]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - arch/x86/kernel/cpu/common.c
x86: move a few device initialization objects into .devinit.rodata
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
... / ...
CommitLineData
1#include <linux/init.h>
2#include <linux/kernel.h>
3#include <linux/sched.h>
4#include <linux/string.h>
5#include <linux/bootmem.h>
6#include <linux/bitops.h>
7#include <linux/module.h>
8#include <linux/kgdb.h>
9#include <linux/topology.h>
10#include <linux/delay.h>
11#include <linux/smp.h>
12#include <linux/percpu.h>
13#include <asm/i387.h>
14#include <asm/msr.h>
15#include <asm/io.h>
16#include <asm/linkage.h>
17#include <asm/mmu_context.h>
18#include <asm/mtrr.h>
19#include <asm/mce.h>
20#include <asm/pat.h>
21#include <asm/asm.h>
22#include <asm/numa.h>
23#include <asm/smp.h>
24#include <asm/cpu.h>
25#include <asm/cpumask.h>
26#include <asm/apic.h>
27
28#ifdef CONFIG_X86_LOCAL_APIC
29#include <asm/uv/uv.h>
30#endif
31
32#include <asm/pgtable.h>
33#include <asm/processor.h>
34#include <asm/desc.h>
35#include <asm/atomic.h>
36#include <asm/proto.h>
37#include <asm/sections.h>
38#include <asm/setup.h>
39#include <asm/hypervisor.h>
40#include <asm/stackprotector.h>
41
42#include "cpu.h"
43
44#ifdef CONFIG_X86_64
45
46/* all of these masks are initialized in setup_cpu_local_masks() */
47cpumask_var_t cpu_callin_mask;
48cpumask_var_t cpu_callout_mask;
49cpumask_var_t cpu_initialized_mask;
50
51/* representing cpus for which sibling maps can be computed */
52cpumask_var_t cpu_sibling_setup_mask;
53
54/* correctly size the local cpu masks */
55void __init setup_cpu_local_masks(void)
56{
57 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
58 alloc_bootmem_cpumask_var(&cpu_callin_mask);
59 alloc_bootmem_cpumask_var(&cpu_callout_mask);
60 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
61}
62
63#else /* CONFIG_X86_32 */
64
65cpumask_t cpu_callin_map;
66cpumask_t cpu_callout_map;
67cpumask_t cpu_initialized;
68cpumask_t cpu_sibling_setup_map;
69
70#endif /* CONFIG_X86_32 */
71
72
73static struct cpu_dev *this_cpu __cpuinitdata;
74
75DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
76#ifdef CONFIG_X86_64
77 /*
78 * We need valid kernel segments for data and code in long mode too
79 * IRET will check the segment types kkeil 2000/10/28
80 * Also sysret mandates a special GDT layout
81 *
82 * The TLS descriptors are currently at a different place compared to i386.
83 * Hopefully nobody expects them at a fixed place (Wine?)
84 */
85 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
86 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
87 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
88 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
89 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
90 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
91#else
92 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
93 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
94 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
95 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
96 /*
97 * Segments used for calling PnP BIOS have byte granularity.
98 * They code segments and data segments have fixed 64k limits,
99 * the transfer segment sizes are set at run time.
100 */
101 /* 32-bit code */
102 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
103 /* 16-bit code */
104 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
105 /* 16-bit data */
106 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
107 /* 16-bit data */
108 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
109 /* 16-bit data */
110 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
111 /*
112 * The APM segments have byte granularity and their bases
113 * are set at run time. All have 64k limits.
114 */
115 /* 32-bit code */
116 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
117 /* 16-bit code */
118 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
119 /* data */
120 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
121
122 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
123 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
124 GDT_STACK_CANARY_INIT
125#endif
126} };
127EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
128
129#ifdef CONFIG_X86_32
130static int cachesize_override __cpuinitdata = -1;
131static int disable_x86_serial_nr __cpuinitdata = 1;
132
133static int __init cachesize_setup(char *str)
134{
135 get_option(&str, &cachesize_override);
136 return 1;
137}
138__setup("cachesize=", cachesize_setup);
139
140static int __init x86_fxsr_setup(char *s)
141{
142 setup_clear_cpu_cap(X86_FEATURE_FXSR);
143 setup_clear_cpu_cap(X86_FEATURE_XMM);
144 return 1;
145}
146__setup("nofxsr", x86_fxsr_setup);
147
148static int __init x86_sep_setup(char *s)
149{
150 setup_clear_cpu_cap(X86_FEATURE_SEP);
151 return 1;
152}
153__setup("nosep", x86_sep_setup);
154
155/* Standard macro to see if a specific flag is changeable */
156static inline int flag_is_changeable_p(u32 flag)
157{
158 u32 f1, f2;
159
160 /*
161 * Cyrix and IDT cpus allow disabling of CPUID
162 * so the code below may return different results
163 * when it is executed before and after enabling
164 * the CPUID. Add "volatile" to not allow gcc to
165 * optimize the subsequent calls to this function.
