]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - arch/powerpc/mm/numa.c
powerpc/numa: Update cpu_cpu_map on CPU online/offline
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / mm / numa.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7#define pr_fmt(fmt) "numa: " fmt
8
9#include <linux/threads.h>
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/mm.h>
13#include <linux/mmzone.h>
14#include <linux/export.h>
15#include <linux/nodemask.h>
16#include <linux/cpu.h>
17#include <linux/notifier.h>
18#include <linux/of.h>
19#include <linux/pfn.h>
20#include <linux/cpuset.h>
21#include <linux/node.h>
22#include <linux/stop_machine.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/uaccess.h>
26#include <linux/slab.h>
27#include <asm/cputhreads.h>
28#include <asm/sparsemem.h>
29#include <asm/prom.h>
30#include <asm/smp.h>
31#include <asm/topology.h>
32#include <asm/firmware.h>
33#include <asm/paca.h>
34#include <asm/hvcall.h>
35#include <asm/setup.h>
36#include <asm/vdso.h>
37#include <asm/drmem.h>
38
39static int numa_enabled = 1;
40
41static char *cmdline __initdata;
42
43int numa_cpu_lookup_table[NR_CPUS];
44cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
45struct pglist_data *node_data[MAX_NUMNODES];
46
47EXPORT_SYMBOL(numa_cpu_lookup_table);
48EXPORT_SYMBOL(node_to_cpumask_map);
49EXPORT_SYMBOL(node_data);
50
51static int primary_domain_index;
52static int n_mem_addr_cells, n_mem_size_cells;
53
54#define FORM0_AFFINITY 0
55#define FORM1_AFFINITY 1
56#define FORM2_AFFINITY 2
57static int affinity_form;
58
59#define MAX_DISTANCE_REF_POINTS 4
60static int distance_ref_points_depth;
61static const __be32 *distance_ref_points;
62static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
63static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
64 [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
65};
66static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
67
68/*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
74static void __init setup_node_to_cpumask_map(void)
75{
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for_each_node(node)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
88}
89
90static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92{
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 pr_debug("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135}
136
137static void reset_numa_cpu_lookup_table(void)
138{
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143}
144
145void map_cpu_to_node(int cpu, int node)
146{
147 update_numa_cpu_lookup_table(cpu, node);
148
149 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
150 pr_debug("adding cpu %d to node %d\n", cpu, node);
151 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
152 }
153}
154
155#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
156void unmap_cpu_from_node(unsigned long cpu)
157{
158 int node = numa_cpu_lookup_table[cpu];
159
160 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
161 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
162 pr_debug("removing cpu %lu from node %d\n", cpu, node);
163 } else {
164 pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
165 }
166}
167#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
168
169static int __associativity_to_nid(const __be32 *associativity,
170 int max_array_sz)
171{
172 int nid;
173 /*
174 * primary_domain_index is 1 based array index.
175 */
176 int index = primary_domain_index - 1;
177
178 if (!numa_enabled || index >= max_array_sz)
179 return NUMA_NO_NODE;
180
181 nid = of_read_number(&associativity[index], 1);
182
183 /* POWER4 LPAR uses 0xffff as invalid node */
184 if (nid == 0xffff || nid >= nr_node_ids)
185 nid = NUMA_NO_NODE;
186 return nid;
187}
188/*
189 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
190 * info is found.
191 */
192static int associativity_to_nid(const __be32 *associativity)
193{
194 int array_sz = of_read_number(associativity, 1);
195
196 /* Skip the first element in the associativity array */
197 return __associativity_to_nid((associativity + 1), array_sz);
198}
199
200static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
201{
202 int dist;
203 int node1, node2;
204
205 node1 = associativity_to_nid(cpu1_assoc);
206 node2 = associativity_to_nid(cpu2_assoc);
207
208 dist = numa_distance_table[node1][node2];
209 if (dist <= LOCAL_DISTANCE)
210 return 0;
211 else if (dist <= REMOTE_DISTANCE)
212 return 1;
213 else
214 return 2;
215}
216
217static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
218{
219 int dist = 0;
220
221 int i, index;
222
223 for (i = 0; i < distance_ref_points_depth; i++) {
224 index = be32_to_cpu(distance_ref_points[i]);
225 if (cpu1_assoc[index] == cpu2_assoc[index])
226 break;
227 dist++;
228 }
229
230 return dist;
231}
232
233int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
234{
235 /* We should not get called with FORM0 */
236 VM_WARN_ON(affinity_form == FORM0_AFFINITY);
237 if (affinity_form == FORM1_AFFINITY)
238 return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
239 return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
240}
241
242/* must hold reference to node during call */
243static const __be32 *of_get_associativity(struct device_node *dev)
244{
245 return of_get_property(dev, "ibm,associativity", NULL);
246}
247
248int __node_distance(int a, int b)
249{
250 int i;
251 int distance = LOCAL_DISTANCE;
252
253 if (affinity_form == FORM2_AFFINITY)
254 return numa_distance_table[a][b];
255 else if (affinity_form == FORM0_AFFINITY)
256 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
257
258 for (i = 0; i < distance_ref_points_depth; i++) {
259 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
260 break;
261
262 /* Double the distance for each NUMA level */
263 distance *= 2;
264 }
265
266 return distance;
267}
268EXPORT_SYMBOL(__node_distance);
269
270/* Returns the nid associated with the given device tree node,
271 * or -1 if not found.
