]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - arch/x86/kernel/cpu/common.c
x86: filter CPU features dependent on unavailable CPUID levels
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
... / ...
CommitLineData
1#include <linux/init.h>
2#include <linux/kernel.h>
3#include <linux/sched.h>
4#include <linux/string.h>
5#include <linux/bootmem.h>
6#include <linux/bitops.h>
7#include <linux/module.h>
8#include <linux/kgdb.h>
9#include <linux/topology.h>
10#include <linux/delay.h>
11#include <linux/smp.h>
12#include <linux/percpu.h>
13#include <asm/i387.h>
14#include <asm/msr.h>
15#include <asm/io.h>
16#include <asm/linkage.h>
17#include <asm/mmu_context.h>
18#include <asm/mtrr.h>
19#include <asm/mce.h>
20#include <asm/pat.h>
21#include <asm/asm.h>
22#include <asm/numa.h>
23#include <asm/smp.h>
24#ifdef CONFIG_X86_LOCAL_APIC
25#include <asm/mpspec.h>
26#include <asm/apic.h>
27#include <mach_apic.h>
28#include <asm/genapic.h>
29#endif
30
31#include <asm/pda.h>
32#include <asm/pgtable.h>
33#include <asm/processor.h>
34#include <asm/desc.h>
35#include <asm/atomic.h>
36#include <asm/proto.h>
37#include <asm/sections.h>
38#include <asm/setup.h>
39#include <asm/hypervisor.h>
40
41#include "cpu.h"
42
43#ifdef CONFIG_X86_64
44
45/* all of these masks are initialized in setup_cpu_local_masks() */
46cpumask_var_t cpu_callin_mask;
47cpumask_var_t cpu_callout_mask;
48cpumask_var_t cpu_initialized_mask;
49
50/* representing cpus for which sibling maps can be computed */
51cpumask_var_t cpu_sibling_setup_mask;
52
53#else /* CONFIG_X86_32 */
54
55cpumask_t cpu_callin_map;
56cpumask_t cpu_callout_map;
57cpumask_t cpu_initialized;
58cpumask_t cpu_sibling_setup_map;
59
60#endif /* CONFIG_X86_32 */
61
62
63static struct cpu_dev *this_cpu __cpuinitdata;
64
65#ifdef CONFIG_X86_64
66/* We need valid kernel segments for data and code in long mode too
67 * IRET will check the segment types kkeil 2000/10/28
68 * Also sysret mandates a special GDT layout
69 */
70/* The TLS descriptors are currently at a different place compared to i386.
71 Hopefully nobody expects them at a fixed place (Wine?) */
72DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
73 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
74 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
75 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
76 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
77 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
78 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
79} };
80#else
81DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
82 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
83 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
84 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
85 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
86 /*
87 * Segments used for calling PnP BIOS have byte granularity.
88 * They code segments and data segments have fixed 64k limits,
89 * the transfer segment sizes are set at run time.
90 */
91 /* 32-bit code */
92 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
93 /* 16-bit code */
94 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
95 /* 16-bit data */
96 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
97 /* 16-bit data */
98 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
99 /* 16-bit data */
100 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
101 /*
102 * The APM segments have byte granularity and their bases
103 * are set at run time. All have 64k limits.
104 */
105 /* 32-bit code */
106 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
107 /* 16-bit code */
108 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
109 /* data */
110 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
111
112 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
113 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
114} };
115#endif
116EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
117
118#ifdef CONFIG_X86_32
119static int cachesize_override __cpuinitdata = -1;
120static int disable_x86_serial_nr __cpuinitdata = 1;
121
122static int __init cachesize_setup(char *str)
123{
124 get_option(&str, &cachesize_override);
125 return 1;
126}
127__setup("cachesize=", cachesize_setup);
128
129static int __init x86_fxsr_setup(char *s)
130{
131 setup_clear_cpu_cap(X86_FEATURE_FXSR);
132 setup_clear_cpu_cap(X86_FEATURE_XMM);
133 return 1;
134}
135__setup("nofxsr", x86_fxsr_setup);
136
137static int __init x86_sep_setup(char *s)
138{
139 setup_clear_cpu_cap(X86_FEATURE_SEP);
140 return 1;
141}
142__setup("nosep", x86_sep_setup);
143
144/* Standard macro to see if a specific flag is changeable */
145static inline int flag_is_changeable_p(u32 flag)
146{
147 u32 f1, f2;
148
149 /*
150 * Cyrix and IDT cpus allow disabling of CPUID
151 * so the code below may return different results
152 * when it is executed before and after enabling
153 * the CPUID. Add "volatile" to not allow gcc to
154 * optimize the subsequent calls to this function.