166 */
167 asm volatile ("pushfl\n\t"
168 "pushfl\n\t"
169 "popl %0\n\t"
170 "movl %0,%1\n\t"
171 "xorl %2,%0\n\t"
172 "pushl %0\n\t"
173 "popfl\n\t"
174 "pushfl\n\t"
175 "popl %0\n\t"
176 "popfl\n\t"
177 : "=&r" (f1), "=&r" (f2)
178 : "ir" (flag));
179
180 return ((f1^f2) & flag) != 0;
181}
182
183/* Probe for the CPUID instruction */
184static int __cpuinit have_cpuid_p(void)
185{
186 return flag_is_changeable_p(X86_EFLAGS_ID);
187}
188
189static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
190{
191 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
192 /* Disable processor serial number */
193 unsigned long lo, hi;
194 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
195 lo |= 0x200000;
196 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
197 printk(KERN_NOTICE "CPU serial number disabled.\n");
198 clear_cpu_cap(c, X86_FEATURE_PN);
199
200 /* Disabling the serial number may affect the cpuid level */
201 c->cpuid_level = cpuid_eax(0);
202 }
203}
204
205static int __init x86_serial_nr_setup(char *s)
206{
207 disable_x86_serial_nr = 0;
208 return 1;
209}
210__setup("serialnumber", x86_serial_nr_setup);
211#else
212static inline int flag_is_changeable_p(u32 flag)
213{
214 return 1;
215}
216/* Probe for the CPUID instruction */
217static inline int have_cpuid_p(void)
218{
219 return 1;
220}
221static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222{
223}
224#endif
225
226/*
227 * Some CPU features depend on higher CPUID levels, which may not always
228 * be available due to CPUID level capping or broken virtualization
229 * software. Add those features to this table to auto-disable them.
230 */
231struct cpuid_dependent_feature {
232 u32 feature;
233 u32 level;
234};
235static const struct cpuid_dependent_feature __cpuinitconst
236cpuid_dependent_features[] = {
237 { X86_FEATURE_MWAIT, 0x00000005 },
238 { X86_FEATURE_DCA, 0x00000009 },
239 { X86_FEATURE_XSAVE, 0x0000000d },
240 { 0, 0 }
241};
242
243static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
244{
245 const struct cpuid_dependent_feature *df;
246 for (df = cpuid_dependent_features; df->feature; df++) {
247 /*
248 * Note: cpuid_level is set to -1 if unavailable, but
249 * extended_extended_level is set to 0 if unavailable
250 * and the legitimate extended levels are all negative
251 * when signed; hence the weird messing around with
252 * signs here...
253 */
254 if (cpu_has(c, df->feature) &&
255 ((s32)df->level < 0 ?
