]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: Fix and unconditionally enable WARNs to detect PAE leaks
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18#include "irq.h"
19#include "ioapic.h"
20#include "mmu.h"
21#include "mmu_internal.h"
22#include "tdp_mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "kvm_emulate.h"
26#include "cpuid.h"
27#include "spte.h"
28
29#include <linux/kvm_host.h>
30#include <linux/types.h>
31#include <linux/string.h>
32#include <linux/mm.h>
33#include <linux/highmem.h>
34#include <linux/moduleparam.h>
35#include <linux/export.h>
36#include <linux/swap.h>
37#include <linux/hugetlb.h>
38#include <linux/compiler.h>
39#include <linux/srcu.h>
40#include <linux/slab.h>
41#include <linux/sched/signal.h>
42#include <linux/uaccess.h>
43#include <linux/hash.h>
44#include <linux/kern_levels.h>
45#include <linux/kthread.h>
46
47#include <asm/page.h>
48#include <asm/memtype.h>
49#include <asm/cmpxchg.h>
50#include <asm/io.h>
51#include <asm/vmx.h>
52#include <asm/kvm_page_track.h>
53#include "trace.h"
54
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63#endif
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68static const struct kernel_param_ops nx_huge_pages_ops = {
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
94bool tdp_enabled = false;
95
96static int max_huge_page_level __read_mostly;
97static int max_tdp_level __read_mostly;
98
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
106};
107
108#ifdef MMU_DEBUG
109bool dbg = 0;
110module_param(dbg, bool, 0644);
111#endif
112
113#define PTE_PREFETCH_NUM 8
114
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135#include <trace/events/kvm.h>
136
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
140struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
143};
144
145struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
148 u64 *sptep;
149 int level;
150 unsigned index;
151};
152
153#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
170static struct kmem_cache *pte_list_desc_cache;
171struct kmem_cache *mmu_page_header_cache;
172static struct percpu_counter kvm_total_used_mmu_pages;
173
174static void mmu_spte_set(u64 *sptep, u64 spte);
175static union kvm_mmu_page_role
176kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178#define CREATE_TRACE_POINTS
179#include "mmutrace.h"
180
181
182static inline bool kvm_available_flush_tlb_with_range(void)
183{
184 return kvm_x86_ops.tlb_remote_flush_with_range;
185}
186
187static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189{
190 int ret = -ENOTSUPP;
191
192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197}
198
199void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 u64 start_gfn, u64 pages)
201{
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208}
209
210bool is_nx_huge_page_enabled(void)
211{
212 return READ_ONCE(nx_huge_pages);
213}
214
215static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217{
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220 trace_mark_mmio_spte(sptep, gfn, mask);
221 mmu_spte_set(sptep, mask);
222}
223
224static gfn_t get_mmio_spte_gfn(u64 spte)
225{
226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
232}
233
234static unsigned get_mmio_spte_access(u64 spte)
235{
236 return spte & shadow_mmio_access_mask;
237}
238
239static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 kvm_pfn_t pfn, unsigned int access)
241{
242 if (unlikely(is_noslot_pfn(pfn))) {
243 mark_mmio_spte(vcpu, sptep, gfn, access);
244 return true;
245 }
246
247 return false;
248}
249
250static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251{
252 u64 kvm_gen, spte_gen, gen;
253
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
257
258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
263}
264
265static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267{
268 /* Check if guest physical address doesn't exceed guest maximum */
269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
274 return gpa;
275}
276
277static int is_cpuid_PSE36(void)
278{
279 return 1;
280}
281
282static int is_nx(struct kvm_vcpu *vcpu)
283{
284 return vcpu->arch.efer & EFER_NX;
285}
286
287static gfn_t pse36_gfn_delta(u32 gpte)
288{
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292}
293
294#ifdef CONFIG_X86_64
295static void __set_spte(u64 *sptep, u64 spte)
296{
297 WRITE_ONCE(*sptep, spte);
298}
299
300static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301{
302 WRITE_ONCE(*sptep, spte);
303}
304
305static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306{
307 return xchg(sptep, spte);
308}
309
310static u64 __get_spte_lockless(u64 *sptep)
311{
312 return READ_ONCE(*sptep);
313}
314#else
315union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321};
322
323static void count_spte_clear(u64 *sptep, u64 spte)
324{
325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333}
334
335static void __set_spte(u64 *sptep, u64 spte)
336{
337 union split_spte *ssptep, sspte;
338
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352}
353
354static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355{
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
370 count_spte_clear(sptep, spte);
371}
372
373static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374{
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
384 count_spte_clear(sptep, spte);
385
386 return orig.spte;
387}
388
389/*
390 * The idea using the light way get the spte on x86_32 guest is from
391 * gup_get_pte (mm/gup.c).
