]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - arch/arm/mm/dma-mapping.c
ARM: dma-mapping: implement dma sg methods on top of any generic dma ops
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / dma-mapping.c
... / ...
CommitLineData
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/gfp.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20#include <linux/highmem.h>
21#include <linux/slab.h>
22
23#include <asm/memory.h>
24#include <asm/highmem.h>
25#include <asm/cacheflush.h>
26#include <asm/tlbflush.h>
27#include <asm/sizes.h>
28#include <asm/mach/arch.h>
29
30#include "mm.h"
31
32/**
33 * arm_dma_map_page - map a portion of a page for streaming DMA
34 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
35 * @page: page that buffer resides in
36 * @offset: offset into page for start of buffer
37 * @size: size of buffer to map
38 * @dir: DMA transfer direction
39 *
40 * Ensure that any data held in the cache is appropriately discarded
41 * or written back.
42 *
43 * The device owns this memory once this call has completed. The CPU
44 * can regain ownership by calling dma_unmap_page().
45 */
46static inline dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
47 unsigned long offset, size_t size, enum dma_data_direction dir,
48 struct dma_attrs *attrs)
49{
50 return __dma_map_page(dev, page, offset, size, dir);
51}
52
53/**
54 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
55 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
56 * @handle: DMA address of buffer
57 * @size: size of buffer (same as passed to dma_map_page)
58 * @dir: DMA transfer direction (same as passed to dma_map_page)
59 *
60 * Unmap a page streaming mode DMA translation. The handle and size
61 * must match what was provided in the previous dma_map_page() call.
62 * All other usages are undefined.
63 *
64 * After this call, reads by the CPU to the buffer are guaranteed to see
65 * whatever the device wrote there.
66 */
67static inline void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
68 size_t size, enum dma_data_direction dir,
69 struct dma_attrs *attrs)
70{
71 __dma_unmap_page(dev, handle, size, dir);
72}
73
74static inline void arm_dma_sync_single_for_cpu(struct device *dev,
75 dma_addr_t handle, size_t size, enum dma_data_direction dir)
76{
77 unsigned int offset = handle & (PAGE_SIZE - 1);
78 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
79 if (!dmabounce_sync_for_cpu(dev, handle, size, dir))
80 return;
81
82 __dma_page_dev_to_cpu(page, offset, size, dir);
83}
84
85static inline void arm_dma_sync_single_for_device(struct device *dev,
86 dma_addr_t handle, size_t size, enum dma_data_direction dir)
87{
88 unsigned int offset = handle & (PAGE_SIZE - 1);
89 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
90 if (!dmabounce_sync_for_device(dev, handle, size, dir))
91 return;
92
93 __dma_page_cpu_to_dev(page, offset, size, dir);
94}
95
96static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
97
98struct dma_map_ops arm_dma_ops = {
99 .map_page = arm_dma_map_page,
100 .unmap_page = arm_dma_unmap_page,
101 .map_sg = arm_dma_map_sg,
102 .unmap_sg = arm_dma_unmap_sg,
103 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
104 .sync_single_for_device = arm_dma_sync_single_for_device,
105 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
106 .sync_sg_for_device = arm_dma_sync_sg_for_device,
107 .set_dma_mask = arm_dma_set_mask,
108};
109EXPORT_SYMBOL(arm_dma_ops);
110
111static u64 get_coherent_dma_mask(struct device *dev)
112{
113 u64 mask = (u64)arm_dma_limit;
114
115 if (dev) {
116 mask = dev->coherent_dma_mask;
117
118 /*
119 * Sanity check the DMA mask - it must be non-zero, and
120 * must be able to be satisfied by a DMA allocation.
121 */
122 if (mask == 0) {
123 dev_warn(dev, "coherent DMA mask is unset\n");
124 return 0;
125 }
126
127 if ((~mask) & (u64)arm_dma_limit) {
128 dev_warn(dev, "coherent DMA mask %#llx is smaller "
129 "than system GFP_DMA mask %#llx\n",
130 mask, (u64)arm_dma_limit);
131 return 0;
132 }
133 }
134
135 return mask;
136}
137
138/*
139 * Allocate a DMA buffer for 'dev' of size 'size' using the
140 * specified gfp mask. Note that 'size' must be page aligned.