272 */
273static int of_node_to_nid_single(struct device_node *device)
274{
275 int nid = NUMA_NO_NODE;
276 const __be32 *tmp;
277
278 tmp = of_get_associativity(device);
279 if (tmp)
280 nid = associativity_to_nid(tmp);
281 return nid;
282}
283
284/* Walk the device tree upwards, looking for an associativity id */
285int of_node_to_nid(struct device_node *device)
286{
287 int nid = NUMA_NO_NODE;
288
289 of_node_get(device);
290 while (device) {
291 nid = of_node_to_nid_single(device);
292 if (nid != -1)
293 break;
294
295 device = of_get_next_parent(device);
296 }
297 of_node_put(device);
298
299 return nid;
300}
301EXPORT_SYMBOL(of_node_to_nid);
302
303static void __initialize_form1_numa_distance(const __be32 *associativity,
304 int max_array_sz)
305{
306 int i, nid;
307
308 if (affinity_form != FORM1_AFFINITY)
309 return;
310
311 nid = __associativity_to_nid(associativity, max_array_sz);
312 if (nid != NUMA_NO_NODE) {
313 for (i = 0; i < distance_ref_points_depth; i++) {
314 const __be32 *entry;
315 int index = be32_to_cpu(distance_ref_points[i]) - 1;
316
317 /*
318 * broken hierarchy, return with broken distance table
319 */
320 if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
321 return;
322
323 entry = &associativity[index];
324 distance_lookup_table[nid][i] = of_read_number(entry, 1);
325 }
326 }
327}
328
329static void initialize_form1_numa_distance(const __be32 *associativity)
330{
331 int array_sz;
332
333 array_sz = of_read_number(associativity, 1);
334 /* Skip the first element in the associativity array */
335 __initialize_form1_numa_distance(associativity + 1, array_sz);
336}
337
338/*
339 * Used to update distance information w.r.t newly added node.
340 */
341void update_numa_distance(struct device_node *node)
342{
343 int nid;
344
345 if (affinity_form == FORM0_AFFINITY)
346 return;
347 else if (affinity_form == FORM1_AFFINITY) {
348 const __be32 *associativity;
349
350 associativity = of_get_associativity(node);
351 if (!associativity)
352 return;
353
354 initialize_form1_numa_distance(associativity);
355 return;
356 }
357
358 /* FORM2 affinity */
359 nid = of_node_to_nid_single(node);
360 if (nid == NUMA_NO_NODE)
361 return;
362
363 /*
364 * With FORM2 we expect NUMA distance of all possible NUMA
365 * nodes to be provided during boot.
366 */
367 WARN(numa_distance_table[nid][nid] == -1,
368 "NUMA distance details for node %d not provided\n", nid);
369}
370
371/*
372 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
373 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
374 */
375static void initialize_form2_numa_distance_lookup_table(void)
376{
377 int i, j;
378 struct device_node *root;
379 const __u8 *numa_dist_table;
380 const __be32 *numa_lookup_index;
381 int numa_dist_table_length;
382 int max_numa_index, distance_index;
383
384 if (firmware_has_feature(FW_FEATURE_OPAL))
385 root = of_find_node_by_path("/ibm,opal");
386 else
387 root = of_find_node_by_path("/rtas");
388 if (!root)
389 root = of_find_node_by_path("/");
390
391 numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
392 max_numa_index = of_read_number(&numa_lookup_index[0], 1);
393
394 /* first element of the array is the size and is encode-int */
395 numa_dist_table = of_get_property(root, "ibm,numa-distance-table", NULL);
396 numa_dist_table_length = of_read_number((const __be32 *)&numa_dist_table[0], 1);
397 /* Skip the size which is encoded int */
398 numa_dist_table += sizeof(__be32);
399
400 pr_debug("numa_dist_table_len = %d, numa_dist_indexes_len = %d\n",
401 numa_dist_table_length, max_numa_index);
402
403 for (i = 0; i < max_numa_index; i++)
404 /* +1 skip the max_numa_index in the property */
405 numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
406
407
408 if (numa_dist_table_length != max_numa_index * max_numa_index) {
409 WARN(1, "Wrong NUMA distance information\n");
410 /* consider everybody else just remote. */
411 for (i = 0; i < max_numa_index; i++) {
412 for (j = 0; j < max_numa_index; j++) {
413 int nodeA = numa_id_index_table[i];
414 int nodeB = numa_id_index_table[j];
415
416 if (nodeA == nodeB)
417 numa_distance_table[nodeA][nodeB] = LOCAL_DISTANCE;
418 else
419 numa_distance_table[nodeA][nodeB] = REMOTE_DISTANCE;
420 }
421 }
422 }
423
424 distance_index = 0;
425 for (i = 0; i < max_numa_index; i++) {
426 for (j = 0; j < max_numa_index; j++) {
427 int nodeA = numa_id_index_table[i];
428 int nodeB = numa_id_index_table[j];
429
430 numa_distance_table[nodeA][nodeB] = numa_dist_table[distance_index++];
431 pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, numa_distance_table[nodeA][nodeB]);
432 }
433 }
434 of_node_put(root);
435}
436
437static int __init find_primary_domain_index(void)
438{
439 int index;
440 struct device_node *root;
441
442 /*
443 * Check for which form of affinity.
