]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - zfs/module/zfs/zil.c
UBUNTU: SAUCE: (noup) Update zfs to 0.7.5-1ubuntu16.6
[mirror_ubuntu-bionic-kernel.git] / zfs / module / zfs / zil.c
CommitLineData
70e083d2
TG
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
86e3c28a
CIK
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
70e083d2
TG
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42#include <sys/metaslab.h>
43#include <sys/trace_zil.h>
86e3c28a 44#include <sys/abd.h>
70e083d2
TG
45
46/*
47 * The zfs intent log (ZIL) saves transaction records of system calls
48 * that change the file system in memory with enough information
49 * to be able to replay them. These are stored in memory until
50 * either the DMU transaction group (txg) commits them to the stable pool
51 * and they can be discarded, or they are flushed to the stable log
52 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
53 * requirement. In the event of a panic or power fail then those log
54 * records (transactions) are replayed.
55 *
56 * There is one ZIL per file system. Its on-disk (pool) format consists
57 * of 3 parts:
58 *
59 * - ZIL header
60 * - ZIL blocks
61 * - ZIL records
62 *
63 * A log record holds a system call transaction. Log blocks can
64 * hold many log records and the blocks are chained together.
65 * Each ZIL block contains a block pointer (blkptr_t) to the next
66 * ZIL block in the chain. The ZIL header points to the first
67 * block in the chain. Note there is not a fixed place in the pool
68 * to hold blocks. They are dynamically allocated and freed as
69 * needed from the blocks available. Figure X shows the ZIL structure:
70 */
71
72/*
73 * See zil.h for more information about these fields.
74 */
75zil_stats_t zil_stats = {
76 { "zil_commit_count", KSTAT_DATA_UINT64 },
77 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
78 { "zil_itx_count", KSTAT_DATA_UINT64 },
79 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
80 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
81 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
82 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
83 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
84 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
85 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
86 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
87 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
88 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
89};
90
91static kstat_t *zil_ksp;
92
93/*
94 * Disable intent logging replay. This global ZIL switch affects all pools.
95 */
96int zil_replay_disable = 0;
97
98/*
99 * Tunable parameter for debugging or performance analysis. Setting
100 * zfs_nocacheflush will cause corruption on power loss if a volatile
101 * out-of-order write cache is enabled.
102 */
103int zfs_nocacheflush = 0;
104
86e3c28a
CIK
105/*
106 * Limit SLOG write size per commit executed with synchronous priority.
107 * Any writes above that will be executed with lower (asynchronous) priority
108 * to limit potential SLOG device abuse by single active ZIL writer.
109 */
110unsigned long zil_slog_bulk = 768 * 1024;
111
70e083d2
TG
112static kmem_cache_t *zil_lwb_cache;
113
114static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
115
116#define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
117 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
118
70e083d2
TG
119static int
120zil_bp_compare(const void *x1, const void *x2)
121{
122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124
86e3c28a
CIK
125 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
126 if (likely(cmp))
127 return (cmp);
70e083d2 128
86e3c28a 129 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
70e083d2
TG
130}
131
132static void
133zil_bp_tree_init(zilog_t *zilog)
134{
135 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
136 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
137}
138
139static void
140zil_bp_tree_fini(zilog_t *zilog)
141{
142 avl_tree_t *t = &zilog->zl_bp_tree;
143 zil_bp_node_t *zn;
144 void *cookie = NULL;
145
146 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
147 kmem_free(zn, sizeof (zil_bp_node_t));
148
149 avl_destroy(t);
150}
151
152int
153zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
154{
155 avl_tree_t *t = &zilog->zl_bp_tree;
156 const dva_t *dva;
157 zil_bp_node_t *zn;
158 avl_index_t where;
159
160 if (BP_IS_EMBEDDED(bp))
161 return (0);
162
163 dva = BP_IDENTITY(bp);
164
165 if (avl_find(t, dva, &where) != NULL)
166 return (SET_ERROR(EEXIST));
167
168 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
169 zn->zn_dva = *dva;
170 avl_insert(t, zn, where);
171
172 return (0);
173}
174
175static zil_header_t *
176zil_header_in_syncing_context(zilog_t *zilog)
177{
178 return ((zil_header_t *)zilog->zl_header);
179}
180
181static void
182zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
183{
184 zio_cksum_t *zc = &bp->blk_cksum;
185
186 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
187 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
188 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
189 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
190}
191
192/*
193 * Read a log block and make sure it's valid.
194 */
195static int
196zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
197 char **end)
198{
199 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
200 arc_flags_t aflags = ARC_FLAG_WAIT;
201 arc_buf_t *abuf = NULL;
202 zbookmark_phys_t zb;
203 int error;
204
205 if (zilog->zl_header->zh_claim_txg == 0)
206 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
207
208 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
209 zio_flags |= ZIO_FLAG_SPECULATIVE;
210
211 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
212 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
213
214 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
215 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
216
217 if (error == 0) {
218 zio_cksum_t cksum = bp->blk_cksum;
219
220 /*
221 * Validate the checksummed log block.
222 *
223 * Sequence numbers should be... sequential. The checksum
224 * verifier for the next block should be bp's checksum plus 1.
225 *
226 * Also check the log chain linkage and size used.
227 */
228 cksum.zc_word[ZIL_ZC_SEQ]++;
229
230 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
231 zil_chain_t *zilc = abuf->b_data;
232 char *lr = (char *)(zilc + 1);
233 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
234
235 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
236 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
237 error = SET_ERROR(ECKSUM);
238 } else {
239 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
240 bcopy(lr, dst, len);
241 *end = (char *)dst + len;
242 *nbp = zilc->zc_next_blk;
243 }
244 } else {
245 char *lr = abuf->b_data;
246 uint64_t size = BP_GET_LSIZE(bp);
247 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
248
249 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
250 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
251 (zilc->zc_nused > (size - sizeof (*zilc)))) {
252 error = SET_ERROR(ECKSUM);
253 } else {
254 ASSERT3U(zilc->zc_nused, <=,
255 SPA_OLD_MAXBLOCKSIZE);
256 bcopy(lr, dst, zilc->zc_nused);
257 *end = (char *)dst + zilc->zc_nused;
258 *nbp = zilc->zc_next_blk;
259 }
260 }
261
86e3c28a 262 arc_buf_destroy(abuf, &abuf);
70e083d2
TG
263 }
264
265 return (error);
266}
267
268/*
269 * Read a TX_WRITE log data block.
270 */
271static int
272zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
273{
274 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
275 const blkptr_t *bp = &lr->lr_blkptr;
276 arc_flags_t aflags = ARC_FLAG_WAIT;
277 arc_buf_t *abuf = NULL;
278 zbookmark_phys_t zb;
279 int error;
280
281 if (BP_IS_HOLE(bp)) {
282 if (wbuf != NULL)
283 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
284 return (0);
285 }
286
287 if (zilog->zl_header->zh_claim_txg == 0)
288 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
289
290 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
291 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
292
293 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
294 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
295
296 if (error == 0) {
297 if (wbuf != NULL)
298 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
86e3c28a 299 arc_buf_destroy(abuf, &abuf);
70e083d2
TG
300 }
301
302 return (error);
303}
304
305/*
306 * Parse the intent log, and call parse_func for each valid record within.
307 */
308int
309zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
310 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
311{
312 const zil_header_t *zh = zilog->zl_header;
313 boolean_t claimed = !!zh->zh_claim_txg;
314 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
315 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
316 uint64_t max_blk_seq = 0;
317 uint64_t max_lr_seq = 0;
318 uint64_t blk_count = 0;
319 uint64_t lr_count = 0;
320 blkptr_t blk, next_blk;
321 char *lrbuf, *lrp;
322 int error = 0;
323
324 bzero(&next_blk, sizeof (blkptr_t));
325
326 /*
327 * Old logs didn't record the maximum zh_claim_lr_seq.
328 */
329 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
330 claim_lr_seq = UINT64_MAX;
331
332 /*
333 * Starting at the block pointed to by zh_log we read the log chain.
334 * For each block in the chain we strongly check that block to
335 * ensure its validity. We stop when an invalid block is found.
336 * For each block pointer in the chain we call parse_blk_func().
337 * For each record in each valid block we call parse_lr_func().
338 * If the log has been claimed, stop if we encounter a sequence
339 * number greater than the highest claimed sequence number.