155 */
156 asm volatile ("pushfl\n\t"
157 "pushfl\n\t"
158 "popl %0\n\t"
159 "movl %0,%1\n\t"
160 "xorl %2,%0\n\t"
161 "pushl %0\n\t"
162 "popfl\n\t"
163 "pushfl\n\t"
164 "popl %0\n\t"
165 "popfl\n\t"
166 : "=&r" (f1), "=&r" (f2)
167 : "ir" (flag));
168
169 return ((f1^f2) & flag) != 0;
170}
171
172/* Probe for the CPUID instruction */
173static int __cpuinit have_cpuid_p(void)
174{
175 return flag_is_changeable_p(X86_EFLAGS_ID);
176}
177
178static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
179{
180 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
181 /* Disable processor serial number */
182 unsigned long lo, hi;
183 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
184 lo |= 0x200000;
185 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
186 printk(KERN_NOTICE "CPU serial number disabled.\n");
187 clear_cpu_cap(c, X86_FEATURE_PN);
188
189 /* Disabling the serial number may affect the cpuid level */
190 c->cpuid_level = cpuid_eax(0);
191 }
192}
193
194static int __init x86_serial_nr_setup(char *s)
195{
196 disable_x86_serial_nr = 0;
197 return 1;
198}
199__setup("serialnumber", x86_serial_nr_setup);
200#else
201static inline int flag_is_changeable_p(u32 flag)
202{
203 return 1;
204}
205/* Probe for the CPUID instruction */
206static inline int have_cpuid_p(void)
207{
208 return 1;
209}
210static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
211{
212}
213#endif
214
215/*
216 * Some CPU features depend on higher CPUID levels, which may not always
217 * be available due to CPUID level capping or broken virtualization
218 * software. Add those features to this table to auto-disable them.
219 */
220struct cpuid_dependent_feature {
221 u32 feature;
222 u32 level;
223};
224static const struct cpuid_dependent_feature __cpuinitconst
225cpuid_dependent_features[] = {
226 { X86_FEATURE_MWAIT, 0x00000005 },
227 { X86_FEATURE_DCA, 0x00000009 },
228 { X86_FEATURE_XSAVE, 0x0000000d },
229 { 0, 0 }
230};
231
232static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
233{
234 const struct cpuid_dependent_feature *df;
235 for (df = cpuid_dependent_features; df->feature; df++) {
236 /*
237 * Note: cpuid_level is set to -1 if unavailable, but
238 * extended_extended_level is set to 0 if unavailable
239 * and the legitimate extended levels are all negative
240 * when signed; hence the weird messing around with
241 * signs here...
242 */
243 if (cpu_has(c, df->feature) &&
244 ((s32)df->feature < 0 ?
245 (u32)df->feature > (u32)c->extended_cpuid_level :
246 (s32)df->feature > (s32)c->cpuid_level)) {
247 clear_cpu_cap(c, df->feature);
248 if (warn)
249 printk(KERN_WARNING
250 "CPU: CPU feature %s disabled "
251 "due to lack of CPUID level 0x%x\n",
252 x86_cap_flags[df->feature],
253 df->level);
254 }
255 }
256}
257
258/*
259 * Naming convention should be: <Name> [(<Codename>)]
260 * This table only is used unless init_<vendor>() below doesn't set it;
261 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
262 *
263 */
264
265/* Look up CPU names by table lookup. */
266static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
267{
268 struct cpu_model_info *info;
269
270 if (c->x86_model >= 16)
271 return NULL; /* Range check */
272
273 if (!this_cpu)
274 return NULL;
275
276 info = this_cpu->c_models;
277
278 while (info && info->family) {
279 if (info->family == c->x86)
280 return info->model_names[c->x86_model];
281 info++;
282 }
283 return NULL; /* Not found */
284}
285
286__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
287
288/* Current gdt points %fs at the "master" per-cpu area: after this,
289 * it's on the real one. */
290void switch_to_new_gdt(void)
291{
292 struct desc_ptr gdt_descr;
293
294 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
295 gdt_descr.size = GDT_SIZE - 1;
296 load_gdt(&gdt_descr);
297#ifdef CONFIG_X86_32
