]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - arch/x86/include/asm/kvm_host.h
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / include / asm / kvm_host.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8#ifndef _ASM_X86_KVM_HOST_H
9#define _ASM_X86_KVM_HOST_H
10
11#include <linux/types.h>
12#include <linux/mm.h>
13#include <linux/mmu_notifier.h>
14#include <linux/tracepoint.h>
15#include <linux/cpumask.h>
16#include <linux/irq_work.h>
17#include <linux/irq.h>
18
19#include <linux/kvm.h>
20#include <linux/kvm_para.h>
21#include <linux/kvm_types.h>
22#include <linux/perf_event.h>
23#include <linux/pvclock_gtod.h>
24#include <linux/clocksource.h>
25#include <linux/irqbypass.h>
26#include <linux/hyperv.h>
27
28#include <asm/apic.h>
29#include <asm/pvclock-abi.h>
30#include <asm/desc.h>
31#include <asm/mtrr.h>
32#include <asm/msr-index.h>
33#include <asm/asm.h>
34#include <asm/kvm_page_track.h>
35#include <asm/kvm_vcpu_regs.h>
36#include <asm/hyperv-tlfs.h>
37
38#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
39
40#define KVM_MAX_VCPUS 1024
41#define KVM_SOFT_MAX_VCPUS 710
42
43/*
44 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
45 * might be larger than the actual number of VCPUs because the
46 * APIC ID encodes CPU topology information.
47 *
48 * In the worst case, we'll need less than one extra bit for the
49 * Core ID, and less than one extra bit for the Package (Die) ID,
50 * so ratio of 4 should be enough.
51 */
52#define KVM_VCPU_ID_RATIO 4
53#define KVM_MAX_VCPU_ID (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
54
55/* memory slots that are not exposed to userspace */
56#define KVM_PRIVATE_MEM_SLOTS 3
57
58#define KVM_HALT_POLL_NS_DEFAULT 200000
59
60#define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
61
62#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
63 KVM_DIRTY_LOG_INITIALLY_SET)
64
65#define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
66 KVM_BUS_LOCK_DETECTION_EXIT)
67
68/* x86-specific vcpu->requests bit members */
69#define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
70#define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
71#define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
72#define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
73#define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
74#define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
75#define KVM_REQ_EVENT KVM_ARCH_REQ(6)
76#define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
77#define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
78#define KVM_REQ_NMI KVM_ARCH_REQ(9)
79#define KVM_REQ_PMU KVM_ARCH_REQ(10)
80#define KVM_REQ_PMI KVM_ARCH_REQ(11)
81#define KVM_REQ_SMI KVM_ARCH_REQ(12)
82#define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
83#define KVM_REQ_MCLOCK_INPROGRESS \
84 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
85#define KVM_REQ_SCAN_IOAPIC \
86 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
87#define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
88#define KVM_REQ_APIC_PAGE_RELOAD \
89 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
90#define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
91#define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
92#define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
93#define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
94#define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
95#define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
96#define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
97#define KVM_REQ_APICV_UPDATE \
98 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99#define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
100#define KVM_REQ_TLB_FLUSH_GUEST \
101 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
102#define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
103#define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
104#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
105 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106
107#define CR0_RESERVED_BITS \
108 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
109 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
110 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
111
112#define CR4_RESERVED_BITS \
113 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
114 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
115 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
116 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
117 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
118 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
119
120#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
121
122
123
124#define INVALID_PAGE (~(hpa_t)0)
125#define VALID_PAGE(x) ((x) != INVALID_PAGE)
126
127#define UNMAPPED_GVA (~(gpa_t)0)
128#define INVALID_GPA (~(gpa_t)0)
129
130/* KVM Hugepage definitions for x86 */
131#define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
132#define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
133#define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
134#define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
135#define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
136#define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
137#define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
138
139#define KVM_PERMILLE_MMU_PAGES 20
140#define KVM_MIN_ALLOC_MMU_PAGES 64UL
141#define KVM_MMU_HASH_SHIFT 12
142#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
143#define KVM_MIN_FREE_MMU_PAGES 5
144#define KVM_REFILL_PAGES 25
145#define KVM_MAX_CPUID_ENTRIES 256
146#define KVM_NR_FIXED_MTRR_REGION 88
147#define KVM_NR_VAR_MTRR 8
148
149#define ASYNC_PF_PER_VCPU 64
150
151enum kvm_reg {
152 VCPU_REGS_RAX = __VCPU_REGS_RAX,
153 VCPU_REGS_RCX = __VCPU_REGS_RCX,
154 VCPU_REGS_RDX = __VCPU_REGS_RDX,
155 VCPU_REGS_RBX = __VCPU_REGS_RBX,
156 VCPU_REGS_RSP = __VCPU_REGS_RSP,
157 VCPU_REGS_RBP = __VCPU_REGS_RBP,
158 VCPU_REGS_RSI = __VCPU_REGS_RSI,
159 VCPU_REGS_RDI = __VCPU_REGS_RDI,
160#ifdef CONFIG_X86_64
161 VCPU_REGS_R8 = __VCPU_REGS_R8,
162 VCPU_REGS_R9 = __VCPU_REGS_R9,
163 VCPU_REGS_R10 = __VCPU_REGS_R10,
164 VCPU_REGS_R11 = __VCPU_REGS_R11,
165 VCPU_REGS_R12 = __VCPU_REGS_R12,
166 VCPU_REGS_R13 = __VCPU_REGS_R13,
167 VCPU_REGS_R14 = __VCPU_REGS_R14,
168 VCPU_REGS_R15 = __VCPU_REGS_R15,
169#endif
170 VCPU_REGS_RIP,
171 NR_VCPU_REGS,
172
173 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
174 VCPU_EXREG_CR0,
175 VCPU_EXREG_CR3,
176 VCPU_EXREG_CR4,
177 VCPU_EXREG_RFLAGS,
178 VCPU_EXREG_SEGMENTS,
179 VCPU_EXREG_EXIT_INFO_1,
180 VCPU_EXREG_EXIT_INFO_2,
181};
182
183enum {
184 VCPU_SREG_ES,
185 VCPU_SREG_CS,
186 VCPU_SREG_SS,
187 VCPU_SREG_DS,
188 VCPU_SREG_FS,
189 VCPU_SREG_GS,
190 VCPU_SREG_TR,
191 VCPU_SREG_LDTR,
192};
193
194enum exit_fastpath_completion {
195 EXIT_FASTPATH_NONE,
196 EXIT_FASTPATH_REENTER_GUEST,
197 EXIT_FASTPATH_EXIT_HANDLED,
198};
199typedef enum exit_fastpath_completion fastpath_t;
200
201struct x86_emulate_ctxt;
202struct x86_exception;
203enum x86_intercept;
204enum x86_intercept_stage;
205
206#define KVM_NR_DB_REGS 4
207
208#define DR6_BUS_LOCK (1 << 11)
209#define DR6_BD (1 << 13)
210#define DR6_BS (1 << 14)
211#define DR6_BT (1 << 15)
212#define DR6_RTM (1 << 16)
213/*
214 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
215 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
216 * they will never be 0 for now, but when they are defined
217 * in the future it will require no code change.