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
429#endif
430
431static bool spte_has_volatile_bits(u64 spte)
432{
433 if (!is_shadow_present_pte(spte))
434 return false;
435
436 /*
437 * Always atomically update spte if it can be updated
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
444 return true;
445
446 if (spte_ad_enabled(spte)) {
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
451
452 return false;
453}
454
455/* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461static void mmu_spte_set(u64 *sptep, u64 new_spte)
462{
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465}
466
467/*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
470 */
471static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472{
473 u64 old_spte = *sptep;
474
475 WARN_ON(!is_shadow_present_pte(new_spte));
476
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
479 return old_spte;
480 }
481
482 if (!spte_has_volatile_bits(old_spte))
483 __update_clear_spte_fast(sptep, new_spte);
484 else
485 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489 return old_spte;
490}
491
492/* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504{
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
511 /*
512 * For the spte updated out of mmu-lock is safe, since
513 * we always atomically update it, see the comments in
514 * spte_has_volatile_bits().
515 */
516 if (spte_can_locklessly_be_made_writable(old_spte) &&
517 !is_writable_pte(new_spte))
518 flush = true;
519
520 /*
521 * Flush TLB when accessed/dirty states are changed in the page tables,
522 * to guarantee consistency between TLB and page tables.
523 */
524
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533 }
534
535 return flush;
536}
537
538/*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
542 * Returns non-zero if the PTE was previously valid.
543 */
544static int mmu_spte_clear_track_bits(u64 *sptep)
545{
546 kvm_pfn_t pfn;
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
550 __update_clear_spte_fast(sptep, 0ull);
551 else
552 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554 if (!is_shadow_present_pte(old_spte))
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566 if (is_accessed_spte(old_spte))
567 kvm_set_pfn_accessed(pfn);
568
569 if (is_dirty_spte(old_spte))
570 kvm_set_pfn_dirty(pfn);
571
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
582 __update_clear_spte_fast(sptep, 0ull);
583}
584
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
590/* Restore an acc-track PTE back to a regular PTE */
591static u64 restore_acc_track_spte(u64 spte)
592{
593 u64 new_spte = spte;
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596
597 WARN_ON_ONCE(spte_ad_enabled(spte));
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 new_spte |= saved_bits;
604
605 return new_spte;
606}
607
608/* Returns the Accessed status of the PTE and resets it at the same time. */
609static bool mmu_spte_age(u64 *sptep)
610{
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
616 if (spte_ad_enabled(spte)) {
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632}
633
634static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635{
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
641
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647}
648
649static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650{
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 local_irq_enable();
658}
659
660static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661{
662 int r;
663
664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 if (r)
668 return r;
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
671 if (r)
672 return r;
673 if (maybe_indirect) {
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
676 if (r)
677 return r;
678 }
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689}
690
691static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692{
693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694}
695
696static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697{
698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699}
700
701static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702{
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707}
708
709static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710{
711 if (!sp->role.direct) {
712 sp->gfns[index] = gfn;
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
721}
722
723/*
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
726 */
727static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
730{
731 unsigned long idx;
732
733 idx = gfn_to_index(gfn, slot->base_gfn, level);
734 return &slot->arch.lpage_info[level - 2][idx];
735}
736
737static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739{
740 struct kvm_lpage_info *linfo;
741 int i;
742
743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748}
749
750void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751{
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753}
754
755void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756{
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758}
759
760static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761{
762 struct kvm_memslots *slots;
763 struct kvm_memory_slot *slot;
764 gfn_t gfn;
765
766 kvm->arch.indirect_shadow_pages++;
767 gfn = sp->gfn;
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
770
771 /* the non-leaf shadow pages are keeping readonly. */
772 if (sp->role.level > PG_LEVEL_4K)
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
777}
778
779void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780{
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
787 sp->lpage_disallowed = true;
788}
789
790static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791{
792 struct kvm_memslots *slots;
793 struct kvm_memory_slot *slot;
794 gfn_t gfn;
795
796 kvm->arch.indirect_shadow_pages--;
797 gfn = sp->gfn;
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
800 if (sp->role.level > PG_LEVEL_4K)
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
804 kvm_mmu_gfn_allow_lpage(slot, gfn);
805}
806
807void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808{
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
811 list_del(&sp->lpage_disallowed_link);
812}
813
814static struct kvm_memory_slot *
815gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
817{
818 struct kvm_memory_slot *slot;
819
820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824 return NULL;
825
826 return slot;
827}
828
829/*
830 * About rmap_head encoding:
831 *
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834 * pte_list_desc containing more mappings.
