]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - zfs/module/zfs/zvol.c
UBUNTU: SAUCE: add workarounds to enable ZFS for 4.14
[mirror_ubuntu-bionic-kernel.git] / zfs / module / zfs / zvol.c
CommitLineData
70e083d2
TG
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
38 */
39
40#include <sys/dbuf.h>
41#include <sys/dmu_traverse.h>
42#include <sys/dsl_dataset.h>
43#include <sys/dsl_prop.h>
44#include <sys/dsl_dir.h>
45#include <sys/zap.h>
46#include <sys/zfeature.h>
47#include <sys/zil_impl.h>
48#include <sys/dmu_tx.h>
49#include <sys/zio.h>
50#include <sys/zfs_rlock.h>
51#include <sys/zfs_znode.h>
52#include <sys/spa_impl.h>
53#include <sys/zvol.h>
54#include <linux/blkdev_compat.h>
93f7b346 55#include <linux/version.h>
70e083d2
TG
56
57unsigned int zvol_inhibit_dev = 0;
58unsigned int zvol_major = ZVOL_MAJOR;
59unsigned int zvol_prefetch_bytes = (128 * 1024);
60unsigned long zvol_max_discard_blocks = 16384;
61
62static kmutex_t zvol_state_lock;
63static list_t zvol_state_list;
64static char *zvol_tag = "zvol_tag";
65
66/*
67 * The in-core state of each volume.
68 */
69typedef struct zvol_state {
70 char zv_name[MAXNAMELEN]; /* name */
71 uint64_t zv_volsize; /* advertised space */
72 uint64_t zv_volblocksize; /* volume block size */
73 objset_t *zv_objset; /* objset handle */
74 uint32_t zv_flags; /* ZVOL_* flags */
75 uint32_t zv_open_count; /* open counts */
76 uint32_t zv_changed; /* disk changed */
77 zilog_t *zv_zilog; /* ZIL handle */
78 zfs_rlock_t zv_range_lock; /* range lock */
79 dmu_buf_t *zv_dbuf; /* bonus handle */
80 dev_t zv_dev; /* device id */
81 struct gendisk *zv_disk; /* generic disk */
82 struct request_queue *zv_queue; /* request queue */
83 spinlock_t zv_lock; /* request queue lock */
84 list_node_t zv_next; /* next zvol_state_t linkage */
85} zvol_state_t;
86
87typedef enum {
88 ZVOL_ASYNC_CREATE_MINORS,
89 ZVOL_ASYNC_REMOVE_MINORS,
90 ZVOL_ASYNC_RENAME_MINORS,
91 ZVOL_ASYNC_SET_SNAPDEV,
92 ZVOL_ASYNC_MAX
93} zvol_async_op_t;
94
95typedef struct {
96 zvol_async_op_t op;
97 char pool[MAXNAMELEN];
98 char name1[MAXNAMELEN];
99 char name2[MAXNAMELEN];
100 zprop_source_t source;
101 uint64_t snapdev;
102} zvol_task_t;
103
104#define ZVOL_RDONLY 0x1
105
106/*
107 * Find the next available range of ZVOL_MINORS minor numbers. The
108 * zvol_state_list is kept in ascending minor order so we simply need
109 * to scan the list for the first gap in the sequence. This allows us
110 * to recycle minor number as devices are created and removed.
111 */
112static int
113zvol_find_minor(unsigned *minor)
114{
115 zvol_state_t *zv;
116
117 *minor = 0;
118 ASSERT(MUTEX_HELD(&zvol_state_lock));
119 for (zv = list_head(&zvol_state_list); zv != NULL;
120 zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) {
121 if (MINOR(zv->zv_dev) != MINOR(*minor))
122 break;
123 }
124
125 /* All minors are in use */
126 if (*minor >= (1 << MINORBITS))
127 return (SET_ERROR(ENXIO));
128
129 return (0);
130}
131
132/*
133 * Find a zvol_state_t given the full major+minor dev_t.
134 */
135static zvol_state_t *
136zvol_find_by_dev(dev_t dev)
137{
138 zvol_state_t *zv;
139
140 ASSERT(MUTEX_HELD(&zvol_state_lock));
141 for (zv = list_head(&zvol_state_list); zv != NULL;
142 zv = list_next(&zvol_state_list, zv)) {
143 if (zv->zv_dev == dev)
144 return (zv);
145 }
146
147 return (NULL);
148}
149
150/*
151 * Find a zvol_state_t given the name provided at zvol_alloc() time.
152 */
153static zvol_state_t *
154zvol_find_by_name(const char *name)
155{
156 zvol_state_t *zv;
157
158 ASSERT(MUTEX_HELD(&zvol_state_lock));
159 for (zv = list_head(&zvol_state_list); zv != NULL;
160 zv = list_next(&zvol_state_list, zv)) {
161 if (strncmp(zv->zv_name, name, MAXNAMELEN) == 0)
162 return (zv);
163 }
164
165 return (NULL);
166}
167
168
169/*
170 * Given a path, return TRUE if path is a ZVOL.
171 */
172boolean_t
173zvol_is_zvol(const char *device)
174{
175 struct block_device *bdev;
176 unsigned int major;
177
178 bdev = vdev_lookup_bdev(device);
179 if (IS_ERR(bdev))
180 return (B_FALSE);
181
182 major = MAJOR(bdev->bd_dev);
183 bdput(bdev);
184
185 if (major == zvol_major)
186 return (B_TRUE);
187
188 return (B_FALSE);
189}
190
191/*
192 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
193 */
194void
195zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
196{
197 zfs_creat_t *zct = arg;
198 nvlist_t *nvprops = zct->zct_props;
199 int error;
200 uint64_t volblocksize, volsize;
201
202 VERIFY(nvlist_lookup_uint64(nvprops,
203 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
204 if (nvlist_lookup_uint64(nvprops,
205 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
206 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
207
208 /*
209 * These properties must be removed from the list so the generic
210 * property setting step won't apply to them.
211 */
212 VERIFY(nvlist_remove_all(nvprops,
213 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
214 (void) nvlist_remove_all(nvprops,
215 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
216
217 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
218 DMU_OT_NONE, 0, tx);
219 ASSERT(error == 0);
220
221 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
222 DMU_OT_NONE, 0, tx);
223 ASSERT(error == 0);
224
225 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
226 ASSERT(error == 0);
227}
228
229/*
230 * ZFS_IOC_OBJSET_STATS entry point.
231 */
232int
233zvol_get_stats(objset_t *os, nvlist_t *nv)
234{
235 int error;
236 dmu_object_info_t *doi;
237 uint64_t val;
238
239 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
240 if (error)
241 return (SET_ERROR(error));
242
243 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
244 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
245 error = dmu_object_info(os, ZVOL_OBJ, doi);
246
247 if (error == 0) {
248 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
249 doi->doi_data_block_size);
250 }
251
252 kmem_free(doi, sizeof (dmu_object_info_t));
253
254 return (SET_ERROR(error));
255}
256
257static void
258zvol_size_changed(zvol_state_t *zv, uint64_t volsize)
259{
260 struct block_device *bdev;
261
262 bdev = bdget_disk(zv->zv_disk, 0);
263 if (bdev == NULL)
264 return;
265/*
266 * 2.6.28 API change
267 * Added check_disk_size_change() helper function.
