]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - arch/x86/kernel/cpu/common.c
x86/entry/64: Return to userspace from the trampoline stack
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
... / ...
CommitLineData
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/export.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/ctype.h>
9#include <linux/delay.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/clock.h>
12#include <linux/sched/task.h>
13#include <linux/init.h>
14#include <linux/kprobes.h>
15#include <linux/kgdb.h>
16#include <linux/smp.h>
17#include <linux/io.h>
18#include <linux/syscore_ops.h>
19
20#include <asm/stackprotector.h>
21#include <asm/perf_event.h>
22#include <asm/mmu_context.h>
23#include <asm/archrandom.h>
24#include <asm/hypervisor.h>
25#include <asm/processor.h>
26#include <asm/tlbflush.h>
27#include <asm/debugreg.h>
28#include <asm/sections.h>
29#include <asm/vsyscall.h>
30#include <linux/topology.h>
31#include <linux/cpumask.h>
32#include <asm/pgtable.h>
33#include <linux/atomic.h>
34#include <asm/proto.h>
35#include <asm/setup.h>
36#include <asm/apic.h>
37#include <asm/desc.h>
38#include <asm/fpu/internal.h>
39#include <asm/mtrr.h>
40#include <asm/hwcap2.h>
41#include <linux/numa.h>
42#include <asm/asm.h>
43#include <asm/bugs.h>
44#include <asm/cpu.h>
45#include <asm/mce.h>
46#include <asm/msr.h>
47#include <asm/pat.h>
48#include <asm/microcode.h>
49#include <asm/microcode_intel.h>
50
51#ifdef CONFIG_X86_LOCAL_APIC
52#include <asm/uv/uv.h>
53#endif
54
55#include "cpu.h"
56
57u32 elf_hwcap2 __read_mostly;
58
59/* all of these masks are initialized in setup_cpu_local_masks() */
60cpumask_var_t cpu_initialized_mask;
61cpumask_var_t cpu_callout_mask;
62cpumask_var_t cpu_callin_mask;
63
64/* representing cpus for which sibling maps can be computed */
65cpumask_var_t cpu_sibling_setup_mask;
66
67/* correctly size the local cpu masks */
68void __init setup_cpu_local_masks(void)
69{
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74}
75
76static void default_init(struct cpuinfo_x86 *c)
77{
78#ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80#else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90#endif
91}
92
93static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97};
98
99static const struct cpu_dev *this_cpu = &default_cpu;
100
101DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102#ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117#else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151#endif
152} };
153EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155static int __init x86_mpx_setup(char *s)
156{
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168}
169__setup("nompx", x86_mpx_setup);
170
171#ifdef CONFIG_X86_64
172static int __init x86_nopcid_setup(char *s)
173{
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
184 return 0;
185}
186early_param("nopcid", x86_nopcid_setup);
187#endif
188
189static int __init x86_noinvpcid_setup(char *s)
190{
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202}
203early_param("noinvpcid", x86_noinvpcid_setup);
204
205#ifdef CONFIG_X86_32
206static int cachesize_override = -1;
207static int disable_x86_serial_nr = 1;
208
209static int __init cachesize_setup(char *str)
210{
211 get_option(&str, &cachesize_override);
212 return 1;
213}
214__setup("cachesize=", cachesize_setup);
215
216static int __init x86_sep_setup(char *s)
217{
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220}
221__setup("nosep", x86_sep_setup);
222
223/* Standard macro to see if a specific flag is changeable */
224static inline int flag_is_changeable_p(u32 flag)
225{
226 u32 f1, f2;
227
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
248
249 return ((f1^f2) & flag) != 0;
250}
251
252/* Probe for the CPUID instruction */
253int have_cpuid_p(void)
254{
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256}
257
258static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259{
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
271 pr_notice("CPU serial number disabled.\n");
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
276}
277
278static int __init x86_serial_nr_setup(char *s)
279{
280 disable_x86_serial_nr = 0;
281 return 1;
282}
283__setup("serialnumber", x86_serial_nr_setup);
284#else
285static inline int flag_is_changeable_p(u32 flag)
286{
287 return 1;
288}
289static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290{
291}
292#endif
293
294static __init int setup_disable_smep(char *arg)
295{
296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
299 return 1;
300}
301__setup("nosmep", setup_disable_smep);
302
303static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304{
305 if (cpu_has(c, X86_FEATURE_SMEP))
306 cr4_set_bits(X86_CR4_SMEP);
307}
308
309static __init int setup_disable_smap(char *arg)
310{
311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 return 1;
313}
314__setup("nosmap", setup_disable_smap);
315
316static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317{
318 unsigned long eflags = native_save_fl();
319
320 /* This should have been cleared long ago */
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324#ifdef CONFIG_X86_SMAP
325 cr4_set_bits(X86_CR4_SMAP);
326#else
327 cr4_clear_bits(X86_CR4_SMAP);
328#endif
329 }
330}
331
332/*
333 * Protection Keys are not available in 32-bit mode.
334 */
335static bool pku_disabled;
336
337static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338{
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355}
356
357#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358static __init int setup_disable_pku(char *arg)
359{
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374}
375__setup("nopku", setup_disable_pku);
376#endif /* CONFIG_X86_64 */
377
378/*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386};
387
388static const struct cpuid_dependent_feature
389cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394};
395
396static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
397{
398 const struct cpuid_dependent_feature *df;
399
400 for (df = cpuid_dependent_features; df->feature; df++) {
401
402 if (!cpu_has(c, df->feature))
403 continue;
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
411 if (!((s32)df->level < 0 ?