835 */
836
837/*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
839 */
840static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 struct kvm_rmap_head *rmap_head)
842{
843 struct pte_list_desc *desc;
844 int i, count = 0;
845
846 if (!rmap_head->val) {
847 rmap_printk("%p %llx 0->1\n", spte, *spte);
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
850 rmap_printk("%p %llx 1->many\n", spte, *spte);
851 desc = mmu_alloc_pte_list_desc(vcpu);
852 desc->sptes[0] = (u64 *)rmap_head->val;
853 desc->sptes[1] = spte;
854 rmap_head->val = (unsigned long)desc | 1;
855 ++count;
856 } else {
857 rmap_printk("%p %llx many->many\n", spte, *spte);
858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 while (desc->sptes[PTE_LIST_EXT-1]) {
860 count += PTE_LIST_EXT;
861
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
866 }
867 desc = desc->more;
868 }
869 for (i = 0; desc->sptes[i]; ++i)
870 ++count;
871 desc->sptes[i] = spte;
872 }
873 return count;
874}
875
876static void
877pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
880{
881 int j;
882
883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884 ;
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
890 rmap_head->val = 0;
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
895 rmap_head->val = (unsigned long)desc->more | 1;
896 mmu_free_pte_list_desc(desc);
897}
898
899static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900{
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
903 int i;
904
905 if (!rmap_head->val) {
906 pr_err("%s: %p 0->BUG\n", __func__, spte);
907 BUG();
908 } else if (!(rmap_head->val & 1)) {
909 rmap_printk("%p 1->0\n", spte);
910 if ((u64 *)rmap_head->val != spte) {
911 pr_err("%s: %p 1->BUG\n", __func__, spte);
912 BUG();
913 }
914 rmap_head->val = 0;
915 } else {
916 rmap_printk("%p many->many\n", spte);
917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 prev_desc = NULL;
919 while (desc) {
920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921 if (desc->sptes[i] == spte) {
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
924 return;
925 }
926 }
927 prev_desc = desc;
928 desc = desc->more;
929 }
930 pr_err("%s: %p many->many\n", __func__, spte);
931 BUG();
932 }
933}
934
935static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936{
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
939}
940
941static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
943{
944 unsigned long idx;
945
946 idx = gfn_to_index(gfn, slot->base_gfn, level);
947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948}
949
950static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
952{
953 struct kvm_memslots *slots;
954 struct kvm_memory_slot *slot;
955
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
958 return __gfn_to_rmap(gfn, sp->role.level, slot);
959}
960
961static bool rmap_can_add(struct kvm_vcpu *vcpu)
962{
963 struct kvm_mmu_memory_cache *mc;
964
965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
966 return kvm_mmu_memory_cache_nr_free_objects(mc);
967}
968
969static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970{
971 struct kvm_mmu_page *sp;
972 struct kvm_rmap_head *rmap_head;
973
974 sp = sptep_to_sp(spte);
975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
978}
979
980static void rmap_remove(struct kvm *kvm, u64 *spte)
981{
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
984 struct kvm_rmap_head *rmap_head;
985
986 sp = sptep_to_sp(spte);
987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
989 __pte_list_remove(spte, rmap_head);
990}
991
992/*
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
995 */
996struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1000};
1001
1002/*
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
1005 * information in the iterator may not be valid.
1006 *
1007 * Returns sptep if found, NULL otherwise.
1008 */
1009static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1011{
1012 u64 *sptep;
1013
1014 if (!rmap_head->val)
1015 return NULL;
1016
1017 if (!(rmap_head->val & 1)) {
1018 iter->desc = NULL;
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1021 }
1022
1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 iter->pos = 0;
1025 sptep = iter->desc->sptes[iter->pos];
1026out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1029}
1030
1031/*
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_next(struct rmap_iterator *iter)
1037{
1038 u64 *sptep;
1039
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
1045 goto out;
1046 }
1047
1048 iter->desc = iter->desc->more;
1049
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1055 }
1056 }
1057
1058 return NULL;
1059out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1062}
1063
1064#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1066 _spte_; _spte_ = rmap_get_next(_iter_))
1067
1068static void drop_spte(struct kvm *kvm, u64 *sptep)
1069{
1070 if (mmu_spte_clear_track_bits(sptep))
1071 rmap_remove(kvm, sptep);
1072}
1073
1074
1075static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076{
1077 if (is_large_pte(*sptep)) {
1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1082 }
1083
1084 return false;
1085}
1086
1087static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088{
1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1094 }
1095}
1096
1097/*
1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
1099 * spte write-protection is caused by protecting shadow page table.
1100 *
1101 * Note: write protection is difference between dirty logging and spte
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
1107 *
1108 * Return true if tlb need be flushed.
