mntopts->z_mntpoint == NULL)
752 return (ENOENT);
753
754 cookie = spl_fstrans_mark();
755 snapname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
756
757 while (error == 0) {
758 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
759 error = dmu_snapshot_list_next(zsb->z_os, MAXNAMELEN,
760 snapname, &id, &pos, &case_conflict);
761 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
762 if (error)
763 goto out;
764
765 if (id == objsetid)
766 break;
767 }
768
769 memset(full_path, 0, path_len);
770 snprintf(full_path, path_len - 1, "%s/.zfs/snapshot/%s",
771 zsb->z_mntopts->z_mntpoint, snapname);
772out:
773 kmem_free(snapname, MAXNAMELEN);
774 spl_fstrans_unmark(cookie);
775
776 return (error);
777}
778
779/*
780 * Special case the handling of "..".
781 */
782int
783zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
784 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
785{
786 zfs_sb_t *zsb = ITOZSB(dip);
787 int error = 0;
788
789 ZFS_ENTER(zsb);
790
791 if (strcmp(name, "..") == 0) {
792 *ipp = dip->i_sb->s_root->d_inode;
793 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
794 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIR,
795 &zpl_fops_snapdir, &zpl_ops_snapdir);
796 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
797 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SHARES,
798 &zpl_fops_shares, &zpl_ops_shares);
799 } else {
800 *ipp = NULL;
801 }
802
803 if (*ipp == NULL)
804 error = SET_ERROR(ENOENT);
805
806 ZFS_EXIT(zsb);
807
808 return (error);
809}
810
811/*
812 * Lookup entry point for the 'snapshot' directory. Try to open the
813 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
814 * Perform a mount of the associated dataset on top of the inode.
815 */
816int
817zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
818 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
819{
820 zfs_sb_t *zsb = ITOZSB(dip);
821 uint64_t id;
822 int error;
823
824 ZFS_ENTER(zsb);
825
826 error = dmu_snapshot_lookup(zsb->z_os, name, &id);
827 if (error) {
828 ZFS_EXIT(zsb);
829 return (error);
830 }
831
832 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIRS - id,
833 &simple_dir_operations, &simple_dir_inode_operations);
834 if (*ipp == NULL)
835 error = SET_ERROR(ENOENT);
836
837 ZFS_EXIT(zsb);
838
839 return (error);
840}
841
842/*
843 * Renaming a directory under '.zfs/snapshot' will automatically trigger
844 * a rename of the snapshot to the new given name. The rename is confined
845 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
846 */
847int
848zfsctl_snapdir_rename(struct inode *sdip, char *snm,
849 struct inode *tdip, char *tnm, cred_t *cr, int flags)
850{
851 zfs_sb_t *zsb = ITOZSB(sdip);
852 char *to, *from, *real, *fsname;
853 int error;
854
855 if (!zfs_admin_snapshot)
856 return (EACCES);
857
858 ZFS_ENTER(zsb);
859
860 to = kmem_alloc(MAXNAMELEN, KM_SLEEP);
861 from = kmem_alloc(MAXNAMELEN, KM_SLEEP);
862 real = kmem_alloc(MAXNAMELEN, KM_SLEEP);
863 fsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
864
865 if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
866 error = dmu_snapshot_realname(zsb->z_os, snm, real,
867 MAXNAMELEN, NULL);
868 if (error == 0) {
869 snm = real;
870 } else if (error != ENOTSUP) {
871 goto out;
872 }
873 }
874
875 dmu_objset_name(zsb->z_os, fsname);
876
877 error = zfsctl_snapshot_name(ITOZSB(sdip), snm, MAXNAMELEN, from);
878 if (error == 0)
879 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm, MAXNAMELEN, to);
880 if (error == 0)
881 error = zfs_secpolicy_rename_perms(from, to, cr);
882 if (error != 0)
883 goto out;
884
885 /*
886 * Cannot move snapshots out of the snapdir.
887 */
888 if (sdip != tdip) {
889 error = SET_ERROR(EINVAL);
890 goto out;
891 }
892
893 /*
894 * No-op when names are identical.