412 (u32)df->level > (u32)c->extended_cpuid_level :
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
422 }
423}
424
425/*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
430 */
431
432/* Look up CPU names by table lookup. */
433static const char *table_lookup_model(struct cpuinfo_x86 *c)
434{
435#ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
444 info = this_cpu->legacy_models;
445
446 while (info->family) {
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
451#endif
452 return NULL; /* Not found */
453}
454
455__u32 cpu_caps_cleared[NCAPINTS];
456__u32 cpu_caps_set[NCAPINTS];
457
458void load_percpu_segment(int cpu)
459{
460#ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462#else
463 __loadsegment_simple(gs, 0);
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465#endif
466 load_stack_canary_segment();
467}
468
469static void set_percpu_fixmap_pages(int fixmap_index, void *ptr,
470 int pages, pgprot_t prot)
471{
472 int i;
473
474 for (i = 0; i < pages; i++) {
475 __set_fixmap(fixmap_index - i,
476 per_cpu_ptr_to_phys(ptr + i * PAGE_SIZE), prot);
477 }
478}
479
480#ifdef CONFIG_X86_32
481/* The 32-bit entry code needs to find cpu_entry_area. */
482DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
483#endif
484
485/* Setup the fixmap mappings only once per-processor */
486static inline void setup_cpu_entry_area(int cpu)
487{
488#ifdef CONFIG_X86_64
489 /* On 64-bit systems, we use a read-only fixmap GDT. */
490 pgprot_t gdt_prot = PAGE_KERNEL_RO;
491#else
492 /*
493 * On native 32-bit systems, the GDT cannot be read-only because
494 * our double fault handler uses a task gate, and entering through
495 * a task gate needs to change an available TSS to busy. If the GDT
496 * is read-only, that will triple fault.
497 *
498 * On Xen PV, the GDT must be read-only because the hypervisor requires
499 * it.
500 */
501 pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
502 PAGE_KERNEL_RO : PAGE_KERNEL;
503#endif
504
505 __set_fixmap(get_cpu_entry_area_index(cpu, gdt), get_cpu_gdt_paddr(cpu), gdt_prot);
506
507 /*
508 * The Intel SDM says (Volume 3, 7.2.1):
509 *
510 * Avoid placing a page boundary in the part of the TSS that the
511 * processor reads during a task switch (the first 104 bytes). The
512 * processor may not correctly perform address translations if a
513 * boundary occurs in this area. During a task switch, the processor
514 * reads and writes into the first 104 bytes of each TSS (using
515 * contiguous physical addresses beginning with the physical address
516 * of the first byte of the TSS). So, after TSS access begins, if
517 * part of the 104 bytes is not physically contiguous, the processor
518 * will access incorrect information without generating a page-fault
519 * exception.
520 *
521 * There are also a lot of errata involving the TSS spanning a page
522 * boundary. Assert that we're not doing that.
523 */
524 BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
525 offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
526 BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
527 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, tss),
528 &per_cpu(cpu_tss, cpu),
529 sizeof(struct tss_struct) / PAGE_SIZE,
530 PAGE_KERNEL);
531
532#ifdef CONFIG_X86_32
533 this_cpu_write(cpu_entry_area, get_cpu_entry_area(cpu));
534#endif
535}
536
537/* Load the original GDT from the per-cpu structure */
538void load_direct_gdt(int cpu)
539{
540 struct desc_ptr gdt_descr;
541
542 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
543 gdt_descr.size = GDT_SIZE - 1;
544 load_gdt(&gdt_descr);
545}
546EXPORT_SYMBOL_GPL(load_direct_gdt);
547
548/* Load a fixmap remapping of the per-cpu GDT */
549void load_fixmap_gdt(int cpu)
550{
551 struct desc_ptr gdt_descr;
552
553 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
554 gdt_descr.size = GDT_SIZE - 1;
555 load_gdt(&gdt_descr);
556}
557EXPORT_SYMBOL_GPL(load_fixmap_gdt);
558
559/*
560 * Current gdt points %fs at the "master" per-cpu area: after this,
561 * it's on the real one.