1109 */
1110static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111{
1112 u64 spte = *sptep;
1113
1114 if (!is_writable_pte(spte) &&
1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 return false;
1117
1118 rmap_printk("spte %p %llx\n", sptep, *sptep);
1119
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
1122 spte = spte & ~PT_WRITABLE_MASK;
1123
1124 return mmu_spte_update(sptep, spte);
1125}
1126
1127static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
1129 bool pt_protect)
1130{
1131 u64 *sptep;
1132 struct rmap_iterator iter;
1133 bool flush = false;
1134
1135 for_each_rmap_spte(rmap_head, &iter, sptep)
1136 flush |= spte_write_protect(sptep, pt_protect);
1137
1138 return flush;
1139}
1140
1141static bool spte_clear_dirty(u64 *sptep)
1142{
1143 u64 spte = *sptep;
1144
1145 rmap_printk("spte %p %llx\n", sptep, *sptep);
1146
1147 MMU_WARN_ON(!spte_ad_enabled(spte));
1148 spte &= ~shadow_dirty_mask;
1149 return mmu_spte_update(sptep, spte);
1150}
1151
1152static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153{
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1156 if (was_writable && !spte_ad_enabled(*sptep))
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159 return was_writable;
1160}
1161
1162/*
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1167 */
1168static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1169 struct kvm_memory_slot *slot)
1170{
1171 u64 *sptep;
1172 struct rmap_iterator iter;
1173 bool flush = false;
1174
1175 for_each_rmap_spte(rmap_head, &iter, sptep)
1176 if (spte_ad_need_write_protect(*sptep))
1177 flush |= spte_wrprot_for_clear_dirty(sptep);
1178 else
1179 flush |= spte_clear_dirty(sptep);
1180
1181 return flush;
1182}
1183
1184/**
1185 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1186 * @kvm: kvm instance
1187 * @slot: slot to protect
1188 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1189 * @mask: indicates which pages we should protect
1190 *
1191 * Used when we do not need to care about huge page mappings: e.g. during dirty
1192 * logging we do not have any such mappings.
1193 */
1194static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1195 struct kvm_memory_slot *slot,
1196 gfn_t gfn_offset, unsigned long mask)
1197{
1198 struct kvm_rmap_head *rmap_head;
1199
1200 if (is_tdp_mmu_enabled(kvm))
1201 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1202 slot->base_gfn + gfn_offset, mask, true);
1203 while (mask) {
1204 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1205 PG_LEVEL_4K, slot);
1206 __rmap_write_protect(kvm, rmap_head, false);
1207
1208 /* clear the first set bit */
1209 mask &= mask - 1;
1210 }
1211}
1212
1213/**
1214 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1215 * protect the page if the D-bit isn't supported.
1216 * @kvm: kvm instance
1217 * @slot: slot to clear D-bit
1218 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1219 * @mask: indicates which pages we should clear D-bit
1220 *
1221 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1222 */
1223static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1224 struct kvm_memory_slot *slot,
1225 gfn_t gfn_offset, unsigned long mask)
1226{
1227 struct kvm_rmap_head *rmap_head;
1228
1229 if (is_tdp_mmu_enabled(kvm))
1230 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1231 slot->base_gfn + gfn_offset, mask, false);
1232 while (mask) {
1233 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1234 PG_LEVEL_4K, slot);
1235 __rmap_clear_dirty(kvm, rmap_head, slot);
1236
1237 /* clear the first set bit */
1238 mask &= mask - 1;
1239 }
1240}
1241
1242/**
1243 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1244 * PT level pages.
1245 *
1246 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1247 * enable dirty logging for them.
1248 *
1249 * Used when we do not need to care about huge page mappings: e.g. during dirty
1250 * logging we do not have any such mappings.
1251 */
1252void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1253 struct kvm_memory_slot *slot,
1254 gfn_t gfn_offset, unsigned long mask)
1255{
1256 if (kvm_x86_ops.cpu_dirty_log_size)
1257 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1258 else
1259 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1260}
1261
1262int kvm_cpu_dirty_log_size(void)
1263{
1264 return kvm_x86_ops.cpu_dirty_log_size;
1265}
1266
1267bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1268 struct kvm_memory_slot *slot, u64 gfn)
1269{
1270 struct kvm_rmap_head *rmap_head;
1271 int i;
1272 bool write_protected = false;
1273
1274 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1275 rmap_head = __gfn_to_rmap(gfn, i, slot);
1276 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1277 }
1278
1279 if (is_tdp_mmu_enabled(kvm))
1280 write_protected |=
1281 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1282
1283 return write_protected;
1284}
1285
1286static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1287{