340 */
341 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
342 zil_bp_tree_init(zilog);
343
344 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
345 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
346 int reclen;
347 char *end = NULL;
348
349 if (blk_seq > claim_blk_seq)
350 break;
351 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
352 break;
353 ASSERT3U(max_blk_seq, <, blk_seq);
354 max_blk_seq = blk_seq;
355 blk_count++;
356
357 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
358 break;
359
360 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
361 if (error != 0)
362 break;
363
364 for (lrp = lrbuf; lrp < end; lrp += reclen) {
365 lr_t *lr = (lr_t *)lrp;
366 reclen = lr->lrc_reclen;
367 ASSERT3U(reclen, >=, sizeof (lr_t));
368 if (lr->lrc_seq > claim_lr_seq)
369 goto done;
370 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
371 goto done;
372 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
373 max_lr_seq = lr->lrc_seq;
374 lr_count++;
375 }
376 }
377done:
378 zilog->zl_parse_error = error;
379 zilog->zl_parse_blk_seq = max_blk_seq;
380 zilog->zl_parse_lr_seq = max_lr_seq;
381 zilog->zl_parse_blk_count = blk_count;
382 zilog->zl_parse_lr_count = lr_count;
383
384 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
385 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
386
387 zil_bp_tree_fini(zilog);
388 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
389
390 return (error);
391}
392
393static int
394zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
395{
396 /*
397 * Claim log block if not already committed and not already claimed.
398 * If tx == NULL, just verify that the block is claimable.
399 */
400 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
401 zil_bp_tree_add(zilog, bp) != 0)
402 return (0);
403
404 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
405 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
406 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
407}
408
409static int
410zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
411{
412 lr_write_t *lr = (lr_write_t *)lrc;
413 int error;
414
415 if (lrc->lrc_txtype != TX_WRITE)
416 return (0);
417
418 /*
419 * If the block is not readable, don't claim it. This can happen
420 * in normal operation when a log block is written to disk before
421 * some of the dmu_sync() blocks it points to. In this case, the
422 * transaction cannot have been committed to anyone (we would have
423 * waited for all writes to be stable first), so it is semantically
424 * correct to declare this the end of the log.
425 */
426 if (lr->lr_blkptr.blk_birth >= first_txg &&
427 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
428 return (error);
429 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
430}
431
432/* ARGSUSED */
433static int
434zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
435{
436 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
437
438 return (0);
439}
440
441static int
442zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
443{
444 lr_write_t *lr = (lr_write_t *)lrc;
445 blkptr_t *bp = &lr->lr_blkptr;
446
447 /*
448 * If we previously claimed it, we need to free it.
449 */
450 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
451 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
452 !BP_IS_HOLE(bp))
453 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
454
455 return (0);
456}
457
458static lwb_t *
86e3c28a
CIK
459zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
460 boolean_t fastwrite)
70e083d2
TG
461{
462 lwb_t *lwb;
463
464 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
465 lwb->lwb_zilog = zilog;
466 lwb->lwb_blk = *bp;
467 lwb->lwb_fastwrite = fastwrite;
86e3c28a 468 lwb->lwb_slog = slog;
70e083d2
TG
469 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
470 lwb->lwb_max_txg = txg;
471 lwb->lwb_zio = NULL;
472 lwb->lwb_tx = NULL;
473 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
474 lwb->lwb_nused = sizeof (zil_chain_t);
475 lwb->lwb_sz = BP_GET_LSIZE(bp);
476 } else {
477 lwb->lwb_nused = 0;
478 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
479 }
480
481 mutex_enter(&zilog->zl_lock);
482 list_insert_tail(&zilog->zl_lwb_list, lwb);
483 mutex_exit(&zilog->zl_lock);
484
485 return (lwb);
486}
487
488/*
489 * Called when we create in-memory log transactions so that we know
490 * to cleanup the itxs at the end of spa_sync().
491 */
492void
493zilog_dirty(zilog_t *zilog, uint64_t txg)
494{
495 dsl_pool_t *dp = zilog->zl_dmu_pool;
496 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
497
498 if (ds->ds_is_snapshot)
499 panic("dirtying snapshot!");
500
501 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
502 /* up the hold count until we can be written out */
503 dmu_buf_add_ref(ds->ds_dbuf, zilog);
504 }
505}
506
86e3c28a
CIK
507/*
508 * Determine if the zil is dirty in the specified txg. Callers wanting to
509 * ensure that the dirty state does not change must hold the itxg_lock for
510 * the specified txg. Holding the lock will ensure that the zil cannot be
511 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
512 * state.
513 */
514boolean_t
515zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
516{
517 dsl_pool_t *dp = zilog->zl_dmu_pool;
518
519 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
520 return (B_TRUE);
521 return (B_FALSE);
522}
523
524/*
525 * Determine if the zil is dirty. The zil is considered dirty if it has
526 * any pending itx records that have not been cleaned by zil_clean().
527 */
70e083d2
TG
528boolean_t
529zilog_is_dirty(zilog_t *zilog)
530{
531 dsl_pool_t *dp = zilog->zl_dmu_pool;
532 int t;
533
534 for (t = 0; t < TXG_SIZE; t++) {
535 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
536 return (B_TRUE);
537 }
538 return (B_FALSE);
539}
540
541/*
542 * Create an on-disk intent log.
543 */
544static lwb_t *
545zil_create(zilog_t *zilog)
546{
547 const zil_header_t *zh = zilog->zl_header;
548 lwb_t *lwb = NULL;
549 uint64_t txg = 0;
550 dmu_tx_t *tx = NULL;
551 blkptr_t blk;
552 int error = 0;
553 boolean_t fastwrite = FALSE;
86e3c28a 554 boolean_t slog = FALSE;
70e083d2
TG
555
556 /*
557 * Wait for any previous destroy to complete.
558 */
559 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
560
561 ASSERT(zh->zh_claim_txg == 0);
562 ASSERT(zh->zh_replay_seq == 0);
563
564 blk = zh->zh_log;
565
566 /*
567 * Allocate an initial log block if:
568 * - there isn't one already
86e3c28a 569 * - the existing block is the wrong endianness
70e083d2
TG
570 */
571 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
572 tx = dmu_tx_create(zilog->zl_os);
573 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
574 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
575 txg = dmu_tx_get_txg(tx);
576
577 if (!BP_IS_HOLE(&blk)) {
578 zio_free_zil(zilog->zl_spa, txg, &blk);
579 BP_ZERO(&blk);
580 }
581
582 error = zio_alloc_zil(zilog->zl_spa, txg, &blk,
86e3c28a 583 ZIL_MIN_BLKSZ, &slog);
70e083d2
TG
584 fastwrite = TRUE;
585
586 if (error == 0)
587 zil_init_log_chain(zilog, &blk);
588 }
589
590 /*
591 * Allocate a log write buffer (lwb) for the first log block.
592 */
593 if (error == 0)
86e3c28a 594 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
70e083d2
TG
595
596 /*
597 * If we just allocated the first log block, commit our transaction
598 * and wait for zil_sync() to stuff the block poiner into zh_log.
599 * (zh is part of the MOS, so we cannot modify it in open context.)
600 */
601 if (tx != NULL) {
602 dmu_tx_commit(tx);
603 txg_wait_synced(zilog->zl_dmu_pool, txg);
604 }
605
606 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
607
608 return (lwb);
609}
610
611/*
612 * In one tx, free all log blocks and clear the log header.
613 * If keep_first is set, then we're replaying a log with no content.
614 * We want to keep the first block, however, so that the first
615 * synchronous transaction doesn't require a txg_wait_synced()
616 * in zil_create(). We don't need to txg_wait_synced() here either
617 * when keep_first is set, because both zil_create() and zil_destroy()
618 * will wait for any in-progress destroys to complete.
619 */
620void
621zil_destroy(zilog_t *zilog, boolean_t keep_first)
622{
623 const zil_header_t *zh = zilog->zl_header;
624 lwb_t *lwb;
625 dmu_tx_t *tx;
626 uint64_t txg;
627
628 /*
629 * Wait for any previous destroy to complete.
630 */
631 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
632
633 zilog->zl_old_header = *zh; /* debugging aid */
634
635 if (BP_IS_HOLE(&zh->zh_log))
636 return;
637
638 tx = dmu_tx_create(zilog->zl_os);
639 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
640 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
641 txg = dmu_tx_get_txg(tx);
642
643 mutex_enter(&zilog->zl_lock);
644
645 ASSERT3U(zilog->zl_destroy_txg, <, txg);
646 zilog->zl_destroy_txg = txg;
647 zilog->zl_keep_first = keep_first;
648
649 if (!list_is_empty(&zilog->zl_lwb_list)) {
650 ASSERT(zh->zh_claim_txg == 0);
651 VERIFY(!keep_first);
652 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
653 ASSERT(lwb->lwb_zio == NULL);
654 if (lwb->lwb_fastwrite)
655 metaslab_fastwrite_unmark(zilog->zl_spa,
656 &lwb->lwb_blk);
657 list_remove(&zilog->zl_lwb_list, lwb);
658 if (lwb->lwb_buf != NULL)
659 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
660 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
661 kmem_cache_free(zil_lwb_cache, lwb);
662 }
663 } else if (!keep_first) {
664 zil_destroy_sync(zilog, tx);
665 }
666 mutex_exit(&zilog->zl_lock);
667
668 dmu_tx_commit(tx);
669}
670
671void
672zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
673{
674 ASSERT(list_is_empty(&zilog->zl_lwb_list));
675 (void) zil_parse(zilog, zil_free_log_block,
676 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
677}
678
679int
680zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
681{
682 dmu_tx_t *tx = txarg;
683 uint64_t first_txg = dmu_tx_get_txg(tx);
684 zilog_t *zilog;
685 zil_header_t *zh;
686 objset_t *os;
687 int error;
688
689 error = dmu_objset_own_obj(dp, ds->ds_object,
690 DMU_OST_ANY, B_FALSE, FTAG, &os);
691 if (error != 0) {
692 /*
693 * EBUSY indicates that the objset is inconsistent, in which
694 * case it can not have a ZIL.