268 */
269#ifdef HAVE_CHECK_DISK_SIZE_CHANGE
270 set_capacity(zv->zv_disk, volsize >> 9);
271 zv->zv_volsize = volsize;
272 check_disk_size_change(zv->zv_disk, bdev);
273#else
274 zv->zv_volsize = volsize;
275 zv->zv_changed = 1;
276 (void) check_disk_change(bdev);
277#endif /* HAVE_CHECK_DISK_SIZE_CHANGE */
278
279 bdput(bdev);
280}
281
282/*
283 * Sanity check volume size.
284 */
285int
286zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
287{
288 if (volsize == 0)
289 return (SET_ERROR(EINVAL));
290
291 if (volsize % blocksize != 0)
292 return (SET_ERROR(EINVAL));
293
294#ifdef _ILP32
295 if (volsize - 1 > MAXOFFSET_T)
296 return (SET_ERROR(EOVERFLOW));
297#endif
298 return (0);
299}
300
301/*
302 * Ensure the zap is flushed then inform the VFS of the capacity change.
303 */
304static int
305zvol_update_volsize(uint64_t volsize, objset_t *os)
306{
307 dmu_tx_t *tx;
308 int error;
309
310 ASSERT(MUTEX_HELD(&zvol_state_lock));
311
312 tx = dmu_tx_create(os);
313 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
314 error = dmu_tx_assign(tx, TXG_WAIT);
315 if (error) {
316 dmu_tx_abort(tx);
317 return (SET_ERROR(error));
318 }
319
320 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
321 &volsize, tx);
322 dmu_tx_commit(tx);
323
324 if (error == 0)
325 error = dmu_free_long_range(os,
326 ZVOL_OBJ, volsize, DMU_OBJECT_END);
327
328 return (error);
329}
330
331static int
332zvol_update_live_volsize(zvol_state_t *zv, uint64_t volsize)
333{
334 zvol_size_changed(zv, volsize);
335
336 /*
337 * We should post a event here describing the expansion. However,
338 * the zfs_ereport_post() interface doesn't nicely support posting
339 * events for zvols, it assumes events relate to vdevs or zios.
340 */
341
342 return (0);
343}
344
345/*
346 * Set ZFS_PROP_VOLSIZE set entry point.
347 */
348int
349zvol_set_volsize(const char *name, uint64_t volsize)
350{
351 zvol_state_t *zv = NULL;
352 objset_t *os = NULL;
353 int error;
354 dmu_object_info_t *doi;
355 uint64_t readonly;
356 boolean_t owned = B_FALSE;
357
358 error = dsl_prop_get_integer(name,
359 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
360 if (error != 0)
361 return (SET_ERROR(error));
362 if (readonly)
363 return (SET_ERROR(EROFS));
364
365 mutex_enter(&zvol_state_lock);
366 zv = zvol_find_by_name(name);
367
368 if (zv == NULL || zv->zv_objset == NULL) {
369 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE,
370 FTAG, &os)) != 0) {
371 mutex_exit(&zvol_state_lock);
372 return (SET_ERROR(error));
373 }
374 owned = B_TRUE;
375 if (zv != NULL)
376 zv->zv_objset = os;
377 } else {
378 os = zv->zv_objset;
379 }
380
381 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
382
383 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
384 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
385 goto out;
386
387 error = zvol_update_volsize(volsize, os);
388 kmem_free(doi, sizeof (dmu_object_info_t));
389
390 if (error == 0 && zv != NULL)
391 error = zvol_update_live_volsize(zv, volsize);
392out:
393 if (owned) {
394 dmu_objset_disown(os, FTAG);
395 if (zv != NULL)
396 zv->zv_objset = NULL;
397 }
398 mutex_exit(&zvol_state_lock);
399 return (error);
400}
401
402/*
403 * Sanity check volume block size.
404 */
405int
406zvol_check_volblocksize(const char *name, uint64_t volblocksize)
407{
408 /* Record sizes above 128k need the feature to be enabled */
409 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
410 spa_t *spa;
411 int error;
412
413 if ((error = spa_open(name, &spa, FTAG)) != 0)
414 return (error);
415
416 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
417 spa_close(spa, FTAG);
418 return (SET_ERROR(ENOTSUP));
419 }
420
421 /*
422 * We don't allow setting the property above 1MB,
423 * unless the tunable has been changed.
424 */
425 if (volblocksize > zfs_max_recordsize)
426 return (SET_ERROR(EDOM));
427
428 spa_close(spa, FTAG);
429 }
430
431 if (volblocksize < SPA_MINBLOCKSIZE ||
432 volblocksize > SPA_MAXBLOCKSIZE ||
433 !ISP2(volblocksize))
434 return (SET_ERROR(EDOM));
435
436 return (0);
437}
438
439/*
440 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
441 */
442int
443zvol_set_volblocksize(const char *name, uint64_t volblocksize)
444{
445 zvol_state_t *zv;
446 dmu_tx_t *tx;
447 int error;
448
449 mutex_enter(&zvol_state_lock);
450
451 zv = zvol_find_by_name(name);
452 if (zv == NULL) {
453 error = SET_ERROR(ENXIO);
454 goto out;
455 }
456
457 if (zv->zv_flags & ZVOL_RDONLY) {
458 error = SET_ERROR(EROFS);
459 goto out;
460 }
461
462 tx = dmu_tx_create(zv->zv_objset);
463 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
464 error = dmu_tx_assign(tx, TXG_WAIT);
465 if (error) {
466 dmu_tx_abort(tx);
467 } else {
468 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
469 volblocksize, 0, tx);
470 if (error == ENOTSUP)
471 error = SET_ERROR(EBUSY);
472 dmu_tx_commit(tx);
473 if (error == 0)
474 zv->zv_volblocksize = volblocksize;
475 }
476out:
477 mutex_exit(&zvol_state_lock);
478
479 return (SET_ERROR(error));
480}
481
482/*
483 * Replay a TX_WRITE ZIL transaction that didn't get committed
484 * after a system failure
485 */
486static int
487zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
488{
489 objset_t *os = zv->zv_objset;
490 char *data = (char *)(lr + 1); /* data follows lr_write_t */
491 uint64_t off = lr->lr_offset;
492 uint64_t len = lr->lr_length;
493 dmu_tx_t *tx;
494 int error;
495
496 if (byteswap)
497 byteswap_uint64_array(lr, sizeof (*lr));
498
499 tx = dmu_tx_create(os);
500 dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
501 error = dmu_tx_assign(tx, TXG_WAIT);
502 if (error) {
503 dmu_tx_abort(tx);
504 } else {
505 dmu_write(os, ZVOL_OBJ, off, len, data, tx);
506 dmu_tx_commit(tx);
507 }
508
509 return (SET_ERROR(error));
510}
511
512static int
513zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
514{
515 return (SET_ERROR(ENOTSUP));
516}
517
518/*
519 * Callback vectors for replaying records.
520 * Only TX_WRITE is needed for zvol.