298 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
299#endif
300}
301
302static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
303
304static void __cpuinit default_init(struct cpuinfo_x86 *c)
305{
306#ifdef CONFIG_X86_64
307 display_cacheinfo(c);
308#else
309 /* Not much we can do here... */
310 /* Check if at least it has cpuid */
311 if (c->cpuid_level == -1) {
312 /* No cpuid. It must be an ancient CPU */
313 if (c->x86 == 4)
314 strcpy(c->x86_model_id, "486");
315 else if (c->x86 == 3)
316 strcpy(c->x86_model_id, "386");
317 }
318#endif
319}
320
321static struct cpu_dev __cpuinitdata default_cpu = {
322 .c_init = default_init,
323 .c_vendor = "Unknown",
324 .c_x86_vendor = X86_VENDOR_UNKNOWN,
325};
326
327static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
328{
329 unsigned int *v;
330 char *p, *q;
331
332 if (c->extended_cpuid_level < 0x80000004)
333 return;
334
335 v = (unsigned int *) c->x86_model_id;
336 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
337 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
338 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
339 c->x86_model_id[48] = 0;
340
341 /* Intel chips right-justify this string for some dumb reason;
342 undo that brain damage */
343 p = q = &c->x86_model_id[0];
344 while (*p == ' ')
345 p++;
346 if (p != q) {
347 while (*p)
348 *q++ = *p++;
349 while (q <= &c->x86_model_id[48])
350 *q++ = '\0'; /* Zero-pad the rest */
351 }
352}
353
354void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
355{
356 unsigned int n, dummy, ebx, ecx, edx, l2size;
357
358 n = c->extended_cpuid_level;
359
360 if (n >= 0x80000005) {
361 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
362 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
363 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
364 c->x86_cache_size = (ecx>>24) + (edx>>24);
365#ifdef CONFIG_X86_64
366 /* On K8 L1 TLB is inclusive, so don't count it */
367 c->x86_tlbsize = 0;
368#endif
369 }
370
371 if (n < 0x80000006) /* Some chips just has a large L1. */
372 return;
373
374 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
375 l2size = ecx >> 16;
376
377#ifdef CONFIG_X86_64
378 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
379#else
380 /* do processor-specific cache resizing */
381 if (this_cpu->c_size_cache)
382 l2size = this_cpu->c_size_cache(c, l2size);
383
384 /* Allow user to override all this if necessary. */
385 if (cachesize_override != -1)
386 l2size = cachesize_override;
387
388 if (l2size == 0)
389 return; /* Again, no L2 cache is possible */
390#endif
391
392 c->x86_cache_size = l2size;
393
394 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
395 l2size, ecx & 0xFF);
396}
397
398void __cpuinit detect_ht(struct cpuinfo_x86 *c)
399{
400#ifdef CONFIG_X86_HT
401 u32 eax, ebx, ecx, edx;
402 int index_msb, core_bits;
403
404 if (!cpu_has(c, X86_FEATURE_HT))
405 return;
406
407 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
408 goto out;
409
410 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
411 return;
412
413 cpuid(1, &eax, &ebx, &ecx, &edx);
414
415 smp_num_siblings = (ebx & 0xff0000) >> 16;
416
417 if (smp_num_siblings == 1) {
418 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
419 } else if (smp_num_siblings > 1) {
420
421 if (smp_num_siblings > nr_cpu_ids) {
422 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
423 smp_num_siblings);
424 smp_num_siblings = 1;
425 return;
426 }
427
428 index_msb = get_count_order(smp_num_siblings);
429#ifdef CONFIG_X86_64
430 c->phys_proc_id = phys_pkg_id(index_msb);
431#else
432 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
433#endif
434
435 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
436
437 index_msb = get_count_order(smp_num_siblings);
438
439 core_bits = get_count_order(c->x86_max_cores);
440
441#ifdef CONFIG_X86_64
442 c->cpu_core_id = phys_pkg_id(index_msb) &