695 */
696 if (error != EBUSY) {
697 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
698 (unsigned long long)ds->ds_object, error);
699 }
700
701 return (0);
702 }
703
704 zilog = dmu_objset_zil(os);
705 zh = zil_header_in_syncing_context(zilog);
706
707 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
708 if (!BP_IS_HOLE(&zh->zh_log))
709 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
710 BP_ZERO(&zh->zh_log);
711 dsl_dataset_dirty(dmu_objset_ds(os), tx);
712 dmu_objset_disown(os, FTAG);
713 return (0);
714 }
715
716 /*
717 * Claim all log blocks if we haven't already done so, and remember
718 * the highest claimed sequence number. This ensures that if we can
719 * read only part of the log now (e.g. due to a missing device),
720 * but we can read the entire log later, we will not try to replay
721 * or destroy beyond the last block we successfully claimed.
722 */
723 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
724 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
725 (void) zil_parse(zilog, zil_claim_log_block,
726 zil_claim_log_record, tx, first_txg);
727 zh->zh_claim_txg = first_txg;
728 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
729 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
730 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
731 zh->zh_flags |= ZIL_REPLAY_NEEDED;
732 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
733 dsl_dataset_dirty(dmu_objset_ds(os), tx);
734 }
735
736 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
737 dmu_objset_disown(os, FTAG);
738 return (0);
739}
740
741/*
742 * Check the log by walking the log chain.
743 * Checksum errors are ok as they indicate the end of the chain.
744 * Any other error (no device or read failure) returns an error.
745 */
746/* ARGSUSED */
747int
748zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
749{
750 zilog_t *zilog;
751 objset_t *os;
752 blkptr_t *bp;
753 int error;
754
755 ASSERT(tx == NULL);
756
757 error = dmu_objset_from_ds(ds, &os);
758 if (error != 0) {
759 cmn_err(CE_WARN, "can't open objset %llu, error %d",
760 (unsigned long long)ds->ds_object, error);
761 return (0);
762 }
763
764 zilog = dmu_objset_zil(os);
765 bp = (blkptr_t *)&zilog->zl_header->zh_log;
766
767 /*
768 * Check the first block and determine if it's on a log device
769 * which may have been removed or faulted prior to loading this
770 * pool. If so, there's no point in checking the rest of the log
771 * as its content should have already been synced to the pool.
772 */
773 if (!BP_IS_HOLE(bp)) {
774 vdev_t *vd;
775 boolean_t valid = B_TRUE;
776
777 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
778 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
779 if (vd->vdev_islog && vdev_is_dead(vd))
780 valid = vdev_log_state_valid(vd);
781 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
782
783 if (!valid)
784 return (0);
785 }
786
787 /*
788 * Because tx == NULL, zil_claim_log_block() will not actually claim
789 * any blocks, but just determine whether it is possible to do so.
790 * In addition to checking the log chain, zil_claim_log_block()
791 * will invoke zio_claim() with a done func of spa_claim_notify(),
792 * which will update spa_max_claim_txg. See spa_load() for details.
793 */
794 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
795 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
796
797 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
798}
799
800static int
801zil_vdev_compare(const void *x1, const void *x2)
802{
803 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
804 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
805
86e3c28a 806 return (AVL_CMP(v1, v2));
70e083d2
TG
807}
808
809void
810zil_add_block(zilog_t *zilog, const blkptr_t *bp)
811{
812 avl_tree_t *t = &zilog->zl_vdev_tree;
813 avl_index_t where;
814 zil_vdev_node_t *zv, zvsearch;
815 int ndvas = BP_GET_NDVAS(bp);
816 int i;
817
818 if (zfs_nocacheflush)
819 return;
820
821 ASSERT(zilog->zl_writer);
822
823 /*
824 * Even though we're zl_writer, we still need a lock because the
825 * zl_get_data() callbacks may have dmu_sync() done callbacks
826 * that will run concurrently.
827 */
828 mutex_enter(&zilog->zl_vdev_lock);
829 for (i = 0; i < ndvas; i++) {
830 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
831 if (avl_find(t, &zvsearch, &where) == NULL) {
832 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
833 zv->zv_vdev = zvsearch.zv_vdev;
834 avl_insert(t, zv, where);
835 }
836 }
837 mutex_exit(&zilog->zl_vdev_lock);
838}
839
840static void
841zil_flush_vdevs(zilog_t *zilog)
842{
843 spa_t *spa = zilog->zl_spa;
844 avl_tree_t *t = &zilog->zl_vdev_tree;
845 void *cookie = NULL;
846 zil_vdev_node_t *zv;
847 zio_t *zio;
848
849 ASSERT(zilog->zl_writer);
850
851 /*
852 * We don't need zl_vdev_lock here because we're the zl_writer,
853 * and all zl_get_data() callbacks are done.
854 */
855 if (avl_numnodes(t) == 0)
856 return;
857
858 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
859
860 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
861
862 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
863 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
864 if (vd != NULL)
865 zio_flush(zio, vd);
866 kmem_free(zv, sizeof (*zv));
867 }
868
869 /*
870 * Wait for all the flushes to complete. Not all devices actually
871 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
872 */
873 (void) zio_wait(zio);
874
875 spa_config_exit(spa, SCL_STATE, FTAG);
876}
877
878/*
879 * Function called when a log block write completes
880 */
881static void
882zil_lwb_write_done(zio_t *zio)
883{
884 lwb_t *lwb = zio->io_private;
885 zilog_t *zilog = lwb->lwb_zilog;
886 dmu_tx_t *tx = lwb->lwb_tx;
887
888 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
889 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
890 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
891 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
892 ASSERT(!BP_IS_GANG(zio->io_bp));
893 ASSERT(!BP_IS_HOLE(zio->io_bp));
894 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
895
896 /*
897 * Ensure the lwb buffer pointer is cleared before releasing
898 * the txg. If we have had an allocation failure and
899 * the txg is waiting to sync then we want want zil_sync()
900 * to remove the lwb so that it's not picked up as the next new
901 * one in zil_commit_writer(). zil_sync() will only remove
902 * the lwb if lwb_buf is null.
903 */
86e3c28a 904 abd_put(zio->io_abd);
70e083d2
TG
905 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
906 mutex_enter(&zilog->zl_lock);
907 lwb->lwb_zio = NULL;
908 lwb->lwb_fastwrite = FALSE;
909 lwb->lwb_buf = NULL;
910 lwb->lwb_tx = NULL;
911 mutex_exit(&zilog->zl_lock);
912
913 /*
914 * Now that we've written this log block, we have a stable pointer
915 * to the next block in the chain, so it's OK to let the txg in
916 * which we allocated the next block sync.
917 */
918 dmu_tx_commit(tx);
919}
920
921/*
922 * Initialize the io for a log block.
923 */
924static void
925zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
926{
927 zbookmark_phys_t zb;
86e3c28a 928 zio_priority_t prio;
70e083d2
TG
929
930 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
931 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
932 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
933
934 if (zilog->zl_root_zio == NULL) {
935 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
936 ZIO_FLAG_CANFAIL);
937 }
938
939 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
940 mutex_enter(&zilog->zl_lock);
941 if (lwb->lwb_zio == NULL) {
86e3c28a
CIK
942 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
943 BP_GET_LSIZE(&lwb->lwb_blk));
70e083d2
TG
944 if (!lwb->lwb_fastwrite) {
945 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
946 lwb->lwb_fastwrite = 1;
947 }
86e3c28a
CIK
948 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
949 prio = ZIO_PRIORITY_SYNC_WRITE;
950 else
951 prio = ZIO_PRIORITY_ASYNC_WRITE;
70e083d2 952 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
86e3c28a
CIK
953 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk),
954 zil_lwb_write_done, lwb, prio,
70e083d2
TG
955 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
956 ZIO_FLAG_FASTWRITE, &zb);
957 }
958 mutex_exit(&zilog->zl_lock);
959}
960
961/*
962 * Define a limited set of intent log block sizes.
963 *
964 * These must be a multiple of 4KB. Note only the amount used (again
965 * aligned to 4KB) actually gets written. However, we can't always just
966 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
967 */
968uint64_t zil_block_buckets[] = {
969 4096, /* non TX_WRITE */
970 8192+4096, /* data base */
971 32*1024 + 4096, /* NFS writes */
972 UINT64_MAX
973};
974
70e083d2
TG
975/*
976 * Start a log block write and advance to the next log block.
977 * Calls are serialized.
