]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - arch/x86/kernel/cpu/common.c
x86, xsave: Sync xsave memory layout with its header for user handling
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
... / ...
CommitLineData
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/delay.h>
9#include <linux/sched.h>
10#include <linux/init.h>
11#include <linux/kgdb.h>
12#include <linux/smp.h>
13#include <linux/io.h>
14
15#include <asm/stackprotector.h>
16#include <asm/perf_event.h>
17#include <asm/mmu_context.h>
18#include <asm/hypervisor.h>
19#include <asm/processor.h>
20#include <asm/sections.h>
21#include <linux/topology.h>
22#include <linux/cpumask.h>
23#include <asm/pgtable.h>
24#include <asm/atomic.h>
25#include <asm/proto.h>
26#include <asm/setup.h>
27#include <asm/apic.h>
28#include <asm/desc.h>
29#include <asm/i387.h>
30#include <asm/mtrr.h>
31#include <linux/numa.h>
32#include <asm/asm.h>
33#include <asm/cpu.h>
34#include <asm/mce.h>
35#include <asm/msr.h>
36#include <asm/pat.h>
37
38#ifdef CONFIG_X86_LOCAL_APIC
39#include <asm/uv/uv.h>
40#endif
41
42#include "cpu.h"
43
44/* all of these masks are initialized in setup_cpu_local_masks() */
45cpumask_var_t cpu_initialized_mask;
46cpumask_var_t cpu_callout_mask;
47cpumask_var_t cpu_callin_mask;
48
49/* representing cpus for which sibling maps can be computed */
50cpumask_var_t cpu_sibling_setup_mask;
51
52/* correctly size the local cpu masks */
53void __init setup_cpu_local_masks(void)
54{
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59}
60
61static void __cpuinit default_init(struct cpuinfo_x86 *c)
62{
63#ifdef CONFIG_X86_64
64 cpu_detect_cache_sizes(c);
65#else
66 /* Not much we can do here... */
67 /* Check if at least it has cpuid */
68 if (c->cpuid_level == -1) {
69 /* No cpuid. It must be an ancient CPU */
70 if (c->x86 == 4)
71 strcpy(c->x86_model_id, "486");
72 else if (c->x86 == 3)
73 strcpy(c->x86_model_id, "386");
74 }
75#endif
76}
77
78static const struct cpu_dev __cpuinitconst default_cpu = {
79 .c_init = default_init,
80 .c_vendor = "Unknown",
81 .c_x86_vendor = X86_VENDOR_UNKNOWN,
82};
83
84static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
85
86DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
87#ifdef CONFIG_X86_64
88 /*
89 * We need valid kernel segments for data and code in long mode too
90 * IRET will check the segment types kkeil 2000/10/28
91 * Also sysret mandates a special GDT layout
92 *
93 * TLS descriptors are currently at a different place compared to i386.
94 * Hopefully nobody expects them at a fixed place (Wine?)
95 */
96 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
102#else
103 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
107 /*
108 * Segments used for calling PnP BIOS have byte granularity.
109 * They code segments and data segments have fixed 64k limits,
110 * the transfer segment sizes are set at run time.
111 */
112 /* 32-bit code */
113 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
114 /* 16-bit code */
115 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
116 /* 16-bit data */
117 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
118 /* 16-bit data */
119 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
120 /* 16-bit data */
121 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
122 /*
123 * The APM segments have byte granularity and their bases
124 * are set at run time. All have 64k limits.
125 */
126 /* 32-bit code */
127 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
128 /* 16-bit code */
129 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
130 /* data */
131 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
132
133 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 GDT_STACK_CANARY_INIT
136#endif
137} };
138EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
139
140static int __init x86_xsave_setup(char *s)
141{
142 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
143 return 1;
144}
145__setup("noxsave", x86_xsave_setup);
146
147#ifdef CONFIG_X86_32
148static int cachesize_override __cpuinitdata = -1;
149static int disable_x86_serial_nr __cpuinitdata = 1;
150
151static int __init cachesize_setup(char *str)
152{
153 get_option(&str, &cachesize_override);
154 return 1;
155}
156__setup("cachesize=", cachesize_setup);
157
158static int __init x86_fxsr_setup(char *s)
159{
160 setup_clear_cpu_cap(X86_FEATURE_FXSR);
161 setup_clear_cpu_cap(X86_FEATURE_XMM);
162 return 1;
163}
164__setup("nofxsr", x86_fxsr_setup);
165
166static int __init x86_sep_setup(char *s)
167{
168 setup_clear_cpu_cap(X86_FEATURE_SEP);
169 return 1;
170}
171__setup("nosep", x86_sep_setup);
172
173/* Standard macro to see if a specific flag is changeable */
174static inline int flag_is_changeable_p(u32 flag)
175{
176 u32 f1, f2;
177
178 /*
179 * Cyrix and IDT cpus allow disabling of CPUID
180 * so the code below may return different results
181 * when it is executed before and after enabling
182 * the CPUID. Add "volatile" to not allow gcc to
183 * optimize the subsequent calls to this function.