444 */
445 if (firmware_has_feature(FW_FEATURE_OPAL)) {
446 affinity_form = FORM1_AFFINITY;
447 } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
448 pr_debug("Using form 2 affinity\n");
449 affinity_form = FORM2_AFFINITY;
450 } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
451 pr_debug("Using form 1 affinity\n");
452 affinity_form = FORM1_AFFINITY;
453 } else
454 affinity_form = FORM0_AFFINITY;
455
456 if (firmware_has_feature(FW_FEATURE_OPAL))
457 root = of_find_node_by_path("/ibm,opal");
458 else
459 root = of_find_node_by_path("/rtas");
460 if (!root)
461 root = of_find_node_by_path("/");
462
463 /*
464 * This property is a set of 32-bit integers, each representing
465 * an index into the ibm,associativity nodes.
466 *
467 * With form 0 affinity the first integer is for an SMP configuration
468 * (should be all 0's) and the second is for a normal NUMA
469 * configuration. We have only one level of NUMA.
470 *
471 * With form 1 affinity the first integer is the most significant
472 * NUMA boundary and the following are progressively less significant
473 * boundaries. There can be more than one level of NUMA.
474 */
475 distance_ref_points = of_get_property(root,
476 "ibm,associativity-reference-points",
477 &distance_ref_points_depth);
478
479 if (!distance_ref_points) {
480 pr_debug("ibm,associativity-reference-points not found.\n");
481 goto err;
482 }
483
484 distance_ref_points_depth /= sizeof(int);
485 if (affinity_form == FORM0_AFFINITY) {
486 if (distance_ref_points_depth < 2) {
487 pr_warn("short ibm,associativity-reference-points\n");
488 goto err;
489 }
490
491 index = of_read_number(&distance_ref_points[1], 1);
492 } else {
493 /*
494 * Both FORM1 and FORM2 affinity find the primary domain details
495 * at the same offset.
496 */
497 index = of_read_number(distance_ref_points, 1);
498 }
499 /*
500 * Warn and cap if the hardware supports more than
501 * MAX_DISTANCE_REF_POINTS domains.
502 */
503 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
504 pr_warn("distance array capped at %d entries\n",
505 MAX_DISTANCE_REF_POINTS);
506 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
507 }
508
509 of_node_put(root);
510 return index;
511
512err:
513 of_node_put(root);
514 return -1;
515}
516
517static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
518{
519 struct device_node *memory = NULL;
520
521 memory = of_find_node_by_type(memory, "memory");
522 if (!memory)
523 panic("numa.c: No memory nodes found!");
524
525 *n_addr_cells = of_n_addr_cells(memory);
526 *n_size_cells = of_n_size_cells(memory);
527 of_node_put(memory);
528}
529
530static unsigned long read_n_cells(int n, const __be32 **buf)
531{
532 unsigned long result = 0;
533
534 while (n--) {
535 result = (result << 32) | of_read_number(*buf, 1);
536 (*buf)++;
537 }
538 return result;
539}
540
541struct assoc_arrays {
542 u32 n_arrays;
543 u32 array_sz;
544 const __be32 *arrays;
545};
546
547/*
548 * Retrieve and validate the list of associativity arrays for drconf
549 * memory from the ibm,associativity-lookup-arrays property of the
550 * device tree..
551 *
552 * The layout of the ibm,associativity-lookup-arrays property is a number N
553 * indicating the number of associativity arrays, followed by a number M
554 * indicating the size of each associativity array, followed by a list
555 * of N associativity arrays.
556 */
557static int of_get_assoc_arrays(struct assoc_arrays *aa)
558{
559 struct device_node *memory;
560 const __be32 *prop;
561 u32 len;
562
563 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
564 if (!memory)
565 return -1;
566
567 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
568 if (!prop || len < 2 * sizeof(unsigned int)) {
569 of_node_put(memory);
570 return -1;
571 }
572
573 aa->n_arrays = of_read_number(prop++, 1);
574 aa->array_sz = of_read_number(prop++, 1);
575
576 of_node_put(memory);
577
578 /* Now that we know the number of arrays and size of each array,
579 * revalidate the size of the property read in.
580 */
581 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
582 return -1;
583
584 aa->arrays = prop;
585 return 0;
586}
587
588static int get_nid_and_numa_distance(struct drmem_lmb *lmb)
589{
590 struct assoc_arrays aa = { .arrays = NULL };
591 int default_nid = NUMA_NO_NODE;
592 int nid = default_nid;
593 int rc, index;
594
595 if ((primary_domain_index < 0) || !numa_enabled)
596 return default_nid;
597
598 rc = of_get_assoc_arrays(&aa);
599 if (rc)
600 return default_nid;
601
602 if (primary_domain_index <= aa.array_sz &&
603 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
604 const __be32 *associativity;
605
606 index = lmb->aa_index * aa.array_sz;
607 associativity = &aa.arrays[index];
608 nid = __associativity_to_nid(associativity, aa.array_sz);
609 if (nid > 0 && affinity_form == FORM1_AFFINITY) {
610 /*
611 * lookup array associativity entries have
612 * no length of the array as the first element.