978 */
979static lwb_t *
980zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
981{
982 lwb_t *nlwb = NULL;
983 zil_chain_t *zilc;
984 spa_t *spa = zilog->zl_spa;
985 blkptr_t *bp;
986 dmu_tx_t *tx;
987 uint64_t txg;
988 uint64_t zil_blksz, wsz;
989 int i, error;
86e3c28a 990 boolean_t slog;
70e083d2
TG
991
992 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
993 zilc = (zil_chain_t *)lwb->lwb_buf;
994 bp = &zilc->zc_next_blk;
995 } else {
996 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
997 bp = &zilc->zc_next_blk;
998 }
999
1000 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1001
1002 /*
1003 * Allocate the next block and save its address in this block
1004 * before writing it in order to establish the log chain.
1005 * Note that if the allocation of nlwb synced before we wrote
1006 * the block that points at it (lwb), we'd leak it if we crashed.
1007 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1008 * We dirty the dataset to ensure that zil_sync() will be called
1009 * to clean up in the event of allocation failure or I/O failure.
1010 */
1011 tx = dmu_tx_create(zilog->zl_os);
b49151d6
CIK
1012
1013 /*
1014 * Since we are not going to create any new dirty data and we can even
1015 * help with clearing the existing dirty data, we should not be subject
1016 * to the dirty data based delays.
1017 * We (ab)use TXG_WAITED to bypass the delay mechanism.
1018 * One side effect from using TXG_WAITED is that dmu_tx_assign() can
1019 * fail if the pool is suspended. Those are dramatic circumstances,
1020 * so we return NULL to signal that the normal ZIL processing is not
1021 * possible and txg_wait_synced() should be used to ensure that the data
1022 * is on disk.
1023 */
1024 error = dmu_tx_assign(tx, TXG_WAITED);
1025 if (error != 0) {
1026 ASSERT3S(error, ==, EIO);
1027 dmu_tx_abort(tx);
1028 return (NULL);
1029 }
70e083d2
TG
1030 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1031 txg = dmu_tx_get_txg(tx);
1032
1033 lwb->lwb_tx = tx;
1034
1035 /*
1036 * Log blocks are pre-allocated. Here we select the size of the next
1037 * block, based on size used in the last block.
1038 * - first find the smallest bucket that will fit the block from a
1039 * limited set of block sizes. This is because it's faster to write
1040 * blocks allocated from the same metaslab as they are adjacent or
1041 * close.
1042 * - next find the maximum from the new suggested size and an array of
1043 * previous sizes. This lessens a picket fence effect of wrongly
1044 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1045 * requests.
1046 *
1047 * Note we only write what is used, but we can't just allocate
1048 * the maximum block size because we can exhaust the available
1049 * pool log space.
1050 */
1051 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1052 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1053 continue;
1054 zil_blksz = zil_block_buckets[i];
1055 if (zil_blksz == UINT64_MAX)
1056 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1057 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1058 for (i = 0; i < ZIL_PREV_BLKS; i++)
1059 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1060 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1061
1062 BP_ZERO(bp);
86e3c28a
CIK
1063 error = zio_alloc_zil(spa, txg, bp, zil_blksz, &slog);
1064 if (slog) {
70e083d2
TG
1065 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1066 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1067 } else {
1068 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1069 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1070 }
1071 if (error == 0) {
1072 ASSERT3U(bp->blk_birth, ==, txg);
1073 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1074 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1075
1076 /*
1077 * Allocate a new log write buffer (lwb).
1078 */
86e3c28a 1079 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
70e083d2
TG
1080
1081 /* Record the block for later vdev flushing */
1082 zil_add_block(zilog, &lwb->lwb_blk);
1083 }
1084
1085 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1086 /* For Slim ZIL only write what is used. */
1087 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1088 ASSERT3U(wsz, <=, lwb->lwb_sz);
1089 zio_shrink(lwb->lwb_zio, wsz);
1090
1091 } else {
1092 wsz = lwb->lwb_sz;
1093 }
1094
1095 zilc->zc_pad = 0;
1096 zilc->zc_nused = lwb->lwb_nused;
1097 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1098
1099 /*
1100 * clear unused data for security
1101 */
1102 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1103
1104 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1105
1106 /*
1107 * If there was an allocation failure then nlwb will be null which
1108 * forces a txg_wait_synced().
1109 */
1110 return (nlwb);
1111}
1112
1113static lwb_t *
1114zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1115{
86e3c28a
CIK
1116 lr_t *lrcb, *lrc;
1117 lr_write_t *lrwb, *lrw;
70e083d2 1118 char *lr_buf;
86e3c28a 1119 uint64_t dlen, dnow, lwb_sp, reclen, txg;
70e083d2
TG
1120
1121 if (lwb == NULL)
1122 return (NULL);
1123
1124 ASSERT(lwb->lwb_buf != NULL);
70e083d2 1125
86e3c28a
CIK
1126 lrc = &itx->itx_lr; /* Common log record inside itx. */
1127 lrw = (lr_write_t *)lrc; /* Write log record inside itx. */
1128 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
70e083d2
TG
1129 dlen = P2ROUNDUP_TYPED(
1130 lrw->lr_length, sizeof (uint64_t), uint64_t);
86e3c28a
CIK
1131 } else {
1132 dlen = 0;
1133 }
1134 reclen = lrc->lrc_reclen;
70e083d2 1135 zilog->zl_cur_used += (reclen + dlen);
86e3c28a 1136 txg = lrc->lrc_txg;
70e083d2
TG
1137
1138 zil_lwb_write_init(zilog, lwb);
1139
86e3c28a 1140cont:
70e083d2
TG
1141 /*
1142 * If this record won't fit in the current log block, start a new one.
86e3c28a 1143 * For WR_NEED_COPY optimize layout for minimal number of chunks.
70e083d2 1144 */
86e3c28a
CIK
1145 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1146 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1147 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1148 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
70e083d2
TG
1149 lwb = zil_lwb_write_start(zilog, lwb);
1150 if (lwb == NULL)
1151 return (NULL);
1152 zil_lwb_write_init(zilog, lwb);
1153 ASSERT(LWB_EMPTY(lwb));
86e3c28a
CIK
1154 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1155 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
70e083d2
TG
1156 }
1157
86e3c28a 1158 dnow = MIN(dlen, lwb_sp - reclen);
70e083d2
TG
1159 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1160 bcopy(lrc, lr_buf, reclen);
86e3c28a
CIK
1161 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1162 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
70e083d2
TG
1163
1164 ZIL_STAT_BUMP(zil_itx_count);
1165
1166 /*
1167 * If it's a write, fetch the data or get its blkptr as appropriate.
1168 */
1169 if (lrc->lrc_txtype == TX_WRITE) {
1170 if (txg > spa_freeze_txg(zilog->zl_spa))
1171 txg_wait_synced(zilog->zl_dmu_pool, txg);
1172 if (itx->itx_wr_state == WR_COPIED) {
1173 ZIL_STAT_BUMP(zil_itx_copied_count);
1174 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1175 } else {
1176 char *dbuf;
1177 int error;
1178
86e3c28a 1179 if (itx->itx_wr_state == WR_NEED_COPY) {
70e083d2 1180 dbuf = lr_buf + reclen;
86e3c28a
CIK
1181 lrcb->lrc_reclen += dnow;
1182 if (lrwb->lr_length > dnow)
1183 lrwb->lr_length = dnow;
1184 lrw->lr_offset += dnow;
1185 lrw->lr_length -= dnow;
70e083d2
TG
1186 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1187 ZIL_STAT_INCR(zil_itx_needcopy_bytes,
1188 lrw->lr_length);
1189 } else {
1190 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1191 dbuf = NULL;
1192 ZIL_STAT_BUMP(zil_itx_indirect_count);
1193 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1194 lrw->lr_length);
1195 }
1196 error = zilog->zl_get_data(
86e3c28a 1197 itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
70e083d2
TG
1198 if (error == EIO) {
1199 txg_wait_synced(zilog->zl_dmu_pool, txg);
1200 return (lwb);
1201 }
1202 if (error != 0) {
1203 ASSERT(error == ENOENT || error == EEXIST ||
1204 error == EALREADY);
1205 return (lwb);
1206 }
1207 }
1208 }
1209
1210 /*
1211 * We're actually making an entry, so update lrc_seq to be the
1212 * log record sequence number. Note that this is generally not
1213 * equal to the itx sequence number because not all transactions
1214 * are synchronous, and sometimes spa_sync() gets there first.