141 */
142static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
143{
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
146 void *ptr;
147 u64 mask = get_coherent_dma_mask(dev);
148
149#ifdef CONFIG_DMA_API_DEBUG
150 u64 limit = (mask + 1) & ~mask;
151 if (limit && size >= limit) {
152 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
153 size, mask);
154 return NULL;
155 }
156#endif
157
158 if (!mask)
159 return NULL;
160
161 if (mask < 0xffffffffULL)
162 gfp |= GFP_DMA;
163
164 page = alloc_pages(gfp, order);
165 if (!page)
166 return NULL;
167
168 /*
169 * Now split the huge page and free the excess pages
170 */
171 split_page(page, order);
172 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
173 __free_page(p);
174
175 /*
176 * Ensure that the allocated pages are zeroed, and that any data
177 * lurking in the kernel direct-mapped region is invalidated.
178 */
179 ptr = page_address(page);
180 memset(ptr, 0, size);
181 dmac_flush_range(ptr, ptr + size);
182 outer_flush_range(__pa(ptr), __pa(ptr) + size);
183
184 return page;
185}
186
187/*
188 * Free a DMA buffer. 'size' must be page aligned.
189 */
190static void __dma_free_buffer(struct page *page, size_t size)
191{
192 struct page *e = page + (size >> PAGE_SHIFT);
193
194 while (page < e) {
195 __free_page(page);
196 page++;
197 }
198}
199
200#ifdef CONFIG_MMU
201
202#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
203#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
204
205/*
206 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
207 */
208static pte_t **consistent_pte;
209
210#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
211
212unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
213
214void __init init_consistent_dma_size(unsigned long size)
215{
216 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
217
218 BUG_ON(consistent_pte); /* Check we're called before DMA region init */
219 BUG_ON(base < VMALLOC_END);
220
221 /* Grow region to accommodate specified size */
222 if (base < consistent_base)
223 consistent_base = base;
224}
225
226#include "vmregion.h"
227
228static struct arm_vmregion_head consistent_head = {
229 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
230 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
231 .vm_end = CONSISTENT_END,
232};
233
234#ifdef CONFIG_HUGETLB_PAGE
235#error ARM Coherent DMA allocator does not (yet) support huge TLB
236#endif
237
238/*
239 * Initialise the consistent memory allocation.
240 */
241static int __init consistent_init(void)
242{
243 int ret = 0;
244 pgd_t *pgd;
245 pud_t *pud;
246 pmd_t *pmd;
247 pte_t *pte;
248 int i = 0;
249 unsigned long base = consistent_base;
250 unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
251
252 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
253 if (!consistent_pte) {
254 pr_err("%s: no memory\n", __func__);
255 return -ENOMEM;
256 }
257
258 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
259 consistent_head.vm_start = base;
260
261 do {
262 pgd = pgd_offset(&init_mm, base);
263
264 pud = pud_alloc(&init_mm, pgd, base);
265 if (!pud) {
266 pr_err("%s: no pud tables\n", __func__);
267 ret = -ENOMEM;
268 break;
269 }
270
271 pmd = pmd_alloc(&init_mm, pud, base);
272 if (!pmd) {
273 pr_err("%s: no pmd tables\n", __func__);
274 ret = -ENOMEM;
275 break;
276 }
277 WARN_ON(!pmd_none(*pmd));
278
279 pte = pte_alloc_kernel(pmd, base);
280 if (!pte) {
281 pr_err("%s: no pte tables\n", __func__);
282 ret = -ENOMEM;
283 break;
284 }
285
286 consistent_pte[i++] = pte;
287 base += PMD_SIZE;
288 } while (base < CONSISTENT_END);
289
290 return ret;
291}
292
293core_initcall(consistent_init);
294
295static void *
296__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
297 const void *caller)
298{
299 struct arm_vmregion *c;
300 size_t align;
301 int bit;
302
303 if (!consistent_pte) {
304 pr_err("%s: not initialised\n", __func__);
305 dump_stack();
306 return NULL;
307 }
308
309 /*
310 * Align the virtual region allocation - maximum alignment is
311 * a section size, minimum is a page size. This helps reduce
312 * fragmentation of the DMA space, and also prevents allocations
313 * smaller than a section from crossing a section boundary.