256 (u32)df->level > (u32)c->extended_cpuid_level :
257 (s32)df->level > (s32)c->cpuid_level)) {
258 clear_cpu_cap(c, df->feature);
259 if (warn)
260 printk(KERN_WARNING
261 "CPU: CPU feature %s disabled "
262 "due to lack of CPUID level 0x%x\n",
263 x86_cap_flags[df->feature],
264 df->level);
265 }
266 }
267}
268
269/*
270 * Naming convention should be: <Name> [(<Codename>)]
271 * This table only is used unless init_<vendor>() below doesn't set it;
272 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
273 *
274 */
275
276/* Look up CPU names by table lookup. */
277static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
278{
279 struct cpu_model_info *info;
280
281 if (c->x86_model >= 16)
282 return NULL; /* Range check */
283
284 if (!this_cpu)
285 return NULL;
286
287 info = this_cpu->c_models;
288
289 while (info && info->family) {
290 if (info->family == c->x86)
291 return info->model_names[c->x86_model];
292 info++;
293 }
294 return NULL; /* Not found */
295}
296
297__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
298
299void load_percpu_segment(int cpu)
300{
301#ifdef CONFIG_X86_32
302 loadsegment(fs, __KERNEL_PERCPU);
303#else
304 loadsegment(gs, 0);
305 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
306#endif
307 load_stack_canary_segment();
308}
309
310/* Current gdt points %fs at the "master" per-cpu area: after this,
311 * it's on the real one. */
312void switch_to_new_gdt(int cpu)
313{
314 struct desc_ptr gdt_descr;
315
316 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
317 gdt_descr.size = GDT_SIZE - 1;
318 load_gdt(&gdt_descr);
319 /* Reload the per-cpu base */
320
321 load_percpu_segment(cpu);
322}
323
324static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
325
326static void __cpuinit default_init(struct cpuinfo_x86 *c)
327{
328#ifdef CONFIG_X86_64
329 display_cacheinfo(c);
330#else
331 /* Not much we can do here... */
332 /* Check if at least it has cpuid */
333 if (c->cpuid_level == -1) {
334 /* No cpuid. It must be an ancient CPU */
335 if (c->x86 == 4)
336 strcpy(c->x86_model_id, "486");
337 else if (c->x86 == 3)
338 strcpy(c->x86_model_id, "386");
339 }
340#endif
341}
342
343static struct cpu_dev __cpuinitdata default_cpu = {
344 .c_init = default_init,
345 .c_vendor = "Unknown",
346 .c_x86_vendor = X86_VENDOR_UNKNOWN,
347};
348
349static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
350{
351 unsigned int *v;
352 char *p, *q;
353
354 if (c->extended_cpuid_level < 0x80000004)
355 return;
356
357 v = (unsigned int *) c->x86_model_id;
358 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
359 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
360 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
361 c->x86_model_id[48] = 0;
362
363 /* Intel chips right-justify this string for some dumb reason;
364 undo that brain damage */
365 p = q = &c->x86_model_id[0];
366 while (*p == ' ')
367 p++;
368 if (p != q) {
369 while (*p)
370 *q++ = *p++;
371 while (q <= &c->x86_model_id[48])
372 *q++ = '\0'; /* Zero-pad the rest */
373 }
374}
375
376void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
377{
378 unsigned int n, dummy, ebx, ecx, edx, l2size;
379
380 n = c->extended_cpuid_level;
381
382 if (n >= 0x80000005) {
383 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
384 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
385 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
386 c->x86_cache_size = (ecx>>24) + (edx>>24);
387#ifdef CONFIG_X86_64
388 /* On K8 L1 TLB is inclusive, so don't count it */
389 c->x86_tlbsize = 0;
390#endif
391 }
392
393 if (n < 0x80000006) /* Some chips just has a large L1. */
394 return;
395
396 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
397 l2size = ecx >> 16;
398
399#ifdef CONFIG_X86_64
400 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
401#else
402 /* do processor-specific cache resizing */
403 if (this_cpu->c_size_cache)
404 l2size = this_cpu->c_size_cache(c, l2size);
405
406 /* Allow user to override all this if necessary. */
407 if (cachesize_override != -1)
408 l2size = cachesize_override;
409
410 if (l2size == 0)
411 return; /* Again, no L2 cache is possible */
412#endif
413
414 c->x86_cache_size = l2size;
415
416 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
417 l2size, ecx & 0xFF);
418}
419
420void __cpuinit detect_ht(struct cpuinfo_x86 *c)
421{
422#ifdef CONFIG_X86_HT
423 u32 eax, ebx, ecx, edx;
424 int index_msb, core_bits;
425
426 if (!cpu_has(c, X86_FEATURE_HT))
427 return;
428
429 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