521 */
522zil_replay_func_t zvol_replay_vector[TX_MAX_TYPE] = {
523 (zil_replay_func_t)zvol_replay_err, /* no such transaction type */
524 (zil_replay_func_t)zvol_replay_err, /* TX_CREATE */
525 (zil_replay_func_t)zvol_replay_err, /* TX_MKDIR */
526 (zil_replay_func_t)zvol_replay_err, /* TX_MKXATTR */
527 (zil_replay_func_t)zvol_replay_err, /* TX_SYMLINK */
528 (zil_replay_func_t)zvol_replay_err, /* TX_REMOVE */
529 (zil_replay_func_t)zvol_replay_err, /* TX_RMDIR */
530 (zil_replay_func_t)zvol_replay_err, /* TX_LINK */
531 (zil_replay_func_t)zvol_replay_err, /* TX_RENAME */
532 (zil_replay_func_t)zvol_replay_write, /* TX_WRITE */
533 (zil_replay_func_t)zvol_replay_err, /* TX_TRUNCATE */
534 (zil_replay_func_t)zvol_replay_err, /* TX_SETATTR */
535 (zil_replay_func_t)zvol_replay_err, /* TX_ACL */
536};
537
538/*
539 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
540 *
541 * We store data in the log buffers if it's small enough.
542 * Otherwise we will later flush the data out via dmu_sync().
543 */
544ssize_t zvol_immediate_write_sz = 32768;
545
546static void
547zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
548 uint64_t size, int sync)
549{
550 uint32_t blocksize = zv->zv_volblocksize;
551 zilog_t *zilog = zv->zv_zilog;
552 boolean_t slogging;
553 ssize_t immediate_write_sz;
554
555 if (zil_replaying(zilog, tx))
556 return;
557
558 immediate_write_sz = (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
559 ? 0 : zvol_immediate_write_sz;
560 slogging = spa_has_slogs(zilog->zl_spa) &&
561 (zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
562
563 while (size) {
564 itx_t *itx;
565 lr_write_t *lr;
566 ssize_t len;
567 itx_wr_state_t write_state;
568
569 /*
570 * Unlike zfs_log_write() we can be called with
571 * up to DMU_MAX_ACCESS/2 (5MB) writes.
572 */
573 if (blocksize > immediate_write_sz && !slogging &&
574 size >= blocksize && offset % blocksize == 0) {
575 write_state = WR_INDIRECT; /* uses dmu_sync */
576 len = blocksize;
577 } else if (sync) {
578 write_state = WR_COPIED;
579 len = MIN(ZIL_MAX_LOG_DATA, size);
580 } else {
581 write_state = WR_NEED_COPY;
582 len = MIN(ZIL_MAX_LOG_DATA, size);
583 }
584
585 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
586 (write_state == WR_COPIED ? len : 0));
587 lr = (lr_write_t *)&itx->itx_lr;
588 if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
589 ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
590 zil_itx_destroy(itx);
591 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
592 lr = (lr_write_t *)&itx->itx_lr;
593 write_state = WR_NEED_COPY;
594 }
595
596 itx->itx_wr_state = write_state;
597 if (write_state == WR_NEED_COPY)
598 itx->itx_sod += len;
599 lr->lr_foid = ZVOL_OBJ;
600 lr->lr_offset = offset;
601 lr->lr_length = len;
602 lr->lr_blkoff = 0;
603 BP_ZERO(&lr->lr_blkptr);
604
605 itx->itx_private = zv;
606 itx->itx_sync = sync;
607
608 (void) zil_itx_assign(zilog, itx, tx);
609
610 offset += len;
611 size -= len;
612 }
613}
614
615static int
616zvol_write(struct bio *bio)
617{
93f7b346 618#if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
70e083d2 619 zvol_state_t *zv = bio->bi_bdev->bd_disk->private_data;
93f7b346
CIK
620#else
621 zvol_state_t *zv = bio->bi_disk->private_data;
622#endif
70e083d2
TG
623 uint64_t offset = BIO_BI_SECTOR(bio) << 9;
624 uint64_t size = BIO_BI_SIZE(bio);
625 int error = 0;
626 dmu_tx_t *tx;
627 rl_t *rl;
628
629 ASSERT(zv && zv->zv_open_count > 0);
630
631 if (bio_is_flush(bio))
632 zil_commit(zv->zv_zilog, ZVOL_OBJ);
633
634 /*
635 * Some requests are just for flush and nothing else.
636 */
637 if (size == 0)
638 goto out;
639
640 rl = zfs_range_lock(&zv->zv_range_lock, offset, size, RL_WRITER);
641
642 tx = dmu_tx_create(zv->zv_objset);
643 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size);
644
645 /* This will only fail for ENOSPC */
646 error = dmu_tx_assign(tx, TXG_WAIT);
647 if (error) {
648 dmu_tx_abort(tx);
649 zfs_range_unlock(rl);
650 goto out;
651 }
652
653 error = dmu_write_bio(zv->zv_objset, ZVOL_OBJ, bio, tx);
654 if (error == 0)
655 zvol_log_write(zv, tx, offset, size,
656 !!(bio_is_fua(bio)));
657
658 dmu_tx_commit(tx);
659 zfs_range_unlock(rl);
660
661 if ((bio_is_fua(bio)) ||
662 zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)
663 zil_commit(zv->zv_zilog, ZVOL_OBJ);
664
665out:
666 return (error);
667}
668
669static int
670zvol_discard(struct bio *bio)
671{
93f7b346 672#if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
70e083d2 673 zvol_state_t *zv = bio->bi_bdev->bd_disk->private_data;
93f7b346
CIK
674#else
675 zvol_state_t *zv = bio->bi_disk->private_data;
676#endif
70e083d2
TG
677 uint64_t start = BIO_BI_SECTOR(bio) << 9;
678 uint64_t size = BIO_BI_SIZE(bio);
679 uint64_t end = start + size;
680 int error;
681 rl_t *rl;
682
683 ASSERT(zv && zv->zv_open_count > 0);
684
685 if (end > zv->zv_volsize)
686 return (SET_ERROR(EIO));
687
688 /*
689 * Align the request to volume block boundaries when a secure erase is
690 * not required. This will prevent dnode_free_range() from zeroing out
691 * the unaligned parts which is slow (read-modify-write) and useless
692 * since we are not freeing any space by doing so.
693 */
694 if (!bio_is_secure_erase(bio)) {
695 start = P2ROUNDUP(start, zv->zv_volblocksize);
696 end = P2ALIGN(end, zv->zv_volblocksize);
697 size = end - start;
698 }
699
700 if (start >= end)
701 return (0);
702
703 rl = zfs_range_lock(&zv->zv_range_lock, start, size, RL_WRITER);
704
705 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, start, size);
706
707 /*
708 * TODO: maybe we should add the operation to the log.