1215 */
86e3c28a
CIK
1216 lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1217 lwb->lwb_nused += reclen + dnow;
70e083d2
TG
1218 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1219 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1220 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1221
86e3c28a
CIK
1222 dlen -= dnow;
1223 if (dlen > 0) {
1224 zilog->zl_cur_used += reclen;
1225 goto cont;
1226 }
1227
70e083d2
TG
1228 return (lwb);
1229}
1230
1231itx_t *
1232zil_itx_create(uint64_t txtype, size_t lrsize)
1233{
b3a88519 1234 size_t itxsize;
70e083d2
TG
1235 itx_t *itx;
1236
1237 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
b3a88519 1238 itxsize = offsetof(itx_t, itx_lr) + lrsize;
70e083d2 1239
b3a88519 1240 itx = zio_data_buf_alloc(itxsize);
70e083d2
TG
1241 itx->itx_lr.lrc_txtype = txtype;
1242 itx->itx_lr.lrc_reclen = lrsize;
70e083d2
TG
1243 itx->itx_lr.lrc_seq = 0; /* defensive */
1244 itx->itx_sync = B_TRUE; /* default is synchronous */
1245 itx->itx_callback = NULL;
1246 itx->itx_callback_data = NULL;
b3a88519 1247 itx->itx_size = itxsize;
70e083d2
TG
1248
1249 return (itx);
1250}
1251
1252void
1253zil_itx_destroy(itx_t *itx)
1254{
b3a88519 1255 zio_data_buf_free(itx, itx->itx_size);
70e083d2
TG
1256}
1257
1258/*
1259 * Free up the sync and async itxs. The itxs_t has already been detached
1260 * so no locks are needed.
1261 */
1262static void
1263zil_itxg_clean(itxs_t *itxs)
1264{
1265 itx_t *itx;
1266 list_t *list;
1267 avl_tree_t *t;
1268 void *cookie;
1269 itx_async_node_t *ian;
1270
1271 list = &itxs->i_sync_list;
1272 while ((itx = list_head(list)) != NULL) {
1273 if (itx->itx_callback != NULL)
1274 itx->itx_callback(itx->itx_callback_data);
1275 list_remove(list, itx);
1276 zil_itx_destroy(itx);
1277 }
1278
1279 cookie = NULL;
1280 t = &itxs->i_async_tree;
1281 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1282 list = &ian->ia_list;
1283 while ((itx = list_head(list)) != NULL) {
1284 if (itx->itx_callback != NULL)
1285 itx->itx_callback(itx->itx_callback_data);
1286 list_remove(list, itx);
1287 zil_itx_destroy(itx);
1288 }
1289 list_destroy(list);
1290 kmem_free(ian, sizeof (itx_async_node_t));
1291 }
1292 avl_destroy(t);
1293
1294 kmem_free(itxs, sizeof (itxs_t));
1295}
1296
1297static int
1298zil_aitx_compare(const void *x1, const void *x2)
1299{
1300 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1301 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1302
86e3c28a 1303 return (AVL_CMP(o1, o2));
70e083d2
TG
1304}
1305
1306/*
1307 * Remove all async itx with the given oid.
1308 */
1309static void
1310zil_remove_async(zilog_t *zilog, uint64_t oid)
1311{
1312 uint64_t otxg, txg;
1313 itx_async_node_t *ian;
1314 avl_tree_t *t;
1315 avl_index_t where;
1316 list_t clean_list;
1317 itx_t *itx;
1318
1319 ASSERT(oid != 0);
1320 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1321
1322 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1323 otxg = ZILTEST_TXG;
1324 else
1325 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1326
1327 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1328 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1329
1330 mutex_enter(&itxg->itxg_lock);
1331 if (itxg->itxg_txg != txg) {
1332 mutex_exit(&itxg->itxg_lock);
1333 continue;
1334 }
1335
1336 /*
1337 * Locate the object node and append its list.
1338 */
1339 t = &itxg->itxg_itxs->i_async_tree;
1340 ian = avl_find(t, &oid, &where);
1341 if (ian != NULL)
1342 list_move_tail(&clean_list, &ian->ia_list);
1343 mutex_exit(&itxg->itxg_lock);
1344 }
1345 while ((itx = list_head(&clean_list)) != NULL) {
1346 if (itx->itx_callback != NULL)
1347 itx->itx_callback(itx->itx_callback_data);
1348 list_remove(&clean_list, itx);
1349 zil_itx_destroy(itx);
1350 }
1351 list_destroy(&clean_list);
1352}
1353
1354void
1355zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1356{
1357 uint64_t txg;
1358 itxg_t *itxg;
1359 itxs_t *itxs, *clean = NULL;
1360
1361 /*
1362 * Object ids can be re-instantiated in the next txg so
1363 * remove any async transactions to avoid future leaks.
1364 * This can happen if a fsync occurs on the re-instantiated
1365 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1366 * the new file data and flushes a write record for the old object.
1367 */
1368 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1369 zil_remove_async(zilog, itx->itx_oid);
1370
1371 /*
1372 * Ensure the data of a renamed file is committed before the rename.
1373 */
1374 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1375 zil_async_to_sync(zilog, itx->itx_oid);
1376
1377 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1378 txg = ZILTEST_TXG;
1379 else
1380 txg = dmu_tx_get_txg(tx);
1381
1382 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1383 mutex_enter(&itxg->itxg_lock);
1384 itxs = itxg->itxg_itxs;
1385 if (itxg->itxg_txg != txg) {
1386 if (itxs != NULL) {
1387 /*
1388 * The zil_clean callback hasn't got around to cleaning
1389 * this itxg. Save the itxs for release below.
1390 * This should be rare.
1391 */
86e3c28a
CIK
1392 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1393 "txg %llu", itxg->itxg_txg);
70e083d2
TG
1394 clean = itxg->itxg_itxs;
1395 }
70e083d2
TG
1396 itxg->itxg_txg = txg;
1397 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1398 KM_SLEEP);
1399
1400 list_create(&itxs->i_sync_list, sizeof (itx_t),
1401 offsetof(itx_t, itx_node));
1402 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1403 sizeof (itx_async_node_t),
1404 offsetof(itx_async_node_t, ia_node));
1405 }
1406 if (itx->itx_sync) {
1407 list_insert_tail(&itxs->i_sync_list, itx);
70e083d2
TG
1408 } else {
1409 avl_tree_t *t = &itxs->i_async_tree;
86e3c28a
CIK
1410 uint64_t foid =
1411 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
70e083d2
TG
1412 itx_async_node_t *ian;
1413 avl_index_t where;
1414
1415 ian = avl_find(t, &foid, &where);
1416 if (ian == NULL) {
1417 ian = kmem_alloc(sizeof (itx_async_node_t),
1418 KM_SLEEP);
1419 list_create(&ian->ia_list, sizeof (itx_t),
1420 offsetof(itx_t, itx_node));
1421 ian->ia_foid = foid;
1422 avl_insert(t, ian, where);
1423 }
1424 list_insert_tail(&ian->ia_list, itx);
1425 }
1426
1427 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1428 zilog_dirty(zilog, txg);
1429 mutex_exit(&itxg->itxg_lock);
1430
1431 /* Release the old itxs now we've dropped the lock */
1432 if (clean != NULL)
1433 zil_itxg_clean(clean);
1434}
1435
1436/*
1437 * If there are any in-memory intent log transactions which have now been
1438 * synced then start up a taskq to free them. We should only do this after we
1439 * have written out the uberblocks (i.e. txg has been comitted) so that
1440 * don't inadvertently clean out in-memory log records that would be required
1441 * by zil_commit().
1442 */
1443void
1444zil_clean(zilog_t *zilog, uint64_t synced_txg)
1445{
1446 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1447 itxs_t *clean_me;
1448
1449 mutex_enter(&itxg->itxg_lock);
1450 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1451 mutex_exit(&itxg->itxg_lock);
1452 return;
1453 }
1454 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
b49151d6 1455 ASSERT3U(itxg->itxg_txg, !=, 0);
70e083d2
TG
1456 clean_me = itxg->itxg_itxs;
1457 itxg->itxg_itxs = NULL;
1458 itxg->itxg_txg = 0;
1459 mutex_exit(&itxg->itxg_lock);
1460 /*
1461 * Preferably start a task queue to free up the old itxs but
1462 * if taskq_dispatch can't allocate resources to do that then
1463 * free it in-line. This should be rare. Note, using TQ_SLEEP
1464 * created a bad performance problem.
1465 */
b49151d6
CIK
1466 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1467 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1468 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1469 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP);
1470 if (id == TASKQID_INVALID)
70e083d2
TG
1471 zil_itxg_clean(clean_me);
1472}
1473
1474/*
1475 * Get the list of itxs to commit into zl_itx_commit_list.
1476 */
1477static void
1478zil_get_commit_list(zilog_t *zilog)
1479{
1480 uint64_t otxg, txg;
1481 list_t *commit_list = &zilog->zl_itx_commit_list;
70e083d2
TG
1482
1483 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1484 otxg = ZILTEST_TXG;
1485 else
1486 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1487
86e3c28a
CIK
1488 /*
1489 * This is inherently racy, since there is nothing to prevent
1490 * the last synced txg from changing. That's okay since we'll
1491 * only commit things in the future.
1492 */
70e083d2
TG
1493 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1494 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1495
1496 mutex_enter(&itxg->itxg_lock);
1497 if (itxg->itxg_txg != txg) {
1498 mutex_exit(&itxg->itxg_lock);
1499 continue;
1500 }
1501
86e3c28a
CIK
1502 /*
1503 * If we're adding itx records to the zl_itx_commit_list,
1504 * then the zil better be dirty in this "txg". We can assert
1505 * that here since we're holding the itxg_lock which will
1506 * prevent spa_sync from cleaning it. Once we add the itxs
1507 * to the zl_itx_commit_list we must commit it to disk even
1508 * if it's unnecessary (i.e. the txg was synced).