443 ((1 << core_bits) - 1);
444#else
445 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
446 ((1 << core_bits) - 1);
447#endif
448 }
449
450out:
451 if ((c->x86_max_cores * smp_num_siblings) > 1) {
452 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
453 c->phys_proc_id);
454 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
455 c->cpu_core_id);
456 }
457#endif
458}
459
460static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
461{
462 char *v = c->x86_vendor_id;
463 int i;
464 static int printed;
465
466 for (i = 0; i < X86_VENDOR_NUM; i++) {
467 if (!cpu_devs[i])
468 break;
469
470 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
471 (cpu_devs[i]->c_ident[1] &&
472 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
473 this_cpu = cpu_devs[i];
474 c->x86_vendor = this_cpu->c_x86_vendor;
475 return;
476 }
477 }
478
479 if (!printed) {
480 printed++;
481 printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
482 printk(KERN_ERR "CPU: Your system may be unstable.\n");
483 }
484
485 c->x86_vendor = X86_VENDOR_UNKNOWN;
486 this_cpu = &default_cpu;
487}
488
489void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
490{
491 /* Get vendor name */
492 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
493 (unsigned int *)&c->x86_vendor_id[0],
494 (unsigned int *)&c->x86_vendor_id[8],
495 (unsigned int *)&c->x86_vendor_id[4]);
496
497 c->x86 = 4;
498 /* Intel-defined flags: level 0x00000001 */
499 if (c->cpuid_level >= 0x00000001) {
500 u32 junk, tfms, cap0, misc;
501 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
502 c->x86 = (tfms >> 8) & 0xf;
503 c->x86_model = (tfms >> 4) & 0xf;
504 c->x86_mask = tfms & 0xf;
505 if (c->x86 == 0xf)
506 c->x86 += (tfms >> 20) & 0xff;
507 if (c->x86 >= 0x6)
508 c->x86_model += ((tfms >> 16) & 0xf) << 4;
509 if (cap0 & (1<<19)) {
510 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
511 c->x86_cache_alignment = c->x86_clflush_size;
512 }
513 }
514}
515
516static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
517{
518 u32 tfms, xlvl;
519 u32 ebx;
520
521 /* Intel-defined flags: level 0x00000001 */
522 if (c->cpuid_level >= 0x00000001) {
523 u32 capability, excap;
524 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
525 c->x86_capability[0] = capability;
526 c->x86_capability[4] = excap;
527 }
528
529 /* AMD-defined flags: level 0x80000001 */
530 xlvl = cpuid_eax(0x80000000);
531 c->extended_cpuid_level = xlvl;
532 if ((xlvl & 0xffff0000) == 0x80000000) {
533 if (xlvl >= 0x80000001) {
534 c->x86_capability[1] = cpuid_edx(0x80000001);
535 c->x86_capability[6] = cpuid_ecx(0x80000001);
536 }
537 }
538
539#ifdef CONFIG_X86_64
540 if (c->extended_cpuid_level >= 0x80000008) {
541 u32 eax = cpuid_eax(0x80000008);
542
543 c->x86_virt_bits = (eax >> 8) & 0xff;
544 c->x86_phys_bits = eax & 0xff;
545 }
546#endif
547
548 if (c->extended_cpuid_level >= 0x80000007)
549 c->x86_power = cpuid_edx(0x80000007);
550
551}
552
553static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
554{
555#ifdef CONFIG_X86_32
556 int i;
557
558 /*
559 * First of all, decide if this is a 486 or higher
560 * It's a 486 if we can modify the AC flag
561 */
562 if (flag_is_changeable_p(X86_EFLAGS_AC))
563 c->x86 = 4;
564 else
565 c->x86 = 3;
566
567 for (i = 0; i < X86_VENDOR_NUM; i++)
568 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
569 c->x86_vendor_id[0] = 0;
570 cpu_devs[i]->c_identify(c);
571 if (c->x86_vendor_id[0]) {
572 get_cpu_vendor(c);
573 break;
574 }
575 }
576#endif
577}
578
579/*
580 * Do minimum CPU detection early.
581 * Fields really needed: vendor, cpuid_level, family, model, mask,
582 * cache alignment.
583 * The others are not touched to avoid unwanted side effects.
584 *
585 * WARNING: this function is only called on the BP. Don't add code here
586 * that is supposed to run on all CPUs.