562 */
563void switch_to_new_gdt(int cpu)
564{
565 /* Load the original GDT */
566 load_direct_gdt(cpu);
567 /* Reload the per-cpu base */
568 load_percpu_segment(cpu);
569}
570
571static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
572
573static void get_model_name(struct cpuinfo_x86 *c)
574{
575 unsigned int *v;
576 char *p, *q, *s;
577
578 if (c->extended_cpuid_level < 0x80000004)
579 return;
580
581 v = (unsigned int *)c->x86_model_id;
582 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
583 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
584 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
585 c->x86_model_id[48] = 0;
586
587 /* Trim whitespace */
588 p = q = s = &c->x86_model_id[0];
589
590 while (*p == ' ')
591 p++;
592
593 while (*p) {
594 /* Note the last non-whitespace index */
595 if (!isspace(*p))
596 s = q;
597
598 *q++ = *p++;
599 }
600
601 *(s + 1) = '\0';
602}
603
604void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
605{
606 unsigned int n, dummy, ebx, ecx, edx, l2size;
607
608 n = c->extended_cpuid_level;
609
610 if (n >= 0x80000005) {
611 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
612 c->x86_cache_size = (ecx>>24) + (edx>>24);
613#ifdef CONFIG_X86_64
614 /* On K8 L1 TLB is inclusive, so don't count it */
615 c->x86_tlbsize = 0;
616#endif
617 }
618
619 if (n < 0x80000006) /* Some chips just has a large L1. */
620 return;
621
622 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
623 l2size = ecx >> 16;
624
625#ifdef CONFIG_X86_64
626 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
627#else
628 /* do processor-specific cache resizing */
629 if (this_cpu->legacy_cache_size)
630 l2size = this_cpu->legacy_cache_size(c, l2size);
631
632 /* Allow user to override all this if necessary. */
633 if (cachesize_override != -1)
634 l2size = cachesize_override;
635
636 if (l2size == 0)
637 return; /* Again, no L2 cache is possible */
638#endif
639
640 c->x86_cache_size = l2size;
641}
642
643u16 __read_mostly tlb_lli_4k[NR_INFO];
644u16 __read_mostly tlb_lli_2m[NR_INFO];
645u16 __read_mostly tlb_lli_4m[NR_INFO];
646u16 __read_mostly tlb_lld_4k[NR_INFO];
647u16 __read_mostly tlb_lld_2m[NR_INFO];
648u16 __read_mostly tlb_lld_4m[NR_INFO];
649u16 __read_mostly tlb_lld_1g[NR_INFO];
650
651static void cpu_detect_tlb(struct cpuinfo_x86 *c)
652{
653 if (this_cpu->c_detect_tlb)
654 this_cpu->c_detect_tlb(c);
655
656 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
657 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
658 tlb_lli_4m[ENTRIES]);
659
660 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
661 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
662 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
663}
664
665void detect_ht(struct cpuinfo_x86 *c)
666{
667#ifdef CONFIG_SMP
668 u32 eax, ebx, ecx, edx;
669 int index_msb, core_bits;
670 static bool printed;
671
672 if (!cpu_has(c, X86_FEATURE_HT))
673 return;
674
675 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
676 goto out;
677
678 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
679 return;
680
681 cpuid(1, &eax, &ebx, &ecx, &edx);
682
683 smp_num_siblings = (ebx & 0xff0000) >> 16;
684
685 if (smp_num_siblings == 1) {
686 pr_info_once("CPU0: Hyper-Threading is disabled\n");
687 goto out;
688 }
689
690 if (smp_num_siblings <= 1)
691 goto out;
692
693 index_msb = get_count_order(smp_num_siblings);
694 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
695
696 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
697
698 index_msb = get_count_order(smp_num_siblings);
699
700 core_bits = get_count_order(c->x86_max_cores);
701
702 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
703 ((1 << core_bits) - 1);
704
705out:
706 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
707 pr_info("CPU: Physical Processor ID: %d\n",
708 c->phys_proc_id);
709 pr_info("CPU: Processor Core ID: %d\n",
710 c->cpu_core_id);
711 printed = 1;
712 }
713#endif
714}
715
716static void get_cpu_vendor(struct cpuinfo_x86 *c)
717{
718 char *v = c->x86_vendor_id;
719 int i;
720
721 for (i = 0; i < X86_VENDOR_NUM; i++) {
722 if (!cpu_devs[i])
723 break;
724
725 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
726 (cpu_devs[i]->c_ident[1] &&
727 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
728
729 this_cpu = cpu_devs[i];
730 c->x86_vendor = this_cpu->c_x86_vendor;
731 return;
732 }
733 }
734
735 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
736 "CPU: Your system may be unstable.\n", v);
737
738 c->x86_vendor = X86_VENDOR_UNKNOWN;
739 this_cpu = &default_cpu;
740}
741
742void cpu_detect(struct cpuinfo_x86 *c)
743{
744 /* Get vendor name */
745 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
746 (unsigned int *)&c->x86_vendor_id[0],
747 (unsigned int *)&c->x86_vendor_id[8],
748 (unsigned int *)&c->x86_vendor_id[4]);
749
750 c->x86 = 4;
751 /* Intel-defined flags: level 0x00000001 */
752 if (c->cpuid_level >= 0x00000001) {
753 u32 junk, tfms, cap0, misc;
754
755 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
756 c->x86 = x86_family(tfms);
757 c->x86_model = x86_model(tfms);
758 c->x86_mask = x86_stepping(tfms);
759
760 if (cap0 & (1<<19)) {
761 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
762 c->x86_cache_alignment = c->x86_clflush_size;
763 }
764 }
765}
766
767static void apply_forced_caps(struct cpuinfo_x86 *c)
768{
769 int i;
770
771 for (i = 0; i < NCAPINTS; i++) {
772 c->x86_capability[i] &= ~cpu_caps_cleared[i];
773 c->x86_capability[i] |= cpu_caps_set[i];
774 }
775}
776
777void get_cpu_cap(struct cpuinfo_x86 *c)
778{
779 u32 eax, ebx, ecx, edx;
780
781 /* Intel-defined flags: level 0x00000001 */
782 if (c->cpuid_level >= 0x00000001) {
783 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
784
785 c->x86_capability[CPUID_1_ECX] = ecx;
786 c->x86_capability[CPUID_1_EDX] = edx;
787 }
788