184 */
185 asm volatile ("pushfl \n\t"
186 "pushfl \n\t"
187 "popl %0 \n\t"
188 "movl %0, %1 \n\t"
189 "xorl %2, %0 \n\t"
190 "pushl %0 \n\t"
191 "popfl \n\t"
192 "pushfl \n\t"
193 "popl %0 \n\t"
194 "popfl \n\t"
195
196 : "=&r" (f1), "=&r" (f2)
197 : "ir" (flag));
198
199 return ((f1^f2) & flag) != 0;
200}
201
202/* Probe for the CPUID instruction */
203static int __cpuinit have_cpuid_p(void)
204{
205 return flag_is_changeable_p(X86_EFLAGS_ID);
206}
207
208static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
209{
210 unsigned long lo, hi;
211
212 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
213 return;
214
215 /* Disable processor serial number: */
216
217 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
218 lo |= 0x200000;
219 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
220
221 printk(KERN_NOTICE "CPU serial number disabled.\n");
222 clear_cpu_cap(c, X86_FEATURE_PN);
223
224 /* Disabling the serial number may affect the cpuid level */
225 c->cpuid_level = cpuid_eax(0);
226}
227
228static int __init x86_serial_nr_setup(char *s)
229{
230 disable_x86_serial_nr = 0;
231 return 1;
232}
233__setup("serialnumber", x86_serial_nr_setup);
234#else
235static inline int flag_is_changeable_p(u32 flag)
236{
237 return 1;
238}
239/* Probe for the CPUID instruction */
240static inline int have_cpuid_p(void)
241{
242 return 1;
243}
244static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
245{
246}
247#endif
248
249/*
250 * Some CPU features depend on higher CPUID levels, which may not always
251 * be available due to CPUID level capping or broken virtualization
252 * software. Add those features to this table to auto-disable them.
253 */
254struct cpuid_dependent_feature {
255 u32 feature;
256 u32 level;
257};
258
259static const struct cpuid_dependent_feature __cpuinitconst
260cpuid_dependent_features[] = {
261 { X86_FEATURE_MWAIT, 0x00000005 },
262 { X86_FEATURE_DCA, 0x00000009 },
263 { X86_FEATURE_XSAVE, 0x0000000d },
264 { 0, 0 }
265};
266
267static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
268{
269 const struct cpuid_dependent_feature *df;
270
271 for (df = cpuid_dependent_features; df->feature; df++) {
272
273 if (!cpu_has(c, df->feature))
274 continue;
275 /*
276 * Note: cpuid_level is set to -1 if unavailable, but
277 * extended_extended_level is set to 0 if unavailable
278 * and the legitimate extended levels are all negative
279 * when signed; hence the weird messing around with
280 * signs here...
281 */
282 if (!((s32)df->level < 0 ?
283 (u32)df->level > (u32)c->extended_cpuid_level :
284 (s32)df->level > (s32)c->cpuid_level))
285 continue;
286
287 clear_cpu_cap(c, df->feature);
288 if (!warn)
289 continue;
290
291 printk(KERN_WARNING
292 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
293 x86_cap_flags[df->feature], df->level);
294 }
295}
296
297/*
298 * Naming convention should be: <Name> [(<Codename>)]
299 * This table only is used unless init_<vendor>() below doesn't set it;
300 * in particular, if CPUID levels 0x80000002..4 are supported, this
301 * isn't used
302 */
303
304/* Look up CPU names by table lookup. */
305static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
306{
307 const struct cpu_model_info *info;
308
309 if (c->x86_model >= 16)
310 return NULL; /* Range check */
311
312 if (!this_cpu)
313 return NULL;
314
315 info = this_cpu->c_models;
316
317 while (info && info->family) {
318 if (info->family == c->x86)
319 return info->model_names[c->x86_model];
320 info++;
321 }
322 return NULL; /* Not found */
323}
324
325__u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
326__u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
327
328void load_percpu_segment(int cpu)
329{
330#ifdef CONFIG_X86_32
331 loadsegment(fs, __KERNEL_PERCPU);
332#else
333 loadsegment(gs, 0);
334 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
335#endif
336 load_stack_canary_segment();
337}
338
339/*
340 * Current gdt points %fs at the "master" per-cpu area: after this,
341 * it's on the real one.