430 goto out;
431
432 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
433 return;
434
435 cpuid(1, &eax, &ebx, &ecx, &edx);
436
437 smp_num_siblings = (ebx & 0xff0000) >> 16;
438
439 if (smp_num_siblings == 1) {
440 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
441 } else if (smp_num_siblings > 1) {
442
443 if (smp_num_siblings > nr_cpu_ids) {
444 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
445 smp_num_siblings);
446 smp_num_siblings = 1;
447 return;
448 }
449
450 index_msb = get_count_order(smp_num_siblings);
451 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
452
453 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
454
455 index_msb = get_count_order(smp_num_siblings);
456
457 core_bits = get_count_order(c->x86_max_cores);
458
459 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
460 ((1 << core_bits) - 1);
461 }
462
463out:
464 if ((c->x86_max_cores * smp_num_siblings) > 1) {
465 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
466 c->phys_proc_id);
467 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
468 c->cpu_core_id);
469 }
470#endif
471}
472
473static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
474{
475 char *v = c->x86_vendor_id;
476 int i;
477 static int printed;
478
479 for (i = 0; i < X86_VENDOR_NUM; i++) {
480 if (!cpu_devs[i])
481 break;
482
483 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
484 (cpu_devs[i]->c_ident[1] &&
485 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
486 this_cpu = cpu_devs[i];
487 c->x86_vendor = this_cpu->c_x86_vendor;
488 return;
489 }
490 }
491
492 if (!printed) {
493 printed++;
494 printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
495 printk(KERN_ERR "CPU: Your system may be unstable.\n");
496 }
497
498 c->x86_vendor = X86_VENDOR_UNKNOWN;
499 this_cpu = &default_cpu;
500}
501
502void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
503{
504 /* Get vendor name */
505 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
506 (unsigned int *)&c->x86_vendor_id[0],
507 (unsigned int *)&c->x86_vendor_id[8],
508 (unsigned int *)&c->x86_vendor_id[4]);
509
510 c->x86 = 4;
511 /* Intel-defined flags: level 0x00000001 */
512 if (c->cpuid_level >= 0x00000001) {
513 u32 junk, tfms, cap0, misc;
514 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
515 c->x86 = (tfms >> 8) & 0xf;
516 c->x86_model = (tfms >> 4) & 0xf;
517 c->x86_mask = tfms & 0xf;
518 if (c->x86 == 0xf)
519 c->x86 += (tfms >> 20) & 0xff;
520 if (c->x86 >= 0x6)
521 c->x86_model += ((tfms >> 16) & 0xf) << 4;
522 if (cap0 & (1<<19)) {
523 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
524 c->x86_cache_alignment = c->x86_clflush_size;
525 }
526 }
527}
528
529static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
530{
531 u32 tfms, xlvl;
532 u32 ebx;
533
534 /* Intel-defined flags: level 0x00000001 */
535 if (c->cpuid_level >= 0x00000001) {
536 u32 capability, excap;
537 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
538 c->x86_capability[0] = capability;
539 c->x86_capability[4] = excap;
540 }
541
542 /* AMD-defined flags: level 0x80000001 */
543 xlvl = cpuid_eax(0x80000000);
544 c->extended_cpuid_level = xlvl;
545 if ((xlvl & 0xffff0000) == 0x80000000) {
546 if (xlvl >= 0x80000001) {
547 c->x86_capability[1] = cpuid_edx(0x80000001);
548 c->x86_capability[6] = cpuid_ecx(0x80000001);
549 }
550 }
551
552#ifdef CONFIG_X86_64
553 if (c->extended_cpuid_level >= 0x80000008) {
554 u32 eax = cpuid_eax(0x80000008);
555
556 c->x86_virt_bits = (eax >> 8) & 0xff;
557 c->x86_phys_bits = eax & 0xff;
558 }
559#endif
560
561 if (c->extended_cpuid_level >= 0x80000007)
562 c->x86_power = cpuid_edx(0x80000007);
563
564}
565
566static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
567{
568#ifdef CONFIG_X86_32
569 int i;
570
571 /*
572 * First of all, decide if this is a 486 or higher
573 * It's a 486 if we can modify the AC flag
574 */
575 if (flag_is_changeable_p(X86_EFLAGS_AC))
576 c->x86 = 4;
577 else
578 c->x86 = 3;
579
580 for (i = 0; i < X86_VENDOR_NUM; i++)
581 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
582 c->x86_vendor_id[0] = 0;
583 cpu_devs[i]->c_identify(c);
584 if (c->x86_vendor_id[0]) {
585 get_cpu_vendor(c);
586 break;
587 }
588 }
589#endif
590}
591
592/*
593 * Do minimum CPU detection early.
594 * Fields really needed: vendor, cpuid_level, family, model, mask,
595 * cache alignment.
596 * The others are not touched to avoid unwanted side effects.
597 *
598 * WARNING: this function is only called on the BP. Don't add code here
599 * that is supposed to run on all CPUs.