587 */
588static void __init early_identify_cpu(struct cpuinfo_x86 *c)
589{
590#ifdef CONFIG_X86_64
591 c->x86_clflush_size = 64;
592#else
593 c->x86_clflush_size = 32;
594#endif
595 c->x86_cache_alignment = c->x86_clflush_size;
596
597 memset(&c->x86_capability, 0, sizeof c->x86_capability);
598 c->extended_cpuid_level = 0;
599
600 if (!have_cpuid_p())
601 identify_cpu_without_cpuid(c);
602
603 /* cyrix could have cpuid enabled via c_identify()*/
604 if (!have_cpuid_p())
605 return;
606
607 cpu_detect(c);
608
609 get_cpu_vendor(c);
610
611 get_cpu_cap(c);
612
613 if (this_cpu->c_early_init)
614 this_cpu->c_early_init(c);
615
616#ifdef CONFIG_SMP
617 c->cpu_index = boot_cpu_id;
618#endif
619 filter_cpuid_features(c, false);
620}
621
622void __init early_cpu_init(void)
623{
624 struct cpu_dev **cdev;
625 int count = 0;
626
627 printk("KERNEL supported cpus:\n");
628 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
629 struct cpu_dev *cpudev = *cdev;
630 unsigned int j;
631
632 if (count >= X86_VENDOR_NUM)
633 break;
634 cpu_devs[count] = cpudev;
635 count++;
636
637 for (j = 0; j < 2; j++) {
638 if (!cpudev->c_ident[j])
639 continue;
640 printk(" %s %s\n", cpudev->c_vendor,
641 cpudev->c_ident[j]);
642 }
643 }
644
645 early_identify_cpu(&boot_cpu_data);
646}
647
648/*
649 * The NOPL instruction is supposed to exist on all CPUs with
650 * family >= 6; unfortunately, that's not true in practice because
651 * of early VIA chips and (more importantly) broken virtualizers that
652 * are not easy to detect. In the latter case it doesn't even *fail*
653 * reliably, so probing for it doesn't even work. Disable it completely
654 * unless we can find a reliable way to detect all the broken cases.
655 */
656static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
657{
658 clear_cpu_cap(c, X86_FEATURE_NOPL);
659}
660
661static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
662{
663 c->extended_cpuid_level = 0;
664
665 if (!have_cpuid_p())
666 identify_cpu_without_cpuid(c);
667
668 /* cyrix could have cpuid enabled via c_identify()*/
669 if (!have_cpuid_p())
670 return;
671
672 cpu_detect(c);
673
674 get_cpu_vendor(c);
675
676 get_cpu_cap(c);
677
678 if (c->cpuid_level >= 0x00000001) {
679 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
680#ifdef CONFIG_X86_32
681# ifdef CONFIG_X86_HT
682 c->apicid = phys_pkg_id(c->initial_apicid, 0);
683# else
684 c->apicid = c->initial_apicid;
685# endif
686#endif
687
688#ifdef CONFIG_X86_HT
689 c->phys_proc_id = c->initial_apicid;
690#endif
691 }
692
693 get_model_name(c); /* Default name */
694
695 init_scattered_cpuid_features(c);
696 detect_nopl(c);
697}
698
699/*
700 * This does the hard work of actually picking apart the CPU stuff...
701 */
702static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
703{
704 int i;
705
706 c->loops_per_jiffy = loops_per_jiffy;
707 c->x86_cache_size = -1;
708 c->x86_vendor = X86_VENDOR_UNKNOWN;
709 c->x86_model = c->x86_mask = 0; /* So far unknown... */
710 c->x86_vendor_id[0] = '\0'; /* Unset */
711 c->x86_model_id[0] = '\0'; /* Unset */
712 c->x86_max_cores = 1;
713 c->x86_coreid_bits = 0;
714#ifdef CONFIG_X86_64
715 c->x86_clflush_size = 64;
716#else
717 c->cpuid_level = -1; /* CPUID not detected */
718 c->x86_clflush_size = 32;
719#endif
720 c->x86_cache_alignment = c->x86_clflush_size;
721 memset(&c->x86_capability, 0, sizeof c->x86_capability);
722
723 generic_identify(c);
724
725 if (this_cpu->c_identify)
726 this_cpu->c_identify(c);
727
728#ifdef CONFIG_X86_64
729 c->apicid = phys_pkg_id(0);
730#endif
731
732 /*
733 * Vendor-specific initialization. In this section we
734 * canonicalize the feature flags, meaning if there are
735 * features a certain CPU supports which CPUID doesn't
736 * tell us, CPUID claiming incorrect flags, or other bugs,
737 * we handle them here.
738 *
739 * At the end of this section, c->x86_capability better
740 * indicate the features this CPU genuinely supports!
741 */
742 if (this_cpu->c_init)
743 this_cpu->c_init(c);
744
745 /* Disable the PN if appropriate */
746 squash_the_stupid_serial_number(c);
747
748 /*
749 * The vendor-specific functions might have changed features. Now
750 * we do "generic changes."
