]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame_incremental - arch/powerpc/mm/slb.c
powerpc/64s/radix: flush remote CPUs out of single-threaded mm_cpumask
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / mm / slb.c
... / ...
CommitLineData
1/*
2 * PowerPC64 SLB support.
3 *
4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5 * Based on earlier code written by:
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 * Copyright (c) 2001 Dave Engebretsen
8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#include <asm/pgtable.h>
18#include <asm/mmu.h>
19#include <asm/mmu_context.h>
20#include <asm/paca.h>
21#include <asm/cputable.h>
22#include <asm/cacheflush.h>
23#include <asm/smp.h>
24#include <linux/compiler.h>
25#include <linux/context_tracking.h>
26#include <linux/mm_types.h>
27
28#include <asm/udbg.h>
29#include <asm/code-patching.h>
30
31enum slb_index {
32 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
33 VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
34 KSTACK_INDEX = 2, /* Kernel stack map */
35};
36
37extern void slb_allocate(unsigned long ea);
38
39#define slb_esid_mask(ssize) \
40 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
41
42static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
43 enum slb_index index)
44{
45 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
46}
47
48static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
49 unsigned long flags)
50{
51 return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
52 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
53}
54
55static inline void slb_shadow_update(unsigned long ea, int ssize,
56 unsigned long flags,
57 enum slb_index index)
58{
59 struct slb_shadow *p = get_slb_shadow();
60
61 /*
62 * Clear the ESID first so the entry is not valid while we are
63 * updating it. No write barriers are needed here, provided
64 * we only update the current CPU's SLB shadow buffer.
65 */
66 p->save_area[index].esid = 0;
67 p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags));
68 p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index));
69}
70
71static inline void slb_shadow_clear(enum slb_index index)
72{
73 get_slb_shadow()->save_area[index].esid = 0;
74}
75
76static inline void create_shadowed_slbe(unsigned long ea, int ssize,
77 unsigned long flags,
78 enum slb_index index)
79{
80 /*
81 * Updating the shadow buffer before writing the SLB ensures
82 * we don't get a stale entry here if we get preempted by PHYP
83 * between these two statements.
84 */
85 slb_shadow_update(ea, ssize, flags, index);
86
87 asm volatile("slbmte %0,%1" :
88 : "r" (mk_vsid_data(ea, ssize, flags)),
89 "r" (mk_esid_data(ea, ssize, index))
90 : "memory" );
91}
92
93static void __slb_flush_and_rebolt(void)
94{
95 /* If you change this make sure you change SLB_NUM_BOLTED
96 * and PR KVM appropriately too. */
97 unsigned long linear_llp, vmalloc_llp, lflags, vflags;
98 unsigned long ksp_esid_data, ksp_vsid_data;
99
100 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
101 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
102 lflags = SLB_VSID_KERNEL | linear_llp;
103 vflags = SLB_VSID_KERNEL | vmalloc_llp;
104
105 ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
106 if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
107 ksp_esid_data &= ~SLB_ESID_V;
108 ksp_vsid_data = 0;
109 slb_shadow_clear(KSTACK_INDEX);
110 } else {
111 /* Update stack entry; others don't change */
112 slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
113 ksp_vsid_data =
114 be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
115 }
116
117 /* We need to do this all in asm, so we're sure we don't touch
118 * the stack between the slbia and rebolting it. */
119 asm volatile("isync\n"
120 "slbia\n"
121 /* Slot 1 - first VMALLOC segment */
122 "slbmte %0,%1\n"
123 /* Slot 2 - kernel stack */
124 "slbmte %2,%3\n"
125 "isync"
126 :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
127 "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
128 "r"(ksp_vsid_data),
129 "r"(ksp_esid_data)
130 : "memory");
131}
132
133void slb_flush_and_rebolt(void)
134{
135
136 WARN_ON(!irqs_disabled());
137
138 /*
139 * We can't take a PMU exception in the following code, so hard
140 * disable interrupts.
141 */
142 hard_irq_disable();
143
144 __slb_flush_and_rebolt();
145 get_paca()->slb_cache_ptr = 0;
146}
147
148void slb_vmalloc_update(void)
149{
150 unsigned long vflags;
151
152 vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
153 slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
154 slb_flush_and_rebolt();
155}
156
157/* Helper function to compare esids. There are four cases to handle.