600 */
601static void __init early_identify_cpu(struct cpuinfo_x86 *c)
602{
603#ifdef CONFIG_X86_64
604 c->x86_clflush_size = 64;
605#else
606 c->x86_clflush_size = 32;
607#endif
608 c->x86_cache_alignment = c->x86_clflush_size;
609
610 memset(&c->x86_capability, 0, sizeof c->x86_capability);
611 c->extended_cpuid_level = 0;
612
613 if (!have_cpuid_p())
614 identify_cpu_without_cpuid(c);
615
616 /* cyrix could have cpuid enabled via c_identify()*/
617 if (!have_cpuid_p())
618 return;
619
620 cpu_detect(c);
621
622 get_cpu_vendor(c);
623
624 get_cpu_cap(c);
625
626 if (this_cpu->c_early_init)
627 this_cpu->c_early_init(c);
628
629#ifdef CONFIG_SMP
630 c->cpu_index = boot_cpu_id;
631#endif
632 filter_cpuid_features(c, false);
633}
634
635void __init early_cpu_init(void)
636{
637 struct cpu_dev **cdev;
638 int count = 0;
639
640 printk("KERNEL supported cpus:\n");
641 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
642 struct cpu_dev *cpudev = *cdev;
643 unsigned int j;
644
645 if (count >= X86_VENDOR_NUM)
646 break;
647 cpu_devs[count] = cpudev;
648 count++;
649
650 for (j = 0; j < 2; j++) {
651 if (!cpudev->c_ident[j])
652 continue;
653 printk(" %s %s\n", cpudev->c_vendor,
654 cpudev->c_ident[j]);
655 }
656 }
657
658 early_identify_cpu(&boot_cpu_data);
659}
660
661/*
662 * The NOPL instruction is supposed to exist on all CPUs with
663 * family >= 6; unfortunately, that's not true in practice because
664 * of early VIA chips and (more importantly) broken virtualizers that
665 * are not easy to detect. In the latter case it doesn't even *fail*
666 * reliably, so probing for it doesn't even work. Disable it completely
667 * unless we can find a reliable way to detect all the broken cases.
668 */
669static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
670{
671 clear_cpu_cap(c, X86_FEATURE_NOPL);
672}
673
674static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
675{
676 c->extended_cpuid_level = 0;
677
678 if (!have_cpuid_p())
679 identify_cpu_without_cpuid(c);
680
681 /* cyrix could have cpuid enabled via c_identify()*/
682 if (!have_cpuid_p())
683 return;
684
685 cpu_detect(c);
686
687 get_cpu_vendor(c);
688
689 get_cpu_cap(c);
690
691 if (c->cpuid_level >= 0x00000001) {
692 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
693#ifdef CONFIG_X86_32
694# ifdef CONFIG_X86_HT
695 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
696# else
697 c->apicid = c->initial_apicid;
698# endif
699#endif
700
701#ifdef CONFIG_X86_HT
702 c->phys_proc_id = c->initial_apicid;
703#endif
704 }
705
706 get_model_name(c); /* Default name */
707
708 init_scattered_cpuid_features(c);
709 detect_nopl(c);
710}
711
712/*
713 * This does the hard work of actually picking apart the CPU stuff...
714 */
715static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
716{
717 int i;
718
719 c->loops_per_jiffy = loops_per_jiffy;
720 c->x86_cache_size = -1;
721 c->x86_vendor = X86_VENDOR_UNKNOWN;
722 c->x86_model = c->x86_mask = 0; /* So far unknown... */
723 c->x86_vendor_id[0] = '\0'; /* Unset */
724 c->x86_model_id[0] = '\0'; /* Unset */
725 c->x86_max_cores = 1;
726 c->x86_coreid_bits = 0;
727#ifdef CONFIG_X86_64
728 c->x86_clflush_size = 64;
729#else
730 c->cpuid_level = -1; /* CPUID not detected */
731 c->x86_clflush_size = 32;
732#endif
733 c->x86_cache_alignment = c->x86_clflush_size;
734 memset(&c->x86_capability, 0, sizeof c->x86_capability);
735
736 generic_identify(c);
737
738 if (this_cpu->c_identify)
739 this_cpu->c_identify(c);
740
741#ifdef CONFIG_X86_64
742 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
743#endif
744
745 /*
746 * Vendor-specific initialization. In this section we
747 * canonicalize the feature flags, meaning if there are
748 * features a certain CPU supports which CPUID doesn't
749 * tell us, CPUID claiming incorrect flags, or other bugs,
750 * we handle them here.