751 */
752
753 /* Filter out anything that depends on CPUID levels we don't have */
754 filter_cpuid_features(c, true);
755
756 /* If the model name is still unset, do table lookup. */
757 if (!c->x86_model_id[0]) {
758 char *p;
759 p = table_lookup_model(c);
760 if (p)
761 strcpy(c->x86_model_id, p);
762 else
763 /* Last resort... */
764 sprintf(c->x86_model_id, "%02x/%02x",
765 c->x86, c->x86_model);
766 }
767
768#ifdef CONFIG_X86_64
769 detect_ht(c);
770#endif
771
772 init_hypervisor(c);
773 /*
774 * On SMP, boot_cpu_data holds the common feature set between
775 * all CPUs; so make sure that we indicate which features are
776 * common between the CPUs. The first time this routine gets
777 * executed, c == &boot_cpu_data.
778 */
779 if (c != &boot_cpu_data) {
780 /* AND the already accumulated flags with these */
781 for (i = 0; i < NCAPINTS; i++)
782 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
783 }
784
785 /* Clear all flags overriden by options */
786 for (i = 0; i < NCAPINTS; i++)
787 c->x86_capability[i] &= ~cleared_cpu_caps[i];
788
789#ifdef CONFIG_X86_MCE
790 /* Init Machine Check Exception if available. */
791 mcheck_init(c);
792#endif
793
794 select_idle_routine(c);
795
796#if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
797 numa_add_cpu(smp_processor_id());
798#endif
799}
800
801#ifdef CONFIG_X86_64
802static void vgetcpu_set_mode(void)
803{
804 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
805 vgetcpu_mode = VGETCPU_RDTSCP;
806 else
807 vgetcpu_mode = VGETCPU_LSL;
808}
809#endif
810
811void __init identify_boot_cpu(void)
812{
813 identify_cpu(&boot_cpu_data);
814#ifdef CONFIG_X86_32
815 sysenter_setup();
816 enable_sep_cpu();
817#else
818 vgetcpu_set_mode();
819#endif
820}
821
822void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
823{
824 BUG_ON(c == &boot_cpu_data);
825 identify_cpu(c);
826#ifdef CONFIG_X86_32
827 enable_sep_cpu();
828#endif
829 mtrr_ap_init();
830}
831
832struct msr_range {
833 unsigned min;
834 unsigned max;
835};
836
837static struct msr_range msr_range_array[] __cpuinitdata = {
838 { 0x00000000, 0x00000418},
839 { 0xc0000000, 0xc000040b},
840 { 0xc0010000, 0xc0010142},
841 { 0xc0011000, 0xc001103b},
842};
843
844static void __cpuinit print_cpu_msr(void)
845{
846 unsigned index;
847 u64 val;
848 int i;
849 unsigned index_min, index_max;
850
851 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
852 index_min = msr_range_array[i].min;
853 index_max = msr_range_array[i].max;
854 for (index = index_min; index < index_max; index++) {
855 if (rdmsrl_amd_safe(index, &val))
856 continue;
857 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
858 }
859 }
860}
861
862static int show_msr __cpuinitdata;
863static __init int setup_show_msr(char *arg)
864{
865 int num;
866
867 get_option(&arg, &num);
868
869 if (num > 0)
870 show_msr = num;
871 return 1;
872}
873__setup("show_msr=", setup_show_msr);
874
875static __init int setup_noclflush(char *arg)
876{
877 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
878 return 1;
879}
880__setup("noclflush", setup_noclflush);
881
882void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
883{
884 char *vendor = NULL;
885
886 if (c->x86_vendor < X86_VENDOR_NUM)
887 vendor = this_cpu->c_vendor;
888 else if (c->cpuid_level >= 0)
889 vendor = c->x86_vendor_id;
890
891 if (vendor && !strstr(c->x86_model_id, vendor))
892 printk(KERN_CONT "%s ", vendor);
893
894 if (c->x86_model_id[0])
895 printk(KERN_CONT "%s", c->x86_model_id);
896 else
897 printk(KERN_CONT "%d86", c->x86);
898
899 if (c->x86_mask || c->cpuid_level >= 0)
900 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
901 else
902 printk(KERN_CONT "\n");
903
904#ifdef CONFIG_SMP
905 if (c->cpu_index < show_msr)
906 print_cpu_msr();
907#else
908 if (show_msr)
909 print_cpu_msr();
910#endif
911}
912
913static __init int setup_disablecpuid(char *arg)
914{
915 int bit;
916 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
917 setup_clear_cpu_cap(bit);
918 else
919 return 0;
920 return 1;
921}
922__setup("clearcpuid=", setup_disablecpuid);
923
924#ifdef CONFIG_X86_64
925struct x8664_pda **_cpu_pda __read_mostly;
926EXPORT_SYMBOL(_cpu_pda);
927
928struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
929
930static char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
931
932void __cpuinit pda_init(int cpu)
933{
934 struct x8664_pda *pda = cpu_pda(cpu);
935
936 /* Setup up data that may be needed in __get_free_pages early */
937 loadsegment(fs, 0);