314 */
315 bit = fls(size - 1);
316 if (bit > SECTION_SHIFT)
317 bit = SECTION_SHIFT;
318 align = 1 << bit;
319
320 /*
321 * Allocate a virtual address in the consistent mapping region.
322 */
323 c = arm_vmregion_alloc(&consistent_head, align, size,
324 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
325 if (c) {
326 pte_t *pte;
327 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
328 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
329
330 pte = consistent_pte[idx] + off;
331 c->vm_pages = page;
332
333 do {
334 BUG_ON(!pte_none(*pte));
335
336 set_pte_ext(pte, mk_pte(page, prot), 0);
337 page++;
338 pte++;
339 off++;
340 if (off >= PTRS_PER_PTE) {
341 off = 0;
342 pte = consistent_pte[++idx];
343 }
344 } while (size -= PAGE_SIZE);
345
346 dsb();
347
348 return (void *)c->vm_start;
349 }
350 return NULL;
351}
352
353static void __dma_free_remap(void *cpu_addr, size_t size)
354{
355 struct arm_vmregion *c;
356 unsigned long addr;
357 pte_t *ptep;
358 int idx;
359 u32 off;
360
361 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
362 if (!c) {
363 pr_err("%s: trying to free invalid coherent area: %p\n",
364 __func__, cpu_addr);
365 dump_stack();
366 return;
367 }
368
369 if ((c->vm_end - c->vm_start) != size) {
370 pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
371 __func__, c->vm_end - c->vm_start, size);
372 dump_stack();
373 size = c->vm_end - c->vm_start;
374 }
375
376 idx = CONSISTENT_PTE_INDEX(c->vm_start);
377 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
378 ptep = consistent_pte[idx] + off;
379 addr = c->vm_start;
380 do {
381 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
382
383 ptep++;
384 addr += PAGE_SIZE;
385 off++;
386 if (off >= PTRS_PER_PTE) {
387 off = 0;
388 ptep = consistent_pte[++idx];
389 }
390
391 if (pte_none(pte) || !pte_present(pte))
392 pr_crit("%s: bad page in kernel page table\n",
393 __func__);
394 } while (size -= PAGE_SIZE);
395
396 flush_tlb_kernel_range(c->vm_start, c->vm_end);
397
398 arm_vmregion_free(&consistent_head, c);
399}
400
401#else /* !CONFIG_MMU */
402
403#define __dma_alloc_remap(page, size, gfp, prot, c) page_address(page)
404#define __dma_free_remap(addr, size) do { } while (0)
405
406#endif /* CONFIG_MMU */
407
408static void *
409__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
410 pgprot_t prot, const void *caller)
411{
412 struct page *page;
413 void *addr;
414
415 /*
416 * Following is a work-around (a.k.a. hack) to prevent pages
417 * with __GFP_COMP being passed to split_page() which cannot
418 * handle them. The real problem is that this flag probably
419 * should be 0 on ARM as it is not supported on this
420 * platform; see CONFIG_HUGETLBFS.
421 */
422 gfp &= ~(__GFP_COMP);
423
424 *handle = DMA_ERROR_CODE;
425 size = PAGE_ALIGN(size);
426
427 page = __dma_alloc_buffer(dev, size, gfp);
428 if (!page)
429 return NULL;
430
431 if (!arch_is_coherent())
432 addr = __dma_alloc_remap(page, size, gfp, prot, caller);
433 else
434 addr = page_address(page);
435
436 if (addr)
437 *handle = pfn_to_dma(dev, page_to_pfn(page));
438 else
439 __dma_free_buffer(page, size);
440
441 return addr;
442}
443
444/*
445 * Allocate DMA-coherent memory space and return both the kernel remapped
446 * virtual and bus address for that space.