709 */
710 zfs_range_unlock(rl);
711
712 return (error);
713}
714
715static int
716zvol_read(struct bio *bio)
717{
93f7b346 718#if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
70e083d2 719 zvol_state_t *zv = bio->bi_bdev->bd_disk->private_data;
93f7b346
CIK
720#else
721 zvol_state_t *zv = bio->bi_disk->private_data;
722#endif
70e083d2
TG
723 uint64_t offset = BIO_BI_SECTOR(bio) << 9;
724 uint64_t len = BIO_BI_SIZE(bio);
725 int error;
726 rl_t *rl;
727
728 ASSERT(zv && zv->zv_open_count > 0);
729
730 if (len == 0)
731 return (0);
732
733 rl = zfs_range_lock(&zv->zv_range_lock, offset, len, RL_READER);
734
735 error = dmu_read_bio(zv->zv_objset, ZVOL_OBJ, bio);
736
737 zfs_range_unlock(rl);
738
739 /* convert checksum errors into IO errors */
740 if (error == ECKSUM)
741 error = SET_ERROR(EIO);
742
743 return (error);
744}
745
746static MAKE_REQUEST_FN_RET
747zvol_request(struct request_queue *q, struct bio *bio)
748{
749 zvol_state_t *zv = q->queuedata;
750 fstrans_cookie_t cookie = spl_fstrans_mark();
751 uint64_t offset = BIO_BI_SECTOR(bio);
752 unsigned int sectors = bio_sectors(bio);
753 int rw = bio_data_dir(bio);
754#ifdef HAVE_GENERIC_IO_ACCT
755 unsigned long start = jiffies;
756#endif
757 int error = 0;
758
759 if (bio_has_data(bio) && offset + sectors >
760 get_capacity(zv->zv_disk)) {
761 printk(KERN_INFO
762 "%s: bad access: block=%llu, count=%lu\n",
763 zv->zv_disk->disk_name,
764 (long long unsigned)offset,
765 (long unsigned)sectors);
766 error = SET_ERROR(EIO);
767 goto out1;
768 }
769
770 generic_start_io_acct(rw, sectors, &zv->zv_disk->part0);
771
772 if (rw == WRITE) {
773 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
774 error = SET_ERROR(EROFS);
775 goto out2;
776 }
777
778 if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
779 error = zvol_discard(bio);
780 goto out2;
781 }
782
783 error = zvol_write(bio);
784 } else
785 error = zvol_read(bio);
786
787out2:
788 generic_end_io_acct(rw, &zv->zv_disk->part0, start);
789out1:
790 BIO_END_IO(bio, -error);
791 spl_fstrans_unmark(cookie);
792#ifdef HAVE_MAKE_REQUEST_FN_RET_INT
793 return (0);
794#elif defined(HAVE_MAKE_REQUEST_FN_RET_QC)
795 return (BLK_QC_T_NONE);
796#endif
797}
798
799static void
800zvol_get_done(zgd_t *zgd, int error)
801{
802 if (zgd->zgd_db)
803 dmu_buf_rele(zgd->zgd_db, zgd);
804
805 zfs_range_unlock(zgd->zgd_rl);
806
807 if (error == 0 && zgd->zgd_bp)
808 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
809
810 kmem_free(zgd, sizeof (zgd_t));
811}
812
813/*
814 * Get data to generate a TX_WRITE intent log record.
815 */
816static int
817zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
818{
819 zvol_state_t *zv = arg;
820 objset_t *os = zv->zv_objset;
821 uint64_t object = ZVOL_OBJ;
822 uint64_t offset = lr->lr_offset;
823 uint64_t size = lr->lr_length;
824 blkptr_t *bp = &lr->lr_blkptr;
825 dmu_buf_t *db;
826 zgd_t *zgd;
827 int error;
828
829 ASSERT(zio != NULL);
830 ASSERT(size != 0);
831
832 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
833 zgd->zgd_zilog = zv->zv_zilog;
834 zgd->zgd_rl = zfs_range_lock(&zv->zv_range_lock, offset, size,
835 RL_READER);
836
837 /*
838 * Write records come in two flavors: immediate and indirect.
839 * For small writes it's cheaper to store the data with the
840 * log record (immediate); for large writes it's cheaper to
841 * sync the data and get a pointer to it (indirect) so that
842 * we don't have to write the data twice.
843 */
844 if (buf != NULL) { /* immediate write */
845 error = dmu_read(os, object, offset, size, buf,
846 DMU_READ_NO_PREFETCH);
847 } else {
848 size = zv->zv_volblocksize;
849 offset = P2ALIGN_TYPED(offset, size, uint64_t);
850 error = dmu_buf_hold(os, object, offset, zgd, &db,
851 DMU_READ_NO_PREFETCH);
852 if (error == 0) {
853 blkptr_t *obp = dmu_buf_get_blkptr(db);
854 if (obp) {
855 ASSERT(BP_IS_HOLE(bp));
856 *bp = *obp;
857 }
858
859 zgd->zgd_db = db;
860 zgd->zgd_bp = &lr->lr_blkptr;
861
862 ASSERT(db != NULL);
863 ASSERT(db->db_offset == offset);
864 ASSERT(db->db_size == size);
865
866 error = dmu_sync(zio, lr->lr_common.lrc_txg,
867 zvol_get_done, zgd);
868
869 if (error == 0)
870 return (0);
871 }
872 }
873
874 zvol_get_done(zgd, error);
875
876 return (SET_ERROR(error));
877}
878
879/*
880 * The zvol_state_t's are inserted in increasing MINOR(dev_t) order.
881 */
882static void
883zvol_insert(zvol_state_t *zv_insert)
884{
885 zvol_state_t *zv = NULL;
886
887 ASSERT(MUTEX_HELD(&zvol_state_lock));
888 ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
889 for (zv = list_head(&zvol_state_list); zv != NULL;
890 zv = list_next(&zvol_state_list, zv)) {
891 if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev))
892 break;
893 }
894
895 list_insert_before(&zvol_state_list, zv, zv_insert);
896}
897
898/*
899 * Simply remove the zvol from to list of zvols.
900 */
901static void
902zvol_remove(zvol_state_t *zv_remove)
903{
904 ASSERT(MUTEX_HELD(&zvol_state_lock));
905 list_remove(&zvol_state_list, zv_remove);
906}
907
908static int
909zvol_first_open(zvol_state_t *zv)
910{
911 objset_t *os;
912 uint64_t volsize;
913 int error;
914 uint64_t ro;
915
916 /* lie and say we're read-only */
917 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os);
918 if (error)
919 return (SET_ERROR(-error));
920
921 zv->zv_objset = os;
922
923 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
924 if (error)
925 goto out_owned;
926
927 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
928 if (error)
929 goto out_owned;
930
931 error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf);
932 if (error)
933 goto out_owned;
934
935 set_capacity(zv->zv_disk, volsize >> 9);
936 zv->zv_volsize = volsize;
937 zv->zv_zilog = zil_open(os, zvol_get_data);
938
939 if (ro || dmu_objset_is_snapshot(os) ||
940 !spa_writeable(dmu_objset_spa(os))) {
941 set_disk_ro(zv->zv_disk, 1);
942 zv->zv_flags |= ZVOL_RDONLY;
943 } else {
944 set_disk_ro(zv->zv_disk, 0);
945 zv->zv_flags &= ~ZVOL_RDONLY;
946 }
947
948out_owned:
949 if (error) {
950 dmu_objset_disown(os, zvol_tag);
951 zv->zv_objset = NULL;
952 }
953
954 return (SET_ERROR(-error));
955}
956
957static void
958zvol_last_close(zvol_state_t *zv)
959{
960 zil_close(zv->zv_zilog);
961 zv->zv_zilog = NULL;
962
963 dmu_buf_rele(zv->zv_dbuf, zvol_tag);
964 zv->zv_dbuf = NULL;
965
966 /*
967 * Evict cached data
968 */
969 if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) &&
970 !(zv->zv_flags & ZVOL_RDONLY))
971 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
972 (void) dmu_objset_evict_dbufs(zv->zv_objset);
973
974 dmu_objset_disown(zv->zv_objset, zvol_tag);
975 zv->zv_objset = NULL;
976}
977
978static int
979zvol_open(struct block_device *bdev, fmode_t flag)
980{
981 zvol_state_t *zv;
982 int error = 0, drop_mutex = 0;
983
984 /*
985 * If the caller is already holding the mutex do not take it
986 * again, this will happen as part of zvol_create_minor_impl().