895 */
896 if (strcmp(snm, tnm) == 0) {
897 error = 0;
898 goto out;
899 }
900
901 rw_enter(&zfs_snapshot_lock, RW_WRITER);
902
903 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
904 if (error == 0)
905 (void) zfsctl_snapshot_rename(snm, tnm);
906
907 rw_exit(&zfs_snapshot_lock);
908out:
909 kmem_free(from, MAXNAMELEN);
910 kmem_free(to, MAXNAMELEN);
911 kmem_free(real, MAXNAMELEN);
912 kmem_free(fsname, MAXNAMELEN);
913
914 ZFS_EXIT(zsb);
915
916 return (error);
917}
918
919/*
920 * Removing a directory under '.zfs/snapshot' will automatically trigger
921 * the removal of the snapshot with the given name.
922 */
923int
924zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
925{
926 zfs_sb_t *zsb = ITOZSB(dip);
927 char *snapname, *real;
928 int error;
929
930 if (!zfs_admin_snapshot)
931 return (EACCES);
932
933 ZFS_ENTER(zsb);
934
935 snapname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
936 real = kmem_alloc(MAXNAMELEN, KM_SLEEP);
937
938 if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
939 error = dmu_snapshot_realname(zsb->z_os, name, real,
940 MAXNAMELEN, NULL);
941 if (error == 0) {
942 name = real;
943 } else if (error != ENOTSUP) {
944 goto out;
945 }
946 }
947
948 error = zfsctl_snapshot_name(ITOZSB(dip), name, MAXNAMELEN, snapname);
949 if (error == 0)
950 error = zfs_secpolicy_destroy_perms(snapname, cr);
951 if (error != 0)
952 goto out;
953
954 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
955 if ((error == 0) || (error == ENOENT))
956 error = dsl_destroy_snapshot(snapname, B_FALSE);
957out:
958 kmem_free(snapname, MAXNAMELEN);
959 kmem_free(real, MAXNAMELEN);
960
961 ZFS_EXIT(zsb);
962
963 return (error);
964}
965
966/*
967 * Creating a directory under '.zfs/snapshot' will automatically trigger
968 * the creation of a new snapshot with the given name.
969 */
970int
971zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
972 struct inode **ipp, cred_t *cr, int flags)
973{
974 zfs_sb_t *zsb = ITOZSB(dip);
975 char *dsname;
976 int error;
977
978 if (!zfs_admin_snapshot)
979 return (EACCES);
980
981 dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
982
983 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
984 error = SET_ERROR(EILSEQ);
985 goto out;
986 }
987
988 dmu_objset_name(zsb->z_os, dsname);
989
990 error = zfs_secpolicy_snapshot_perms(dsname, cr);
991 if (error != 0)
992 goto out;
993
994 if (error == 0) {
995 error = dmu_objset_snapshot_one(dsname, dirname);
996 if (error != 0)
997 goto out;
998
999 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
1000 0, cr, NULL, NULL);
1001 }
1002out:
1003 kmem_free(dsname, MAXNAMELEN);
1004
1005 return (error);
1006}
1007
1008/*
1009 * Attempt to unmount a snapshot by making a call to user space.
1010 * There is no assurance that this can or will succeed, is just a
1011 * best effort. In the case where it does fail, perhaps because
1012 * it's in use, the unmount will fail harmlessly.
1013 */
1014int
1015zfsctl_snapshot_unmount(char *snapname, int flags)
1016{
1017 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1018 NULL };
1019 char *envp[] = { NULL };
1020 zfs_snapentry_t *se;
1021 int error;
1022
1023 rw_enter(&zfs_snapshot_lock, RW_READER);
1024 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1025 rw_exit(&zfs_snapshot_lock);
1026 return (ENOENT);
1027 }
1028 rw_exit(&zfs_snapshot_lock);
1029
1030 if (flags & MNT_FORCE)
1031 argv[4] = "-fn";
1032 argv[5] = se->se_path;
1033 dprintf("unmount; path=%s\n", se->se_path);
1034 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1035 zfsctl_snapshot_rele(se);
1036
1037
1038 /*
1039 * The umount system utility will return 256 on error. We must
1040 * assume this error is because the file system is busy so it is
1041 * converted to the more sensible EBUSY.