447 */
448void *
449dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
450{
451 void *memory;
452
453 if (dma_alloc_from_coherent(dev, size, handle, &memory))
454 return memory;
455
456 return __dma_alloc(dev, size, handle, gfp,
457 pgprot_dmacoherent(pgprot_kernel),
458 __builtin_return_address(0));
459}
460EXPORT_SYMBOL(dma_alloc_coherent);
461
462/*
463 * Allocate a writecombining region, in much the same way as
464 * dma_alloc_coherent above.
465 */
466void *
467dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
468{
469 return __dma_alloc(dev, size, handle, gfp,
470 pgprot_writecombine(pgprot_kernel),
471 __builtin_return_address(0));
472}
473EXPORT_SYMBOL(dma_alloc_writecombine);
474
475static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
476 void *cpu_addr, dma_addr_t dma_addr, size_t size)
477{
478 int ret = -ENXIO;
479#ifdef CONFIG_MMU
480 unsigned long user_size, kern_size;
481 struct arm_vmregion *c;
482
483 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
484 return ret;
485
486 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
487
488 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
489 if (c) {
490 unsigned long off = vma->vm_pgoff;
491
492 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
493
494 if (off < kern_size &&
495 user_size <= (kern_size - off)) {
496 ret = remap_pfn_range(vma, vma->vm_start,
497 page_to_pfn(c->vm_pages) + off,
498 user_size << PAGE_SHIFT,
499 vma->vm_page_prot);
500 }
501 }
502#endif /* CONFIG_MMU */
503
504 return ret;
505}
506
507int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
508 void *cpu_addr, dma_addr_t dma_addr, size_t size)
509{
510 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
511 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
512}
513EXPORT_SYMBOL(dma_mmap_coherent);
514
515int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
516 void *cpu_addr, dma_addr_t dma_addr, size_t size)
517{
518 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
519 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
520}
521EXPORT_SYMBOL(dma_mmap_writecombine);
522
523/*
524 * free a page as defined by the above mapping.
525 * Must not be called with IRQs disabled.
526 */
527void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
528{
529 WARN_ON(irqs_disabled());
530
531 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
532 return;
533
534 size = PAGE_ALIGN(size);
535
536 if (!arch_is_coherent())
537 __dma_free_remap(cpu_addr, size);
538
539 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
540}
541EXPORT_SYMBOL(dma_free_coherent);
542
543static void dma_cache_maint_page(struct page *page, unsigned long offset,
544 size_t size, enum dma_data_direction dir,
545 void (*op)(const void *, size_t, int))
546{
547 /*
548 * A single sg entry may refer to multiple physically contiguous
549 * pages. But we still need to process highmem pages individually.
550 * If highmem is not configured then the bulk of this loop gets
551 * optimized out.
552 */
553 size_t left = size;
554 do {
555 size_t len = left;
556 void *vaddr;
557
558 if (PageHighMem(page)) {
559 if (len + offset > PAGE_SIZE) {
560 if (offset >= PAGE_SIZE) {
561 page += offset / PAGE_SIZE;
562 offset %= PAGE_SIZE;
563 }
564 len = PAGE_SIZE - offset;
565 }
566 vaddr = kmap_high_get(page);
567 if (vaddr) {
568 vaddr += offset;
569 op(vaddr, len, dir);
570 kunmap_high(page);
571 } else if (cache_is_vipt()) {
572 /* unmapped pages might still be cached */
573 vaddr = kmap_atomic(page);
574 op(vaddr + offset, len, dir);
575 kunmap_atomic(vaddr);
576 }
577 } else {
578 vaddr = page_address(page) + offset;
579 op(vaddr, len, dir);
580 }
581 offset = 0;
582 page++;
583 left -= len;
584 } while (left);
585}
586
587void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
588 size_t size, enum dma_data_direction dir)
589{
590 unsigned long paddr;
591
592 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
593
594 paddr = page_to_phys(page) + off;
595 if (dir == DMA_FROM_DEVICE) {
596 outer_inv_range(paddr, paddr + size);
597 } else {
598 outer_clean_range(paddr, paddr + size);
599 }
600 /* FIXME: non-speculating: flush on bidirectional mappings? */
601}
602EXPORT_SYMBOL(___dma_page_cpu_to_dev);
603
604void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
605 size_t size, enum dma_data_direction dir)
606{
607 unsigned long paddr = page_to_phys(page) + off;
608
609 /* FIXME: non-speculating: not required */
610 /* don't bother invalidating if DMA to device */
611 if (dir != DMA_TO_DEVICE)
612 outer_inv_range(paddr, paddr + size);
613
614 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
615
616 /*
617 * Mark the D-cache clean for this page to avoid extra flushing.