1288 struct kvm_memory_slot *slot;
1289
1290 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1291 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1292}
1293
1294static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1295 struct kvm_memory_slot *slot)
1296{
1297 u64 *sptep;
1298 struct rmap_iterator iter;
1299 bool flush = false;
1300
1301 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1302 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1303
1304 pte_list_remove(rmap_head, sptep);
1305 flush = true;
1306 }
1307
1308 return flush;
1309}
1310
1311static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1312 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1313 unsigned long data)
1314{
1315 return kvm_zap_rmapp(kvm, rmap_head, slot);
1316}
1317
1318static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1319 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1320 unsigned long data)
1321{
1322 u64 *sptep;
1323 struct rmap_iterator iter;
1324 int need_flush = 0;
1325 u64 new_spte;
1326 pte_t *ptep = (pte_t *)data;
1327 kvm_pfn_t new_pfn;
1328
1329 WARN_ON(pte_huge(*ptep));
1330 new_pfn = pte_pfn(*ptep);
1331
1332restart:
1333 for_each_rmap_spte(rmap_head, &iter, sptep) {
1334 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1335 sptep, *sptep, gfn, level);
1336
1337 need_flush = 1;
1338
1339 if (pte_write(*ptep)) {
1340 pte_list_remove(rmap_head, sptep);
1341 goto restart;
1342 } else {
1343 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1344 *sptep, new_pfn);
1345
1346 mmu_spte_clear_track_bits(sptep);
1347 mmu_spte_set(sptep, new_spte);
1348 }
1349 }
1350
1351 if (need_flush && kvm_available_flush_tlb_with_range()) {
1352 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1353 return 0;
1354 }
1355
1356 return need_flush;
1357}
1358
1359struct slot_rmap_walk_iterator {
1360 /* input fields. */
1361 struct kvm_memory_slot *slot;
1362 gfn_t start_gfn;
1363 gfn_t end_gfn;
1364 int start_level;
1365 int end_level;
1366
1367 /* output fields. */
1368 gfn_t gfn;
1369 struct kvm_rmap_head *rmap;
1370 int level;
1371
1372 /* private field. */
1373 struct kvm_rmap_head *end_rmap;
1374};
1375
1376static void
1377rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1378{
1379 iterator->level = level;
1380 iterator->gfn = iterator->start_gfn;
1381 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1382 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1383 iterator->slot);
1384}
1385
1386static void
1387slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1388 struct kvm_memory_slot *slot, int start_level,
1389 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1390{
1391 iterator->slot = slot;
1392 iterator->start_level = start_level;
1393 iterator->end_level = end_level;
1394 iterator->start_gfn = start_gfn;
1395 iterator->end_gfn = end_gfn;
1396
1397 rmap_walk_init_level(iterator, iterator->start_level);
1398}
1399
1400static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1401{
1402 return !!iterator->rmap;
1403}
1404
1405static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1406{
1407 if (++iterator->rmap <= iterator->end_rmap) {
1408 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1409 return;
1410 }
1411
1412 if (++iterator->level > iterator->end_level) {
1413 iterator->rmap = NULL;
1414 return;
1415 }
1416
1417 rmap_walk_init_level(iterator, iterator->level);
1418}
1419
1420#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1421 _start_gfn, _end_gfn, _iter_) \
1422 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1423 _end_level_, _start_gfn, _end_gfn); \
1424 slot_rmap_walk_okay(_iter_); \
1425 slot_rmap_walk_next(_iter_))
1426
1427static __always_inline int
1428kvm_handle_hva_range(struct kvm *kvm,
1429 unsigned long start,
1430 unsigned long end,
1431 unsigned long data,
1432 int (*handler)(struct kvm *kvm,
1433 struct kvm_rmap_head *rmap_head,
1434 struct kvm_memory_slot *slot,
1435 gfn_t gfn,
1436 int level,
1437 unsigned long data))
1438{
1439 struct kvm_memslots *slots;
1440 struct kvm_memory_slot *memslot;
1441 struct slot_rmap_walk_iterator iterator;
1442 int ret = 0;
1443 int i;
1444
1445 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1446 slots = __kvm_memslots(kvm, i);
1447 kvm_for_each_memslot(memslot, slots) {
1448 unsigned long hva_start, hva_end;
1449 gfn_t gfn_start, gfn_end;
1450
1451 hva_start = max(start, memslot->userspace_addr);
1452 hva_end = min(end, memslot->userspace_addr +
1453 (memslot->npages << PAGE_SHIFT));
1454 if (hva_start >= hva_end)
1455 continue;
1456 /*
1457 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1458 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1459 */
1460 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1461 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1462
1463 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1464 KVM_MAX_HUGEPAGE_LEVEL,
1465 gfn_start, gfn_end - 1,
1466 &iterator)
1467 ret |= handler(kvm, iterator.rmap, memslot,