342 */
343void switch_to_new_gdt(int cpu)
344{
345 struct desc_ptr gdt_descr;
346
347 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
348 gdt_descr.size = GDT_SIZE - 1;
349 load_gdt(&gdt_descr);
350 /* Reload the per-cpu base */
351
352 load_percpu_segment(cpu);
353}
354
355static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
356
357static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
358{
359 unsigned int *v;
360 char *p, *q;
361
362 if (c->extended_cpuid_level < 0x80000004)
363 return;
364
365 v = (unsigned int *)c->x86_model_id;
366 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
367 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
368 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
369 c->x86_model_id[48] = 0;
370
371 /*
372 * Intel chips right-justify this string for some dumb reason;
373 * undo that brain damage:
374 */
375 p = q = &c->x86_model_id[0];
376 while (*p == ' ')
377 p++;
378 if (p != q) {
379 while (*p)
380 *q++ = *p++;
381 while (q <= &c->x86_model_id[48])
382 *q++ = '\0'; /* Zero-pad the rest */
383 }
384}
385
386void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
387{
388 unsigned int n, dummy, ebx, ecx, edx, l2size;
389
390 n = c->extended_cpuid_level;
391
392 if (n >= 0x80000005) {
393 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
394 c->x86_cache_size = (ecx>>24) + (edx>>24);
395#ifdef CONFIG_X86_64
396 /* On K8 L1 TLB is inclusive, so don't count it */
397 c->x86_tlbsize = 0;
398#endif
399 }
400
401 if (n < 0x80000006) /* Some chips just has a large L1. */
402 return;
403
404 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
405 l2size = ecx >> 16;
406
407#ifdef CONFIG_X86_64
408 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
409#else
410 /* do processor-specific cache resizing */
411 if (this_cpu->c_size_cache)
412 l2size = this_cpu->c_size_cache(c, l2size);
413
414 /* Allow user to override all this if necessary. */
415 if (cachesize_override != -1)
416 l2size = cachesize_override;
417
418 if (l2size == 0)
419 return; /* Again, no L2 cache is possible */
420#endif
421
422 c->x86_cache_size = l2size;
423}
424
425void __cpuinit detect_ht(struct cpuinfo_x86 *c)
426{
427#ifdef CONFIG_X86_HT
428 u32 eax, ebx, ecx, edx;
429 int index_msb, core_bits;
430 static bool printed;
431
432 if (!cpu_has(c, X86_FEATURE_HT))
433 return;
434
435 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
436 goto out;
437
438 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
439 return;
440
441 cpuid(1, &eax, &ebx, &ecx, &edx);
442
443 smp_num_siblings = (ebx & 0xff0000) >> 16;
444
445 if (smp_num_siblings == 1) {
446 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
447 goto out;
448 }
449
450 if (smp_num_siblings <= 1)
451 goto out;
452
453 if (smp_num_siblings > nr_cpu_ids) {
454 pr_warning("CPU: Unsupported number of siblings %d",
455 smp_num_siblings);
456 smp_num_siblings = 1;
457 return;
458 }
459
460 index_msb = get_count_order(smp_num_siblings);
461 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
462
463 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
464
465 index_msb = get_count_order(smp_num_siblings);
466
467 core_bits = get_count_order(c->x86_max_cores);
468
469 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
470 ((1 << core_bits) - 1);
471
472out:
473 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
474 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
475 c->phys_proc_id);
476 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
477 c->cpu_core_id);
478 printed = 1;
479 }
480#endif
481}
482
483static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
484{
485 char *v = c->x86_vendor_id;