158 * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
159 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
160 * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
161 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
162 */
163static inline int esids_match(unsigned long addr1, unsigned long addr2)
164{
165 int esid_1t_count;
166
167 /* System is not 1T segment size capable. */
168 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
169 return (GET_ESID(addr1) == GET_ESID(addr2));
170
171 esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
172 ((addr2 >> SID_SHIFT_1T) != 0));
173
174 /* both addresses are < 1T */
175 if (esid_1t_count == 0)
176 return (GET_ESID(addr1) == GET_ESID(addr2));
177
178 /* One address < 1T, the other > 1T. Not a match */
179 if (esid_1t_count == 1)
180 return 0;
181
182 /* Both addresses are > 1T. */
183 return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
184}
185
186/* Flush all user entries from the segment table of the current processor. */
187void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
188{
189 unsigned long offset;
190 unsigned long slbie_data = 0;
191 unsigned long pc = KSTK_EIP(tsk);
192 unsigned long stack = KSTK_ESP(tsk);
193 unsigned long exec_base;
194
195 /*
196 * We need interrupts hard-disabled here, not just soft-disabled,
197 * so that a PMU interrupt can't occur, which might try to access
198 * user memory (to get a stack trace) and possible cause an SLB miss
199 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
200 */
201 hard_irq_disable();
202 offset = get_paca()->slb_cache_ptr;
203 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
204 offset <= SLB_CACHE_ENTRIES) {
205 int i;
206 asm volatile("isync" : : : "memory");
207 for (i = 0; i < offset; i++) {
208 slbie_data = (unsigned long)get_paca()->slb_cache[i]
209 << SID_SHIFT; /* EA */
210 slbie_data |= user_segment_size(slbie_data)
211 << SLBIE_SSIZE_SHIFT;
212 slbie_data |= SLBIE_C; /* C set for user addresses */
213 asm volatile("slbie %0" : : "r" (slbie_data));
214 }
215 asm volatile("isync" : : : "memory");
216 } else {
217 __slb_flush_and_rebolt();
218 }
219
220 /* Workaround POWER5 < DD2.1 issue */
221 if (offset == 1 || offset > SLB_CACHE_ENTRIES)
222 asm volatile("slbie %0" : : "r" (slbie_data));
223
224 get_paca()->slb_cache_ptr = 0;
225 copy_mm_to_paca(mm);
226
227 /*
228 * preload some userspace segments into the SLB.
229 * Almost all 32 and 64bit PowerPC executables are linked at
230 * 0x10000000 so it makes sense to preload this segment.
231 */
232 exec_base = 0x10000000;
233
234 if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
235 is_kernel_addr(exec_base))
236 return;
237
238 slb_allocate(pc);
239
240 if (!esids_match(pc, stack))
241 slb_allocate(stack);
242
243 if (!esids_match(pc, exec_base) &&
244 !esids_match(stack, exec_base))
245 slb_allocate(exec_base);
246}
247
248static inline void patch_slb_encoding(unsigned int *insn_addr,
249 unsigned int immed)
250{
251
252 /*
253 * This function patches either an li or a cmpldi instruction with
254 * a new immediate value. This relies on the fact that both li
255 * (which is actually addi) and cmpldi both take a 16-bit immediate
256 * value, and it is situated in the same location in the instruction,
257 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
258 * The signedness of the immediate operand differs between the two
259 * instructions however this code is only ever patching a small value,
260 * much less than 1 << 15, so we can get away with it.
261 * To patch the value we read the existing instruction, clear the
262 * immediate value, and or in our new value, then write the instruction
263 * back.