1509 */
1510 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1511 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
70e083d2 1512 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
70e083d2
TG
1513
1514 mutex_exit(&itxg->itxg_lock);
1515 }
70e083d2
TG
1516}
1517
1518/*
1519 * Move the async itxs for a specified object to commit into sync lists.
1520 */
1521static void
1522zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1523{
1524 uint64_t otxg, txg;
1525 itx_async_node_t *ian;
1526 avl_tree_t *t;
1527 avl_index_t where;
1528
1529 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1530 otxg = ZILTEST_TXG;
1531 else
1532 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1533
86e3c28a
CIK
1534 /*
1535 * This is inherently racy, since there is nothing to prevent
1536 * the last synced txg from changing.
1537 */
70e083d2
TG
1538 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1539 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1540
1541 mutex_enter(&itxg->itxg_lock);
1542 if (itxg->itxg_txg != txg) {
1543 mutex_exit(&itxg->itxg_lock);
1544 continue;
1545 }
1546
1547 /*
1548 * If a foid is specified then find that node and append its
1549 * list. Otherwise walk the tree appending all the lists
1550 * to the sync list. We add to the end rather than the
1551 * beginning to ensure the create has happened.
1552 */
1553 t = &itxg->itxg_itxs->i_async_tree;
1554 if (foid != 0) {
1555 ian = avl_find(t, &foid, &where);
1556 if (ian != NULL) {
1557 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1558 &ian->ia_list);
1559 }
1560 } else {
1561 void *cookie = NULL;
1562
1563 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1564 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1565 &ian->ia_list);
1566 list_destroy(&ian->ia_list);
1567 kmem_free(ian, sizeof (itx_async_node_t));
1568 }
1569 }
1570 mutex_exit(&itxg->itxg_lock);
1571 }
1572}
1573
1574static void
1575zil_commit_writer(zilog_t *zilog)
1576{
1577 uint64_t txg;
1578 itx_t *itx;
1579 lwb_t *lwb;
1580 spa_t *spa = zilog->zl_spa;
1581 int error = 0;
1582
1583 ASSERT(zilog->zl_root_zio == NULL);
1584
1585 mutex_exit(&zilog->zl_lock);
1586
1587 zil_get_commit_list(zilog);
1588
1589 /*
1590 * Return if there's nothing to commit before we dirty the fs by
1591 * calling zil_create().
1592 */
1593 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1594 mutex_enter(&zilog->zl_lock);
1595 return;
1596 }
1597
1598 if (zilog->zl_suspend) {
1599 lwb = NULL;
1600 } else {
1601 lwb = list_tail(&zilog->zl_lwb_list);
1602 if (lwb == NULL)
1603 lwb = zil_create(zilog);
1604 }
1605
1606 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1607 for (itx = list_head(&zilog->zl_itx_commit_list); itx != NULL;
1608 itx = list_next(&zilog->zl_itx_commit_list, itx)) {
1609 txg = itx->itx_lr.lrc_txg;
86e3c28a 1610 ASSERT3U(txg, !=, 0);
70e083d2 1611
86e3c28a
CIK
1612 /*
1613 * This is inherently racy and may result in us writing
1614 * out a log block for a txg that was just synced. This is
1615 * ok since we'll end cleaning up that log block the next
1616 * time we call zil_sync().
1617 */
70e083d2
TG
1618 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1619 lwb = zil_lwb_commit(zilog, itx, lwb);
1620 }
1621 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1622
1623 /* write the last block out */
1624 if (lwb != NULL && lwb->lwb_zio != NULL)
1625 lwb = zil_lwb_write_start(zilog, lwb);
1626
1627 zilog->zl_cur_used = 0;
1628
1629 /*
1630 * Wait if necessary for the log blocks to be on stable storage.
1631 */
1632 if (zilog->zl_root_zio) {
1633 error = zio_wait(zilog->zl_root_zio);
1634 zilog->zl_root_zio = NULL;
1635 zil_flush_vdevs(zilog);
1636 }
1637
1638 if (error || lwb == NULL)
1639 txg_wait_synced(zilog->zl_dmu_pool, 0);
1640
1641 while ((itx = list_head(&zilog->zl_itx_commit_list))) {
1642 txg = itx->itx_lr.lrc_txg;
1643 ASSERT(txg);
1644
1645 if (itx->itx_callback != NULL)
1646 itx->itx_callback(itx->itx_callback_data);
1647 list_remove(&zilog->zl_itx_commit_list, itx);
1648 zil_itx_destroy(itx);
1649 }
1650
1651 mutex_enter(&zilog->zl_lock);
1652
1653 /*
1654 * Remember the highest committed log sequence number for ztest.
1655 * We only update this value when all the log writes succeeded,
1656 * because ztest wants to ASSERT that it got the whole log chain.
1657 */
1658 if (error == 0 && lwb != NULL)
1659 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1660}
1661
1662/*
1663 * Commit zfs transactions to stable storage.
1664 * If foid is 0 push out all transactions, otherwise push only those
1665 * for that object or might reference that object.
1666 *
1667 * itxs are committed in batches. In a heavily stressed zil there will be
1668 * a commit writer thread who is writing out a bunch of itxs to the log
1669 * for a set of committing threads (cthreads) in the same batch as the writer.
1670 * Those cthreads are all waiting on the same cv for that batch.
1671 *
1672 * There will also be a different and growing batch of threads that are
1673 * waiting to commit (qthreads). When the committing batch completes
1674 * a transition occurs such that the cthreads exit and the qthreads become
1675 * cthreads. One of the new cthreads becomes the writer thread for the
1676 * batch. Any new threads arriving become new qthreads.
1677 *
1678 * Only 2 condition variables are needed and there's no transition
1679 * between the two cvs needed. They just flip-flop between qthreads
1680 * and cthreads.
1681 *
1682 * Using this scheme we can efficiently wakeup up only those threads
1683 * that have been committed.
1684 */
1685void
1686zil_commit(zilog_t *zilog, uint64_t foid)
1687{
1688 uint64_t mybatch;
1689
1690 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1691 return;
1692
1693 ZIL_STAT_BUMP(zil_commit_count);
1694
1695 /* move the async itxs for the foid to the sync queues */
1696 zil_async_to_sync(zilog, foid);
1697
1698 mutex_enter(&zilog->zl_lock);
1699 mybatch = zilog->zl_next_batch;
1700 while (zilog->zl_writer) {
1701 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1702 if (mybatch <= zilog->zl_com_batch) {
1703 mutex_exit(&zilog->zl_lock);
1704 return;
1705 }
1706 }
1707
1708 zilog->zl_next_batch++;
1709 zilog->zl_writer = B_TRUE;
1710 ZIL_STAT_BUMP(zil_commit_writer_count);
1711 zil_commit_writer(zilog);
1712 zilog->zl_com_batch = mybatch;
1713 zilog->zl_writer = B_FALSE;
1714
1715 /* wake up one thread to become the next writer */
1716 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1717
1718 /* wake up all threads waiting for this batch to be committed */
1719 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1720
1721 mutex_exit(&zilog->zl_lock);
1722}
1723
1724/*
1725 * Called in syncing context to free committed log blocks and update log header.
1726 */
1727void
1728zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1729{
1730 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1731 uint64_t txg = dmu_tx_get_txg(tx);
1732 spa_t *spa = zilog->zl_spa;
1733 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1734 lwb_t *lwb;
1735
1736 /*
1737 * We don't zero out zl_destroy_txg, so make sure we don't try
1738 * to destroy it twice.
1739 */
1740 if (spa_sync_pass(spa) != 1)
1741 return;
1742
1743 mutex_enter(&zilog->zl_lock);
1744
1745 ASSERT(zilog->zl_stop_sync == 0);
1746
1747 if (*replayed_seq != 0) {
1748 ASSERT(zh->zh_replay_seq < *replayed_seq);
1749 zh->zh_replay_seq = *replayed_seq;
1750 *replayed_seq = 0;
1751 }
1752
1753 if (zilog->zl_destroy_txg == txg) {
1754 blkptr_t blk = zh->zh_log;
1755
1756 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1757
1758 bzero(zh, sizeof (zil_header_t));
1759 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1760
1761 if (zilog->zl_keep_first) {
1762 /*
1763 * If this block was part of log chain that couldn't
1764 * be claimed because a device was missing during
1765 * zil_claim(), but that device later returns,
1766 * then this block could erroneously appear valid.
1767 * To guard against this, assign a new GUID to the new
1768 * log chain so it doesn't matter what blk points to.