486 int i;
487
488 for (i = 0; i < X86_VENDOR_NUM; i++) {
489 if (!cpu_devs[i])
490 break;
491
492 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
493 (cpu_devs[i]->c_ident[1] &&
494 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
495
496 this_cpu = cpu_devs[i];
497 c->x86_vendor = this_cpu->c_x86_vendor;
498 return;
499 }
500 }
501
502 printk_once(KERN_ERR
503 "CPU: vendor_id '%s' unknown, using generic init.\n" \
504 "CPU: Your system may be unstable.\n", v);
505
506 c->x86_vendor = X86_VENDOR_UNKNOWN;
507 this_cpu = &default_cpu;
508}
509
510void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
511{
512 /* Get vendor name */
513 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
514 (unsigned int *)&c->x86_vendor_id[0],
515 (unsigned int *)&c->x86_vendor_id[8],
516 (unsigned int *)&c->x86_vendor_id[4]);
517
518 c->x86 = 4;
519 /* Intel-defined flags: level 0x00000001 */
520 if (c->cpuid_level >= 0x00000001) {
521 u32 junk, tfms, cap0, misc;
522
523 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
524 c->x86 = (tfms >> 8) & 0xf;
525 c->x86_model = (tfms >> 4) & 0xf;
526 c->x86_mask = tfms & 0xf;
527
528 if (c->x86 == 0xf)
529 c->x86 += (tfms >> 20) & 0xff;
530 if (c->x86 >= 0x6)
531 c->x86_model += ((tfms >> 16) & 0xf) << 4;
532
533 if (cap0 & (1<<19)) {
534 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
535 c->x86_cache_alignment = c->x86_clflush_size;
536 }
537 }
538}
539
540static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
541{
542 u32 tfms, xlvl;
543 u32 ebx;
544
545 /* Intel-defined flags: level 0x00000001 */
546 if (c->cpuid_level >= 0x00000001) {
547 u32 capability, excap;
548
549 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
550 c->x86_capability[0] = capability;
551 c->x86_capability[4] = excap;
552 }
553
554 /* Additional Intel-defined flags: level 0x00000007 */
555 if (c->cpuid_level >= 0x00000007) {
556 u32 eax, ebx, ecx, edx;
557
558 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
559
560 if (eax > 0)
561 c->x86_capability[9] = ebx;
562 }
563
564 /* AMD-defined flags: level 0x80000001 */
565 xlvl = cpuid_eax(0x80000000);
566 c->extended_cpuid_level = xlvl;
567
568 if ((xlvl & 0xffff0000) == 0x80000000) {
569 if (xlvl >= 0x80000001) {
570 c->x86_capability[1] = cpuid_edx(0x80000001);
571 c->x86_capability[6] = cpuid_ecx(0x80000001);
572 }
573 }
574
575 if (c->extended_cpuid_level >= 0x80000008) {
576 u32 eax = cpuid_eax(0x80000008);
577
578 c->x86_virt_bits = (eax >> 8) & 0xff;
579 c->x86_phys_bits = eax & 0xff;
580 }
581#ifdef CONFIG_X86_32
582 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
583 c->x86_phys_bits = 36;
584#endif
585
586 if (c->extended_cpuid_level >= 0x80000007)
587 c->x86_power = cpuid_edx(0x80000007);
588
589}
590
591static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
592{
593#ifdef CONFIG_X86_32
594 int i;
595
596 /*
597 * First of all, decide if this is a 486 or higher
598 * It's a 486 if we can modify the AC flag
599 */
600 if (flag_is_changeable_p(X86_EFLAGS_AC))
601 c->x86 = 4;
602 else
603 c->x86 = 3;
604
605 for (i = 0; i < X86_VENDOR_NUM; i++)
606 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
607 c->x86_vendor_id[0] = 0;
608 cpu_devs[i]->c_identify(c);
609 if (c->x86_vendor_id[0]) {
610 get_cpu_vendor(c);
611 break;
612 }
613 }
614#endif
615}
616
617/*
618 * Do minimum CPU detection early.
619 * Fields really needed: vendor, cpuid_level, family, model, mask,
620 * cache alignment.
621 * The others are not touched to avoid unwanted side effects.
622 *
623 * WARNING: this function is only called on the BP. Don't add code here
624 * that is supposed to run on all CPUs.