1468 iterator.gfn, iterator.level, data);
1469 }
1470 }
1471
1472 return ret;
1473}
1474
1475static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1476 unsigned long data,
1477 int (*handler)(struct kvm *kvm,
1478 struct kvm_rmap_head *rmap_head,
1479 struct kvm_memory_slot *slot,
1480 gfn_t gfn, int level,
1481 unsigned long data))
1482{
1483 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1484}
1485
1486int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1487 unsigned flags)
1488{
1489 int r;
1490
1491 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1492
1493 if (is_tdp_mmu_enabled(kvm))
1494 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1495
1496 return r;
1497}
1498
1499int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1500{
1501 int r;
1502
1503 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1504
1505 if (is_tdp_mmu_enabled(kvm))
1506 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1507
1508 return r;
1509}
1510
1511static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1513 unsigned long data)
1514{
1515 u64 *sptep;
1516 struct rmap_iterator iter;
1517 int young = 0;
1518
1519 for_each_rmap_spte(rmap_head, &iter, sptep)
1520 young |= mmu_spte_age(sptep);
1521
1522 trace_kvm_age_page(gfn, level, slot, young);
1523 return young;
1524}
1525
1526static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1527 struct kvm_memory_slot *slot, gfn_t gfn,
1528 int level, unsigned long data)
1529{
1530 u64 *sptep;
1531 struct rmap_iterator iter;
1532
1533 for_each_rmap_spte(rmap_head, &iter, sptep)
1534 if (is_accessed_spte(*sptep))
1535 return 1;
1536 return 0;
1537}
1538
1539#define RMAP_RECYCLE_THRESHOLD 1000
1540
1541static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1542{
1543 struct kvm_rmap_head *rmap_head;
1544 struct kvm_mmu_page *sp;
1545
1546 sp = sptep_to_sp(spte);
1547
1548 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1549
1550 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1551 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1552 KVM_PAGES_PER_HPAGE(sp->role.level));
1553}
1554
1555int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1556{
1557 int young = false;
1558
1559 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1560 if (is_tdp_mmu_enabled(kvm))
1561 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1562
1563 return young;
1564}
1565
1566int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1567{
1568 int young = false;
1569
1570 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1571 if (is_tdp_mmu_enabled(kvm))
1572 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1573
1574 return young;
1575}
1576
1577#ifdef MMU_DEBUG
1578static int is_empty_shadow_page(u64 *spt)
1579{
1580 u64 *pos;
1581 u64 *end;
1582
1583 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1584 if (is_shadow_present_pte(*pos)) {
1585 printk(KERN_ERR "%s: %p %llx\n", __func__,
1586 pos, *pos);
1587 return 0;
1588 }
1589 return 1;
1590}
1591#endif
1592
1593/*
1594 * This value is the sum of all of the kvm instances's
1595 * kvm->arch.n_used_mmu_pages values. We need a global,
1596 * aggregate version in order to make the slab shrinker
1597 * faster
1598 */
1599static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1600{
1601 kvm->arch.n_used_mmu_pages += nr;
1602 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1603}
1604
1605static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1606{
1607 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1608 hlist_del(&sp->hash_link);
1609 list_del(&sp->link);
1610 free_page((unsigned long)sp->spt);
1611 if (!sp->role.direct)
1612 free_page((unsigned long)sp->gfns);
1613 kmem_cache_free(mmu_page_header_cache, sp);
1614}
1615
1616static unsigned kvm_page_table_hashfn(gfn_t gfn)
1617{
1618 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1619}
1620
1621static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1622 struct kvm_mmu_page *sp, u64 *parent_pte)
1623{
1624 if (!parent_pte)
1625 return;
1626
1627 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1628}
1629
1630static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1631 u64 *parent_pte)
1632{
1633 __pte_list_remove(parent_pte, &sp->parent_ptes);
1634}
1635
1636static void drop_parent_pte(struct kvm_mmu_page *sp,
1637 u64 *parent_pte)
1638{
1639 mmu_page_remove_parent_pte(sp, parent_pte);
1640 mmu_spte_clear_no_track(parent_pte);
1641}
1642
1643static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1644{
1645 struct kvm_mmu_page *sp;
1646
1647 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1648 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1649 if (!direct)
1650 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1651 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1652
1653 /*
1654 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1655 * depends on valid pages being added to the head of the list. See
1656 * comments in kvm_zap_obsolete_pages().