751 *
752 * At the end of this section, c->x86_capability better
753 * indicate the features this CPU genuinely supports!
754 */
755 if (this_cpu->c_init)
756 this_cpu->c_init(c);
757
758 /* Disable the PN if appropriate */
759 squash_the_stupid_serial_number(c);
760
761 /*
762 * The vendor-specific functions might have changed features. Now
763 * we do "generic changes."
764 */
765
766 /* Filter out anything that depends on CPUID levels we don't have */
767 filter_cpuid_features(c, true);
768
769 /* If the model name is still unset, do table lookup. */
770 if (!c->x86_model_id[0]) {
771 char *p;
772 p = table_lookup_model(c);
773 if (p)
774 strcpy(c->x86_model_id, p);
775 else
776 /* Last resort... */
777 sprintf(c->x86_model_id, "%02x/%02x",
778 c->x86, c->x86_model);
779 }
780
781#ifdef CONFIG_X86_64
782 detect_ht(c);
783#endif
784
785 init_hypervisor(c);
786 /*
787 * On SMP, boot_cpu_data holds the common feature set between
788 * all CPUs; so make sure that we indicate which features are
789 * common between the CPUs. The first time this routine gets
790 * executed, c == &boot_cpu_data.
791 */
792 if (c != &boot_cpu_data) {
793 /* AND the already accumulated flags with these */
794 for (i = 0; i < NCAPINTS; i++)
795 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
796 }
797
798 /* Clear all flags overriden by options */
799 for (i = 0; i < NCAPINTS; i++)
800 c->x86_capability[i] &= ~cleared_cpu_caps[i];
801
802#ifdef CONFIG_X86_MCE
803 /* Init Machine Check Exception if available. */
804 mcheck_init(c);
805#endif
806
807 select_idle_routine(c);
808
809#if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
810 numa_add_cpu(smp_processor_id());
811#endif
812}
813
814#ifdef CONFIG_X86_64
815static void vgetcpu_set_mode(void)
816{
817 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
818 vgetcpu_mode = VGETCPU_RDTSCP;
819 else
820 vgetcpu_mode = VGETCPU_LSL;
821}
822#endif
823
824void __init identify_boot_cpu(void)
825{
826 identify_cpu(&boot_cpu_data);
827#ifdef CONFIG_X86_32
828 sysenter_setup();
829 enable_sep_cpu();
830#else
831 vgetcpu_set_mode();
832#endif
833}
834
835void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
836{
837 BUG_ON(c == &boot_cpu_data);
838 identify_cpu(c);
839#ifdef CONFIG_X86_32
840 enable_sep_cpu();
841#endif
842 mtrr_ap_init();
843}
844
845struct msr_range {
846 unsigned min;
847 unsigned max;
848};
849
850static struct msr_range msr_range_array[] __cpuinitdata = {
851 { 0x00000000, 0x00000418},
852 { 0xc0000000, 0xc000040b},
853 { 0xc0010000, 0xc0010142},
854 { 0xc0011000, 0xc001103b},
855};
856
857static void __cpuinit print_cpu_msr(void)
858{
859 unsigned index;
860 u64 val;
861 int i;
862 unsigned index_min, index_max;
863
864 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
865 index_min = msr_range_array[i].min;
866 index_max = msr_range_array[i].max;
867 for (index = index_min; index < index_max; index++) {
868 if (rdmsrl_amd_safe(index, &val))
869 continue;
870 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
871 }
872 }
873}
874
875static int show_msr __cpuinitdata;
876static __init int setup_show_msr(char *arg)
877{
878 int num;
879
880 get_option(&arg, &num);
881
882 if (num > 0)
883 show_msr = num;
884 return 1;
885}
886__setup("show_msr=", setup_show_msr);
887
888static __init int setup_noclflush(char *arg)
889{
890 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
891 return 1;
892}
893__setup("noclflush", setup_noclflush);
894
895void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
896{
897 char *vendor = NULL;
898
899 if (c->x86_vendor < X86_VENDOR_NUM)
900 vendor = this_cpu->c_vendor;
901 else if (c->cpuid_level >= 0)
902 vendor = c->x86_vendor_id;
903
904 if (vendor && !strstr(c->x86_model_id, vendor))
905 printk(KERN_CONT "%s ", vendor);
906
907 if (c->x86_model_id[0])
908 printk(KERN_CONT "%s", c->x86_model_id);
909 else
910 printk(KERN_CONT "%d86", c->x86);
911
912 if (c->x86_mask || c->cpuid_level >= 0)
913 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
914 else
915 printk(KERN_CONT "\n");
916
917#ifdef CONFIG_SMP
918 if (c->cpu_index < show_msr)
919 print_cpu_msr();
920#else
921 if (show_msr)
922 print_cpu_msr();
923#endif
924}
925
926static __init int setup_disablecpuid(char *arg)
927{
928 int bit;
929 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