987 * Once add_disk() is called the device is live and the kernel
988 * will attempt to open it to read the partition information.
989 */
990 if (!mutex_owned(&zvol_state_lock)) {
991 mutex_enter(&zvol_state_lock);
992 drop_mutex = 1;
993 }
994
995 /*
996 * Obtain a copy of private_data under the lock to make sure
997 * that either the result of zvol_freeg() setting
998 * bdev->bd_disk->private_data to NULL is observed, or zvol_free()
999 * is not called on this zv because of the positive zv_open_count.
1000 */
1001 zv = bdev->bd_disk->private_data;
1002 if (zv == NULL) {
1003 error = -ENXIO;
1004 goto out_mutex;
1005 }
1006
1007 if (zv->zv_open_count == 0) {
1008 error = zvol_first_open(zv);
1009 if (error)
1010 goto out_mutex;
1011 }
1012
1013 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
1014 error = -EROFS;
1015 goto out_open_count;
1016 }
1017
1018 zv->zv_open_count++;
1019
1020 check_disk_change(bdev);
1021
1022out_open_count:
1023 if (zv->zv_open_count == 0)
1024 zvol_last_close(zv);
1025
1026out_mutex:
1027 if (drop_mutex)
1028 mutex_exit(&zvol_state_lock);
1029
1030 return (SET_ERROR(error));
1031}
1032
1033#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1034static void
1035#else
1036static int
1037#endif
1038zvol_release(struct gendisk *disk, fmode_t mode)
1039{
1040 zvol_state_t *zv = disk->private_data;
1041 int drop_mutex = 0;
1042
1043 ASSERT(zv && zv->zv_open_count > 0);
1044
1045 if (!mutex_owned(&zvol_state_lock)) {
1046 mutex_enter(&zvol_state_lock);
1047 drop_mutex = 1;
1048 }
1049
1050 zv->zv_open_count--;
1051 if (zv->zv_open_count == 0)
1052 zvol_last_close(zv);
1053
1054 if (drop_mutex)
1055 mutex_exit(&zvol_state_lock);
1056
1057#ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1058 return (0);
1059#endif
1060}
1061
1062static int
1063zvol_ioctl(struct block_device *bdev, fmode_t mode,
1064 unsigned int cmd, unsigned long arg)
1065{
1066 zvol_state_t *zv = bdev->bd_disk->private_data;
1067 int error = 0;
1068
1069 ASSERT(zv && zv->zv_open_count > 0);
1070
1071 switch (cmd) {
1072 case BLKFLSBUF:
1073 zil_commit(zv->zv_zilog, ZVOL_OBJ);
1074 break;
1075 case BLKZNAME:
1076 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
1077 break;
1078
1079 default:
1080 error = -ENOTTY;
1081 break;
1082
1083 }
1084
1085 return (SET_ERROR(error));
1086}
1087
1088#ifdef CONFIG_COMPAT
1089static int
1090zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
1091 unsigned cmd, unsigned long arg)
1092{
1093 return (zvol_ioctl(bdev, mode, cmd, arg));
1094}
1095#else
1096#define zvol_compat_ioctl NULL
1097#endif
1098
1099static int zvol_media_changed(struct gendisk *disk)
1100{
1101 zvol_state_t *zv = disk->private_data;
1102
1103 ASSERT(zv && zv->zv_open_count > 0);
1104
1105 return (zv->zv_changed);
1106}
1107
1108static int zvol_revalidate_disk(struct gendisk *disk)
1109{
1110 zvol_state_t *zv = disk->private_data;
1111
1112 ASSERT(zv && zv->zv_open_count > 0);
1113
1114 zv->zv_changed = 0;
1115 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1116
1117 return (0);
1118}
1119
1120/*
1121 * Provide a simple virtual geometry for legacy compatibility. For devices
1122 * smaller than 1 MiB a small head and sector count is used to allow very
1123 * tiny devices. For devices over 1 Mib a standard head and sector count
1124 * is used to keep the cylinders count reasonable.
1125 */
1126static int
1127zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1128{
1129 zvol_state_t *zv = bdev->bd_disk->private_data;
1130 sector_t sectors;
1131
1132 ASSERT(zv && zv->zv_open_count > 0);
1133
1134 sectors = get_capacity(zv->zv_disk);
1135
1136 if (sectors > 2048) {
1137 geo->heads = 16;
1138 geo->sectors = 63;
1139 } else {
1140 geo->heads = 2;
1141 geo->sectors = 4;
1142 }
1143
1144 geo->start = 0;
1145 geo->cylinders = sectors / (geo->heads * geo->sectors);
1146
1147 return (0);
1148}
1149
1150static struct kobject *
1151zvol_probe(dev_t dev, int *part, void *arg)
1152{
1153 zvol_state_t *zv;
1154 struct kobject *kobj;
1155
1156 mutex_enter(&zvol_state_lock);
1157 zv = zvol_find_by_dev(dev);
1158 kobj = zv ? get_disk(zv->zv_disk) : NULL;
1159 mutex_exit(&zvol_state_lock);
1160
1161 return (kobj);
1162}
1163
1164#ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
1165static struct block_device_operations zvol_ops = {
1166 .open = zvol_open,
1167 .release = zvol_release,
1168 .ioctl = zvol_ioctl,
1169 .compat_ioctl = zvol_compat_ioctl,
1170 .media_changed = zvol_media_changed,
1171 .revalidate_disk = zvol_revalidate_disk,
1172 .getgeo = zvol_getgeo,
1173 .owner = THIS_MODULE,
1174};
1175
1176#else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1177
1178static int
1179zvol_open_by_inode(struct inode *inode, struct file *file)
1180{
1181 return (zvol_open(inode->i_bdev, file->f_mode));
1182}
1183
1184static int
1185zvol_release_by_inode(struct inode *inode, struct file *file)
1186{
1187 return (zvol_release(inode->i_bdev->bd_disk, file->f_mode));
1188}
1189
1190static int
1191zvol_ioctl_by_inode(struct inode *inode, struct file *file,
1192 unsigned int cmd, unsigned long arg)
1193{
1194 if (file == NULL || inode == NULL)
1195 return (SET_ERROR(-EINVAL));
1196
1197 return (zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg));
1198}
1199
1200#ifdef CONFIG_COMPAT
1201static long
1202zvol_compat_ioctl_by_inode(struct file *file,
1203 unsigned int cmd, unsigned long arg)
1204{
1205 if (file == NULL)
1206 return (SET_ERROR(-EINVAL));
1207
1208 return (zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
1209 file->f_mode, cmd, arg));
1210}
1211#else
1212#define zvol_compat_ioctl_by_inode NULL
1213#endif
1214
1215static struct block_device_operations zvol_ops = {
1216 .open = zvol_open_by_inode,
1217 .release = zvol_release_by_inode,
1218 .ioctl = zvol_ioctl_by_inode,
1219 .compat_ioctl = zvol_compat_ioctl_by_inode,
1220 .media_changed = zvol_media_changed,
1221 .revalidate_disk = zvol_revalidate_disk,
1222 .getgeo = zvol_getgeo,
1223 .owner = THIS_MODULE,
1224};
1225#endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1226
1227/*
1228 * Allocate memory for a new zvol_state_t and setup the required
1229 * request queue and generic disk structures for the block device.