264 */
265 unsigned int insn = (*insn_addr & 0xffff0000) | immed;
266 patch_instruction(insn_addr, insn);
267}
268
269extern u32 slb_miss_kernel_load_linear[];
270extern u32 slb_miss_kernel_load_io[];
271extern u32 slb_compare_rr_to_size[];
272extern u32 slb_miss_kernel_load_vmemmap[];
273
274void slb_set_size(u16 size)
275{
276 if (mmu_slb_size == size)
277 return;
278
279 mmu_slb_size = size;
280 patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
281}
282
283void slb_initialize(void)
284{
285 unsigned long linear_llp, vmalloc_llp, io_llp;
286 unsigned long lflags, vflags;
287 static int slb_encoding_inited;
288#ifdef CONFIG_SPARSEMEM_VMEMMAP
289 unsigned long vmemmap_llp;
290#endif
291
292 /* Prepare our SLB miss handler based on our page size */
293 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
294 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
295 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
296 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
297#ifdef CONFIG_SPARSEMEM_VMEMMAP
298 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
299#endif
300 if (!slb_encoding_inited) {
301 slb_encoding_inited = 1;
302 patch_slb_encoding(slb_miss_kernel_load_linear,
303 SLB_VSID_KERNEL | linear_llp);
304 patch_slb_encoding(slb_miss_kernel_load_io,
305 SLB_VSID_KERNEL | io_llp);
306 patch_slb_encoding(slb_compare_rr_to_size,
307 mmu_slb_size);
308
309 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
310 pr_devel("SLB: io LLP = %04lx\n", io_llp);
311
312#ifdef CONFIG_SPARSEMEM_VMEMMAP
313 patch_slb_encoding(slb_miss_kernel_load_vmemmap,
314 SLB_VSID_KERNEL | vmemmap_llp);
315 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
316#endif
317 }
318
319 get_paca()->stab_rr = SLB_NUM_BOLTED;
320
321 lflags = SLB_VSID_KERNEL | linear_llp;
322 vflags = SLB_VSID_KERNEL | vmalloc_llp;
323
324 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
325 asm volatile("isync":::"memory");
326 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
327 asm volatile("isync; slbia; isync":::"memory");
328 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
329 create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
330
331 /* For the boot cpu, we're running on the stack in init_thread_union,
332 * which is in the first segment of the linear mapping, and also
333 * get_paca()->kstack hasn't been initialized yet.
334 * For secondary cpus, we need to bolt the kernel stack entry now.
335 */
336 slb_shadow_clear(KSTACK_INDEX);
337 if (raw_smp_processor_id() != boot_cpuid &&
338 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
339 create_shadowed_slbe(get_paca()->kstack,
340 mmu_kernel_ssize, lflags, KSTACK_INDEX);
341
342 asm volatile("isync":::"memory");
343}
344
345static void insert_slb_entry(unsigned long vsid, unsigned long ea,
346 int bpsize, int ssize)
347{
348 unsigned long flags, vsid_data, esid_data;
349 enum slb_index index;
350 int slb_cache_index;
351
352 /*
353 * We are irq disabled, hence should be safe to access PACA.
354 */
355 index = get_paca()->stab_rr;
356
357 /*
358 * simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
359 */
360 if (index < (mmu_slb_size - 1))
361 index++;
362 else
363 index = SLB_NUM_BOLTED;
364
365 get_paca()->stab_rr = index;
366
367 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
368 vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
369 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
370 esid_data = mk_esid_data(ea, ssize, index);
371
372 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
373 : "memory");
374
375 /*
376 * Now update slb cache entries
377 */
378 slb_cache_index = get_paca()->slb_cache_ptr;
379 if (slb_cache_index < SLB_CACHE_ENTRIES) {
380 /*
381 * We have space in slb cache for optimized switch_slb().
382 * Top 36 bits from esid_data as per ISA
383 */
384 get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28;
385 get_paca()->slb_cache_ptr++;
386 } else {
387 /*
388 * Our cache is full and the current cache content strictly
389 * doesn't indicate the active SLB conents. Bump the ptr
390 * so that switch_slb() will ignore the cache.
391 */
392 get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
393 }
394}
395
396static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
397{
398 struct mm_struct *mm = current->mm;
399 unsigned long vsid;
400 int bpsize;
401
402 /*
403 * We are always above 1TB, hence use high user segment size.
404 */
405 vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
406 bpsize = get_slice_psize(mm, ea);
407 insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
408}
409
410void slb_miss_large_addr(struct pt_regs *regs)
411{
412 enum ctx_state prev_state = exception_enter();
413 unsigned long ea = regs->dar;
414 int context;
415
416 if (REGION_ID(ea) != USER_REGION_ID)
417 goto slb_bad_addr;
418
419 /*
420 * Are we beyound what the page table layout supports ?
421 */
422 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
423 goto slb_bad_addr;
424
425 /* Lower address should have been handled by asm code */
426 if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
427 goto slb_bad_addr;
428
429 /*
430 * consider this as bad access if we take a SLB miss
431 * on an address above addr limit.
432 */
433 if (ea >= current->mm->context.slb_addr_limit)
434 goto slb_bad_addr;
435
436 context = get_ea_context(&current->mm->context, ea);
437 if (!context)
438 goto slb_bad_addr;
439
440 handle_multi_context_slb_miss(context, ea);
441 exception_exit(prev_state);
442 return;
443
444slb_bad_addr:
445 if (user_mode(regs))
446 _exception(SIGSEGV, regs, SEGV_BNDERR, ea);
447 else
448 bad_page_fault(regs, ea, SIGSEGV);
449 exception_exit(prev_state);
450}