789 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
790 if (c->cpuid_level >= 0x00000006)
791 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
792
793 /* Additional Intel-defined flags: level 0x00000007 */
794 if (c->cpuid_level >= 0x00000007) {
795 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
796 c->x86_capability[CPUID_7_0_EBX] = ebx;
797 c->x86_capability[CPUID_7_ECX] = ecx;
798 }
799
800 /* Extended state features: level 0x0000000d */
801 if (c->cpuid_level >= 0x0000000d) {
802 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
803
804 c->x86_capability[CPUID_D_1_EAX] = eax;
805 }
806
807 /* Additional Intel-defined flags: level 0x0000000F */
808 if (c->cpuid_level >= 0x0000000F) {
809
810 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
811 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
812 c->x86_capability[CPUID_F_0_EDX] = edx;
813
814 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
815 /* will be overridden if occupancy monitoring exists */
816 c->x86_cache_max_rmid = ebx;
817
818 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
819 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
820 c->x86_capability[CPUID_F_1_EDX] = edx;
821
822 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
823 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
824 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
825 c->x86_cache_max_rmid = ecx;
826 c->x86_cache_occ_scale = ebx;
827 }
828 } else {
829 c->x86_cache_max_rmid = -1;
830 c->x86_cache_occ_scale = -1;
831 }
832 }
833
834 /* AMD-defined flags: level 0x80000001 */
835 eax = cpuid_eax(0x80000000);
836 c->extended_cpuid_level = eax;
837
838 if ((eax & 0xffff0000) == 0x80000000) {
839 if (eax >= 0x80000001) {
840 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
841
842 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
843 c->x86_capability[CPUID_8000_0001_EDX] = edx;
844 }
845 }
846
847 if (c->extended_cpuid_level >= 0x80000007) {
848 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
849
850 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
851 c->x86_power = edx;
852 }
853
854 if (c->extended_cpuid_level >= 0x80000008) {
855 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
856
857 c->x86_virt_bits = (eax >> 8) & 0xff;
858 c->x86_phys_bits = eax & 0xff;
859 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
860 }
861#ifdef CONFIG_X86_32
862 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
863 c->x86_phys_bits = 36;
864#endif
865
866 if (c->extended_cpuid_level >= 0x8000000a)
867 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
868
869 init_scattered_cpuid_features(c);
870
871 /*
872 * Clear/Set all flags overridden by options, after probe.
873 * This needs to happen each time we re-probe, which may happen
874 * several times during CPU initialization.
875 */
876 apply_forced_caps(c);
877}
878
879static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
880{
881#ifdef CONFIG_X86_32
882 int i;
883
884 /*
885 * First of all, decide if this is a 486 or higher
886 * It's a 486 if we can modify the AC flag
887 */
888 if (flag_is_changeable_p(X86_EFLAGS_AC))
889 c->x86 = 4;
890 else
891 c->x86 = 3;
892
893 for (i = 0; i < X86_VENDOR_NUM; i++)
894 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
895 c->x86_vendor_id[0] = 0;
896 cpu_devs[i]->c_identify(c);
897 if (c->x86_vendor_id[0]) {
898 get_cpu_vendor(c);
899 break;
900 }
901 }
902#endif
903}
904
905/*
906 * Do minimum CPU detection early.
907 * Fields really needed: vendor, cpuid_level, family, model, mask,
908 * cache alignment.
909 * The others are not touched to avoid unwanted side effects.
910 *
911 * WARNING: this function is only called on the BP. Don't add code here
912 * that is supposed to run on all CPUs.
913 */
914static void __init early_identify_cpu(struct cpuinfo_x86 *c)
915{
916#ifdef CONFIG_X86_64
917 c->x86_clflush_size = 64;
918 c->x86_phys_bits = 36;
919 c->x86_virt_bits = 48;
920#else
921 c->x86_clflush_size = 32;
922 c->x86_phys_bits = 32;
923 c->x86_virt_bits = 32;
924#endif
925 c->x86_cache_alignment = c->x86_clflush_size;
926
927 memset(&c->x86_capability, 0, sizeof c->x86_capability);
928 c->extended_cpuid_level = 0;
929
930 /* cyrix could have cpuid enabled via c_identify()*/
931 if (have_cpuid_p()) {
932 cpu_detect(c);
933 get_cpu_vendor(c);
934 get_cpu_cap(c);
935 setup_force_cpu_cap(X86_FEATURE_CPUID);
936
937 if (this_cpu->c_early_init)
938 this_cpu->c_early_init(c);
939
940 c->cpu_index = 0;
941 filter_cpuid_features(c, false);
942
943 if (this_cpu->c_bsp_init)
944 this_cpu->c_bsp_init(c);
945 } else {
946 identify_cpu_without_cpuid(c);
947 setup_clear_cpu_cap(X86_FEATURE_CPUID);
948 }
949
950 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
951 fpu__init_system(c);
952}
953
954void __init early_cpu_init(void)
955{
956 const struct cpu_dev *const *cdev;
957 int count = 0;
958
959#ifdef CONFIG_PROCESSOR_SELECT
960 pr_info("KERNEL supported cpus:\n");
961#endif
962
963 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
964 const struct cpu_dev *cpudev = *cdev;
965
966 if (count >= X86_VENDOR_NUM)
967 break;
968 cpu_devs[count] = cpudev;
969 count++;
970
971#ifdef CONFIG_PROCESSOR_SELECT
972 {
973 unsigned int j;
974
975 for (j = 0; j < 2; j++) {
976 if (!cpudev->c_ident[j])
977 continue;
978 pr_info(" %s %s\n", cpudev->c_vendor,
979 cpudev->c_ident[j]);
980 }
981 }
982#endif
983 }
984 early_identify_cpu(&boot_cpu_data);
985}
986
987/*
988 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
989 * unfortunately, that's not true in practice because of early VIA
990 * chips and (more importantly) broken virtualizers that are not easy
991 * to detect. In the latter case it doesn't even *fail* reliably, so
992 * probing for it doesn't even work. Disable it completely on 32-bit
993 * unless we can find a reliable way to detect all the broken cases.