625 */
626static void __init early_identify_cpu(struct cpuinfo_x86 *c)
627{
628#ifdef CONFIG_X86_64
629 c->x86_clflush_size = 64;
630 c->x86_phys_bits = 36;
631 c->x86_virt_bits = 48;
632#else
633 c->x86_clflush_size = 32;
634 c->x86_phys_bits = 32;
635 c->x86_virt_bits = 32;
636#endif
637 c->x86_cache_alignment = c->x86_clflush_size;
638
639 memset(&c->x86_capability, 0, sizeof c->x86_capability);
640 c->extended_cpuid_level = 0;
641
642 if (!have_cpuid_p())
643 identify_cpu_without_cpuid(c);
644
645 /* cyrix could have cpuid enabled via c_identify()*/
646 if (!have_cpuid_p())
647 return;
648
649 cpu_detect(c);
650
651 get_cpu_vendor(c);
652
653 get_cpu_cap(c);
654
655 if (this_cpu->c_early_init)
656 this_cpu->c_early_init(c);
657
658#ifdef CONFIG_SMP
659 c->cpu_index = boot_cpu_id;
660#endif
661 filter_cpuid_features(c, false);
662}
663
664void __init early_cpu_init(void)
665{
666 const struct cpu_dev *const *cdev;
667 int count = 0;
668
669#ifdef PROCESSOR_SELECT
670 printk(KERN_INFO "KERNEL supported cpus:\n");
671#endif
672
673 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
674 const struct cpu_dev *cpudev = *cdev;
675
676 if (count >= X86_VENDOR_NUM)
677 break;
678 cpu_devs[count] = cpudev;
679 count++;
680
681#ifdef PROCESSOR_SELECT
682 {
683 unsigned int j;
684
685 for (j = 0; j < 2; j++) {
686 if (!cpudev->c_ident[j])
687 continue;
688 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
689 cpudev->c_ident[j]);
690 }
691 }
692#endif
693 }
694 early_identify_cpu(&boot_cpu_data);
695}
696
697/*
698 * The NOPL instruction is supposed to exist on all CPUs with
699 * family >= 6; unfortunately, that's not true in practice because
700 * of early VIA chips and (more importantly) broken virtualizers that
701 * are not easy to detect. In the latter case it doesn't even *fail*
702 * reliably, so probing for it doesn't even work. Disable it completely
703 * unless we can find a reliable way to detect all the broken cases.
704 */
705static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
706{
707 clear_cpu_cap(c, X86_FEATURE_NOPL);
708}
709
710static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
711{
712 c->extended_cpuid_level = 0;
713
714 if (!have_cpuid_p())
715 identify_cpu_without_cpuid(c);
716
717 /* cyrix could have cpuid enabled via c_identify()*/
718 if (!have_cpuid_p())
719 return;
720
721 cpu_detect(c);
722
723 get_cpu_vendor(c);
724
725 get_cpu_cap(c);
726
727 if (c->cpuid_level >= 0x00000001) {
728 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
729#ifdef CONFIG_X86_32
730# ifdef CONFIG_X86_HT
731 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
732# else
733 c->apicid = c->initial_apicid;
734# endif
735#endif
736
737#ifdef CONFIG_X86_HT
738 c->phys_proc_id = c->initial_apicid;
739#endif
740 }
741
742 get_model_name(c); /* Default name */
743
744 init_scattered_cpuid_features(c);
745 detect_nopl(c);
746}
747
748/*
749 * This does the hard work of actually picking apart the CPU stuff...
750 */
751static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
752{
753 int i;
754
755 c->loops_per_jiffy = loops_per_jiffy;
756 c->x86_cache_size = -1;
757 c->x86_vendor = X86_VENDOR_UNKNOWN;
758 c->x86_model = c->x86_mask = 0; /* So far unknown... */
759 c->x86_vendor_id[0] = '\0'; /* Unset */
760 c->x86_model_id[0] = '\0'; /* Unset */
761 c->x86_max_cores = 1;
762 c->x86_coreid_bits = 0;
763#ifdef CONFIG_X86_64
764 c->x86_clflush_size = 64;
765 c->x86_phys_bits = 36;
766 c->x86_virt_bits = 48;
767#else
768 c->cpuid_level = -1; /* CPUID not detected */
769 c->x86_clflush_size = 32;
770 c->x86_phys_bits = 32;
771 c->x86_virt_bits = 32;
772#endif
773 c->x86_cache_alignment = c->x86_clflush_size;
774 memset(&c->x86_capability, 0, sizeof c->x86_capability);
775
776 generic_identify(c);
777
778 if (this_cpu->c_identify)
779 this_cpu->c_identify(c);
780
781 /* Clear/Set all flags overriden by options, after probe */
782 for (i = 0; i < NCAPINTS; i++) {
783 c->x86_capability[i] &= ~cpu_caps_cleared[i];
784 c->x86_capability[i] |= cpu_caps_set[i];
785 }
786
787#ifdef CONFIG_X86_64
788 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
789#endif
790
791 /*
792 * Vendor-specific initialization. In this section we
793 * canonicalize the feature flags, meaning if there are
794 * features a certain CPU supports which CPUID doesn't
795 * tell us, CPUID claiming incorrect flags, or other bugs,
796 * we handle them here.