938 loadsegment(gs, 0);
939 /* Memory clobbers used to order PDA accessed */
940 mb();
941 wrmsrl(MSR_GS_BASE, pda);
942 mb();
943
944 pda->cpunumber = cpu;
945 pda->irqcount = -1;
946 pda->kernelstack = (unsigned long)stack_thread_info() -
947 PDA_STACKOFFSET + THREAD_SIZE;
948 pda->active_mm = &init_mm;
949 pda->mmu_state = 0;
950
951 if (cpu == 0) {
952 /* others are initialized in smpboot.c */
953 pda->pcurrent = &init_task;
954 pda->irqstackptr = boot_cpu_stack;
955 pda->irqstackptr += IRQSTACKSIZE - 64;
956 } else {
957 if (!pda->irqstackptr) {
958 pda->irqstackptr = (char *)
959 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
960 if (!pda->irqstackptr)
961 panic("cannot allocate irqstack for cpu %d",
962 cpu);
963 pda->irqstackptr += IRQSTACKSIZE - 64;
964 }
965
966 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
967 pda->nodenumber = cpu_to_node(cpu);
968 }
969}
970
971static char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
972 DEBUG_STKSZ] __page_aligned_bss;
973
974extern asmlinkage void ignore_sysret(void);
975
976/* May not be marked __init: used by software suspend */
977void syscall_init(void)
978{
979 /*
980 * LSTAR and STAR live in a bit strange symbiosis.
981 * They both write to the same internal register. STAR allows to
982 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
983 */
984 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
985 wrmsrl(MSR_LSTAR, system_call);
986 wrmsrl(MSR_CSTAR, ignore_sysret);
987
988#ifdef CONFIG_IA32_EMULATION
989 syscall32_cpu_init();
990#endif
991
992 /* Flags to clear on syscall */
993 wrmsrl(MSR_SYSCALL_MASK,
994 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
995}
996
997unsigned long kernel_eflags;
998
999/*
1000 * Copies of the original ist values from the tss are only accessed during
1001 * debugging, no special alignment required.
1002 */
1003DEFINE_PER_CPU(struct orig_ist, orig_ist);
1004
1005#else
1006
1007/* Make sure %fs is initialized properly in idle threads */
1008struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1009{
1010 memset(regs, 0, sizeof(struct pt_regs));
1011 regs->fs = __KERNEL_PERCPU;
1012 return regs;
1013}
1014#endif
1015
1016/*
1017 * cpu_init() initializes state that is per-CPU. Some data is already
1018 * initialized (naturally) in the bootstrap process, such as the GDT
1019 * and IDT. We reload them nevertheless, this function acts as a
1020 * 'CPU state barrier', nothing should get across.
1021 * A lot of state is already set up in PDA init for 64 bit
1022 */
1023#ifdef CONFIG_X86_64
1024void __cpuinit cpu_init(void)
1025{
1026 int cpu = stack_smp_processor_id();
1027 struct tss_struct *t = &per_cpu(init_tss, cpu);
1028 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
1029 unsigned long v;
1030 char *estacks = NULL;
1031 struct task_struct *me;
1032 int i;
1033
1034 /* CPU 0 is initialised in head64.c */
1035 if (cpu != 0)
1036 pda_init(cpu);
1037 else
1038 estacks = boot_exception_stacks;
1039
1040 me = current;
1041
1042 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1043 panic("CPU#%d already initialized!\n", cpu);
1044
1045 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1046
1047 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1048
1049 /*
1050 * Initialize the per-CPU GDT with the boot GDT,
1051 * and set up the GDT descriptor:
1052 */
1053
1054 switch_to_new_gdt();
1055 load_idt((const struct desc_ptr *)&idt_descr);
1056
1057 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1058 syscall_init();
1059
1060 wrmsrl(MSR_FS_BASE, 0);
1061 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1062 barrier();
1063
1064 check_efer();
1065 if (cpu != 0 && x2apic)
1066 enable_x2apic();
1067
1068 /*
1069 * set up and load the per-CPU TSS
1070 */
1071 if (!orig_ist->ist[0]) {
1072 static const unsigned int order[N_EXCEPTION_STACKS] = {
1073 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
1074 [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
1075 };
1076 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1077 if (cpu) {
1078 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
1079 if (!estacks)
1080 panic("Cannot allocate exception "
1081 "stack %ld %d\n", v, cpu);
1082 }
1083 estacks += PAGE_SIZE << order[v];
1084 orig_ist->ist[v] = t->x86_tss.ist[v] =
1085 (unsigned long)estacks;
1086 }
1087 }
1088
1089 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1090 /*
1091 * <= is required because the CPU will access up to
1092 * 8 bits beyond the end of the IO permission bitmap.