994 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
995 */
996static void detect_nopl(struct cpuinfo_x86 *c)
997{
998#ifdef CONFIG_X86_32
999 clear_cpu_cap(c, X86_FEATURE_NOPL);
1000#else
1001 set_cpu_cap(c, X86_FEATURE_NOPL);
1002#endif
1003}
1004
1005static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1006{
1007#ifdef CONFIG_X86_64
1008 /*
1009 * Empirically, writing zero to a segment selector on AMD does
1010 * not clear the base, whereas writing zero to a segment
1011 * selector on Intel does clear the base. Intel's behavior
1012 * allows slightly faster context switches in the common case
1013 * where GS is unused by the prev and next threads.
1014 *
1015 * Since neither vendor documents this anywhere that I can see,
1016 * detect it directly instead of hardcoding the choice by
1017 * vendor.
1018 *
1019 * I've designated AMD's behavior as the "bug" because it's
1020 * counterintuitive and less friendly.
1021 */
1022
1023 unsigned long old_base, tmp;
1024 rdmsrl(MSR_FS_BASE, old_base);
1025 wrmsrl(MSR_FS_BASE, 1);
1026 loadsegment(fs, 0);
1027 rdmsrl(MSR_FS_BASE, tmp);
1028 if (tmp != 0)
1029 set_cpu_bug(c, X86_BUG_NULL_SEG);
1030 wrmsrl(MSR_FS_BASE, old_base);
1031#endif
1032}
1033
1034static void generic_identify(struct cpuinfo_x86 *c)
1035{
1036 c->extended_cpuid_level = 0;
1037
1038 if (!have_cpuid_p())
1039 identify_cpu_without_cpuid(c);
1040
1041 /* cyrix could have cpuid enabled via c_identify()*/
1042 if (!have_cpuid_p())
1043 return;
1044
1045 cpu_detect(c);
1046
1047 get_cpu_vendor(c);
1048
1049 get_cpu_cap(c);
1050
1051 if (c->cpuid_level >= 0x00000001) {
1052 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1053#ifdef CONFIG_X86_32
1054# ifdef CONFIG_SMP
1055 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1056# else
1057 c->apicid = c->initial_apicid;
1058# endif
1059#endif
1060 c->phys_proc_id = c->initial_apicid;
1061 }
1062
1063 get_model_name(c); /* Default name */
1064
1065 detect_nopl(c);
1066
1067 detect_null_seg_behavior(c);
1068
1069 /*
1070 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1071 * systems that run Linux at CPL > 0 may or may not have the
1072 * issue, but, even if they have the issue, there's absolutely
1073 * nothing we can do about it because we can't use the real IRET
1074 * instruction.
1075 *
1076 * NB: For the time being, only 32-bit kernels support
1077 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1078 * whether to apply espfix using paravirt hooks. If any
1079 * non-paravirt system ever shows up that does *not* have the
1080 * ESPFIX issue, we can change this.
1081 */
1082#ifdef CONFIG_X86_32
1083# ifdef CONFIG_PARAVIRT
1084 do {
1085 extern void native_iret(void);
1086 if (pv_cpu_ops.iret == native_iret)
1087 set_cpu_bug(c, X86_BUG_ESPFIX);
1088 } while (0);
1089# else
1090 set_cpu_bug(c, X86_BUG_ESPFIX);
1091# endif
1092#endif
1093}
1094
1095static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1096{
1097 /*
1098 * The heavy lifting of max_rmid and cache_occ_scale are handled
1099 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1100 * in case CQM bits really aren't there in this CPU.
1101 */
1102 if (c != &boot_cpu_data) {
1103 boot_cpu_data.x86_cache_max_rmid =
1104 min(boot_cpu_data.x86_cache_max_rmid,
1105 c->x86_cache_max_rmid);
1106 }
1107}
1108
1109/*
1110 * Validate that ACPI/mptables have the same information about the
1111 * effective APIC id and update the package map.
1112 */
1113static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1114{
1115#ifdef CONFIG_SMP
1116 unsigned int apicid, cpu = smp_processor_id();
1117
1118 apicid = apic->cpu_present_to_apicid(cpu);
1119
1120 if (apicid != c->apicid) {
1121 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1122 cpu, apicid, c->initial_apicid);
1123 }
1124 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1125#else
1126 c->logical_proc_id = 0;
1127#endif
1128}
1129
1130/*
1131 * This does the hard work of actually picking apart the CPU stuff...
1132 */
1133static void identify_cpu(struct cpuinfo_x86 *c)
1134{
1135 int i;
1136
1137 c->loops_per_jiffy = loops_per_jiffy;
1138 c->x86_cache_size = -1;
1139 c->x86_vendor = X86_VENDOR_UNKNOWN;
1140 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1141 c->x86_vendor_id[0] = '\0'; /* Unset */
1142 c->x86_model_id[0] = '\0'; /* Unset */
1143 c->x86_max_cores = 1;
1144 c->x86_coreid_bits = 0;
1145 c->cu_id = 0xff;
1146#ifdef CONFIG_X86_64
1147 c->x86_clflush_size = 64;
1148 c->x86_phys_bits = 36;
1149 c->x86_virt_bits = 48;
1150#else
1151 c->cpuid_level = -1; /* CPUID not detected */
1152 c->x86_clflush_size = 32;
1153 c->x86_phys_bits = 32;
1154 c->x86_virt_bits = 32;
1155#endif
1156 c->x86_cache_alignment = c->x86_clflush_size;
1157 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1158
1159 generic_identify(c);
1160
1161 if (this_cpu->c_identify)
1162 this_cpu->c_identify(c);
1163
1164 /* Clear/Set all flags overridden by options, after probe */
1165 apply_forced_caps(c);
1166
1167#ifdef CONFIG_X86_64
1168 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1169#endif
1170
1171 /*
1172 * Vendor-specific initialization. In this section we
1173 * canonicalize the feature flags, meaning if there are
1174 * features a certain CPU supports which CPUID doesn't
1175 * tell us, CPUID claiming incorrect flags, or other bugs,
1176 * we handle them here.