797 *
798 * At the end of this section, c->x86_capability better
799 * indicate the features this CPU genuinely supports!
800 */
801 if (this_cpu->c_init)
802 this_cpu->c_init(c);
803
804 /* Disable the PN if appropriate */
805 squash_the_stupid_serial_number(c);
806
807 /*
808 * The vendor-specific functions might have changed features.
809 * Now we do "generic changes."
810 */
811
812 /* Filter out anything that depends on CPUID levels we don't have */
813 filter_cpuid_features(c, true);
814
815 /* If the model name is still unset, do table lookup. */
816 if (!c->x86_model_id[0]) {
817 const char *p;
818 p = table_lookup_model(c);
819 if (p)
820 strcpy(c->x86_model_id, p);
821 else
822 /* Last resort... */
823 sprintf(c->x86_model_id, "%02x/%02x",
824 c->x86, c->x86_model);
825 }
826
827#ifdef CONFIG_X86_64
828 detect_ht(c);
829#endif
830
831 init_hypervisor(c);
832
833 /*
834 * Clear/Set all flags overriden by options, need do it
835 * before following smp all cpus cap AND.
836 */
837 for (i = 0; i < NCAPINTS; i++) {
838 c->x86_capability[i] &= ~cpu_caps_cleared[i];
839 c->x86_capability[i] |= cpu_caps_set[i];
840 }
841
842 /*
843 * On SMP, boot_cpu_data holds the common feature set between
844 * all CPUs; so make sure that we indicate which features are
845 * common between the CPUs. The first time this routine gets
846 * executed, c == &boot_cpu_data.
847 */
848 if (c != &boot_cpu_data) {
849 /* AND the already accumulated flags with these */
850 for (i = 0; i < NCAPINTS; i++)
851 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
852 }
853
854 /* Init Machine Check Exception if available. */
855 mcheck_cpu_init(c);
856
857 select_idle_routine(c);
858
859#if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
860 numa_add_cpu(smp_processor_id());
861#endif
862}
863
864#ifdef CONFIG_X86_64
865static void vgetcpu_set_mode(void)
866{
867 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
868 vgetcpu_mode = VGETCPU_RDTSCP;
869 else
870 vgetcpu_mode = VGETCPU_LSL;
871}
872#endif
873
874void __init identify_boot_cpu(void)
875{
876 identify_cpu(&boot_cpu_data);
877 init_c1e_mask();
878#ifdef CONFIG_X86_32
879 sysenter_setup();
880 enable_sep_cpu();
881#else
882 vgetcpu_set_mode();
883#endif
884 init_hw_perf_events();
885}
886
887void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
888{
889 BUG_ON(c == &boot_cpu_data);
890 identify_cpu(c);
891#ifdef CONFIG_X86_32
892 enable_sep_cpu();
893#endif
894 mtrr_ap_init();
895}
896
897struct msr_range {
898 unsigned min;
899 unsigned max;
900};
901
902static const struct msr_range msr_range_array[] __cpuinitconst = {
903 { 0x00000000, 0x00000418},
904 { 0xc0000000, 0xc000040b},
905 { 0xc0010000, 0xc0010142},
906 { 0xc0011000, 0xc001103b},
907};
908
909static void __cpuinit print_cpu_msr(void)
910{
911 unsigned index_min, index_max;
912 unsigned index;
913 u64 val;
914 int i;
915
916 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
917 index_min = msr_range_array[i].min;
918 index_max = msr_range_array[i].max;
919
920 for (index = index_min; index < index_max; index++) {
921 if (rdmsrl_amd_safe(index, &val))
922 continue;
923 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
924 }
925 }
926}
927
928static int show_msr __cpuinitdata;
929
930static __init int setup_show_msr(char *arg)
931{
932 int num;
933
934 get_option(&arg, &num);
935
936 if (num > 0)
937 show_msr = num;
938 return 1;
939}
940__setup("show_msr=", setup_show_msr);
941
942static __init int setup_noclflush(char *arg)
943{
944 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
945 return 1;
946}
947__setup("noclflush", setup_noclflush);
948
949void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
950{
951 const char *vendor = NULL;
952
953 if (c->x86_vendor < X86_VENDOR_NUM) {
954 vendor = this_cpu->c_vendor;
955 } else {
956 if (c->cpuid_level >= 0)
957 vendor = c->x86_vendor_id;
958 }
959
960 if (vendor && !strstr(c->x86_model_id, vendor))
961 printk(KERN_CONT "%s ", vendor);
962
963 if (c->x86_model_id[0])
964 printk(KERN_CONT "%s", c->x86_model_id);
965 else
966 printk(KERN_CONT "%d86", c->x86);
967
968 if (c->x86_mask || c->cpuid_level >= 0)
969 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
970 else
971 printk(KERN_CONT "\n");
972
973#ifdef CONFIG_SMP
974 if (c->cpu_index < show_msr)
975 print_cpu_msr();
976#else
977 if (show_msr)
978 print_cpu_msr();
979#endif
980}
981
982static __init int setup_disablecpuid(char *arg)
983{
984 int bit;
985
986 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
987 setup_clear_cpu_cap(bit);
988 else
989 return 0;
990
991 return 1;
992}
993__setup("clearcpuid=", setup_disablecpuid);
994
995#ifdef CONFIG_X86_64
996struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
997
998DEFINE_PER_CPU_FIRST(union irq_stack_union,
999 irq_stack_union) __aligned(PAGE_SIZE);
1000
1001/*
1002 * The following four percpu variables are hot. Align current_task to
1003 * cacheline size such that all four fall in the same cacheline.