218 *
219 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
220 */
221#define DR6_ACTIVE_LOW 0xffff0ff0
222#define DR6_VOLATILE 0x0001e80f
223#define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
224
225#define DR7_BP_EN_MASK 0x000000ff
226#define DR7_GE (1 << 9)
227#define DR7_GD (1 << 13)
228#define DR7_FIXED_1 0x00000400
229#define DR7_VOLATILE 0xffff2bff
230
231#define KVM_GUESTDBG_VALID_MASK \
232 (KVM_GUESTDBG_ENABLE | \
233 KVM_GUESTDBG_SINGLESTEP | \
234 KVM_GUESTDBG_USE_HW_BP | \
235 KVM_GUESTDBG_USE_SW_BP | \
236 KVM_GUESTDBG_INJECT_BP | \
237 KVM_GUESTDBG_INJECT_DB | \
238 KVM_GUESTDBG_BLOCKIRQ)
239
240
241#define PFERR_PRESENT_BIT 0
242#define PFERR_WRITE_BIT 1
243#define PFERR_USER_BIT 2
244#define PFERR_RSVD_BIT 3
245#define PFERR_FETCH_BIT 4
246#define PFERR_PK_BIT 5
247#define PFERR_SGX_BIT 15
248#define PFERR_GUEST_FINAL_BIT 32
249#define PFERR_GUEST_PAGE_BIT 33
250
251#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
252#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
253#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
254#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
255#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
256#define PFERR_PK_MASK (1U << PFERR_PK_BIT)
257#define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
258#define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
259#define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
260
261#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
262 PFERR_WRITE_MASK | \
263 PFERR_PRESENT_MASK)
264
265/* apic attention bits */
266#define KVM_APIC_CHECK_VAPIC 0
267/*
268 * The following bit is set with PV-EOI, unset on EOI.
269 * We detect PV-EOI changes by guest by comparing
270 * this bit with PV-EOI in guest memory.
271 * See the implementation in apic_update_pv_eoi.
272 */
273#define KVM_APIC_PV_EOI_PENDING 1
274
275struct kvm_kernel_irq_routing_entry;
276
277/*
278 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
279 * also includes TDP pages) to determine whether or not a page can be used in
280 * the given MMU context. This is a subset of the overall kvm_mmu_role to
281 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
282 * 2 bytes per gfn instead of 4 bytes per gfn.
283 *
284 * Indirect upper-level shadow pages are tracked for write-protection via
285 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create
286 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
287 * gfn_track will overflow and explosions will ensure.
288 *
289 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
290 * cannot be reused. The ability to reuse a SP is tracked by its role, which
291 * incorporates various mode bits and properties of the SP. Roughly speaking,
292 * the number of unique SPs that can theoretically be created is 2^n, where n
293 * is the number of bits that are used to compute the role.
294 *
295 * But, even though there are 18 bits in the mask below, not all combinations
296 * of modes and flags are possible. The maximum number of possible upper-level
297 * shadow pages for a single gfn is in the neighborhood of 2^13.
298 *
299 * - invalid shadow pages are not accounted.
300 * - level is effectively limited to four combinations, not 16 as the number
301 * bits would imply, as 4k SPs are not tracked (allowed to go unsync).
302 * - level is effectively unused for non-PAE paging because there is exactly
303 * one upper level (see 4k SP exception above).
304 * - quadrant is used only for non-PAE paging and is exclusive with
305 * gpte_is_8_bytes.
306 * - execonly and ad_disabled are used only for nested EPT, which makes it
307 * exclusive with quadrant.
308 */
309union kvm_mmu_page_role {
310 u32 word;
311 struct {
312 unsigned level:4;
313 unsigned gpte_is_8_bytes:1;
314 unsigned quadrant:2;
315 unsigned direct:1;
316 unsigned access:3;
317 unsigned invalid:1;
318 unsigned efer_nx:1;
319 unsigned cr0_wp:1;
320 unsigned smep_andnot_wp:1;
321 unsigned smap_andnot_wp:1;
322 unsigned ad_disabled:1;
323 unsigned guest_mode:1;
324 unsigned :6;
325
326 /*
327 * This is left at the top of the word so that
328 * kvm_memslots_for_spte_role can extract it with a
329 * simple shift. While there is room, give it a whole
330 * byte so it is also faster to load it from memory.
331 */
332 unsigned smm:8;
333 };
334};
335
336/*
337 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
338 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
339 * including on nested transitions, if nothing in the full role changes then
340 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
341 * don't treat all-zero structure as valid data.
342 *
343 * The properties that are tracked in the extended role but not the page role
344 * are for things that either (a) do not affect the validity of the shadow page
345 * or (b) are indirectly reflected in the shadow page's role. For example,
346 * CR4.PKE only affects permission checks for software walks of the guest page
347 * tables (because KVM doesn't support Protection Keys with shadow paging), and
348 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
349 *
350 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
351 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
352 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
353 * SMAP aware regardless of CR0.WP.
354 */
355union kvm_mmu_extended_role {
356 u32 word;
357 struct {
358 unsigned int valid:1;
359 unsigned int execonly:1;
360 unsigned int cr0_pg:1;
361 unsigned int cr4_pae:1;
362 unsigned int cr4_pse:1;
363 unsigned int cr4_pke:1;
364 unsigned int cr4_smap:1;
365 unsigned int cr4_smep:1;
366 unsigned int cr4_la57:1;
367 unsigned int efer_lma:1;
368 };
369};
370
371union kvm_mmu_role {
372 u64 as_u64;
373 struct {
374 union kvm_mmu_page_role base;
375 union kvm_mmu_extended_role ext;
376 };
377};
378
379struct kvm_rmap_head {
380 unsigned long val;
381};
382
383struct kvm_pio_request {
384 unsigned long linear_rip;
385 unsigned long count;
386 int in;
387 int port;
388 int size;
389};
390
391#define PT64_ROOT_MAX_LEVEL 5
392
393struct rsvd_bits_validate {
394 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
395 u64 bad_mt_xwr;
396};
397
398struct kvm_mmu_root_info {
399 gpa_t pgd;
400 hpa_t hpa;
401};
402
403#define KVM_MMU_ROOT_INFO_INVALID \
404 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
405
406#define KVM_MMU_NUM_PREV_ROOTS 3
407
408#define KVM_HAVE_MMU_RWLOCK
409
410struct kvm_mmu_page;
411
412/*
413 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
414 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
415 * current mmu mode.
416 */
417struct kvm_mmu {
418 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
419 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
420 int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
421 bool prefault);
422 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
423 struct x86_exception *fault);
424 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
425 u32 access, struct x86_exception *exception);
426 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
427 struct x86_exception *exception);
428 int (*sync_page)(struct kvm_vcpu *vcpu,
429 struct kvm_mmu_page *sp);
430 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
431 hpa_t root_hpa;
432 gpa_t root_pgd;
433 union kvm_mmu_role mmu_role;
434 u8 root_level;
435 u8 shadow_root_level;
436 u8 ept_ad;
437 bool direct_map;
438 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
439
440 /*
441 * Bitmap; bit set = permission fault
442 * Byte index: page fault error code [4:1]
443 * Bit index: pte permissions in ACC_* format
444 */
445 u8 permissions[16];
446
447 /*
448 * The pkru_mask indicates if protection key checks are needed. It
449 * consists of 16 domains indexed by page fault error code bits [4:1],
450 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
451 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
452 */
453 u32 pkru_mask;
454
455 u64 *pae_root;
456 u64 *pml4_root;
457 u64 *pml5_root;
458
459 /*
460 * check zero bits on shadow page table entries, these
461 * bits include not only hardware reserved bits but also
462 * the bits spte never used.