613 */
614 __initialize_form1_numa_distance(associativity, aa.array_sz);
615 }
616 }
617 return nid;
618}
619
620/*
621 * This is like of_node_to_nid_single() for memory represented in the
622 * ibm,dynamic-reconfiguration-memory node.
623 */
624int of_drconf_to_nid_single(struct drmem_lmb *lmb)
625{
626 struct assoc_arrays aa = { .arrays = NULL };
627 int default_nid = NUMA_NO_NODE;
628 int nid = default_nid;
629 int rc, index;
630
631 if ((primary_domain_index < 0) || !numa_enabled)
632 return default_nid;
633
634 rc = of_get_assoc_arrays(&aa);
635 if (rc)
636 return default_nid;
637
638 if (primary_domain_index <= aa.array_sz &&
639 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
640 const __be32 *associativity;
641
642 index = lmb->aa_index * aa.array_sz;
643 associativity = &aa.arrays[index];
644 nid = __associativity_to_nid(associativity, aa.array_sz);
645 }
646 return nid;
647}
648
649#ifdef CONFIG_PPC_SPLPAR
650
651static int __vphn_get_associativity(long lcpu, __be32 *associativity)
652{
653 long rc, hwid;
654
655 /*
656 * On a shared lpar, device tree will not have node associativity.
657 * At this time lppaca, or its __old_status field may not be
658 * updated. Hence kernel cannot detect if its on a shared lpar. So
659 * request an explicit associativity irrespective of whether the
660 * lpar is shared or dedicated. Use the device tree property as a
661 * fallback. cpu_to_phys_id is only valid between
662 * smp_setup_cpu_maps() and smp_setup_pacas().
663 */
664 if (firmware_has_feature(FW_FEATURE_VPHN)) {
665 if (cpu_to_phys_id)
666 hwid = cpu_to_phys_id[lcpu];
667 else
668 hwid = get_hard_smp_processor_id(lcpu);
669
670 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
671 if (rc == H_SUCCESS)
672 return 0;
673 }
674
675 return -1;
676}
677
678static int vphn_get_nid(long lcpu)
679{
680 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
681
682
683 if (!__vphn_get_associativity(lcpu, associativity))
684 return associativity_to_nid(associativity);
685
686 return NUMA_NO_NODE;
687
688}
689#else
690
691static int __vphn_get_associativity(long lcpu, __be32 *associativity)
692{
693 return -1;
694}
695
696static int vphn_get_nid(long unused)
697{
698 return NUMA_NO_NODE;
699}
700#endif /* CONFIG_PPC_SPLPAR */
701
702/*
703 * Figure out to which domain a cpu belongs and stick it there.
704 * Return the id of the domain used.
705 */
706static int numa_setup_cpu(unsigned long lcpu)
707{
708 struct device_node *cpu;
709 int fcpu = cpu_first_thread_sibling(lcpu);
710 int nid = NUMA_NO_NODE;
711
712 if (!cpu_present(lcpu)) {
713 set_cpu_numa_node(lcpu, first_online_node);
714 return first_online_node;
715 }
716
717 /*
718 * If a valid cpu-to-node mapping is already available, use it
719 * directly instead of querying the firmware, since it represents
720 * the most recent mapping notified to us by the platform (eg: VPHN).
721 * Since cpu_to_node binding remains the same for all threads in the
722 * core. If a valid cpu-to-node mapping is already available, for
723 * the first thread in the core, use it.
724 */
725 nid = numa_cpu_lookup_table[fcpu];
726 if (nid >= 0) {
727 map_cpu_to_node(lcpu, nid);
728 return nid;
729 }
730
731 nid = vphn_get_nid(lcpu);
732 if (nid != NUMA_NO_NODE)
733 goto out_present;
734
735 cpu = of_get_cpu_node(lcpu, NULL);
736
737 if (!cpu) {
738 WARN_ON(1);
739 if (cpu_present(lcpu))
740 goto out_present;
741 else
742 goto out;
743 }
744
745 nid = of_node_to_nid_single(cpu);
746 of_node_put(cpu);
747
748out_present:
749 if (nid < 0 || !node_possible(nid))
750 nid = first_online_node;
751
752 /*
753 * Update for the first thread of the core. All threads of a core
754 * have to be part of the same node. This not only avoids querying
755 * for every other thread in the core, but always avoids a case
756 * where virtual node associativity change causes subsequent threads
757 * of a core to be associated with different nid. However if first
758 * thread is already online, expect it to have a valid mapping.