1657 */
1658 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1659 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1660 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1661 return sp;
1662}
1663
1664static void mark_unsync(u64 *spte);
1665static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1666{
1667 u64 *sptep;
1668 struct rmap_iterator iter;
1669
1670 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1671 mark_unsync(sptep);
1672 }
1673}
1674
1675static void mark_unsync(u64 *spte)
1676{
1677 struct kvm_mmu_page *sp;
1678 unsigned int index;
1679
1680 sp = sptep_to_sp(spte);
1681 index = spte - sp->spt;
1682 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1683 return;
1684 if (sp->unsync_children++)
1685 return;
1686 kvm_mmu_mark_parents_unsync(sp);
1687}
1688
1689static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1690 struct kvm_mmu_page *sp)
1691{
1692 return 0;
1693}
1694
1695#define KVM_PAGE_ARRAY_NR 16
1696
1697struct kvm_mmu_pages {
1698 struct mmu_page_and_offset {
1699 struct kvm_mmu_page *sp;
1700 unsigned int idx;
1701 } page[KVM_PAGE_ARRAY_NR];
1702 unsigned int nr;
1703};
1704
1705static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1706 int idx)
1707{
1708 int i;
1709
1710 if (sp->unsync)
1711 for (i=0; i < pvec->nr; i++)
1712 if (pvec->page[i].sp == sp)
1713 return 0;
1714
1715 pvec->page[pvec->nr].sp = sp;
1716 pvec->page[pvec->nr].idx = idx;
1717 pvec->nr++;
1718 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1719}
1720
1721static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1722{
1723 --sp->unsync_children;
1724 WARN_ON((int)sp->unsync_children < 0);
1725 __clear_bit(idx, sp->unsync_child_bitmap);
1726}
1727
1728static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1729 struct kvm_mmu_pages *pvec)
1730{
1731 int i, ret, nr_unsync_leaf = 0;
1732
1733 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1734 struct kvm_mmu_page *child;
1735 u64 ent = sp->spt[i];
1736
1737 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1738 clear_unsync_child_bit(sp, i);
1739 continue;
1740 }
1741
1742 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1743
1744 if (child->unsync_children) {
1745 if (mmu_pages_add(pvec, child, i))
1746 return -ENOSPC;
1747
1748 ret = __mmu_unsync_walk(child, pvec);
1749 if (!ret) {
1750 clear_unsync_child_bit(sp, i);
1751 continue;
1752 } else if (ret > 0) {
1753 nr_unsync_leaf += ret;
1754 } else
1755 return ret;
1756 } else if (child->unsync) {
1757 nr_unsync_leaf++;
1758 if (mmu_pages_add(pvec, child, i))
1759 return -ENOSPC;
1760 } else
1761 clear_unsync_child_bit(sp, i);
1762 }
1763
1764 return nr_unsync_leaf;
1765}
1766
1767#define INVALID_INDEX (-1)
1768
1769static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1770 struct kvm_mmu_pages *pvec)
1771{
1772 pvec->nr = 0;
1773 if (!sp->unsync_children)
1774 return 0;
1775
1776 mmu_pages_add(pvec, sp, INVALID_INDEX);
1777 return __mmu_unsync_walk(sp, pvec);
1778}
1779
1780static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1781{
1782 WARN_ON(!sp->unsync);
1783 trace_kvm_mmu_sync_page(sp);
1784 sp->unsync = 0;
1785 --kvm->stat.mmu_unsync;
1786}
1787
1788static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1789 struct list_head *invalid_list);
1790static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1791 struct list_head *invalid_list);
1792
1793#define for_each_valid_sp(_kvm, _sp, _list) \
1794 hlist_for_each_entry(_sp, _list, hash_link) \
1795 if (is_obsolete_sp((_kvm), (_sp))) { \
1796 } else
1797
1798#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1799 for_each_valid_sp(_kvm, _sp, \
1800 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1801 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1802
1803static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1804{
1805 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1806}
1807
1808/* @sp->gfn should be write-protected at the call site */
1809static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1810 struct list_head *invalid_list)
1811{
1812 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1813 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1814 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1815 return false;
1816 }
1817
1818 return true;
1819}
1820
1821static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1822 struct list_head *invalid_list,
1823 bool remote_flush)
1824{
1825 if (!remote_flush && list_empty(invalid_list))
1826 return false;
1827
1828 if (!list_empty(invalid_list))
1829 kvm_mmu_commit_zap_page(kvm, invalid_list);
1830 else
1831 kvm_flush_remote_tlbs(kvm);
1832 return true;
1833}
1834
1835static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1836 struct list_head *invalid_list,
1837 bool remote_flush, bool local_flush)
1838{
1839 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1840 return;
1841
1842 if (local_flush)
1843 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1844}
1845
1846#ifdef CONFIG_KVM_MMU_AUDIT
1847#include "mmu_audit.c"
1848#else
1849static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1850static void mmu_audit_disable(void) { }
1851#endif
1852
1853static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1854{
1855 return sp->role.invalid ||
1856 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1857}
1858
1859static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1860 struct list_head *invalid_list)
1861{
1862 kvm_unlink_unsync_page(vcpu->kvm, sp);
1863 return __kvm_sync_page(vcpu, sp, invalid_list);
1864}
1865
1866/* @gfn should be write-protected at the call site */
1867static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1868 struct list_head *invalid_list)
1869{
1870 struct kvm_mmu_page *s;
1871 bool ret = false;
1872
1873 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1874 if (!s->unsync)
1875 continue;
1876
1877 WARN_ON(s->role.level != PG_LEVEL_4K);
1878 ret |= kvm_sync_page(vcpu, s, invalid_list);
1879 }
1880
1881 return ret;
1882}
1883
1884struct mmu_page_path {
1885 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1886 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1887};
1888
1889#define for_each_sp(pvec, sp, parents, i) \
1890 for (i = mmu_pages_first(&pvec, &parents); \
1891 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1892 i = mmu_pages_next(&pvec, &parents, i))
1893
1894static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1895 struct mmu_page_path *parents,
1896 int i)
1897{
1898 int n;
1899
1900 for (n = i+1; n < pvec->nr; n++) {
1901 struct kvm_mmu_page *sp = pvec->page[n].sp;
1902 unsigned idx = pvec->page[n].idx;
1903 int level = sp->role.level;
1904
1905 parents->idx[level-1] = idx;
1906 if (level == PG_LEVEL_4K)
1907 break;
1908
1909 parents->parent[level-2] = sp;
1910 }
1911
1912 return n;
1913}
1914
1915static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1916 struct mmu_page_path *parents)
1917{
1918 struct kvm_mmu_page *sp;
1919 int level;
1920
1921 if (pvec->nr == 0)
1922 return 0;
1923
1924 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1925
1926 sp = pvec->page[0].sp;
1927 level = sp->role.level;
1928 WARN_ON(level == PG_LEVEL_4K);
1929
1930 parents->parent[level-2] = sp;
1931
1932 /* Also set up a sentinel. Further entries in pvec are all
1933 * children of sp, so this element is never overwritten.