618 */
619 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
620 set_bit(PG_dcache_clean, &page->flags);
621}
622EXPORT_SYMBOL(___dma_page_dev_to_cpu);
623
624/**
625 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
626 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
627 * @sg: list of buffers
628 * @nents: number of buffers to map
629 * @dir: DMA transfer direction
630 *
631 * Map a set of buffers described by scatterlist in streaming mode for DMA.
632 * This is the scatter-gather version of the dma_map_single interface.
633 * Here the scatter gather list elements are each tagged with the
634 * appropriate dma address and length. They are obtained via
635 * sg_dma_{address,length}.
636 *
637 * Device ownership issues as mentioned for dma_map_single are the same
638 * here.
639 */
640int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
641 enum dma_data_direction dir, struct dma_attrs *attrs)
642{
643 struct dma_map_ops *ops = get_dma_ops(dev);
644 struct scatterlist *s;
645 int i, j;
646
647 for_each_sg(sg, s, nents, i) {
648 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
649 s->length, dir, attrs);
650 if (dma_mapping_error(dev, s->dma_address))
651 goto bad_mapping;
652 }
653 return nents;
654
655 bad_mapping:
656 for_each_sg(sg, s, i, j)
657 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
658 return 0;
659}
660
661/**
662 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
663 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
664 * @sg: list of buffers
665 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
666 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
667 *
668 * Unmap a set of streaming mode DMA translations. Again, CPU access
669 * rules concerning calls here are the same as for dma_unmap_single().
670 */
671void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
672 enum dma_data_direction dir, struct dma_attrs *attrs)
673{
674 struct dma_map_ops *ops = get_dma_ops(dev);
675 struct scatterlist *s;
676
677 int i;
678
679 for_each_sg(sg, s, nents, i)
680 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
681}
682
683/**
684 * arm_dma_sync_sg_for_cpu
685 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
686 * @sg: list of buffers
687 * @nents: number of buffers to map (returned from dma_map_sg)
688 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
689 */
690void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
691 int nents, enum dma_data_direction dir)
692{
693 struct dma_map_ops *ops = get_dma_ops(dev);
694 struct scatterlist *s;
695 int i;
696
697 for_each_sg(sg, s, nents, i)
698 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
699 dir);
700}
701
702/**
703 * arm_dma_sync_sg_for_device
704 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
705 * @sg: list of buffers
706 * @nents: number of buffers to map (returned from dma_map_sg)
707 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
708 */
709void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
710 int nents, enum dma_data_direction dir)
711{
712 struct dma_map_ops *ops = get_dma_ops(dev);
713 struct scatterlist *s;
714 int i;
715
716 for_each_sg(sg, s, nents, i)
717 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
718 dir);
719}
720
721/*
722 * Return whether the given device DMA address mask can be supported
723 * properly. For example, if your device can only drive the low 24-bits
724 * during bus mastering, then you would pass 0x00ffffff as the mask
725 * to this function.
726 */
727int dma_supported(struct device *dev, u64 mask)
728{
729 if (mask < (u64)arm_dma_limit)
730 return 0;
731 return 1;
732}
733EXPORT_SYMBOL(dma_supported);
734
735static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
736{
737 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
738 return -EIO;
739
740#ifndef CONFIG_DMABOUNCE
741 *dev->dma_mask = dma_mask;
742#endif
743
744 return 0;
745}
746
747#define PREALLOC_DMA_DEBUG_ENTRIES 4096
748
749static int __init dma_debug_do_init(void)
750{
751#ifdef CONFIG_MMU
752 arm_vmregion_create_proc("dma-mappings", &consistent_head);
753#endif
754 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
755 return 0;
756}
757fs_initcall(dma_debug_do_init);