1230 */
1231static zvol_state_t *
1232zvol_alloc(dev_t dev, const char *name)
1233{
1234 zvol_state_t *zv;
1235
1236 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1237
1238 spin_lock_init(&zv->zv_lock);
1239 list_link_init(&zv->zv_next);
1240
1241 zv->zv_queue = blk_alloc_queue(GFP_ATOMIC);
1242 if (zv->zv_queue == NULL)
1243 goto out_kmem;
1244
1245 blk_queue_make_request(zv->zv_queue, zvol_request);
1246 blk_queue_set_write_cache(zv->zv_queue, B_TRUE, B_TRUE);
1247
1248 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1249 if (zv->zv_disk == NULL)
1250 goto out_queue;
1251
1252 zv->zv_queue->queuedata = zv;
1253 zv->zv_dev = dev;
1254 zv->zv_open_count = 0;
1255 strlcpy(zv->zv_name, name, MAXNAMELEN);
1256
1257 zfs_rlock_init(&zv->zv_range_lock);
1258
1259 zv->zv_disk->major = zvol_major;
1260 zv->zv_disk->first_minor = (dev & MINORMASK);
1261 zv->zv_disk->fops = &zvol_ops;
1262 zv->zv_disk->private_data = zv;
1263 zv->zv_disk->queue = zv->zv_queue;
1264 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
1265 ZVOL_DEV_NAME, (dev & MINORMASK));
1266
1267 return (zv);
1268
1269out_queue:
1270 blk_cleanup_queue(zv->zv_queue);
1271out_kmem:
1272 kmem_free(zv, sizeof (zvol_state_t));
1273
1274 return (NULL);
1275}
1276
1277/*
1278 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1279 */
1280static void
1281zvol_free(zvol_state_t *zv)
1282{
1283 ASSERT(MUTEX_HELD(&zvol_state_lock));
1284 ASSERT(zv->zv_open_count == 0);
1285
1286 zfs_rlock_destroy(&zv->zv_range_lock);
1287
1288 zv->zv_disk->private_data = NULL;
1289
1290 del_gendisk(zv->zv_disk);
1291 blk_cleanup_queue(zv->zv_queue);
1292 put_disk(zv->zv_disk);
1293
1294 kmem_free(zv, sizeof (zvol_state_t));
1295}
1296
1297/*
1298 * Create a block device minor node and setup the linkage between it
1299 * and the specified volume. Once this function returns the block
1300 * device is live and ready for use.
1301 */
1302static int
1303zvol_create_minor_impl(const char *name)
1304{
1305 zvol_state_t *zv;
1306 objset_t *os;
1307 dmu_object_info_t *doi;
1308 uint64_t volsize;
1309 uint64_t len;
1310 unsigned minor = 0;
1311 int error = 0;
1312
1313 mutex_enter(&zvol_state_lock);
1314
1315 zv = zvol_find_by_name(name);
1316 if (zv) {
1317 error = SET_ERROR(EEXIST);
1318 goto out;
1319 }
1320
1321 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1322
1323 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
1324 if (error)
1325 goto out_doi;
1326
1327 error = dmu_object_info(os, ZVOL_OBJ, doi);
1328 if (error)
1329 goto out_dmu_objset_disown;
1330
1331 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1332 if (error)
1333 goto out_dmu_objset_disown;
1334
1335 error = zvol_find_minor(&minor);
1336 if (error)
1337 goto out_dmu_objset_disown;
1338
1339 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1340 if (zv == NULL) {
1341 error = SET_ERROR(EAGAIN);
1342 goto out_dmu_objset_disown;
1343 }
1344
1345 if (dmu_objset_is_snapshot(os))
1346 zv->zv_flags |= ZVOL_RDONLY;
1347
1348 zv->zv_volblocksize = doi->doi_data_block_size;
1349 zv->zv_volsize = volsize;
1350 zv->zv_objset = os;
1351
1352 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1353
1354 blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9);
1355 blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
1356 blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
1357 blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
1358 blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
1359 blk_queue_max_discard_sectors(zv->zv_queue,
1360 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1361 blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
1362 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue);
1363#ifdef QUEUE_FLAG_NONROT
1364 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue);
1365#endif
1366#ifdef QUEUE_FLAG_ADD_RANDOM
1367 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue);
1368#endif
1369
1370 if (spa_writeable(dmu_objset_spa(os))) {
1371 if (zil_replay_disable)
1372 zil_destroy(dmu_objset_zil(os), B_FALSE);
1373 else
1374 zil_replay(os, zv, zvol_replay_vector);
1375 }
1376
1377 /*
1378 * When udev detects the addition of the device it will immediately
1379 * invoke blkid(8) to determine the type of content on the device.
1380 * Prefetching the blocks commonly scanned by blkid(8) will speed
1381 * up this process.
1382 */
1383 len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1384 if (len > 0) {
1385 dmu_prefetch(os, ZVOL_OBJ, 0, len);
1386 dmu_prefetch(os, ZVOL_OBJ, volsize - len, len);
1387 }
1388
1389 zv->zv_objset = NULL;
1390out_dmu_objset_disown:
1391 dmu_objset_disown(os, zvol_tag);
1392out_doi:
1393 kmem_free(doi, sizeof (dmu_object_info_t));
1394out:
1395
1396 if (error == 0) {
1397 zvol_insert(zv);
1398 /*
1399 * Drop the lock to prevent deadlock with sys_open() ->
1400 * zvol_open(), which first takes bd_disk->bd_mutex and then
1401 * takes zvol_state_lock, whereas this code path first takes
1402 * zvol_state_lock, and then takes bd_disk->bd_mutex.
1403 */
1404 mutex_exit(&zvol_state_lock);
1405 add_disk(zv->zv_disk);
1406 } else {
1407 mutex_exit(&zvol_state_lock);
1408 }
1409
1410 return (SET_ERROR(error));
1411}
1412
1413/*
1414 * Rename a block device minor mode for the specified volume.
1415 */
1416static void
1417zvol_rename_minor(zvol_state_t *zv, const char *newname)
1418{
1419 int readonly = get_disk_ro(zv->zv_disk);
1420
1421 ASSERT(MUTEX_HELD(&zvol_state_lock));
1422
1423 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1424
1425 /*
1426 * The block device's read-only state is briefly changed causing
1427 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1428 * the name change and fixes the symlinks. This does not change
1429 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1430 * changes. This would normally be done using kobject_uevent() but
1431 * that is a GPL-only symbol which is why we need this workaround.