463 */
464 struct rsvd_bits_validate shadow_zero_check;
465
466 struct rsvd_bits_validate guest_rsvd_check;
467
468 u64 pdptrs[4]; /* pae */
469};
470
471struct kvm_tlb_range {
472 u64 start_gfn;
473 u64 pages;
474};
475
476enum pmc_type {
477 KVM_PMC_GP = 0,
478 KVM_PMC_FIXED,
479};
480
481struct kvm_pmc {
482 enum pmc_type type;
483 u8 idx;
484 u64 counter;
485 u64 eventsel;
486 struct perf_event *perf_event;
487 struct kvm_vcpu *vcpu;
488 /*
489 * eventsel value for general purpose counters,
490 * ctrl value for fixed counters.
491 */
492 u64 current_config;
493 bool is_paused;
494};
495
496struct kvm_pmu {
497 unsigned nr_arch_gp_counters;
498 unsigned nr_arch_fixed_counters;
499 unsigned available_event_types;
500 u64 fixed_ctr_ctrl;
501 u64 global_ctrl;
502 u64 global_status;
503 u64 global_ovf_ctrl;
504 u64 counter_bitmask[2];
505 u64 global_ctrl_mask;
506 u64 global_ovf_ctrl_mask;
507 u64 reserved_bits;
508 u64 raw_event_mask;
509 u8 version;
510 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
511 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
512 struct irq_work irq_work;
513 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
514 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
515 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
516
517 /*
518 * The gate to release perf_events not marked in
519 * pmc_in_use only once in a vcpu time slice.
520 */
521 bool need_cleanup;
522
523 /*
524 * The total number of programmed perf_events and it helps to avoid
525 * redundant check before cleanup if guest don't use vPMU at all.
526 */
527 u8 event_count;
528};
529
530struct kvm_pmu_ops;
531
532enum {
533 KVM_DEBUGREG_BP_ENABLED = 1,
534 KVM_DEBUGREG_WONT_EXIT = 2,
535};
536
537struct kvm_mtrr_range {
538 u64 base;
539 u64 mask;
540 struct list_head node;
541};
542
543struct kvm_mtrr {
544 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
545 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
546 u64 deftype;
547
548 struct list_head head;
549};
550
551/* Hyper-V SynIC timer */
552struct kvm_vcpu_hv_stimer {
553 struct hrtimer timer;
554 int index;
555 union hv_stimer_config config;
556 u64 count;
557 u64 exp_time;
558 struct hv_message msg;
559 bool msg_pending;
560};
561
562/* Hyper-V synthetic interrupt controller (SynIC)*/
563struct kvm_vcpu_hv_synic {
564 u64 version;
565 u64 control;
566 u64 msg_page;
567 u64 evt_page;
568 atomic64_t sint[HV_SYNIC_SINT_COUNT];
569 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
570 DECLARE_BITMAP(auto_eoi_bitmap, 256);
571 DECLARE_BITMAP(vec_bitmap, 256);
572 bool active;
573 bool dont_zero_synic_pages;
574};
575
576/* Hyper-V per vcpu emulation context */
577struct kvm_vcpu_hv {
578 struct kvm_vcpu *vcpu;
579 u32 vp_index;
580 u64 hv_vapic;
581 s64 runtime_offset;
582 struct kvm_vcpu_hv_synic synic;
583 struct kvm_hyperv_exit exit;
584 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
585 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
586 cpumask_t tlb_flush;
587 bool enforce_cpuid;
588 struct {
589 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
590 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
591 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
592 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
593 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
594 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
595 } cpuid_cache;
596};
597
598/* Xen HVM per vcpu emulation context */
599struct kvm_vcpu_xen {
600 u64 hypercall_rip;
601 u32 current_runstate;
602 bool vcpu_info_set;
603 bool vcpu_time_info_set;
604 bool runstate_set;
605 struct gfn_to_hva_cache vcpu_info_cache;
606 struct gfn_to_hva_cache vcpu_time_info_cache;
607 struct gfn_to_hva_cache runstate_cache;
608 u64 last_steal;
609 u64 runstate_entry_time;
610 u64 runstate_times[4];
611};
612
613struct kvm_vcpu_arch {
614 /*
615 * rip and regs accesses must go through
616 * kvm_{register,rip}_{read,write} functions.
617 */
618 unsigned long regs[NR_VCPU_REGS];
619 u32 regs_avail;
620 u32 regs_dirty;
621
622 unsigned long cr0;
623 unsigned long cr0_guest_owned_bits;
624 unsigned long cr2;
625 unsigned long cr3;
626 unsigned long cr4;
627 unsigned long cr4_guest_owned_bits;
628 unsigned long cr4_guest_rsvd_bits;
629 unsigned long cr8;
630 u32 host_pkru;
631 u32 pkru;
632 u32 hflags;
633 u64 efer;
634 u64 apic_base;
635 struct kvm_lapic *apic; /* kernel irqchip context */
636 bool apicv_active;
637 bool load_eoi_exitmap_pending;
638 DECLARE_BITMAP(ioapic_handled_vectors, 256);
639 unsigned long apic_attention;
640 int32_t apic_arb_prio;
641 int mp_state;
642 u64 ia32_misc_enable_msr;
643 u64 smbase;
644 u64 smi_count;
645 bool tpr_access_reporting;
646 bool xsaves_enabled;
647 u64 ia32_xss;
648 u64 microcode_version;
649 u64 arch_capabilities;
650 u64 perf_capabilities;
651
652 /*
653 * Paging state of the vcpu
654 *
655 * If the vcpu runs in guest mode with two level paging this still saves
656 * the paging mode of the l1 guest. This context is always used to
657 * handle faults.
658 */
659 struct kvm_mmu *mmu;
660
661 /* Non-nested MMU for L1 */
662 struct kvm_mmu root_mmu;
663
664 /* L1 MMU when running nested */
665 struct kvm_mmu guest_mmu;
666
667 /*
668 * Paging state of an L2 guest (used for nested npt)
669 *
670 * This context will save all necessary information to walk page tables
671 * of an L2 guest. This context is only initialized for page table
672 * walking and not for faulting since we never handle l2 page faults on
673 * the host.
674 */
675 struct kvm_mmu nested_mmu;
676
677 /*
678 * Pointer to the mmu context currently used for
679 * gva_to_gpa translations.
680 */
681 struct kvm_mmu *walk_mmu;
682
683 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
684 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
685 struct kvm_mmu_memory_cache mmu_gfn_array_cache;
686 struct kvm_mmu_memory_cache mmu_page_header_cache;
687
688 /*
689 * QEMU userspace and the guest each have their own FPU state.
690 * In vcpu_run, we switch between the user and guest FPU contexts.
691 * While running a VCPU, the VCPU thread will have the guest FPU
692 * context.
693 *
694 * Note that while the PKRU state lives inside the fpu registers,
695 * it is switched out separately at VMENTER and VMEXIT time. The
696 * "guest_fpstate" state here contains the guest FPU context, with the
697 * host PRKU bits.