1177 *
1178 * At the end of this section, c->x86_capability better
1179 * indicate the features this CPU genuinely supports!
1180 */
1181 if (this_cpu->c_init)
1182 this_cpu->c_init(c);
1183
1184 /* Disable the PN if appropriate */
1185 squash_the_stupid_serial_number(c);
1186
1187 /* Set up SMEP/SMAP */
1188 setup_smep(c);
1189 setup_smap(c);
1190
1191 /*
1192 * The vendor-specific functions might have changed features.
1193 * Now we do "generic changes."
1194 */
1195
1196 /* Filter out anything that depends on CPUID levels we don't have */
1197 filter_cpuid_features(c, true);
1198
1199 /* If the model name is still unset, do table lookup. */
1200 if (!c->x86_model_id[0]) {
1201 const char *p;
1202 p = table_lookup_model(c);
1203 if (p)
1204 strcpy(c->x86_model_id, p);
1205 else
1206 /* Last resort... */
1207 sprintf(c->x86_model_id, "%02x/%02x",
1208 c->x86, c->x86_model);
1209 }
1210
1211#ifdef CONFIG_X86_64
1212 detect_ht(c);
1213#endif
1214
1215 x86_init_rdrand(c);
1216 x86_init_cache_qos(c);
1217 setup_pku(c);
1218
1219 /*
1220 * Clear/Set all flags overridden by options, need do it
1221 * before following smp all cpus cap AND.
1222 */
1223 apply_forced_caps(c);
1224
1225 /*
1226 * On SMP, boot_cpu_data holds the common feature set between
1227 * all CPUs; so make sure that we indicate which features are
1228 * common between the CPUs. The first time this routine gets
1229 * executed, c == &boot_cpu_data.
1230 */
1231 if (c != &boot_cpu_data) {
1232 /* AND the already accumulated flags with these */
1233 for (i = 0; i < NCAPINTS; i++)
1234 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1235
1236 /* OR, i.e. replicate the bug flags */
1237 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1238 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1239 }
1240
1241 /* Init Machine Check Exception if available. */
1242 mcheck_cpu_init(c);
1243
1244 select_idle_routine(c);
1245
1246#ifdef CONFIG_NUMA
1247 numa_add_cpu(smp_processor_id());
1248#endif
1249}
1250
1251/*
1252 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1253 * on 32-bit kernels:
1254 */
1255#ifdef CONFIG_X86_32
1256void enable_sep_cpu(void)
1257{
1258 struct tss_struct *tss;
1259 int cpu;
1260
1261 if (!boot_cpu_has(X86_FEATURE_SEP))
1262 return;
1263
1264 cpu = get_cpu();
1265 tss = &per_cpu(cpu_tss, cpu);
1266
1267 /*
1268 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1269 * see the big comment in struct x86_hw_tss's definition.
1270 */
1271
1272 tss->x86_tss.ss1 = __KERNEL_CS;
1273 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1274
1275 wrmsr(MSR_IA32_SYSENTER_ESP,
1276 (unsigned long)&get_cpu_entry_area(cpu)->tss +
1277 offsetofend(struct tss_struct, SYSENTER_stack),
1278 0);
1279
1280 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1281
1282 put_cpu();
1283}
1284#endif
1285
1286void __init identify_boot_cpu(void)
1287{
1288 identify_cpu(&boot_cpu_data);
1289#ifdef CONFIG_X86_32
1290 sysenter_setup();
1291 enable_sep_cpu();
1292#endif
1293 cpu_detect_tlb(&boot_cpu_data);
1294}
1295
1296void identify_secondary_cpu(struct cpuinfo_x86 *c)
1297{
1298 BUG_ON(c == &boot_cpu_data);
1299 identify_cpu(c);
1300#ifdef CONFIG_X86_32
1301 enable_sep_cpu();
1302#endif
1303 mtrr_ap_init();
1304 validate_apic_and_package_id(c);
1305}
1306
1307static __init int setup_noclflush(char *arg)
1308{
1309 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1310 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1311 return 1;
1312}
1313__setup("noclflush", setup_noclflush);
1314
1315void print_cpu_info(struct cpuinfo_x86 *c)
1316{
1317 const char *vendor = NULL;
1318
1319 if (c->x86_vendor < X86_VENDOR_NUM) {
1320 vendor = this_cpu->c_vendor;
1321 } else {
1322 if (c->cpuid_level >= 0)
1323 vendor = c->x86_vendor_id;
1324 }
1325
1326 if (vendor && !strstr(c->x86_model_id, vendor))
1327 pr_cont("%s ", vendor);
1328
1329 if (c->x86_model_id[0])
1330 pr_cont("%s", c->x86_model_id);
1331 else
1332 pr_cont("%d86", c->x86);
1333
1334 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1335
1336 if (c->x86_mask || c->cpuid_level >= 0)
1337 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1338 else
1339 pr_cont(")\n");
1340}
1341
1342/*
1343 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1344 * But we need to keep a dummy __setup around otherwise it would
1345 * show up as an environment variable for init.