1432 */
1433 set_disk_ro(zv->zv_disk, !readonly);
1434 set_disk_ro(zv->zv_disk, readonly);
1435}
1436
1437
1438/*
1439 * Mask errors to continue dmu_objset_find() traversal
1440 */
1441static int
1442zvol_create_snap_minor_cb(const char *dsname, void *arg)
1443{
1444 const char *name = (const char *)arg;
1445
1446 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1447
1448 /* skip the designated dataset */
1449 if (name && strcmp(dsname, name) == 0)
1450 return (0);
1451
1452 /* at this point, the dsname should name a snapshot */
1453 if (strchr(dsname, '@') == 0) {
1454 dprintf("zvol_create_snap_minor_cb(): "
1455 "%s is not a shapshot name\n", dsname);
1456 } else {
1457 (void) zvol_create_minor_impl(dsname);
1458 }
1459
1460 return (0);
1461}
1462
1463/*
1464 * Mask errors to continue dmu_objset_find() traversal
1465 */
1466static int
1467zvol_create_minors_cb(const char *dsname, void *arg)
1468{
1469 uint64_t snapdev;
1470 int error;
1471
1472 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1473
1474 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1475 if (error)
1476 return (0);
1477
1478 /*
1479 * Given the name and the 'snapdev' property, create device minor nodes
1480 * with the linkages to zvols/snapshots as needed.
1481 * If the name represents a zvol, create a minor node for the zvol, then
1482 * check if its snapshots are 'visible', and if so, iterate over the
1483 * snapshots and create device minor nodes for those.
1484 */
1485 if (strchr(dsname, '@') == 0) {
1486 /* create minor for the 'dsname' explicitly */
1487 error = zvol_create_minor_impl(dsname);
1488 if ((error == 0 || error == EEXIST) &&
1489 (snapdev == ZFS_SNAPDEV_VISIBLE)) {
1490 fstrans_cookie_t cookie = spl_fstrans_mark();
1491 /*
1492 * traverse snapshots only, do not traverse children,
1493 * and skip the 'dsname'
1494 */
1495 error = dmu_objset_find((char *)dsname,
1496 zvol_create_snap_minor_cb, (void *)dsname,
1497 DS_FIND_SNAPSHOTS);
1498 spl_fstrans_unmark(cookie);
1499 }
1500 } else {
1501 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1502 dsname);
1503 }
1504
1505 return (0);
1506}
1507
1508/*
1509 * Create minors for the specified dataset, including children and snapshots.
1510 * Pay attention to the 'snapdev' property and iterate over the snapshots
1511 * only if they are 'visible'. This approach allows one to assure that the
1512 * snapshot metadata is read from disk only if it is needed.
1513 *
1514 * The name can represent a dataset to be recursively scanned for zvols and
1515 * their snapshots, or a single zvol snapshot. If the name represents a
1516 * dataset, the scan is performed in two nested stages:
1517 * - scan the dataset for zvols, and
1518 * - for each zvol, create a minor node, then check if the zvol's snapshots
1519 * are 'visible', and only then iterate over the snapshots if needed
1520 *
1521 * If the name represents a snapshot, a check is perfromed if the snapshot is
1522 * 'visible' (which also verifies that the parent is a zvol), and if so,
1523 * a minor node for that snapshot is created.
1524 */
1525static int
1526zvol_create_minors_impl(const char *name)
1527{
1528 int error = 0;
1529 fstrans_cookie_t cookie;
1530 char *atp, *parent;
1531
1532 if (zvol_inhibit_dev)
1533 return (0);
1534
1535 parent = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1536 (void) strlcpy(parent, name, MAXPATHLEN);
1537
1538 if ((atp = strrchr(parent, '@')) != NULL) {
1539 uint64_t snapdev;
1540
1541 *atp = '\0';
1542 error = dsl_prop_get_integer(parent, "snapdev",
1543 &snapdev, NULL);
1544
1545 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1546 error = zvol_create_minor_impl(name);
1547 } else {
1548 cookie = spl_fstrans_mark();
1549 error = dmu_objset_find(parent, zvol_create_minors_cb,
1550 NULL, DS_FIND_CHILDREN);
1551 spl_fstrans_unmark(cookie);
1552 }
1553
1554 kmem_free(parent, MAXPATHLEN);
1555
1556 return (SET_ERROR(error));
1557}
1558
1559/*
1560 * Remove minors for specified dataset including children and snapshots.
1561 */
1562static void
1563zvol_remove_minors_impl(const char *name)
1564{
1565 zvol_state_t *zv, *zv_next;
1566 int namelen = ((name) ? strlen(name) : 0);
1567
1568 if (zvol_inhibit_dev)
1569 return;
1570
1571 mutex_enter(&zvol_state_lock);
1572
1573 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1574 zv_next = list_next(&zvol_state_list, zv);
1575
1576 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1577 (strncmp(zv->zv_name, name, namelen) == 0 &&
1578 (zv->zv_name[namelen] == '/' ||
1579 zv->zv_name[namelen] == '@'))) {
1580
1581 /* If in use, leave alone */
1582 if (zv->zv_open_count > 0)
1583 continue;
1584
1585 zvol_remove(zv);
1586 zvol_free(zv);
1587 }
1588 }
1589
1590 mutex_exit(&zvol_state_lock);
1591}
1592
1593/* Remove minor for this specific snapshot only */
1594static void
1595zvol_remove_minor_impl(const char *name)
1596{
1597 zvol_state_t *zv, *zv_next;
1598
1599 if (zvol_inhibit_dev)
1600 return;
1601
1602 if (strchr(name, '@') == NULL)
1603 return;
1604
1605 mutex_enter(&zvol_state_lock);
1606
1607 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1608 zv_next = list_next(&zvol_state_list, zv);
1609
1610 if (strcmp(zv->zv_name, name) == 0) {
1611 /* If in use, leave alone */
1612 if (zv->zv_open_count > 0)
1613 continue;
1614 zvol_remove(zv);
1615 zvol_free(zv);
1616 break;
1617 }
1618 }
1619
1620 mutex_exit(&zvol_state_lock);
1621}
1622
1623/*
1624 * Rename minors for specified dataset including children and snapshots.
1625 */
1626static void
1627zvol_rename_minors_impl(const char *oldname, const char *newname)
1628{
1629 zvol_state_t *zv, *zv_next;
1630 int oldnamelen, newnamelen;
70e083d2
TG
1631
1632 if (zvol_inhibit_dev)
1633 return;
1634
1635 oldnamelen = strlen(oldname);
1636 newnamelen = strlen(newname);
70e083d2
TG
1637
1638 mutex_enter(&zvol_state_lock);
1639
1640 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1641 zv_next = list_next(&zvol_state_list, zv);
1642
1643 /* If in use, leave alone */
1644 if (zv->zv_open_count > 0)
1645 continue;
1646
1647 if (strcmp(zv->zv_name, oldname) == 0) {
1648 zvol_rename_minor(zv, newname);
1649 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1650 (zv->zv_name[oldnamelen] == '/' ||
1651 zv->zv_name[oldnamelen] == '@')) {
43c96d9a 1652 char *name = kmem_asprintf("%s%c%s", newname,
70e083d2
TG
1653 zv->zv_name[oldnamelen],
1654 zv->zv_name + oldnamelen + 1);
1655 zvol_rename_minor(zv, name);
43c96d9a 1656 kmem_free(name, strlen(name + 1));
70e083d2
TG
1657 }
1658 }
1659
1660 mutex_exit(&zvol_state_lock);
70e083d2
TG
1661}
1662
1663typedef struct zvol_snapdev_cb_arg {
1664 uint64_t snapdev;
1665} zvol_snapdev_cb_arg_t;
1666
1667static int
1668zvol_set_snapdev_cb(const char *dsname, void *param) {
1669 zvol_snapdev_cb_arg_t *arg = param;
1670
1671 if (strchr(dsname, '@') == NULL)
1672 return (0);
1673
1674 switch (arg->snapdev) {
1675 case ZFS_SNAPDEV_VISIBLE:
1676 (void) zvol_create_minor_impl(dsname);
1677 break;
1678 case ZFS_SNAPDEV_HIDDEN:
1679 (void) zvol_remove_minor_impl(dsname);
1680 break;
1681 }
1682
1683 return (0);
1684}
1685
1686static void
1687zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1688{
1689 zvol_snapdev_cb_arg_t arg = {snapdev};
1690 fstrans_cookie_t cookie = spl_fstrans_mark();
1691 /*
1692 * The zvol_set_snapdev_sync() sets snapdev appropriately
1693 * in the dataset hierarchy. Here, we only scan snapshots.