698 */
699 struct fpu_guest guest_fpu;
700
701 u64 xcr0;
702 u64 guest_supported_xcr0;
703
704 struct kvm_pio_request pio;
705 void *pio_data;
706 void *sev_pio_data;
707 unsigned sev_pio_count;
708
709 u8 event_exit_inst_len;
710
711 struct kvm_queued_exception {
712 bool pending;
713 bool injected;
714 bool has_error_code;
715 u8 nr;
716 u32 error_code;
717 unsigned long payload;
718 bool has_payload;
719 u8 nested_apf;
720 } exception;
721
722 struct kvm_queued_interrupt {
723 bool injected;
724 bool soft;
725 u8 nr;
726 } interrupt;
727
728 int halt_request; /* real mode on Intel only */
729
730 int cpuid_nent;
731 struct kvm_cpuid_entry2 *cpuid_entries;
732
733 u64 reserved_gpa_bits;
734 int maxphyaddr;
735
736 /* emulate context */
737
738 struct x86_emulate_ctxt *emulate_ctxt;
739 bool emulate_regs_need_sync_to_vcpu;
740 bool emulate_regs_need_sync_from_vcpu;
741 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
742
743 gpa_t time;
744 struct pvclock_vcpu_time_info hv_clock;
745 unsigned int hw_tsc_khz;
746 struct gfn_to_hva_cache pv_time;
747 bool pv_time_enabled;
748 /* set guest stopped flag in pvclock flags field */
749 bool pvclock_set_guest_stopped_request;
750
751 struct {
752 u8 preempted;
753 u64 msr_val;
754 u64 last_steal;
755 struct gfn_to_hva_cache cache;
756 } st;
757
758 u64 l1_tsc_offset;
759 u64 tsc_offset; /* current tsc offset */
760 u64 last_guest_tsc;
761 u64 last_host_tsc;
762 u64 tsc_offset_adjustment;
763 u64 this_tsc_nsec;
764 u64 this_tsc_write;
765 u64 this_tsc_generation;
766 bool tsc_catchup;
767 bool tsc_always_catchup;
768 s8 virtual_tsc_shift;
769 u32 virtual_tsc_mult;
770 u32 virtual_tsc_khz;
771 s64 ia32_tsc_adjust_msr;
772 u64 msr_ia32_power_ctl;
773 u64 l1_tsc_scaling_ratio;
774 u64 tsc_scaling_ratio; /* current scaling ratio */
775
776 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
777 unsigned nmi_pending; /* NMI queued after currently running handler */
778 bool nmi_injected; /* Trying to inject an NMI this entry */
779 bool smi_pending; /* SMI queued after currently running handler */
780
781 struct kvm_mtrr mtrr_state;
782 u64 pat;
783
784 unsigned switch_db_regs;
785 unsigned long db[KVM_NR_DB_REGS];
786 unsigned long dr6;
787 unsigned long dr7;
788 unsigned long eff_db[KVM_NR_DB_REGS];
789 unsigned long guest_debug_dr7;
790 u64 msr_platform_info;
791 u64 msr_misc_features_enables;
792
793 u64 mcg_cap;
794 u64 mcg_status;
795 u64 mcg_ctl;
796 u64 mcg_ext_ctl;
797 u64 *mce_banks;
798
799 /* Cache MMIO info */
800 u64 mmio_gva;
801 unsigned mmio_access;
802 gfn_t mmio_gfn;
803 u64 mmio_gen;
804
805 struct kvm_pmu pmu;
806
807 /* used for guest single stepping over the given code position */
808 unsigned long singlestep_rip;
809
810 bool hyperv_enabled;
811 struct kvm_vcpu_hv *hyperv;
812 struct kvm_vcpu_xen xen;
813
814 cpumask_var_t wbinvd_dirty_mask;
815
816 unsigned long last_retry_eip;
817 unsigned long last_retry_addr;
818
819 struct {
820 bool halted;
821 gfn_t gfns[ASYNC_PF_PER_VCPU];
822 struct gfn_to_hva_cache data;
823 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
824 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
825 u16 vec;
826 u32 id;
827 bool send_user_only;
828 u32 host_apf_flags;
829 unsigned long nested_apf_token;
830 bool delivery_as_pf_vmexit;
831 bool pageready_pending;
832 } apf;
833
834 /* OSVW MSRs (AMD only) */
835 struct {
836 u64 length;
837 u64 status;
838 } osvw;
839
840 struct {
841 u64 msr_val;
842 struct gfn_to_hva_cache data;
843 } pv_eoi;
844
845 u64 msr_kvm_poll_control;
846
847 /*
848 * Indicates the guest is trying to write a gfn that contains one or
849 * more of the PTEs used to translate the write itself, i.e. the access
850 * is changing its own translation in the guest page tables. KVM exits
851 * to userspace if emulation of the faulting instruction fails and this
852 * flag is set, as KVM cannot make forward progress.
853 *
854 * If emulation fails for a write to guest page tables, KVM unprotects
855 * (zaps) the shadow page for the target gfn and resumes the guest to
856 * retry the non-emulatable instruction (on hardware). Unprotecting the
857 * gfn doesn't allow forward progress for a self-changing access because
858 * doing so also zaps the translation for the gfn, i.e. retrying the
859 * instruction will hit a !PRESENT fault, which results in a new shadow
860 * page and sends KVM back to square one.
861 */
862 bool write_fault_to_shadow_pgtable;
863
864 /* set at EPT violation at this point */
865 unsigned long exit_qualification;
866
867 /* pv related host specific info */
868 struct {
869 bool pv_unhalted;
870 } pv;
871
872 int pending_ioapic_eoi;
873 int pending_external_vector;
874
875 /* be preempted when it's in kernel-mode(cpl=0) */
876 bool preempted_in_kernel;
877
878 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
879 bool l1tf_flush_l1d;
880
881 /* Host CPU on which VM-entry was most recently attempted */
882 int last_vmentry_cpu;
883
884 /* AMD MSRC001_0015 Hardware Configuration */
885 u64 msr_hwcr;
886
887 /* pv related cpuid info */
888 struct {
889 /*
890 * value of the eax register in the KVM_CPUID_FEATURES CPUID
891 * leaf.
892 */
893 u32 features;
894
895 /*
896 * indicates whether pv emulation should be disabled if features
897 * are not present in the guest's cpuid
898 */
899 bool enforce;
900 } pv_cpuid;
901
902 /* Protected Guests */
903 bool guest_state_protected;
904
905 /*
906 * Set when PDPTS were loaded directly by the userspace without
907 * reading the guest memory
908 */
909 bool pdptrs_from_userspace;
910
911#if IS_ENABLED(CONFIG_HYPERV)
912 hpa_t hv_root_tdp;
913#endif
914};
915
916struct kvm_lpage_info {
917 int disallow_lpage;
918};
919
920struct kvm_arch_memory_slot {
921 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
922 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
923 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
924};
925
926/*
927 * We use as the mode the number of bits allocated in the LDR for the
928 * logical processor ID. It happens that these are all powers of two.
929 * This makes it is very easy to detect cases where the APICs are
930 * configured for multiple modes; in that case, we cannot use the map and
931 * hence cannot use kvm_irq_delivery_to_apic_fast either.