1004 */
1005DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1006 &init_task;
1007EXPORT_PER_CPU_SYMBOL(current_task);
1008
1009DEFINE_PER_CPU(unsigned long, kernel_stack) =
1010 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1011EXPORT_PER_CPU_SYMBOL(kernel_stack);
1012
1013DEFINE_PER_CPU(char *, irq_stack_ptr) =
1014 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1015
1016DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1017
1018/*
1019 * Special IST stacks which the CPU switches to when it calls
1020 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1021 * limit), all of them are 4K, except the debug stack which
1022 * is 8K.
1023 */
1024static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1025 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1026 [DEBUG_STACK - 1] = DEBUG_STKSZ
1027};
1028
1029static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1030 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1031
1032/* May not be marked __init: used by software suspend */
1033void syscall_init(void)
1034{
1035 /*
1036 * LSTAR and STAR live in a bit strange symbiosis.
1037 * They both write to the same internal register. STAR allows to
1038 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1039 */
1040 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1041 wrmsrl(MSR_LSTAR, system_call);
1042 wrmsrl(MSR_CSTAR, ignore_sysret);
1043
1044#ifdef CONFIG_IA32_EMULATION
1045 syscall32_cpu_init();
1046#endif
1047
1048 /* Flags to clear on syscall */
1049 wrmsrl(MSR_SYSCALL_MASK,
1050 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1051}
1052
1053unsigned long kernel_eflags;
1054
1055/*
1056 * Copies of the original ist values from the tss are only accessed during
1057 * debugging, no special alignment required.
1058 */
1059DEFINE_PER_CPU(struct orig_ist, orig_ist);
1060
1061#else /* CONFIG_X86_64 */
1062
1063DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1064EXPORT_PER_CPU_SYMBOL(current_task);
1065
1066#ifdef CONFIG_CC_STACKPROTECTOR
1067DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1068#endif
1069
1070/* Make sure %fs and %gs are initialized properly in idle threads */
1071struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1072{
1073 memset(regs, 0, sizeof(struct pt_regs));
1074 regs->fs = __KERNEL_PERCPU;
1075 regs->gs = __KERNEL_STACK_CANARY;
1076
1077 return regs;
1078}
1079#endif /* CONFIG_X86_64 */
1080
1081/*
1082 * Clear all 6 debug registers:
1083 */
1084static void clear_all_debug_regs(void)
1085{
1086 int i;
1087
1088 for (i = 0; i < 8; i++) {
1089 /* Ignore db4, db5 */
1090 if ((i == 4) || (i == 5))
1091 continue;
1092
1093 set_debugreg(0, i);
1094 }
1095}
1096
1097#ifdef CONFIG_KGDB
1098/*
1099 * Restore debug regs if using kgdbwait and you have a kernel debugger
1100 * connection established.
1101 */
1102static void dbg_restore_debug_regs(void)
1103{
1104 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1105 arch_kgdb_ops.correct_hw_break();
1106}
1107#else /* ! CONFIG_KGDB */
1108#define dbg_restore_debug_regs()
1109#endif /* ! CONFIG_KGDB */
1110
1111/*
1112 * cpu_init() initializes state that is per-CPU. Some data is already
1113 * initialized (naturally) in the bootstrap process, such as the GDT
1114 * and IDT. We reload them nevertheless, this function acts as a
1115 * 'CPU state barrier', nothing should get across.