1042 */
1043 if (error)
1044 error = SET_ERROR(EBUSY);
1045
1046 return (error);
1047}
1048
1049#define MOUNT_BUSY 0x80 /* Mount failed due to EBUSY (from mntent.h) */
1050
1051int
1052zfsctl_snapshot_mount(struct path *path, int flags)
1053{
1054 struct dentry *dentry = path->dentry;
1055 struct inode *ip = dentry->d_inode;
1056 zfs_sb_t *zsb;
1057 zfs_sb_t *snap_zsb;
1058 zfs_snapentry_t *se;
1059 char *full_name, *full_path;
1060 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1061 NULL };
1062 char *envp[] = { NULL };
1063 int error;
1064 struct path spath;
1065
1066 if (ip == NULL)
1067 return (EISDIR);
1068
1069 zsb = ITOZSB(ip);
1070 ZFS_ENTER(zsb);
1071
1072 full_name = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
1073 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1074
1075 error = zfsctl_snapshot_name(zsb, dname(dentry),
1076 MAXNAMELEN, full_name);
1077 if (error)
1078 goto error;
1079
1080 error = zfsctl_snapshot_path(path, MAXPATHLEN, full_path);
1081 if (error)
1082 goto error;
1083
1084 /*
1085 * Multiple concurrent automounts of a snapshot are never allowed.
1086 * The snapshot may be manually mounted as many times as desired.
1087 */
1088 if (zfsctl_snapshot_ismounted(full_name)) {
1089 error = 0;
1090 goto error;
1091 }
1092
1093 /*
1094 * Attempt to mount the snapshot from user space. Normally this
1095 * would be done using the vfs_kern_mount() function, however that
1096 * function is marked GPL-only and cannot be used. On error we
1097 * careful to log the real error to the console and return EISDIR
1098 * to safely abort the automount. This should be very rare.
1099 *
1100 * If the user mode helper happens to return EBUSY, a concurrent
1101 * mount is already in progress in which case the error is ignored.
1102 * Take note that if the program was executed successfully the return
1103 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1104 */
1105 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1106 argv[5] = full_name;
1107 argv[6] = full_path;
1108 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1109 if (error) {
1110 if (!(error & MOUNT_BUSY << 8)) {
1111 cmn_err(CE_WARN, "Unable to automount %s/%s: %d",
1112 full_path, full_name, error);
1113 error = SET_ERROR(EISDIR);
1114 } else {
1115 /*
1116 * EBUSY, this could mean a concurrent mount, or the
1117 * snapshot has already been mounted at completely
1118 * different place. We return 0 so VFS will retry. For
1119 * the latter case the VFS will retry several times
1120 * and return ELOOP, which is probably not a very good
1121 * behavior.
1122 */
1123 error = 0;
1124 }
1125 goto error;
1126 }
1127
1128 /*
1129 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1130 * to identify this as an automounted filesystem.
1131 */
1132 spath = *path;
1133 path_get(&spath);
1134 if (zpl_follow_down_one(&spath)) {
1135 snap_zsb = ITOZSB(spath.dentry->d_inode);
1136 snap_zsb->z_parent = zsb;
1137 dentry = spath.dentry;
1138 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1139
1140 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1141 se = zfsctl_snapshot_alloc(full_name, full_path,
1142 snap_zsb->z_os->os_spa, dmu_objset_id(snap_zsb->z_os),
1143 dentry);
1144 zfsctl_snapshot_add(se);
1145 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1146 rw_exit(&zfs_snapshot_lock);
1147 }
1148 path_put(&spath);
1149error:
1150 kmem_free(full_name, MAXNAMELEN);
1151 kmem_free(full_path, MAXPATHLEN);
1152
1153 ZFS_EXIT(zsb);
1154
1155 return (error);
1156}
1157
1158/*
1159 * Given the objset id of the snapshot return its zfs_sb_t as zsbp.