932 */
933#define KVM_APIC_MODE_XAPIC_CLUSTER 4
934#define KVM_APIC_MODE_XAPIC_FLAT 8
935#define KVM_APIC_MODE_X2APIC 16
936
937struct kvm_apic_map {
938 struct rcu_head rcu;
939 u8 mode;
940 u32 max_apic_id;
941 union {
942 struct kvm_lapic *xapic_flat_map[8];
943 struct kvm_lapic *xapic_cluster_map[16][4];
944 };
945 struct kvm_lapic *phys_map[];
946};
947
948/* Hyper-V synthetic debugger (SynDbg)*/
949struct kvm_hv_syndbg {
950 struct {
951 u64 control;
952 u64 status;
953 u64 send_page;
954 u64 recv_page;
955 u64 pending_page;
956 } control;
957 u64 options;
958};
959
960/* Current state of Hyper-V TSC page clocksource */
961enum hv_tsc_page_status {
962 /* TSC page was not set up or disabled */
963 HV_TSC_PAGE_UNSET = 0,
964 /* TSC page MSR was written by the guest, update pending */
965 HV_TSC_PAGE_GUEST_CHANGED,
966 /* TSC page MSR was written by KVM userspace, update pending */
967 HV_TSC_PAGE_HOST_CHANGED,
968 /* TSC page was properly set up and is currently active */
969 HV_TSC_PAGE_SET,
970 /* TSC page is currently being updated and therefore is inactive */
971 HV_TSC_PAGE_UPDATING,
972 /* TSC page was set up with an inaccessible GPA */
973 HV_TSC_PAGE_BROKEN,
974};
975
976/* Hyper-V emulation context */
977struct kvm_hv {
978 struct mutex hv_lock;
979 u64 hv_guest_os_id;
980 u64 hv_hypercall;
981 u64 hv_tsc_page;
982 enum hv_tsc_page_status hv_tsc_page_status;
983
984 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
985 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
986 u64 hv_crash_ctl;
987
988 struct ms_hyperv_tsc_page tsc_ref;
989
990 struct idr conn_to_evt;
991
992 u64 hv_reenlightenment_control;
993 u64 hv_tsc_emulation_control;
994 u64 hv_tsc_emulation_status;
995
996 /* How many vCPUs have VP index != vCPU index */
997 atomic_t num_mismatched_vp_indexes;
998
999 /*
1000 * How many SynICs use 'AutoEOI' feature
1001 * (protected by arch.apicv_update_lock)
1002 */
1003 unsigned int synic_auto_eoi_used;
1004
1005 struct hv_partition_assist_pg *hv_pa_pg;
1006 struct kvm_hv_syndbg hv_syndbg;
1007};
1008
1009struct msr_bitmap_range {
1010 u32 flags;
1011 u32 nmsrs;
1012 u32 base;
1013 unsigned long *bitmap;
1014};
1015
1016/* Xen emulation context */
1017struct kvm_xen {
1018 bool long_mode;
1019 u8 upcall_vector;
1020 gfn_t shinfo_gfn;
1021};
1022
1023enum kvm_irqchip_mode {
1024 KVM_IRQCHIP_NONE,
1025 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1026 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1027};
1028
1029struct kvm_x86_msr_filter {
1030 u8 count;
1031 bool default_allow:1;
1032 struct msr_bitmap_range ranges[16];
1033};
1034
1035#define APICV_INHIBIT_REASON_DISABLE 0
1036#define APICV_INHIBIT_REASON_HYPERV 1
1037#define APICV_INHIBIT_REASON_NESTED 2
1038#define APICV_INHIBIT_REASON_IRQWIN 3
1039#define APICV_INHIBIT_REASON_PIT_REINJ 4
1040#define APICV_INHIBIT_REASON_X2APIC 5
1041
1042struct kvm_arch {
1043 unsigned long n_used_mmu_pages;
1044 unsigned long n_requested_mmu_pages;
1045 unsigned long n_max_mmu_pages;
1046 unsigned int indirect_shadow_pages;
1047 u8 mmu_valid_gen;
1048 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1049 struct list_head active_mmu_pages;
1050 struct list_head zapped_obsolete_pages;
1051 struct list_head lpage_disallowed_mmu_pages;
1052 struct kvm_page_track_notifier_node mmu_sp_tracker;
1053 struct kvm_page_track_notifier_head track_notifier_head;
1054 /*
1055 * Protects marking pages unsync during page faults, as TDP MMU page
1056 * faults only take mmu_lock for read. For simplicity, the unsync
1057 * pages lock is always taken when marking pages unsync regardless of
1058 * whether mmu_lock is held for read or write.
1059 */
1060 spinlock_t mmu_unsync_pages_lock;
1061
1062 struct list_head assigned_dev_head;
1063 struct iommu_domain *iommu_domain;
1064 bool iommu_noncoherent;
1065#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1066 atomic_t noncoherent_dma_count;
1067#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1068 atomic_t assigned_device_count;
1069 struct kvm_pic *vpic;
1070 struct kvm_ioapic *vioapic;
1071 struct kvm_pit *vpit;
1072 atomic_t vapics_in_nmi_mode;
1073 struct mutex apic_map_lock;
1074 struct kvm_apic_map __rcu *apic_map;
1075 atomic_t apic_map_dirty;
1076
1077 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1078 struct mutex apicv_update_lock;
1079
1080 bool apic_access_memslot_enabled;
1081 unsigned long apicv_inhibit_reasons;
1082
1083 gpa_t wall_clock;
1084
1085 bool mwait_in_guest;
1086 bool hlt_in_guest;
1087 bool pause_in_guest;
1088 bool cstate_in_guest;
1089
1090 unsigned long irq_sources_bitmap;
1091 s64 kvmclock_offset;
1092 raw_spinlock_t tsc_write_lock;
1093 u64 last_tsc_nsec;
1094 u64 last_tsc_write;
1095 u32 last_tsc_khz;
1096 u64 cur_tsc_nsec;
1097 u64 cur_tsc_write;
1098 u64 cur_tsc_offset;
1099 u64 cur_tsc_generation;
1100 int nr_vcpus_matched_tsc;
1101
1102 raw_spinlock_t pvclock_gtod_sync_lock;
1103 bool use_master_clock;
1104 u64 master_kernel_ns;
1105 u64 master_cycle_now;
1106 struct delayed_work kvmclock_update_work;
1107 struct delayed_work kvmclock_sync_work;
1108
1109 struct kvm_xen_hvm_config xen_hvm_config;
1110
1111 /* reads protected by irq_srcu, writes by irq_lock */
1112 struct hlist_head mask_notifier_list;
1113
1114 struct kvm_hv hyperv;
1115 struct kvm_xen xen;
1116
1117 #ifdef CONFIG_KVM_MMU_AUDIT
1118 int audit_point;
1119 #endif
1120
1121 bool backwards_tsc_observed;
1122 bool boot_vcpu_runs_old_kvmclock;
1123 u32 bsp_vcpu_id;
1124
1125 u64 disabled_quirks;
1126 int cpu_dirty_logging_count;
1127
1128 enum kvm_irqchip_mode irqchip_mode;
1129 u8 nr_reserved_ioapic_pins;
1130
1131 bool disabled_lapic_found;
1132
1133 bool x2apic_format;
1134 bool x2apic_broadcast_quirk_disabled;
1135
1136 bool guest_can_read_msr_platform_info;
1137 bool exception_payload_enabled;
1138
1139 bool bus_lock_detection_enabled;
1140 /*
1141 * If exit_on_emulation_error is set, and the in-kernel instruction
1142 * emulator fails to emulate an instruction, allow userspace
1143 * the opportunity to look at it.