1346 */
1347static __init int setup_clearcpuid(char *arg)
1348{
1349 return 1;
1350}
1351__setup("clearcpuid=", setup_clearcpuid);
1352
1353#ifdef CONFIG_X86_64
1354struct desc_ptr idt_descr __ro_after_init = {
1355 .size = NR_VECTORS * 16 - 1,
1356 .address = (unsigned long) idt_table,
1357};
1358const struct desc_ptr debug_idt_descr = {
1359 .size = NR_VECTORS * 16 - 1,
1360 .address = (unsigned long) debug_idt_table,
1361};
1362
1363DEFINE_PER_CPU_FIRST(union irq_stack_union,
1364 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1365
1366/*
1367 * The following percpu variables are hot. Align current_task to
1368 * cacheline size such that they fall in the same cacheline.
1369 */
1370DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1371 &init_task;
1372EXPORT_PER_CPU_SYMBOL(current_task);
1373
1374DEFINE_PER_CPU(char *, irq_stack_ptr) =
1375 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1376
1377DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1378
1379DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1380EXPORT_PER_CPU_SYMBOL(__preempt_count);
1381
1382/*
1383 * Special IST stacks which the CPU switches to when it calls
1384 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1385 * limit), all of them are 4K, except the debug stack which
1386 * is 8K.
1387 */
1388static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1389 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1390 [DEBUG_STACK - 1] = DEBUG_STKSZ
1391};
1392
1393static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1394 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1395
1396/* May not be marked __init: used by software suspend */
1397void syscall_init(void)
1398{
1399 int cpu = smp_processor_id();
1400
1401 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1402 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1403
1404#ifdef CONFIG_IA32_EMULATION
1405 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1406 /*
1407 * This only works on Intel CPUs.
1408 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1409 * This does not cause SYSENTER to jump to the wrong location, because
1410 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1411 */
1412 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1413 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1414 (unsigned long)&get_cpu_entry_area(cpu)->tss +
1415 offsetofend(struct tss_struct, SYSENTER_stack));
1416 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1417#else
1418 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1419 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1420 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1421 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1422#endif
1423
1424 /* Flags to clear on syscall */
1425 wrmsrl(MSR_SYSCALL_MASK,
1426 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1427 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1428}
1429
1430/*
1431 * Copies of the original ist values from the tss are only accessed during
1432 * debugging, no special alignment required.
1433 */
1434DEFINE_PER_CPU(struct orig_ist, orig_ist);
1435
1436static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1437DEFINE_PER_CPU(int, debug_stack_usage);
1438
1439int is_debug_stack(unsigned long addr)
1440{
1441 return __this_cpu_read(debug_stack_usage) ||
1442 (addr <= __this_cpu_read(debug_stack_addr) &&
1443 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1444}
1445NOKPROBE_SYMBOL(is_debug_stack);
1446
1447DEFINE_PER_CPU(u32, debug_idt_ctr);
1448
1449void debug_stack_set_zero(void)
1450{
1451 this_cpu_inc(debug_idt_ctr);
1452 load_current_idt();
1453}
1454NOKPROBE_SYMBOL(debug_stack_set_zero);
1455
1456void debug_stack_reset(void)
1457{
1458 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1459 return;
1460 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1461 load_current_idt();
1462}
1463NOKPROBE_SYMBOL(debug_stack_reset);
1464
1465#else /* CONFIG_X86_64 */
1466
1467DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1468EXPORT_PER_CPU_SYMBOL(current_task);
1469DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1470EXPORT_PER_CPU_SYMBOL(__preempt_count);
1471
1472/*
1473 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1474 * the top of the kernel stack. Use an extra percpu variable to track the
1475 * top of the kernel stack directly.
1476 */
1477DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1478 (unsigned long)&init_thread_union + THREAD_SIZE;
1479EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1480
1481#ifdef CONFIG_CC_STACKPROTECTOR
1482DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1483#endif
1484
1485#endif /* CONFIG_X86_64 */
1486
1487/*
1488 * Clear all 6 debug registers:
1489 */
1490static void clear_all_debug_regs(void)
1491{
1492 int i;
1493
1494 for (i = 0; i < 8; i++) {
1495 /* Ignore db4, db5 */
1496 if ((i == 4) || (i == 5))
1497 continue;
1498
1499 set_debugreg(0, i);
1500 }
1501}
1502
1503#ifdef CONFIG_KGDB
1504/*
1505 * Restore debug regs if using kgdbwait and you have a kernel debugger
1506 * connection established.
1507 */
1508static void dbg_restore_debug_regs(void)
1509{
1510 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1511 arch_kgdb_ops.correct_hw_break();
1512}
1513#else /* ! CONFIG_KGDB */
1514#define dbg_restore_debug_regs()
1515#endif /* ! CONFIG_KGDB */
1516
1517static void wait_for_master_cpu(int cpu)
1518{
1519#ifdef CONFIG_SMP
1520 /*
1521 * wait for ACK from master CPU before continuing
1522 * with AP initialization
1523 */
1524 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1525 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1526 cpu_relax();
1527#endif
1528}
1529
1530/*
1531 * cpu_init() initializes state that is per-CPU. Some data is already
1532 * initialized (naturally) in the bootstrap process, such as the GDT
1533 * and IDT. We reload them nevertheless, this function acts as a
1534 * 'CPU state barrier', nothing should get across.