1769 */
1770 zil_init_log_chain(zilog, &blk);
1771 zh->zh_log = blk;
1772 }
1773 }
1774
1775 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1776 zh->zh_log = lwb->lwb_blk;
1777 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1778 break;
1779
1780 ASSERT(lwb->lwb_zio == NULL);
1781
1782 list_remove(&zilog->zl_lwb_list, lwb);
1783 zio_free_zil(spa, txg, &lwb->lwb_blk);
1784 kmem_cache_free(zil_lwb_cache, lwb);
1785
1786 /*
1787 * If we don't have anything left in the lwb list then
1788 * we've had an allocation failure and we need to zero
1789 * out the zil_header blkptr so that we don't end
1790 * up freeing the same block twice.
1791 */
1792 if (list_head(&zilog->zl_lwb_list) == NULL)
1793 BP_ZERO(&zh->zh_log);
1794 }
1795
1796 /*
1797 * Remove fastwrite on any blocks that have been pre-allocated for
1798 * the next commit. This prevents fastwrite counter pollution by
1799 * unused, long-lived LWBs.
1800 */
1801 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1802 if (lwb->lwb_fastwrite && !lwb->lwb_zio) {
1803 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1804 lwb->lwb_fastwrite = 0;
1805 }
1806 }
1807
1808 mutex_exit(&zilog->zl_lock);
1809}
1810
1811void
1812zil_init(void)
1813{
1814 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1815 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1816
1817 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
1818 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
1819 KSTAT_FLAG_VIRTUAL);
1820
1821 if (zil_ksp != NULL) {
1822 zil_ksp->ks_data = &zil_stats;
1823 kstat_install(zil_ksp);
1824 }
1825}
1826
1827void
1828zil_fini(void)
1829{
1830 kmem_cache_destroy(zil_lwb_cache);
1831
1832 if (zil_ksp != NULL) {
1833 kstat_delete(zil_ksp);
1834 zil_ksp = NULL;
1835 }
1836}
1837
1838void
1839zil_set_sync(zilog_t *zilog, uint64_t sync)
1840{
1841 zilog->zl_sync = sync;
1842}
1843
1844void
1845zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1846{
1847 zilog->zl_logbias = logbias;
1848}
1849
1850zilog_t *
1851zil_alloc(objset_t *os, zil_header_t *zh_phys)
1852{
1853 zilog_t *zilog;
1854 int i;
1855
1856 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1857
1858 zilog->zl_header = zh_phys;
1859 zilog->zl_os = os;
1860 zilog->zl_spa = dmu_objset_spa(os);
1861 zilog->zl_dmu_pool = dmu_objset_pool(os);
1862 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1863 zilog->zl_logbias = dmu_objset_logbias(os);
1864 zilog->zl_sync = dmu_objset_syncprop(os);
1865 zilog->zl_next_batch = 1;
1866
1867 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1868
1869 for (i = 0; i < TXG_SIZE; i++) {
1870 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1871 MUTEX_DEFAULT, NULL);
1872 }
1873
1874 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1875 offsetof(lwb_t, lwb_node));
1876
1877 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1878 offsetof(itx_t, itx_node));
1879
1880 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1881
1882 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1883 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1884
1885 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1886 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1887 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1888 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1889
1890 return (zilog);
1891}
1892
1893void
1894zil_free(zilog_t *zilog)
1895{
1896 int i;
1897
1898 zilog->zl_stop_sync = 1;
1899
1900 ASSERT0(zilog->zl_suspend);
1901 ASSERT0(zilog->zl_suspending);
1902
1903 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1904 list_destroy(&zilog->zl_lwb_list);
1905
1906 avl_destroy(&zilog->zl_vdev_tree);
1907 mutex_destroy(&zilog->zl_vdev_lock);
1908
1909 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1910 list_destroy(&zilog->zl_itx_commit_list);
1911
1912 for (i = 0; i < TXG_SIZE; i++) {
1913 /*
1914 * It's possible for an itx to be generated that doesn't dirty
1915 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1916 * callback to remove the entry. We remove those here.
1917 *
1918 * Also free up the ziltest itxs.
1919 */
1920 if (zilog->zl_itxg[i].itxg_itxs)
1921 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1922 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1923 }
1924
1925 mutex_destroy(&zilog->zl_lock);
1926
1927 cv_destroy(&zilog->zl_cv_writer);
1928 cv_destroy(&zilog->zl_cv_suspend);
1929 cv_destroy(&zilog->zl_cv_batch[0]);
1930 cv_destroy(&zilog->zl_cv_batch[1]);
1931
1932 kmem_free(zilog, sizeof (zilog_t));
1933}
1934
1935/*
1936 * Open an intent log.
1937 */
1938zilog_t *
1939zil_open(objset_t *os, zil_get_data_t *get_data)
1940{
1941 zilog_t *zilog = dmu_objset_zil(os);
1942
70e083d2
TG
1943 ASSERT(zilog->zl_get_data == NULL);
1944 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1945
1946 zilog->zl_get_data = get_data;
70e083d2
TG
1947
1948 return (zilog);
1949}
1950
1951/*
1952 * Close an intent log.
1953 */
1954void
1955zil_close(zilog_t *zilog)
1956{
1957 lwb_t *lwb;
1958 uint64_t txg = 0;
1959
1960 zil_commit(zilog, 0); /* commit all itx */
1961
1962 /*
1963 * The lwb_max_txg for the stubby lwb will reflect the last activity
1964 * for the zil. After a txg_wait_synced() on the txg we know all the
1965 * callbacks have occurred that may clean the zil. Only then can we
1966 * destroy the zl_clean_taskq.
1967 */
1968 mutex_enter(&zilog->zl_lock);
1969 lwb = list_tail(&zilog->zl_lwb_list);
1970 if (lwb != NULL)
1971 txg = lwb->lwb_max_txg;
1972 mutex_exit(&zilog->zl_lock);
1973 if (txg)
1974 txg_wait_synced(zilog->zl_dmu_pool, txg);
86e3c28a
CIK
1975
1976 if (zilog_is_dirty(zilog))
1977 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1978 if (txg < spa_freeze_txg(zilog->zl_spa))
1979 VERIFY(!zilog_is_dirty(zilog));
70e083d2 1980
70e083d2
TG
1981 zilog->zl_get_data = NULL;
1982
1983 /*
1984 * We should have only one LWB left on the list; remove it now.
1985 */
1986 mutex_enter(&zilog->zl_lock);
1987 lwb = list_head(&zilog->zl_lwb_list);
1988 if (lwb != NULL) {
1989 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1990 ASSERT(lwb->lwb_zio == NULL);
1991 if (lwb->lwb_fastwrite)
1992 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1993 list_remove(&zilog->zl_lwb_list, lwb);
1994 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1995 kmem_cache_free(zil_lwb_cache, lwb);
1996 }
1997 mutex_exit(&zilog->zl_lock);
1998}
1999
2000static char *suspend_tag = "zil suspending";
2001
2002/*
2003 * Suspend an intent log. While in suspended mode, we still honor
2004 * synchronous semantics, but we rely on txg_wait_synced() to do it.
2005 * On old version pools, we suspend the log briefly when taking a
2006 * snapshot so that it will have an empty intent log.
2007 *
2008 * Long holds are not really intended to be used the way we do here --
2009 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
2010 * could fail. Therefore we take pains to only put a long hold if it is
2011 * actually necessary. Fortunately, it will only be necessary if the
2012 * objset is currently mounted (or the ZVOL equivalent). In that case it
2013 * will already have a long hold, so we are not really making things any worse.
2014 *
2015 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2016 * zvol_state_t), and use their mechanism to prevent their hold from being
2017 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
2018 * very little gain.
2019 *
2020 * if cookiep == NULL, this does both the suspend & resume.
2021 * Otherwise, it returns with the dataset "long held", and the cookie
2022 * should be passed into zil_resume().
2023 */
2024int
2025zil_suspend(const char *osname, void **cookiep)
2026{
2027 objset_t *os;
2028 zilog_t *zilog;
2029 const zil_header_t *zh;
2030 int error;
2031
2032 error = dmu_objset_hold(osname, suspend_tag, &os);
2033 if (error != 0)
2034 return (error);
2035 zilog = dmu_objset_zil(os);
2036
2037 mutex_enter(&zilog->zl_lock);
2038 zh = zilog->zl_header;
2039
2040 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
2041 mutex_exit(&zilog->zl_lock);
2042 dmu_objset_rele(os, suspend_tag);
2043 return (SET_ERROR(EBUSY));
2044 }
2045
2046 /*
2047 * Don't put a long hold in the cases where we can avoid it. This
2048 * is when there is no cookie so we are doing a suspend & resume
2049 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2050 * for the suspend because it's already suspended, or there's no ZIL.
2051 */
2052 if (cookiep == NULL && !zilog->zl_suspending &&
2053 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2054 mutex_exit(&zilog->zl_lock);
2055 dmu_objset_rele(os, suspend_tag);
2056 return (0);
2057 }
2058
2059 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2060 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2061
2062 zilog->zl_suspend++;
2063
2064 if (zilog->zl_suspend > 1) {
2065 /*
2066 * Someone else is already suspending it.
2067 * Just wait for them to finish.