1116 * A lot of state is already set up in PDA init for 64 bit
1117 */
1118#ifdef CONFIG_X86_64
1119
1120void __cpuinit cpu_init(void)
1121{
1122 struct orig_ist *oist;
1123 struct task_struct *me;
1124 struct tss_struct *t;
1125 unsigned long v;
1126 int cpu;
1127 int i;
1128
1129 cpu = stack_smp_processor_id();
1130 t = &per_cpu(init_tss, cpu);
1131 oist = &per_cpu(orig_ist, cpu);
1132
1133#ifdef CONFIG_NUMA
1134 if (cpu != 0 && percpu_read(numa_node) == 0 &&
1135 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1136 set_numa_node(early_cpu_to_node(cpu));
1137#endif
1138
1139 me = current;
1140
1141 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1142 panic("CPU#%d already initialized!\n", cpu);
1143
1144 pr_debug("Initializing CPU#%d\n", cpu);
1145
1146 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1147
1148 /*
1149 * Initialize the per-CPU GDT with the boot GDT,
1150 * and set up the GDT descriptor:
1151 */
1152
1153 switch_to_new_gdt(cpu);
1154 loadsegment(fs, 0);
1155
1156 load_idt((const struct desc_ptr *)&idt_descr);
1157
1158 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1159 syscall_init();
1160
1161 wrmsrl(MSR_FS_BASE, 0);
1162 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1163 barrier();
1164
1165 x86_configure_nx();
1166 if (cpu != 0)
1167 enable_x2apic();
1168
1169 /*
1170 * set up and load the per-CPU TSS
1171 */
1172 if (!oist->ist[0]) {
1173 char *estacks = per_cpu(exception_stacks, cpu);
1174
1175 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1176 estacks += exception_stack_sizes[v];
1177 oist->ist[v] = t->x86_tss.ist[v] =
1178 (unsigned long)estacks;
1179 }
1180 }
1181
1182 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1183
1184 /*
1185 * <= is required because the CPU will access up to
1186 * 8 bits beyond the end of the IO permission bitmap.
1187 */
1188 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1189 t->io_bitmap[i] = ~0UL;
1190
1191 atomic_inc(&init_mm.mm_count);
1192 me->active_mm = &init_mm;
1193 BUG_ON(me->mm);
1194 enter_lazy_tlb(&init_mm, me);
1195
1196 load_sp0(t, &current->thread);
1197 set_tss_desc(cpu, t);
1198 load_TR_desc();
1199 load_LDT(&init_mm.context);
1200
1201 clear_all_debug_regs();
1202 dbg_restore_debug_regs();
1203
1204 fpu_init();
1205
1206 raw_local_save_flags(kernel_eflags);
1207
1208 if (is_uv_system())
1209 uv_cpu_init();
1210}
1211
1212#else
1213
1214void __cpuinit cpu_init(void)
1215{
1216 int cpu = smp_processor_id();
1217 struct task_struct *curr = current;
1218 struct tss_struct *t = &per_cpu(init_tss, cpu);
1219 struct thread_struct *thread = &curr->thread;
1220
1221 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1222 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1223 for (;;)
1224 local_irq_enable();
1225 }
1226
1227 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1228
1229 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1230 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1231
1232 load_idt(&idt_descr);
1233 switch_to_new_gdt(cpu);
1234
1235 /*
1236 * Set up and load the per-CPU TSS and LDT
1237 */
1238 atomic_inc(&init_mm.mm_count);
1239 curr->active_mm = &init_mm;
1240 BUG_ON(curr->mm);
1241 enter_lazy_tlb(&init_mm, curr);
1242
1243 load_sp0(t, thread);
1244 set_tss_desc(cpu, t);
1245 load_TR_desc();
1246 load_LDT(&init_mm.context);
1247
1248 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1249
1250#ifdef CONFIG_DOUBLEFAULT
1251 /* Set up doublefault TSS pointer in the GDT */
1252 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1253#endif
1254
1255 clear_all_debug_regs();
1256 dbg_restore_debug_regs();
1257
1258 /*
1259 * Force FPU initialization:
1260 */
1261 current_thread_info()->status = 0;
1262 clear_used_math();
1263 mxcsr_feature_mask_init();
1264
1265 /*
1266 * Boot processor to setup the FP and extended state context info.
1267 */
1268 if (smp_processor_id() == boot_cpu_id)
1269 init_thread_xstate();
1270
1271 xsave_init();
1272}
1273#endif