759 */
760 if (fcpu != lcpu) {
761 WARN_ON(cpu_online(fcpu));
762 map_cpu_to_node(fcpu, nid);
763 }
764
765 map_cpu_to_node(lcpu, nid);
766out:
767 return nid;
768}
769
770static void verify_cpu_node_mapping(int cpu, int node)
771{
772 int base, sibling, i;
773
774 /* Verify that all the threads in the core belong to the same node */
775 base = cpu_first_thread_sibling(cpu);
776
777 for (i = 0; i < threads_per_core; i++) {
778 sibling = base + i;
779
780 if (sibling == cpu || cpu_is_offline(sibling))
781 continue;
782
783 if (cpu_to_node(sibling) != node) {
784 WARN(1, "CPU thread siblings %d and %d don't belong"
785 " to the same node!\n", cpu, sibling);
786 break;
787 }
788 }
789}
790
791/* Must run before sched domains notifier. */
792static int ppc_numa_cpu_prepare(unsigned int cpu)
793{
794 int nid;
795
796 nid = numa_setup_cpu(cpu);
797 verify_cpu_node_mapping(cpu, nid);
798 return 0;
799}
800
801static int ppc_numa_cpu_dead(unsigned int cpu)
802{
803 return 0;
804}
805
806/*
807 * Check and possibly modify a memory region to enforce the memory limit.
808 *
809 * Returns the size the region should have to enforce the memory limit.
810 * This will either be the original value of size, a truncated value,
811 * or zero. If the returned value of size is 0 the region should be
812 * discarded as it lies wholly above the memory limit.
813 */
814static unsigned long __init numa_enforce_memory_limit(unsigned long start,
815 unsigned long size)
816{
817 /*
818 * We use memblock_end_of_DRAM() in here instead of memory_limit because
819 * we've already adjusted it for the limit and it takes care of
820 * having memory holes below the limit. Also, in the case of
821 * iommu_is_off, memory_limit is not set but is implicitly enforced.
822 */
823
824 if (start + size <= memblock_end_of_DRAM())
825 return size;
826
827 if (start >= memblock_end_of_DRAM())
828 return 0;
829
830 return memblock_end_of_DRAM() - start;
831}
832
833/*
834 * Reads the counter for a given entry in
835 * linux,drconf-usable-memory property
836 */
837static inline int __init read_usm_ranges(const __be32 **usm)
838{
839 /*
840 * For each lmb in ibm,dynamic-memory a corresponding
841 * entry in linux,drconf-usable-memory property contains
842 * a counter followed by that many (base, size) duple.
843 * read the counter from linux,drconf-usable-memory
844 */
845 return read_n_cells(n_mem_size_cells, usm);
846}
847
848/*
849 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
850 * node. This assumes n_mem_{addr,size}_cells have been set.
851 */
852static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
853 const __be32 **usm,
854 void *data)
855{
856 unsigned int ranges, is_kexec_kdump = 0;
857 unsigned long base, size, sz;
858 int nid;
859
860 /*
861 * Skip this block if the reserved bit is set in flags (0x80)
862 * or if the block is not assigned to this partition (0x8)
863 */
864 if ((lmb->flags & DRCONF_MEM_RESERVED)
865 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
866 return 0;
867
868 if (*usm)
869 is_kexec_kdump = 1;
870
871 base = lmb->base_addr;
872 size = drmem_lmb_size();
873 ranges = 1;
874
875 if (is_kexec_kdump) {
876 ranges = read_usm_ranges(usm);
877 if (!ranges) /* there are no (base, size) duple */
878 return 0;
879 }
880
881 do {
882 if (is_kexec_kdump) {
883 base = read_n_cells(n_mem_addr_cells, usm);
884 size = read_n_cells(n_mem_size_cells, usm);
885 }
886
887 nid = get_nid_and_numa_distance(lmb);
888 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
889 &nid);
890 node_set_online(nid);
891 sz = numa_enforce_memory_limit(base, size);
892 if (sz)
893 memblock_set_node(base, sz, &memblock.memory, nid);
894 } while (--ranges);
895
896 return 0;
897}
898
899static int __init parse_numa_properties(void)
900{
901 struct device_node *memory;
902 int default_nid = 0;
903 unsigned long i;
904 const __be32 *associativity;
905
906 if (numa_enabled == 0) {
907 pr_warn("disabled by user\n");
908 return -1;
909 }
910
911 primary_domain_index = find_primary_domain_index();
912
913 if (primary_domain_index < 0) {
914 /*
915 * if we fail to parse primary_domain_index from device tree
916 * mark the numa disabled, boot with numa disabled.
917 */
918 numa_enabled = false;
919 return primary_domain_index;
920 }
921
922 pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
923
924 /*
925 * If it is FORM2 initialize the distance table here.
926 */
927 if (affinity_form == FORM2_AFFINITY)
928 initialize_form2_numa_distance_lookup_table();
929
930 /*
931 * Even though we connect cpus to numa domains later in SMP
932 * init, we need to know the node ids now. This is because
933 * each node to be onlined must have NODE_DATA etc backing it.
934 */
935 for_each_present_cpu(i) {
936 __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
937 struct device_node *cpu;
938 int nid = NUMA_NO_NODE;
939
940 memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
941
942 if (__vphn_get_associativity(i, vphn_assoc) == 0) {
943 nid = associativity_to_nid(vphn_assoc);
944 initialize_form1_numa_distance(vphn_assoc);
945 } else {
946
947 /*
948 * Don't fall back to default_nid yet -- we will plug
949 * cpus into nodes once the memory scan has discovered
950 * the topology.