1093 */
1094 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1095 t->io_bitmap[i] = ~0UL;
1096
1097 atomic_inc(&init_mm.mm_count);
1098 me->active_mm = &init_mm;
1099 if (me->mm)
1100 BUG();
1101 enter_lazy_tlb(&init_mm, me);
1102
1103 load_sp0(t, &current->thread);
1104 set_tss_desc(cpu, t);
1105 load_TR_desc();
1106 load_LDT(&init_mm.context);
1107
1108#ifdef CONFIG_KGDB
1109 /*
1110 * If the kgdb is connected no debug regs should be altered. This
1111 * is only applicable when KGDB and a KGDB I/O module are built
1112 * into the kernel and you are using early debugging with
1113 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1114 */
1115 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1116 arch_kgdb_ops.correct_hw_break();
1117 else {
1118#endif
1119 /*
1120 * Clear all 6 debug registers:
1121 */
1122
1123 set_debugreg(0UL, 0);
1124 set_debugreg(0UL, 1);
1125 set_debugreg(0UL, 2);
1126 set_debugreg(0UL, 3);
1127 set_debugreg(0UL, 6);
1128 set_debugreg(0UL, 7);
1129#ifdef CONFIG_KGDB
1130 /* If the kgdb is connected no debug regs should be altered. */
1131 }
1132#endif
1133
1134 fpu_init();
1135
1136 raw_local_save_flags(kernel_eflags);
1137
1138 if (is_uv_system())
1139 uv_cpu_init();
1140}
1141
1142#else
1143
1144void __cpuinit cpu_init(void)
1145{
1146 int cpu = smp_processor_id();
1147 struct task_struct *curr = current;
1148 struct tss_struct *t = &per_cpu(init_tss, cpu);
1149 struct thread_struct *thread = &curr->thread;
1150
1151 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1152 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1153 for (;;) local_irq_enable();
1154 }
1155
1156 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1157
1158 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1159 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1160
1161 load_idt(&idt_descr);
1162 switch_to_new_gdt();
1163
1164 /*
1165 * Set up and load the per-CPU TSS and LDT
1166 */
1167 atomic_inc(&init_mm.mm_count);
1168 curr->active_mm = &init_mm;
1169 if (curr->mm)
1170 BUG();
1171 enter_lazy_tlb(&init_mm, curr);
1172
1173 load_sp0(t, thread);
1174 set_tss_desc(cpu, t);
1175 load_TR_desc();
1176 load_LDT(&init_mm.context);
1177
1178#ifdef CONFIG_DOUBLEFAULT
1179 /* Set up doublefault TSS pointer in the GDT */
1180 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1181#endif
1182
1183 /* Clear %gs. */
1184 asm volatile ("mov %0, %%gs" : : "r" (0));
1185
1186 /* Clear all 6 debug registers: */
1187 set_debugreg(0, 0);
1188 set_debugreg(0, 1);
1189 set_debugreg(0, 2);
1190 set_debugreg(0, 3);
1191 set_debugreg(0, 6);
1192 set_debugreg(0, 7);
1193
1194 /*
1195 * Force FPU initialization:
1196 */
1197 if (cpu_has_xsave)
1198 current_thread_info()->status = TS_XSAVE;
1199 else
1200 current_thread_info()->status = 0;
1201 clear_used_math();
1202 mxcsr_feature_mask_init();
1203
1204 /*
1205 * Boot processor to setup the FP and extended state context info.
1206 */
1207 if (smp_processor_id() == boot_cpu_id)
1208 init_thread_xstate();
1209
1210 xsave_init();
1211}
1212
1213
1214#endif