1144 */
1145 bool exit_on_emulation_error;
1146
1147 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1148 u32 user_space_msr_mask;
1149 struct kvm_x86_msr_filter __rcu *msr_filter;
1150
1151 u32 hypercall_exit_enabled;
1152
1153 /* Guest can access the SGX PROVISIONKEY. */
1154 bool sgx_provisioning_allowed;
1155
1156 struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1157 struct task_struct *nx_lpage_recovery_thread;
1158
1159#ifdef CONFIG_X86_64
1160 /*
1161 * Whether the TDP MMU is enabled for this VM. This contains a
1162 * snapshot of the TDP MMU module parameter from when the VM was
1163 * created and remains unchanged for the life of the VM. If this is
1164 * true, TDP MMU handler functions will run for various MMU
1165 * operations.
1166 */
1167 bool tdp_mmu_enabled;
1168
1169 /*
1170 * List of struct kvm_mmu_pages being used as roots.
1171 * All struct kvm_mmu_pages in the list should have
1172 * tdp_mmu_page set.
1173 *
1174 * For reads, this list is protected by:
1175 * the MMU lock in read mode + RCU or
1176 * the MMU lock in write mode
1177 *
1178 * For writes, this list is protected by:
1179 * the MMU lock in read mode + the tdp_mmu_pages_lock or
1180 * the MMU lock in write mode
1181 *
1182 * Roots will remain in the list until their tdp_mmu_root_count
1183 * drops to zero, at which point the thread that decremented the
1184 * count to zero should removed the root from the list and clean
1185 * it up, freeing the root after an RCU grace period.
1186 */
1187 struct list_head tdp_mmu_roots;
1188
1189 /*
1190 * List of struct kvmp_mmu_pages not being used as roots.
1191 * All struct kvm_mmu_pages in the list should have
1192 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1193 */
1194 struct list_head tdp_mmu_pages;
1195
1196 /*
1197 * Protects accesses to the following fields when the MMU lock
1198 * is held in read mode:
1199 * - tdp_mmu_roots (above)
1200 * - tdp_mmu_pages (above)
1201 * - the link field of struct kvm_mmu_pages used by the TDP MMU
1202 * - lpage_disallowed_mmu_pages
1203 * - the lpage_disallowed_link field of struct kvm_mmu_pages used
1204 * by the TDP MMU
1205 * It is acceptable, but not necessary, to acquire this lock when
1206 * the thread holds the MMU lock in write mode.
1207 */
1208 spinlock_t tdp_mmu_pages_lock;
1209#endif /* CONFIG_X86_64 */
1210
1211 /*
1212 * If set, rmaps have been allocated for all memslots and should be
1213 * allocated for any newly created or modified memslots.
1214 */
1215 bool memslots_have_rmaps;
1216
1217#if IS_ENABLED(CONFIG_HYPERV)
1218 hpa_t hv_root_tdp;
1219 spinlock_t hv_root_tdp_lock;
1220#endif
1221};
1222
1223struct kvm_vm_stat {
1224 struct kvm_vm_stat_generic generic;
1225 u64 mmu_shadow_zapped;
1226 u64 mmu_pte_write;
1227 u64 mmu_pde_zapped;
1228 u64 mmu_flooded;
1229 u64 mmu_recycled;
1230 u64 mmu_cache_miss;
1231 u64 mmu_unsync;
1232 union {
1233 struct {
1234 atomic64_t pages_4k;
1235 atomic64_t pages_2m;
1236 atomic64_t pages_1g;
1237 };
1238 atomic64_t pages[KVM_NR_PAGE_SIZES];
1239 };
1240 u64 nx_lpage_splits;
1241 u64 max_mmu_page_hash_collisions;
1242 u64 max_mmu_rmap_size;
1243};
1244
1245struct kvm_vcpu_stat {
1246 struct kvm_vcpu_stat_generic generic;
1247 u64 pf_fixed;
1248 u64 pf_guest;
1249 u64 tlb_flush;
1250 u64 invlpg;
1251
1252 u64 exits;
1253 u64 io_exits;
1254 u64 mmio_exits;
1255 u64 signal_exits;
1256 u64 irq_window_exits;
1257 u64 nmi_window_exits;
1258 u64 l1d_flush;
1259 u64 halt_exits;
1260 u64 request_irq_exits;
1261 u64 irq_exits;
1262 u64 host_state_reload;
1263 u64 fpu_reload;
1264 u64 insn_emulation;
1265 u64 insn_emulation_fail;
1266 u64 hypercalls;
1267 u64 irq_injections;
1268 u64 nmi_injections;
1269 u64 req_event;
1270 u64 nested_run;
1271 u64 directed_yield_attempted;
1272 u64 directed_yield_successful;
1273 u64 guest_mode;
1274};
1275
1276struct x86_instruction_info;
1277
1278struct msr_data {
1279 bool host_initiated;
1280 u32 index;
1281 u64 data;
1282};
1283
1284struct kvm_lapic_irq {
1285 u32 vector;
1286 u16 delivery_mode;
1287 u16 dest_mode;
1288 bool level;
1289 u16 trig_mode;
1290 u32 shorthand;
1291 u32 dest_id;
1292 bool msi_redir_hint;
1293};
1294
1295static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1296{
1297 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1298}
1299
1300struct kvm_x86_ops {
1301 int (*hardware_enable)(void);
1302 void (*hardware_disable)(void);
1303 void (*hardware_unsetup)(void);
1304 bool (*cpu_has_accelerated_tpr)(void);
1305 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1306 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1307
1308 unsigned int vm_size;
1309 int (*vm_init)(struct kvm *kvm);
1310 void (*vm_destroy)(struct kvm *kvm);
1311
1312 /* Create, but do not attach this VCPU */
1313 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1314 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1315 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1316
1317 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1318 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1319 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1320
1321 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1322 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1323 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1324 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1325 void (*get_segment)(struct kvm_vcpu *vcpu,
1326 struct kvm_segment *var, int seg);
1327 int (*get_cpl)(struct kvm_vcpu *vcpu);
1328 void (*set_segment)(struct kvm_vcpu *vcpu,
1329 struct kvm_segment *var, int seg);
1330 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1331 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1332 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1333 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1334 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1335 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1336 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1337 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1338 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1339 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1340 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1341 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1342 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1343 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1344 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1345
1346 void (*tlb_flush_all)(struct kvm_vcpu *vcpu);
1347 void (*tlb_flush_current)(struct kvm_vcpu *vcpu);
1348 int (*tlb_remote_flush)(struct kvm *kvm);
1349 int (*tlb_remote_flush_with_range)(struct kvm *kvm,
1350 struct kvm_tlb_range *range);
1351
1352 /*
1353 * Flush any TLB entries associated with the given GVA.
1354 * Does not need to flush GPA->HPA mappings.
1355 * Can potentially get non-canonical addresses through INVLPGs, which
1356 * the implementation may choose to ignore if appropriate.
1357 */
1358 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1359
1360 /*
1361 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1362 * does not need to flush GPA->HPA mappings.
1363 */
1364 void (*tlb_flush_guest)(struct kvm_vcpu *vcpu);
1365
1366 enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu);
1367 int (*handle_exit)(struct kvm_vcpu *vcpu,
1368 enum exit_fastpath_completion exit_fastpath);
1369 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1370 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1371 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1372 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1373 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1374 unsigned char *hypercall_addr);
1375 void (*set_irq)(struct kvm_vcpu *vcpu);
1376 void (*set_nmi)(struct kvm_vcpu *vcpu);
1377 void (*queue_exception)(struct kvm_vcpu *vcpu);
1378 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1379 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1380 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1381 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1382 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1383 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1384 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1385 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1386 bool (*check_apicv_inhibit_reasons)(ulong bit);
1387 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1388 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1389 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1390 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1391 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1392 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1393 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1394 int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1395 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1396 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1397 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1398 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1399
1400 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1401 int root_level);
1402
1403 bool (*has_wbinvd_exit)(void);
1404
1405 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1406 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1407 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1408 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1409
1410 /*
1411 * Retrieve somewhat arbitrary exit information. Intended to be used
1412 * only from within tracepoints to avoid VMREADs when tracing is off.