930 setup_clear_cpu_cap(bit);
931 else
932 return 0;
933 return 1;
934}
935__setup("clearcpuid=", setup_disablecpuid);
936
937#ifdef CONFIG_X86_64
938struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
939
940DEFINE_PER_CPU_FIRST(union irq_stack_union,
941 irq_stack_union) __aligned(PAGE_SIZE);
942DEFINE_PER_CPU(char *, irq_stack_ptr) =
943 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
944
945DEFINE_PER_CPU(unsigned long, kernel_stack) =
946 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
947EXPORT_PER_CPU_SYMBOL(kernel_stack);
948
949DEFINE_PER_CPU(unsigned int, irq_count) = -1;
950
951static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
952 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
953 __aligned(PAGE_SIZE);
954
955extern asmlinkage void ignore_sysret(void);
956
957/* May not be marked __init: used by software suspend */
958void syscall_init(void)
959{
960 /*
961 * LSTAR and STAR live in a bit strange symbiosis.
962 * They both write to the same internal register. STAR allows to
963 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
964 */
965 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
966 wrmsrl(MSR_LSTAR, system_call);
967 wrmsrl(MSR_CSTAR, ignore_sysret);
968
969#ifdef CONFIG_IA32_EMULATION
970 syscall32_cpu_init();
971#endif
972
973 /* Flags to clear on syscall */
974 wrmsrl(MSR_SYSCALL_MASK,
975 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
976}
977
978unsigned long kernel_eflags;
979
980/*
981 * Copies of the original ist values from the tss are only accessed during
982 * debugging, no special alignment required.
983 */
984DEFINE_PER_CPU(struct orig_ist, orig_ist);
985
986#else /* x86_64 */
987
988#ifdef CONFIG_CC_STACKPROTECTOR
989DEFINE_PER_CPU(unsigned long, stack_canary);
990#endif
991
992/* Make sure %fs and %gs are initialized properly in idle threads */
993struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
994{
995 memset(regs, 0, sizeof(struct pt_regs));
996 regs->fs = __KERNEL_PERCPU;
997 regs->gs = __KERNEL_STACK_CANARY;
998 return regs;
999}
1000#endif /* x86_64 */
1001
1002/*
1003 * cpu_init() initializes state that is per-CPU. Some data is already
1004 * initialized (naturally) in the bootstrap process, such as the GDT
1005 * and IDT. We reload them nevertheless, this function acts as a
1006 * 'CPU state barrier', nothing should get across.
1007 * A lot of state is already set up in PDA init for 64 bit
1008 */
1009#ifdef CONFIG_X86_64
1010void __cpuinit cpu_init(void)
1011{
1012 int cpu = stack_smp_processor_id();
1013 struct tss_struct *t = &per_cpu(init_tss, cpu);
1014 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
1015 unsigned long v;
1016 struct task_struct *me;
1017 int i;
1018
1019#ifdef CONFIG_NUMA
1020 if (cpu != 0 && percpu_read(node_number) == 0 &&
1021 cpu_to_node(cpu) != NUMA_NO_NODE)
1022 percpu_write(node_number, cpu_to_node(cpu));
1023#endif
1024
1025 me = current;
1026
1027 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1028 panic("CPU#%d already initialized!\n", cpu);
1029
1030 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1031
1032 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1033
1034 /*
1035 * Initialize the per-CPU GDT with the boot GDT,
1036 * and set up the GDT descriptor:
1037 */
1038
1039 switch_to_new_gdt(cpu);
1040 loadsegment(fs, 0);
1041
1042 load_idt((const struct desc_ptr *)&idt_descr);
1043
1044 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1045 syscall_init();
1046
1047 wrmsrl(MSR_FS_BASE, 0);
1048 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1049 barrier();
1050
1051 check_efer();
1052 if (cpu != 0)
1053 enable_x2apic();
1054
1055 /*
1056 * set up and load the per-CPU TSS
1057 */
1058 if (!orig_ist->ist[0]) {
1059 static const unsigned int sizes[N_EXCEPTION_STACKS] = {
1060 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1061 [DEBUG_STACK - 1] = DEBUG_STKSZ
1062 };
1063 char *estacks = per_cpu(exception_stacks, cpu);
1064 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1065 estacks += sizes[v];
1066 orig_ist->ist[v] = t->x86_tss.ist[v] =
1067 (unsigned long)estacks;
1068 }
1069 }
1070
1071 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1072 /*
1073 * <= is required because the CPU will access up to
1074 * 8 bits beyond the end of the IO permission bitmap.