951 */
952 cpu = of_get_cpu_node(i, NULL);
953 BUG_ON(!cpu);
954
955 associativity = of_get_associativity(cpu);
956 if (associativity) {
957 nid = associativity_to_nid(associativity);
958 initialize_form1_numa_distance(associativity);
959 }
960 of_node_put(cpu);
961 }
962
963 node_set_online(nid);
964 }
965
966 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
967
968 for_each_node_by_type(memory, "memory") {
969 unsigned long start;
970 unsigned long size;
971 int nid;
972 int ranges;
973 const __be32 *memcell_buf;
974 unsigned int len;
975
976 memcell_buf = of_get_property(memory,
977 "linux,usable-memory", &len);
978 if (!memcell_buf || len <= 0)
979 memcell_buf = of_get_property(memory, "reg", &len);
980 if (!memcell_buf || len <= 0)
981 continue;
982
983 /* ranges in cell */
984 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
985new_range:
986 /* these are order-sensitive, and modify the buffer pointer */
987 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
988 size = read_n_cells(n_mem_size_cells, &memcell_buf);
989
990 /*
991 * Assumption: either all memory nodes or none will
992 * have associativity properties. If none, then
993 * everything goes to default_nid.
994 */
995 associativity = of_get_associativity(memory);
996 if (associativity) {
997 nid = associativity_to_nid(associativity);
998 initialize_form1_numa_distance(associativity);
999 } else
1000 nid = default_nid;
1001
1002 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1003 node_set_online(nid);
1004
1005 size = numa_enforce_memory_limit(start, size);
1006 if (size)
1007 memblock_set_node(start, size, &memblock.memory, nid);
1008
1009 if (--ranges)
1010 goto new_range;
1011 }
1012
1013 /*
1014 * Now do the same thing for each MEMBLOCK listed in the
1015 * ibm,dynamic-memory property in the
1016 * ibm,dynamic-reconfiguration-memory node.
1017 */
1018 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1019 if (memory) {
1020 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1021 of_node_put(memory);
1022 }
1023
1024 return 0;
1025}
1026
1027static void __init setup_nonnuma(void)
1028{
1029 unsigned long top_of_ram = memblock_end_of_DRAM();
1030 unsigned long total_ram = memblock_phys_mem_size();
1031 unsigned long start_pfn, end_pfn;
1032 unsigned int nid = 0;
1033 int i;
1034
1035 pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1036 pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1037
1038 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1039 fake_numa_create_new_node(end_pfn, &nid);
1040 memblock_set_node(PFN_PHYS(start_pfn),
1041 PFN_PHYS(end_pfn - start_pfn),
1042 &memblock.memory, nid);
1043 node_set_online(nid);
1044 }
1045}
1046
1047void __init dump_numa_cpu_topology(void)
1048{
1049 unsigned int node;
1050 unsigned int cpu, count;
1051
1052 if (!numa_enabled)
1053 return;
1054
1055 for_each_online_node(node) {
1056 pr_info("Node %d CPUs:", node);
1057
1058 count = 0;
1059 /*
1060 * If we used a CPU iterator here we would miss printing
1061 * the holes in the cpumap.
1062 */
1063 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1064 if (cpumask_test_cpu(cpu,
1065 node_to_cpumask_map[node])) {
1066 if (count == 0)
1067 pr_cont(" %u", cpu);
1068 ++count;
1069 } else {
1070 if (count > 1)
1071 pr_cont("-%u", cpu - 1);
1072 count = 0;
1073 }
1074 }
1075
1076 if (count > 1)
1077 pr_cont("-%u", nr_cpu_ids - 1);
1078 pr_cont("\n");
1079 }
1080}
1081
1082/* Initialize NODE_DATA for a node on the local memory */
1083static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1084{
1085 u64 spanned_pages = end_pfn - start_pfn;
1086 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1087 u64 nd_pa;
1088 void *nd;
1089 int tnid;
1090
1091 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1092 if (!nd_pa)
1093 panic("Cannot allocate %zu bytes for node %d data\n",
1094 nd_size, nid);
1095
1096 nd = __va(nd_pa);
1097
1098 /* report and initialize */
1099 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
1100 nd_pa, nd_pa + nd_size - 1);
1101 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1102 if (tnid != nid)
1103 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
1104
1105 node_data[nid] = nd;
1106 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1107 NODE_DATA(nid)->node_id = nid;
1108 NODE_DATA(nid)->node_start_pfn = start_pfn;
1109 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1110}
1111
1112static void __init find_possible_nodes(void)
1113{
1114 struct device_node *rtas;
1115 const __be32 *domains = NULL;
1116 int prop_length, max_nodes;
1117 u32 i;
1118
1119 if (!numa_enabled)
1120 return;
1121
1122 rtas = of_find_node_by_path("/rtas");
1123 if (!rtas)
1124 return;
1125
1126 /*
1127 * ibm,current-associativity-domains is a fairly recent property. If
1128 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1129 * Current denotes what the platform can support compared to max
1130 * which denotes what the Hypervisor can support.
1131 *
1132 * If the LPAR is migratable, new nodes might be activated after a LPM,
1133 * so we should consider the max number in that case.