1535 * A lot of state is already set up in PDA init for 64 bit
1536 */
1537#ifdef CONFIG_X86_64
1538
1539void cpu_init(void)
1540{
1541 struct orig_ist *oist;
1542 struct task_struct *me;
1543 struct tss_struct *t;
1544 unsigned long v;
1545 int cpu = raw_smp_processor_id();
1546 int i;
1547
1548 wait_for_master_cpu(cpu);
1549
1550 /*
1551 * Initialize the CR4 shadow before doing anything that could
1552 * try to read it.
1553 */
1554 cr4_init_shadow();
1555
1556 if (cpu)
1557 load_ucode_ap();
1558
1559 t = &per_cpu(cpu_tss, cpu);
1560 oist = &per_cpu(orig_ist, cpu);
1561
1562#ifdef CONFIG_NUMA
1563 if (this_cpu_read(numa_node) == 0 &&
1564 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1565 set_numa_node(early_cpu_to_node(cpu));
1566#endif
1567
1568 me = current;
1569
1570 pr_debug("Initializing CPU#%d\n", cpu);
1571
1572 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1573
1574 /*
1575 * Initialize the per-CPU GDT with the boot GDT,
1576 * and set up the GDT descriptor:
1577 */
1578
1579 switch_to_new_gdt(cpu);
1580 loadsegment(fs, 0);
1581
1582 load_current_idt();
1583
1584 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1585 syscall_init();
1586
1587 wrmsrl(MSR_FS_BASE, 0);
1588 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1589 barrier();
1590
1591 x86_configure_nx();
1592 x2apic_setup();
1593
1594 /*
1595 * set up and load the per-CPU TSS
1596 */
1597 if (!oist->ist[0]) {
1598 char *estacks = per_cpu(exception_stacks, cpu);
1599
1600 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1601 estacks += exception_stack_sizes[v];
1602 oist->ist[v] = t->x86_tss.ist[v] =
1603 (unsigned long)estacks;
1604 if (v == DEBUG_STACK-1)
1605 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1606 }
1607 }
1608
1609 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1610
1611 /*
1612 * <= is required because the CPU will access up to
1613 * 8 bits beyond the end of the IO permission bitmap.
1614 */
1615 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1616 t->io_bitmap[i] = ~0UL;
1617
1618 mmgrab(&init_mm);
1619 me->active_mm = &init_mm;
1620 BUG_ON(me->mm);
1621 enter_lazy_tlb(&init_mm, me);
1622
1623 setup_cpu_entry_area(cpu);
1624
1625 /*
1626 * Initialize the TSS. sp0 points to the entry trampoline stack
1627 * regardless of what task is running.
1628 */
1629 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1630 load_TR_desc();
1631 load_sp0((unsigned long)&get_cpu_entry_area(cpu)->tss +
1632 offsetofend(struct tss_struct, SYSENTER_stack));
1633
1634 load_mm_ldt(&init_mm);
1635
1636 clear_all_debug_regs();
1637 dbg_restore_debug_regs();
1638
1639 fpu__init_cpu();
1640
1641 if (is_uv_system())
1642 uv_cpu_init();
1643
1644 load_fixmap_gdt(cpu);
1645}
1646
1647#else
1648
1649void cpu_init(void)
1650{
1651 int cpu = smp_processor_id();
1652 struct task_struct *curr = current;
1653 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1654
1655 wait_for_master_cpu(cpu);
1656
1657 /*
1658 * Initialize the CR4 shadow before doing anything that could
1659 * try to read it.
1660 */
1661 cr4_init_shadow();
1662
1663 show_ucode_info_early();
1664
1665 pr_info("Initializing CPU#%d\n", cpu);
1666
1667 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1668 boot_cpu_has(X86_FEATURE_TSC) ||
1669 boot_cpu_has(X86_FEATURE_DE))
1670 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1671
1672 load_current_idt();
1673 switch_to_new_gdt(cpu);
1674
1675 /*
1676 * Set up and load the per-CPU TSS and LDT
1677 */
1678 mmgrab(&init_mm);
1679 curr->active_mm = &init_mm;
1680 BUG_ON(curr->mm);
1681 enter_lazy_tlb(&init_mm, curr);
1682
1683 setup_cpu_entry_area(cpu);
1684
1685 /*
1686 * Initialize the TSS. Don't bother initializing sp0, as the initial
1687 * task never enters user mode.
1688 */
1689 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1690 load_TR_desc();
1691
1692 load_mm_ldt(&init_mm);
1693
1694 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1695
1696#ifdef CONFIG_DOUBLEFAULT
1697 /* Set up doublefault TSS pointer in the GDT */
1698 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1699#endif
1700
1701 clear_all_debug_regs();
1702 dbg_restore_debug_regs();
1703
1704 fpu__init_cpu();
1705
1706 load_fixmap_gdt(cpu);
1707}
1708#endif
1709
1710static void bsp_resume(void)
1711{
1712 if (this_cpu->c_bsp_resume)
1713 this_cpu->c_bsp_resume(&boot_cpu_data);
1714}
1715
1716static struct syscore_ops cpu_syscore_ops = {
1717 .resume = bsp_resume,
1718};
1719
1720static int __init init_cpu_syscore(void)
1721{
1722 register_syscore_ops(&cpu_syscore_ops);
1723 return 0;
1724}
1725core_initcall(init_cpu_syscore);