1160 */
1161int
1162zfsctl_lookup_objset(struct super_block *sb, uint64_t objsetid, zfs_sb_t **zsbp)
1163{
1164 zfs_snapentry_t *se;
1165 int error;
1166 spa_t *spa = ((zfs_sb_t *)(sb->s_fs_info))->z_os->os_spa;
1167
1168 /*
1169 * Verify that the snapshot is mounted then lookup the mounted root
1170 * rather than the covered mount point. This may fail if the
1171 * snapshot has just been unmounted by an unrelated user space
1172 * process. This race cannot occur to an expired mount point
1173 * because we hold the zfs_snapshot_lock to prevent the race.
1174 */
1175 rw_enter(&zfs_snapshot_lock, RW_READER);
1176 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
1177 zfs_sb_t *zsb;
1178
1179 zsb = ITOZSB(se->se_root_dentry->d_inode);
1180 ASSERT3U(dmu_objset_id(zsb->z_os), ==, objsetid);
1181
1182 if (time_after(jiffies, zsb->z_snap_defer_time +
1183 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1184 zsb->z_snap_defer_time = jiffies;
1185 zfsctl_snapshot_unmount_cancel(se);
1186 zfsctl_snapshot_unmount_delay_impl(se,
1187 zfs_expire_snapshot);
1188 }
1189
1190 *zsbp = zsb;
1191 zfsctl_snapshot_rele(se);
1192 error = SET_ERROR(0);
1193 } else {
1194 error = SET_ERROR(ENOENT);
1195 }
1196 rw_exit(&zfs_snapshot_lock);
1197
1198 /*
1199 * Automount the snapshot given the objset id by constructing the
1200 * full mount point and performing a traversal.
1201 */
1202 if (error == ENOENT) {
1203 struct path path;
1204 char *mnt;
1205
1206 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1207 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1208 MAXPATHLEN, mnt);
1209 if (error) {
1210 kmem_free(mnt, MAXPATHLEN);
1211 return (SET_ERROR(error));
1212 }
1213
1214 error = kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1215 if (error == 0) {
1216 *zsbp = ITOZSB(path.dentry->d_inode);
1217 path_put(&path);
1218 }
1219
1220 kmem_free(mnt, MAXPATHLEN);
1221 }
1222
1223 return (error);
1224}
1225
1226int
1227zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1228 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1229{
1230 zfs_sb_t *zsb = ITOZSB(dip);
1231 struct inode *ip;
1232 znode_t *dzp;
1233 int error;
1234
1235 ZFS_ENTER(zsb);
1236
1237 if (zsb->z_shares_dir == 0) {
1238 ZFS_EXIT(zsb);
1239 return (SET_ERROR(ENOTSUP));
1240 }
1241
1242 error = zfs_zget(zsb, zsb->z_shares_dir, &dzp);
1243 if (error) {
1244 ZFS_EXIT(zsb);
1245 return (error);
1246 }
1247
1248 error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
1249
1250 iput(ZTOI(dzp));
1251 ZFS_EXIT(zsb);
1252
1253 return (error);
1254}
1255
1256
1257/*
1258 * Initialize the various pieces we'll need to create and manipulate .zfs
1259 * directories. Currently this is unused but available.
1260 */
1261void
1262zfsctl_init(void)
1263{
1264 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1265 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1266 se_node_name));
1267 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1268 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1269 se_node_objsetid));
1270 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1271
1272 zfs_expire_taskq = taskq_create("z_unmount", 1, defclsyspri,
1273 1, 8, TASKQ_PREPOPULATE);
1274}
1275
1276/*
1277 * Cleanup the various pieces we needed for .zfs directories. In particular
1278 * ensure the expiry timer is canceled safely.
1279 */
1280void
1281zfsctl_fini(void)
1282{
1283 taskq_destroy(zfs_expire_taskq);
1284
1285 avl_destroy(&zfs_snapshots_by_name);
1286 avl_destroy(&zfs_snapshots_by_objsetid);
1287 rw_destroy(&zfs_snapshot_lock);
1288}
1289
1290module_param(zfs_admin_snapshot, int, 0644);
1291MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1292
1293module_param(zfs_expire_snapshot, int, 0644);
1294MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");