1134 */
1135 if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1136 domains = of_get_property(rtas,
1137 "ibm,current-associativity-domains",
1138 &prop_length);
1139 if (!domains) {
1140 domains = of_get_property(rtas, "ibm,max-associativity-domains",
1141 &prop_length);
1142 if (!domains)
1143 goto out;
1144 }
1145
1146 max_nodes = of_read_number(&domains[primary_domain_index], 1);
1147 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1148
1149 for (i = 0; i < max_nodes; i++) {
1150 if (!node_possible(i))
1151 node_set(i, node_possible_map);
1152 }
1153
1154 prop_length /= sizeof(int);
1155 if (prop_length > primary_domain_index + 2)
1156 coregroup_enabled = 1;
1157
1158out:
1159 of_node_put(rtas);
1160}
1161
1162void __init mem_topology_setup(void)
1163{
1164 int cpu;
1165
1166 /*
1167 * Linux/mm assumes node 0 to be online at boot. However this is not
1168 * true on PowerPC, where node 0 is similar to any other node, it
1169 * could be cpuless, memoryless node. So force node 0 to be offline
1170 * for now. This will prevent cpuless, memoryless node 0 showing up
1171 * unnecessarily as online. If a node has cpus or memory that need
1172 * to be online, then node will anyway be marked online.
1173 */
1174 node_set_offline(0);
1175
1176 if (parse_numa_properties())
1177 setup_nonnuma();
1178
1179 /*
1180 * Modify the set of possible NUMA nodes to reflect information
1181 * available about the set of online nodes, and the set of nodes
1182 * that we expect to make use of for this platform's affinity
1183 * calculations.
1184 */
1185 nodes_and(node_possible_map, node_possible_map, node_online_map);
1186
1187 find_possible_nodes();
1188
1189 setup_node_to_cpumask_map();
1190
1191 reset_numa_cpu_lookup_table();
1192
1193 for_each_possible_cpu(cpu) {
1194 /*
1195 * Powerpc with CONFIG_NUMA always used to have a node 0,
1196 * even if it was memoryless or cpuless. For all cpus that
1197 * are possible but not present, cpu_to_node() would point
1198 * to node 0. To remove a cpuless, memoryless dummy node,
1199 * powerpc need to make sure all possible but not present
1200 * cpu_to_node are set to a proper node.
1201 */
1202 numa_setup_cpu(cpu);
1203 }
1204}
1205
1206void __init initmem_init(void)
1207{
1208 int nid;
1209
1210 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1211 max_pfn = max_low_pfn;
1212
1213 memblock_dump_all();
1214
1215 for_each_online_node(nid) {
1216 unsigned long start_pfn, end_pfn;
1217
1218 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1219 setup_node_data(nid, start_pfn, end_pfn);
1220 }
1221
1222 sparse_init();
1223
1224 /*
1225 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1226 * even before we online them, so that we can use cpu_to_{node,mem}
1227 * early in boot, cf. smp_prepare_cpus().
1228 * _nocalls() + manual invocation is used because cpuhp is not yet
1229 * initialized for the boot CPU.
1230 */
1231 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1232 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1233}
1234
1235static int __init early_numa(char *p)
1236{
1237 if (!p)
1238 return 0;
1239
1240 if (strstr(p, "off"))
1241 numa_enabled = 0;
1242
1243 p = strstr(p, "fake=");
1244 if (p)
1245 cmdline = p + strlen("fake=");
1246
1247 return 0;
1248}
1249early_param("numa", early_numa);
1250
1251#ifdef CONFIG_MEMORY_HOTPLUG
1252/*
1253 * Find the node associated with a hot added memory section for
1254 * memory represented in the device tree by the property
1255 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1256 */
1257static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1258{
1259 struct drmem_lmb *lmb;
1260 unsigned long lmb_size;
1261 int nid = NUMA_NO_NODE;
1262
1263 lmb_size = drmem_lmb_size();
1264
1265 for_each_drmem_lmb(lmb) {
1266 /* skip this block if it is reserved or not assigned to
1267 * this partition */
1268 if ((lmb->flags & DRCONF_MEM_RESERVED)
1269 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1270 continue;
1271
1272 if ((scn_addr < lmb->base_addr)
1273 || (scn_addr >= (lmb->base_addr + lmb_size)))
1274 continue;
1275
1276 nid = of_drconf_to_nid_single(lmb);
1277 break;
1278 }
1279
1280 return nid;
1281}
1282
1283/*
1284 * Find the node associated with a hot added memory section for memory
1285 * represented in the device tree as a node (i.e. memory@XXXX) for
1286 * each memblock.
1287 */
1288static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1289{
1290 struct device_node *memory;
1291 int nid = NUMA_NO_NODE;
1292
1293 for_each_node_by_type(memory, "memory") {
1294 unsigned long start, size;
1295 int ranges;
1296 const __be32 *memcell_buf;
1297 unsigned int len;
1298
1299 memcell_buf = of_get_property(memory, "reg", &len);
1300 if (!memcell_buf || len <= 0)
1301 continue;
1302
1303 /* ranges in cell */
1304 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1305
1306 while (ranges--) {
1307 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1308 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1309
1310 if ((scn_addr < start) || (scn_addr >= (start + size)))
1311 continue;
1312
1313 nid = of_node_to_nid_single(memory);
1314 break;
1315 }
1316
1317 if (nid >= 0)
1318 break;
1319 }
1320
1321 of_node_put(memory);
1322
1323 return nid;
1324}
1325
1326/*
1327 * Find the node associated with a hot added memory section. Section
1328 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1329 * sections are fully contained within a single MEMBLOCK.