1075 */
1076 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1077 t->io_bitmap[i] = ~0UL;
1078
1079 atomic_inc(&init_mm.mm_count);
1080 me->active_mm = &init_mm;
1081 BUG_ON(me->mm);
1082 enter_lazy_tlb(&init_mm, me);
1083
1084 load_sp0(t, &current->thread);
1085 set_tss_desc(cpu, t);
1086 load_TR_desc();
1087 load_LDT(&init_mm.context);
1088
1089#ifdef CONFIG_KGDB
1090 /*
1091 * If the kgdb is connected no debug regs should be altered. This
1092 * is only applicable when KGDB and a KGDB I/O module are built
1093 * into the kernel and you are using early debugging with
1094 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1095 */
1096 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1097 arch_kgdb_ops.correct_hw_break();
1098 else
1099#endif
1100 {
1101 /*
1102 * Clear all 6 debug registers:
1103 */
1104 set_debugreg(0UL, 0);
1105 set_debugreg(0UL, 1);
1106 set_debugreg(0UL, 2);
1107 set_debugreg(0UL, 3);
1108 set_debugreg(0UL, 6);
1109 set_debugreg(0UL, 7);
1110 }
1111
1112 fpu_init();
1113
1114 raw_local_save_flags(kernel_eflags);
1115
1116 if (is_uv_system())
1117 uv_cpu_init();
1118}
1119
1120#else
1121
1122void __cpuinit cpu_init(void)
1123{
1124 int cpu = smp_processor_id();
1125 struct task_struct *curr = current;
1126 struct tss_struct *t = &per_cpu(init_tss, cpu);
1127 struct thread_struct *thread = &curr->thread;
1128
1129 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1130 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1131 for (;;) local_irq_enable();
1132 }
1133
1134 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1135
1136 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1137 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1138
1139 load_idt(&idt_descr);
1140 switch_to_new_gdt(cpu);
1141
1142 /*
1143 * Set up and load the per-CPU TSS and LDT
1144 */
1145 atomic_inc(&init_mm.mm_count);
1146 curr->active_mm = &init_mm;
1147 BUG_ON(curr->mm);
1148 enter_lazy_tlb(&init_mm, curr);
1149
1150 load_sp0(t, thread);
1151 set_tss_desc(cpu, t);
1152 load_TR_desc();
1153 load_LDT(&init_mm.context);
1154
1155#ifdef CONFIG_DOUBLEFAULT
1156 /* Set up doublefault TSS pointer in the GDT */
1157 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1158#endif
1159
1160 /* Clear all 6 debug registers: */
1161 set_debugreg(0, 0);
1162 set_debugreg(0, 1);
1163 set_debugreg(0, 2);
1164 set_debugreg(0, 3);
1165 set_debugreg(0, 6);
1166 set_debugreg(0, 7);
1167
1168 /*
1169 * Force FPU initialization:
1170 */
1171 if (cpu_has_xsave)
1172 current_thread_info()->status = TS_XSAVE;
1173 else
1174 current_thread_info()->status = 0;
1175 clear_used_math();
1176 mxcsr_feature_mask_init();
1177
1178 /*
1179 * Boot processor to setup the FP and extended state context info.
1180 */
1181 if (smp_processor_id() == boot_cpu_id)
1182 init_thread_xstate();
1183
1184 xsave_init();
1185}
1186
1187
1188#endif