2068 */
2069
2070 while (zilog->zl_suspending)
2071 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2072 mutex_exit(&zilog->zl_lock);
2073
2074 if (cookiep == NULL)
2075 zil_resume(os);
2076 else
2077 *cookiep = os;
2078 return (0);
2079 }
2080
2081 /*
2082 * If there is no pointer to an on-disk block, this ZIL must not
2083 * be active (e.g. filesystem not mounted), so there's nothing
2084 * to clean up.
2085 */
2086 if (BP_IS_HOLE(&zh->zh_log)) {
2087 ASSERT(cookiep != NULL); /* fast path already handled */
2088
2089 *cookiep = os;
2090 mutex_exit(&zilog->zl_lock);
2091 return (0);
2092 }
2093
2094 zilog->zl_suspending = B_TRUE;
2095 mutex_exit(&zilog->zl_lock);
2096
2097 zil_commit(zilog, 0);
2098
2099 zil_destroy(zilog, B_FALSE);
2100
2101 mutex_enter(&zilog->zl_lock);
2102 zilog->zl_suspending = B_FALSE;
2103 cv_broadcast(&zilog->zl_cv_suspend);
2104 mutex_exit(&zilog->zl_lock);
2105
2106 if (cookiep == NULL)
2107 zil_resume(os);
2108 else
2109 *cookiep = os;
2110 return (0);
2111}
2112
2113void
2114zil_resume(void *cookie)
2115{
2116 objset_t *os = cookie;
2117 zilog_t *zilog = dmu_objset_zil(os);
2118
2119 mutex_enter(&zilog->zl_lock);
2120 ASSERT(zilog->zl_suspend != 0);
2121 zilog->zl_suspend--;
2122 mutex_exit(&zilog->zl_lock);
2123 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2124 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2125}
2126
2127typedef struct zil_replay_arg {
2128 zil_replay_func_t *zr_replay;
2129 void *zr_arg;
2130 boolean_t zr_byteswap;
2131 char *zr_lr;
2132} zil_replay_arg_t;
2133
2134static int
2135zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2136{
86e3c28a 2137 char name[ZFS_MAX_DATASET_NAME_LEN];
70e083d2
TG
2138
2139 zilog->zl_replaying_seq--; /* didn't actually replay this one */
2140
2141 dmu_objset_name(zilog->zl_os, name);
2142
2143 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2144 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2145 (u_longlong_t)lr->lrc_seq,
2146 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2147 (lr->lrc_txtype & TX_CI) ? "CI" : "");
2148
2149 return (error);
2150}
2151
2152static int
2153zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2154{
2155 zil_replay_arg_t *zr = zra;
2156 const zil_header_t *zh = zilog->zl_header;
2157 uint64_t reclen = lr->lrc_reclen;
2158 uint64_t txtype = lr->lrc_txtype;
2159 int error = 0;
2160
2161 zilog->zl_replaying_seq = lr->lrc_seq;
2162
2163 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
2164 return (0);
2165
2166 if (lr->lrc_txg < claim_txg) /* already committed */
2167 return (0);
2168
2169 /* Strip case-insensitive bit, still present in log record */
2170 txtype &= ~TX_CI;
2171
2172 if (txtype == 0 || txtype >= TX_MAX_TYPE)
2173 return (zil_replay_error(zilog, lr, EINVAL));
2174
2175 /*
2176 * If this record type can be logged out of order, the object
2177 * (lr_foid) may no longer exist. That's legitimate, not an error.
2178 */
2179 if (TX_OOO(txtype)) {
2180 error = dmu_object_info(zilog->zl_os,
86e3c28a 2181 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
70e083d2
TG
2182 if (error == ENOENT || error == EEXIST)
2183 return (0);
2184 }
2185
2186 /*
2187 * Make a copy of the data so we can revise and extend it.
2188 */
2189 bcopy(lr, zr->zr_lr, reclen);
2190
2191 /*
2192 * If this is a TX_WRITE with a blkptr, suck in the data.
2193 */
2194 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2195 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2196 zr->zr_lr + reclen);
2197 if (error != 0)
2198 return (zil_replay_error(zilog, lr, error));
2199 }
2200
2201 /*
2202 * The log block containing this lr may have been byteswapped
2203 * so that we can easily examine common fields like lrc_txtype.
2204 * However, the log is a mix of different record types, and only the
2205 * replay vectors know how to byteswap their records. Therefore, if
2206 * the lr was byteswapped, undo it before invoking the replay vector.
2207 */
2208 if (zr->zr_byteswap)
2209 byteswap_uint64_array(zr->zr_lr, reclen);
2210
2211 /*
2212 * We must now do two things atomically: replay this log record,
2213 * and update the log header sequence number to reflect the fact that
2214 * we did so. At the end of each replay function the sequence number
2215 * is updated if we are in replay mode.
2216 */
2217 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2218 if (error != 0) {
2219 /*
2220 * The DMU's dnode layer doesn't see removes until the txg
2221 * commits, so a subsequent claim can spuriously fail with
2222 * EEXIST. So if we receive any error we try syncing out
2223 * any removes then retry the transaction. Note that we
2224 * specify B_FALSE for byteswap now, so we don't do it twice.
2225 */
2226 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2227 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2228 if (error != 0)
2229 return (zil_replay_error(zilog, lr, error));
2230 }
2231 return (0);
2232}
2233
2234/* ARGSUSED */
2235static int
2236zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2237{
2238 zilog->zl_replay_blks++;
2239
2240 return (0);
2241}
2242
2243/*
2244 * If this dataset has a non-empty intent log, replay it and destroy it.
2245 */
2246void
2247zil_replay(objset_t *os, void *arg, zil_replay_func_t replay_func[TX_MAX_TYPE])
2248{
2249 zilog_t *zilog = dmu_objset_zil(os);
2250 const zil_header_t *zh = zilog->zl_header;
2251 zil_replay_arg_t zr;
2252
2253 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2254 zil_destroy(zilog, B_TRUE);
2255 return;
2256 }
2257
2258 zr.zr_replay = replay_func;
2259 zr.zr_arg = arg;
2260 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2261 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2262
2263 /*
2264 * Wait for in-progress removes to sync before starting replay.
2265 */
2266 txg_wait_synced(zilog->zl_dmu_pool, 0);
2267
2268 zilog->zl_replay = B_TRUE;
2269 zilog->zl_replay_time = ddi_get_lbolt();
2270 ASSERT(zilog->zl_replay_blks == 0);
2271 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2272 zh->zh_claim_txg);
2273 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2274
2275 zil_destroy(zilog, B_FALSE);
2276 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2277 zilog->zl_replay = B_FALSE;
2278}
2279
2280boolean_t
2281zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2282{
2283 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2284 return (B_TRUE);
2285
2286 if (zilog->zl_replay) {
2287 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2288 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2289 zilog->zl_replaying_seq;
2290 return (B_TRUE);
2291 }
2292
2293 return (B_FALSE);
2294}
2295
2296/* ARGSUSED */
2297int
2298zil_vdev_offline(const char *osname, void *arg)
2299{
2300 int error;
2301
2302 error = zil_suspend(osname, NULL);
2303 if (error != 0)
2304 return (SET_ERROR(EEXIST));
2305 return (0);
2306}
2307
2308#if defined(_KERNEL) && defined(HAVE_SPL)
2309EXPORT_SYMBOL(zil_alloc);
2310EXPORT_SYMBOL(zil_free);
2311EXPORT_SYMBOL(zil_open);
2312EXPORT_SYMBOL(zil_close);
2313EXPORT_SYMBOL(zil_replay);
2314EXPORT_SYMBOL(zil_replaying);
2315EXPORT_SYMBOL(zil_destroy);
2316EXPORT_SYMBOL(zil_destroy_sync);
2317EXPORT_SYMBOL(zil_itx_create);
2318EXPORT_SYMBOL(zil_itx_destroy);
2319EXPORT_SYMBOL(zil_itx_assign);
2320EXPORT_SYMBOL(zil_commit);
2321EXPORT_SYMBOL(zil_vdev_offline);
2322EXPORT_SYMBOL(zil_claim);
2323EXPORT_SYMBOL(zil_check_log_chain);
2324EXPORT_SYMBOL(zil_sync);
2325EXPORT_SYMBOL(zil_clean);
2326EXPORT_SYMBOL(zil_suspend);
2327EXPORT_SYMBOL(zil_resume);
2328EXPORT_SYMBOL(zil_add_block);
2329EXPORT_SYMBOL(zil_bp_tree_add);
2330EXPORT_SYMBOL(zil_set_sync);
2331EXPORT_SYMBOL(zil_set_logbias);
2332
86e3c28a 2333/* BEGIN CSTYLED */
70e083d2
TG
2334module_param(zil_replay_disable, int, 0644);
2335MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
2336
2337module_param(zfs_nocacheflush, int, 0644);
2338MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
2339
86e3c28a
CIK
2340module_param(zil_slog_bulk, ulong, 0644);
2341MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
2342/* END CSTYLED */
70e083d2 2343#endif