1330 */
1331int hot_add_scn_to_nid(unsigned long scn_addr)
1332{
1333 struct device_node *memory = NULL;
1334 int nid;
1335
1336 if (!numa_enabled)
1337 return first_online_node;
1338
1339 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1340 if (memory) {
1341 nid = hot_add_drconf_scn_to_nid(scn_addr);
1342 of_node_put(memory);
1343 } else {
1344 nid = hot_add_node_scn_to_nid(scn_addr);
1345 }
1346
1347 if (nid < 0 || !node_possible(nid))
1348 nid = first_online_node;
1349
1350 return nid;
1351}
1352
1353static u64 hot_add_drconf_memory_max(void)
1354{
1355 struct device_node *memory = NULL;
1356 struct device_node *dn = NULL;
1357 const __be64 *lrdr = NULL;
1358
1359 dn = of_find_node_by_path("/rtas");
1360 if (dn) {
1361 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1362 of_node_put(dn);
1363 if (lrdr)
1364 return be64_to_cpup(lrdr);
1365 }
1366
1367 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1368 if (memory) {
1369 of_node_put(memory);
1370 return drmem_lmb_memory_max();
1371 }
1372 return 0;
1373}
1374
1375/*
1376 * memory_hotplug_max - return max address of memory that may be added
1377 *
1378 * This is currently only used on systems that support drconfig memory
1379 * hotplug.
1380 */
1381u64 memory_hotplug_max(void)
1382{
1383 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1384}
1385#endif /* CONFIG_MEMORY_HOTPLUG */
1386
1387/* Virtual Processor Home Node (VPHN) support */
1388#ifdef CONFIG_PPC_SPLPAR
1389static int topology_inited;
1390
1391/*
1392 * Retrieve the new associativity information for a virtual processor's
1393 * home node.
1394 */
1395static long vphn_get_associativity(unsigned long cpu,
1396 __be32 *associativity)
1397{
1398 long rc;
1399
1400 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1401 VPHN_FLAG_VCPU, associativity);
1402
1403 switch (rc) {
1404 case H_SUCCESS:
1405 pr_debug("VPHN hcall succeeded. Reset polling...\n");
1406 goto out;
1407
1408 case H_FUNCTION:
1409 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1410 break;
1411 case H_HARDWARE:
1412 pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1413 "preventing VPHN. Disabling polling...\n");
1414 break;
1415 case H_PARAMETER:
1416 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1417 "Disabling polling...\n");
1418 break;
1419 default:
1420 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1421 , rc);
1422 break;
1423 }
1424out:
1425 return rc;
1426}
1427
1428int find_and_online_cpu_nid(int cpu)
1429{
1430 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1431 int new_nid;
1432
1433 /* Use associativity from first thread for all siblings */
1434 if (vphn_get_associativity(cpu, associativity))
1435 return cpu_to_node(cpu);
1436
1437 new_nid = associativity_to_nid(associativity);
1438 if (new_nid < 0 || !node_possible(new_nid))
1439 new_nid = first_online_node;
1440
1441 if (NODE_DATA(new_nid) == NULL) {
1442#ifdef CONFIG_MEMORY_HOTPLUG
1443 /*
1444 * Need to ensure that NODE_DATA is initialized for a node from
1445 * available memory (see memblock_alloc_try_nid). If unable to
1446 * init the node, then default to nearest node that has memory
1447 * installed. Skip onlining a node if the subsystems are not
1448 * yet initialized.
1449 */
1450 if (!topology_inited || try_online_node(new_nid))
1451 new_nid = first_online_node;
1452#else
1453 /*
1454 * Default to using the nearest node that has memory installed.
1455 * Otherwise, it would be necessary to patch the kernel MM code
1456 * to deal with more memoryless-node error conditions.
1457 */
1458 new_nid = first_online_node;
1459#endif
1460 }
1461
1462 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1463 cpu, new_nid);
1464 return new_nid;
1465}
1466
1467int cpu_to_coregroup_id(int cpu)
1468{
1469 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1470 int index;
1471
1472 if (cpu < 0 || cpu > nr_cpu_ids)
1473 return -1;
1474
1475 if (!coregroup_enabled)
1476 goto out;
1477
1478 if (!firmware_has_feature(FW_FEATURE_VPHN))
1479 goto out;
1480
1481 if (vphn_get_associativity(cpu, associativity))
1482 goto out;
1483
1484 index = of_read_number(associativity, 1);
1485 if (index > primary_domain_index + 1)
1486 return of_read_number(&associativity[index - 1], 1);
1487
1488out:
1489 return cpu_to_core_id(cpu);
1490}
1491
1492static int topology_update_init(void)
1493{
1494 topology_inited = 1;
1495 return 0;
1496}
1497device_initcall(topology_update_init);
1498#endif /* CONFIG_PPC_SPLPAR */