1694 */
1695 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1696 spl_fstrans_unmark(cookie);
1697}
1698
1699static zvol_task_t *
1700zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1701 uint64_t snapdev)
1702{
1703 zvol_task_t *task;
1704 char *delim;
1705
1706 /* Never allow tasks on hidden names. */
1707 if (name1[0] == '$')
1708 return (NULL);
1709
1710 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1711 task->op = op;
1712 task->snapdev = snapdev;
1713 delim = strchr(name1, '/');
1714 strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
1715
1716 strlcpy(task->name1, name1, MAXNAMELEN);
1717 if (name2 != NULL)
1718 strlcpy(task->name2, name2, MAXNAMELEN);
1719
1720 return (task);
1721}
1722
1723static void
1724zvol_task_free(zvol_task_t *task)
1725{
1726 kmem_free(task, sizeof (zvol_task_t));
1727}
1728
1729/*
1730 * The worker thread function performed asynchronously.
1731 */
1732static void
1733zvol_task_cb(void *param)
1734{
1735 zvol_task_t *task = (zvol_task_t *)param;
1736
1737 switch (task->op) {
1738 case ZVOL_ASYNC_CREATE_MINORS:
1739 (void) zvol_create_minors_impl(task->name1);
1740 break;
1741 case ZVOL_ASYNC_REMOVE_MINORS:
1742 zvol_remove_minors_impl(task->name1);
1743 break;
1744 case ZVOL_ASYNC_RENAME_MINORS:
1745 zvol_rename_minors_impl(task->name1, task->name2);
1746 break;
1747 case ZVOL_ASYNC_SET_SNAPDEV:
1748 zvol_set_snapdev_impl(task->name1, task->snapdev);
1749 break;
1750 default:
1751 VERIFY(0);
1752 break;
1753 }
1754
1755 zvol_task_free(task);
1756}
1757
1758typedef struct zvol_set_snapdev_arg {
1759 const char *zsda_name;
1760 uint64_t zsda_value;
1761 zprop_source_t zsda_source;
1762 dmu_tx_t *zsda_tx;
1763} zvol_set_snapdev_arg_t;
1764
1765/*
1766 * Sanity check the dataset for safe use by the sync task. No additional
1767 * conditions are imposed.
1768 */
1769static int
1770zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
1771{
1772 zvol_set_snapdev_arg_t *zsda = arg;
1773 dsl_pool_t *dp = dmu_tx_pool(tx);
1774 dsl_dir_t *dd;
1775 int error;
1776
1777 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1778 if (error != 0)
1779 return (error);
1780
1781 dsl_dir_rele(dd, FTAG);
1782
1783 return (error);
1784}
1785
1786static int
1787zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1788{
1789 zvol_set_snapdev_arg_t *zsda = arg;
1790 char dsname[MAXNAMELEN];
1791 zvol_task_t *task;
1792
1793 dsl_dataset_name(ds, dsname);
1794 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
1795 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1796 &zsda->zsda_value, zsda->zsda_tx);
1797
1798 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
1799 NULL, zsda->zsda_value);
1800 if (task == NULL)
1801 return (0);
1802
1803 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1804 task, TQ_SLEEP);
1805 return (0);
1806}
1807
1808/*
1809 * Traverse all child snapshot datasets and apply snapdev appropriately.
1810 */
1811static void
1812zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
1813{
1814 zvol_set_snapdev_arg_t *zsda = arg;
1815 dsl_pool_t *dp = dmu_tx_pool(tx);
1816 dsl_dir_t *dd;
1817
1818 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1819 zsda->zsda_tx = tx;
1820
1821 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
1822 zsda, DS_FIND_CHILDREN);
1823
1824 dsl_dir_rele(dd, FTAG);
1825}
1826
1827int
1828zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
1829{
1830 zvol_set_snapdev_arg_t zsda;
1831
1832 zsda.zsda_name = ddname;
1833 zsda.zsda_source = source;
1834 zsda.zsda_value = snapdev;
1835
1836 return (dsl_sync_task(ddname, zvol_set_snapdev_check,
1837 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1838}
1839
1840void
1841zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
1842{
1843 zvol_task_t *task;
1844 taskqid_t id;
1845
1846 task = zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS, name, NULL, ~0ULL);
1847 if (task == NULL)
1848 return;
1849
1850 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1851 if ((async == B_FALSE) && (id != 0))
1852 taskq_wait_id(spa->spa_zvol_taskq, id);
1853}
1854
1855void
1856zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1857{
1858 zvol_task_t *task;
1859 taskqid_t id;
1860
1861 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1862 if (task == NULL)
1863 return;
1864
1865 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1866 if ((async == B_FALSE) && (id != 0))
1867 taskq_wait_id(spa->spa_zvol_taskq, id);
1868}
1869
1870void
1871zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1872 boolean_t async)
1873{
1874 zvol_task_t *task;
1875 taskqid_t id;
1876
1877 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1878 if (task == NULL)
1879 return;
1880
1881 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1882 if ((async == B_FALSE) && (id != 0))
1883 taskq_wait_id(spa->spa_zvol_taskq, id);
1884}
1885
1886int
1887zvol_init(void)
1888{
1889 int error;
1890
1891 list_create(&zvol_state_list, sizeof (zvol_state_t),
1892 offsetof(zvol_state_t, zv_next));
1893 mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
1894
1895 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1896 if (error) {
1897 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1898 goto out;
1899 }
1900
1901 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
1902 THIS_MODULE, zvol_probe, NULL, NULL);
1903
1904 return (0);
1905
1906out:
1907 mutex_destroy(&zvol_state_lock);
1908 list_destroy(&zvol_state_list);
1909
1910 return (SET_ERROR(error));
1911}
1912
1913void
1914zvol_fini(void)
1915{
1916 zvol_remove_minors_impl(NULL);
1917
1918 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
1919 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1920
1921 list_destroy(&zvol_state_list);
1922 mutex_destroy(&zvol_state_lock);
1923}
1924
1925module_param(zvol_inhibit_dev, uint, 0644);
1926MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1927
1928module_param(zvol_major, uint, 0444);
1929MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1930
1931module_param(zvol_max_discard_blocks, ulong, 0444);
1932MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1933
1934module_param(zvol_prefetch_bytes, uint, 0644);
1935MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");