1413 */
1414 void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
1415 u32 *exit_int_info, u32 *exit_int_info_err_code);
1416
1417 int (*check_intercept)(struct kvm_vcpu *vcpu,
1418 struct x86_instruction_info *info,
1419 enum x86_intercept_stage stage,
1420 struct x86_exception *exception);
1421 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1422
1423 void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1424
1425 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1426
1427 /*
1428 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1429 * value indicates CPU dirty logging is unsupported or disabled.
1430 */
1431 int cpu_dirty_log_size;
1432 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1433
1434 /* pmu operations of sub-arch */
1435 const struct kvm_pmu_ops *pmu_ops;
1436 const struct kvm_x86_nested_ops *nested_ops;
1437
1438 /*
1439 * Architecture specific hooks for vCPU blocking due to
1440 * HLT instruction.
1441 * Returns for .pre_block():
1442 * - 0 means continue to block the vCPU.
1443 * - 1 means we cannot block the vCPU since some event
1444 * happens during this period, such as, 'ON' bit in
1445 * posted-interrupts descriptor is set.
1446 */
1447 int (*pre_block)(struct kvm_vcpu *vcpu);
1448 void (*post_block)(struct kvm_vcpu *vcpu);
1449
1450 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1451 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1452
1453 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1454 uint32_t guest_irq, bool set);
1455 void (*start_assignment)(struct kvm *kvm);
1456 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1457 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1458
1459 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1460 bool *expired);
1461 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1462
1463 void (*setup_mce)(struct kvm_vcpu *vcpu);
1464
1465 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1466 int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1467 int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1468 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1469
1470 int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1471 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1472 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1473 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1474
1475 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1476
1477 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, void *insn, int insn_len);
1478
1479 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1480 int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1481
1482 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1483 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1484 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1485
1486 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1487};
1488
1489struct kvm_x86_nested_ops {
1490 void (*leave_nested)(struct kvm_vcpu *vcpu);
1491 int (*check_events)(struct kvm_vcpu *vcpu);
1492 bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1493 void (*triple_fault)(struct kvm_vcpu *vcpu);
1494 int (*get_state)(struct kvm_vcpu *vcpu,
1495 struct kvm_nested_state __user *user_kvm_nested_state,
1496 unsigned user_data_size);
1497 int (*set_state)(struct kvm_vcpu *vcpu,
1498 struct kvm_nested_state __user *user_kvm_nested_state,
1499 struct kvm_nested_state *kvm_state);
1500 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1501 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1502
1503 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1504 uint16_t *vmcs_version);
1505 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1506};
1507
1508struct kvm_x86_init_ops {
1509 int (*cpu_has_kvm_support)(void);
1510 int (*disabled_by_bios)(void);
1511 int (*check_processor_compatibility)(void);
1512 int (*hardware_setup)(void);
1513 bool (*intel_pt_intr_in_guest)(void);
1514
1515 struct kvm_x86_ops *runtime_ops;
1516};
1517
1518struct kvm_arch_async_pf {
1519 u32 token;
1520 gfn_t gfn;
1521 unsigned long cr3;
1522 bool direct_map;
1523};
1524
1525extern u32 __read_mostly kvm_nr_uret_msrs;
1526extern u64 __read_mostly host_efer;
1527extern bool __read_mostly allow_smaller_maxphyaddr;
1528extern bool __read_mostly enable_apicv;
1529extern struct kvm_x86_ops kvm_x86_ops;
1530
1531#define KVM_X86_OP(func) \
1532 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1533#define KVM_X86_OP_NULL KVM_X86_OP
1534#include <asm/kvm-x86-ops.h>
1535
1536static inline void kvm_ops_static_call_update(void)
1537{
1538#define KVM_X86_OP(func) \
1539 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
1540#define KVM_X86_OP_NULL KVM_X86_OP
1541#include <asm/kvm-x86-ops.h>
1542}
1543
1544#define __KVM_HAVE_ARCH_VM_ALLOC
1545static inline struct kvm *kvm_arch_alloc_vm(void)
1546{
1547 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1548}
1549void kvm_arch_free_vm(struct kvm *kvm);
1550
1551#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1552static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1553{
1554 if (kvm_x86_ops.tlb_remote_flush &&
1555 !static_call(kvm_x86_tlb_remote_flush)(kvm))
1556 return 0;
1557 else
1558 return -ENOTSUPP;
1559}
1560
1561void kvm_mmu_x86_module_init(void);
1562int kvm_mmu_vendor_module_init(void);
1563void kvm_mmu_vendor_module_exit(void);
1564
1565void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1566int kvm_mmu_create(struct kvm_vcpu *vcpu);
1567void kvm_mmu_init_vm(struct kvm *kvm);
1568void kvm_mmu_uninit_vm(struct kvm *kvm);
1569
1570void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1571void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1572void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1573 const struct kvm_memory_slot *memslot,
1574 int start_level);
1575void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1576 const struct kvm_memory_slot *memslot);
1577void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1578 const struct kvm_memory_slot *memslot);
1579void kvm_mmu_zap_all(struct kvm *kvm);
1580void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1581unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1582void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1583
1584int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1585
1586int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1587 const void *val, int bytes);
1588
1589struct kvm_irq_mask_notifier {
1590 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1591 int irq;
1592 struct hlist_node link;
1593};
1594
1595void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1596 struct kvm_irq_mask_notifier *kimn);
1597void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1598 struct kvm_irq_mask_notifier *kimn);
1599void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1600 bool mask);
1601
1602extern bool tdp_enabled;
1603
1604u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1605
1606/* control of guest tsc rate supported? */
1607extern bool kvm_has_tsc_control;
1608/* maximum supported tsc_khz for guests */
1609extern u32 kvm_max_guest_tsc_khz;
1610/* number of bits of the fractional part of the TSC scaling ratio */
1611extern u8 kvm_tsc_scaling_ratio_frac_bits;
1612/* maximum allowed value of TSC scaling ratio */
1613extern u64 kvm_max_tsc_scaling_ratio;
1614/* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1615extern u64 kvm_default_tsc_scaling_ratio;
1616/* bus lock detection supported? */
1617extern bool kvm_has_bus_lock_exit;
1618
1619extern u64 kvm_mce_cap_supported;
1620
1621/*
1622 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1623 * userspace I/O) to indicate that the emulation context
1624 * should be reused as is, i.e. skip initialization of
1625 * emulation context, instruction fetch and decode.
1626 *
1627 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1628 * Indicates that only select instructions (tagged with
1629 * EmulateOnUD) should be emulated (to minimize the emulator
1630 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
1631 *
1632 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1633 * decode the instruction length. For use *only* by
1634 * kvm_x86_ops.skip_emulated_instruction() implementations.
1635 *
1636 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1637 * retry native execution under certain conditions,
1638 * Can only be set in conjunction with EMULTYPE_PF.
1639 *
1640 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1641 * triggered by KVM's magic "force emulation" prefix,
1642 * which is opt in via module param (off by default).
1643 * Bypasses EmulateOnUD restriction despite emulating
1644 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1645 * Used to test the full emulator from userspace.
1646 *
1647 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1648 * backdoor emulation, which is opt in via module param.
1649 * VMware backdoor emulation handles select instructions
1650 * and reinjects the #GP for all other cases.
1651 *
1652 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1653 * case the CR2/GPA value pass on the stack is valid.
1654 */
1655#define EMULTYPE_NO_DECODE (1 << 0)
1656#define EMULTYPE_TRAP_UD (1 << 1)
1657#define EMULTYPE_SKIP (1 << 2)
1658#define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
1659#define EMULTYPE_TRAP_UD_FORCED (1 << 4)
1660#define EMULTYPE_VMWARE_GP (1 << 5)
1661#define EMULTYPE_PF (1 << 6)
1662
1663int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1664int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1665 void *insn, int insn_len);
1666
1667void kvm_enable_efer_bits(u64);
1668bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1669int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1670int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1671int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1672int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1673int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1674int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1675int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1676int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1677int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1678int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1679
1680int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1681int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1682int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1683int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1684int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1685int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1686
1687void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1688int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1689void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1690
1691int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1692 int reason, bool has_error_code, u32 error_code);
1693
1694void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1695void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1696int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1697int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1698int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1699int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1700int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1701void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1702unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1703void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1704void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1705int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1706
1707int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1708int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1709
1710unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1711void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1712int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1713
1714void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1715void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1716void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1717void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1718void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1719void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1720bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1721 struct x86_exception *fault);
1722int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1723 gfn_t gfn, void *data, int offset, int len,
1724 u32 access);
1725bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1726bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1727
1728static inline int __kvm_irq_line_state(unsigned long *irq_state,
1729 int irq_source_id, int level)
1730{
1731 /* Logical OR for level trig interrupt */
1732 if (level)
1733 __set_bit(irq_source_id, irq_state);
1734 else
1735 __clear_bit(irq_source_id, irq_state);
1736
1737 return !!(*irq_state);
1738}
1739
1740#define KVM_MMU_ROOT_CURRENT BIT(0)
1741#define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
1742#define KVM_MMU_ROOTS_ALL (~0UL)
1743
1744int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1745void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1746
1747void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1748
1749void kvm_update_dr7(struct kvm_vcpu *vcpu);
1750
1751int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1752void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1753void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1754 ulong roots_to_free);
1755void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu);
1756gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1757 struct x86_exception *exception);
1758gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1759 struct x86_exception *exception);
1760gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1761 struct x86_exception *exception);
1762gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1763 struct x86_exception *exception);
1764gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1765 struct x86_exception *exception);
1766
1767bool kvm_apicv_activated(struct kvm *kvm);
1768void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1769void kvm_request_apicv_update(struct kvm *kvm, bool activate,
1770 unsigned long bit);
1771
1772void __kvm_request_apicv_update(struct kvm *kvm, bool activate,
1773 unsigned long bit);
1774
1775int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1776
1777int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1778 void *insn, int insn_len);
1779void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1780void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1781 gva_t gva, hpa_t root_hpa);
1782void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1783void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1784
1785void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1786 int tdp_max_root_level, int tdp_huge_page_level);
1787
1788static inline u16 kvm_read_ldt(void)
1789{
1790 u16 ldt;
1791 asm("sldt %0" : "=g"(ldt));
1792 return ldt;
1793}
1794
1795static inline void kvm_load_ldt(u16 sel)
1796{
1797 asm("lldt %0" : : "rm"(sel));
1798}
1799
1800#ifdef CONFIG_X86_64
1801static inline unsigned long read_msr(unsigned long msr)
1802{
1803 u64 value;
1804
1805 rdmsrl(msr, value);
1806 return value;
1807}
1808#endif
1809
1810static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1811{
1812 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1813}
1814
1815#define TSS_IOPB_BASE_OFFSET 0x66
1816#define TSS_BASE_SIZE 0x68
1817#define TSS_IOPB_SIZE (65536 / 8)
1818#define TSS_REDIRECTION_SIZE (256 / 8)
1819#define RMODE_TSS_SIZE \
1820 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1821
1822enum {
1823 TASK_SWITCH_CALL = 0,
1824 TASK_SWITCH_IRET = 1,
1825 TASK_SWITCH_JMP = 2,
1826 TASK_SWITCH_GATE = 3,
1827};
1828
1829#define HF_GIF_MASK (1 << 0)
1830#define HF_NMI_MASK (1 << 3)
1831#define HF_IRET_MASK (1 << 4)
1832#define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
1833#define HF_SMM_MASK (1 << 6)
1834#define HF_SMM_INSIDE_NMI_MASK (1 << 7)
1835
1836#define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1837#define KVM_ADDRESS_SPACE_NUM 2
1838
1839#define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1840#define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1841
1842#define KVM_ARCH_WANT_MMU_NOTIFIER
1843
1844int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1845int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1846int kvm_cpu_has_extint(struct kvm_vcpu *v);
1847int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1848int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1849void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1850void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1851
1852int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1853 unsigned long ipi_bitmap_high, u32 min,
1854 unsigned long icr, int op_64_bit);
1855
1856int kvm_add_user_return_msr(u32 msr);
1857int kvm_find_user_return_msr(u32 msr);
1858int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
1859
1860static inline bool kvm_is_supported_user_return_msr(u32 msr)
1861{
1862 return kvm_find_user_return_msr(msr) >= 0;
1863}
1864
1865u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio);
1866u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1867u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
1868u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
1869
1870unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1871bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1872
1873void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1874void kvm_make_scan_ioapic_request(struct kvm *kvm);
1875void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1876 unsigned long *vcpu_bitmap);
1877
1878bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1879 struct kvm_async_pf *work);
1880void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1881 struct kvm_async_pf *work);
1882void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1883 struct kvm_async_pf *work);
1884void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1885bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
1886extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1887
1888int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1889int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1890void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1891
1892int kvm_is_in_guest(void);
1893
1894void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
1895 u32 size);
1896bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1897bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1898
1899bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1900 struct kvm_vcpu **dest_vcpu);
1901
1902void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1903 struct kvm_lapic_irq *irq);
1904
1905static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
1906{
1907 /* We can only post Fixed and LowPrio IRQs */
1908 return (irq->delivery_mode == APIC_DM_FIXED ||
1909 irq->delivery_mode == APIC_DM_LOWEST);
1910}
1911
1912static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1913{
1914 static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
1915}
1916
1917static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1918{
1919 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
1920}
1921
1922static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1923
1924static inline int kvm_cpu_get_apicid(int mps_cpu)
1925{
1926#ifdef CONFIG_X86_LOCAL_APIC
1927 return default_cpu_present_to_apicid(mps_cpu);
1928#else
1929 WARN_ON_ONCE(1);
1930 return BAD_APICID;
1931#endif
1932}
1933
1934#define put_smstate(type, buf, offset, val) \
1935 *(type *)((buf) + (offset) - 0x7e00) = val
1936
1937#define GET_SMSTATE(type, buf, offset) \
1938 (*(type *)((buf) + (offset) - 0x7e00))
1939
1940int kvm_cpu_dirty_log_size(void);
1941
1942int alloc_all_memslots_rmaps(struct kvm *kvm);
1943
1944#endif /* _ASM_X86_KVM_HOST_H */