1934 */
1935 parents->parent[level-1] = NULL;
1936 return mmu_pages_next(pvec, parents, 0);
1937}
1938
1939static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1940{
1941 struct kvm_mmu_page *sp;
1942 unsigned int level = 0;
1943
1944 do {
1945 unsigned int idx = parents->idx[level];
1946 sp = parents->parent[level];
1947 if (!sp)
1948 return;
1949
1950 WARN_ON(idx == INVALID_INDEX);
1951 clear_unsync_child_bit(sp, idx);
1952 level++;
1953 } while (!sp->unsync_children);
1954}
1955
1956static void mmu_sync_children(struct kvm_vcpu *vcpu,
1957 struct kvm_mmu_page *parent)
1958{
1959 int i;
1960 struct kvm_mmu_page *sp;
1961 struct mmu_page_path parents;
1962 struct kvm_mmu_pages pages;
1963 LIST_HEAD(invalid_list);
1964 bool flush = false;
1965
1966 while (mmu_unsync_walk(parent, &pages)) {
1967 bool protected = false;
1968
1969 for_each_sp(pages, sp, parents, i)
1970 protected |= rmap_write_protect(vcpu, sp->gfn);
1971
1972 if (protected) {
1973 kvm_flush_remote_tlbs(vcpu->kvm);
1974 flush = false;
1975 }
1976
1977 for_each_sp(pages, sp, parents, i) {
1978 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1979 mmu_pages_clear_parents(&parents);
1980 }
1981 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1982 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1983 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1984 flush = false;
1985 }
1986 }
1987
1988 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1989}
1990
1991static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1992{
1993 atomic_set(&sp->write_flooding_count, 0);
1994}
1995
1996static void clear_sp_write_flooding_count(u64 *spte)
1997{
1998 __clear_sp_write_flooding_count(sptep_to_sp(spte));
1999}
2000
2001static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2002 gfn_t gfn,
2003 gva_t gaddr,
2004 unsigned level,
2005 int direct,
2006 unsigned int access)
2007{
2008 bool direct_mmu = vcpu->arch.mmu->direct_map;
2009 union kvm_mmu_page_role role;
2010 struct hlist_head *sp_list;
2011 unsigned quadrant;
2012 struct kvm_mmu_page *sp;
2013 bool need_sync = false;
2014 bool flush = false;
2015 int collisions = 0;
2016 LIST_HEAD(invalid_list);
2017
2018 role = vcpu->arch.mmu->mmu_role.base;
2019 role.level = level;
2020 role.direct = direct;
2021 if (role.direct)
2022 role.gpte_is_8_bytes = true;
2023 role.access = access;
2024 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2025 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2026 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2027 role.quadrant = quadrant;
2028 }
2029
2030 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2031 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2032 if (sp->gfn != gfn) {
2033 collisions++;
2034 continue;
2035 }
2036
2037 if (!need_sync && sp->unsync)
2038 need_sync = true;
2039
2040 if (sp->role.word != role.word)
2041 continue;
2042
2043 if (direct_mmu)
2044 goto trace_get_page;
2045
2046 if (sp->unsync) {
2047 /* The page is good, but __kvm_sync_page might still end
2048 * up zapping it. If so, break in order to rebuild it.
2049 */
2050 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2051 break;
2052
2053 WARN_ON(!list_empty(&invalid_list));
2054 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2055 }
2056
2057 if (sp->unsync_children)
2058 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2059
2060 __clear_sp_write_flooding_count(sp);
2061
2062trace_get_page:
2063 trace_kvm_mmu_get_page(sp, false);
2064 goto out;
2065 }
2066
2067 ++vcpu->kvm->stat.mmu_cache_miss;
2068
2069 sp = kvm_mmu_alloc_page(vcpu, direct);
2070
2071 sp->gfn = gfn;
2072 sp->role = role;
2073 hlist_add_head(&sp->hash_link, sp_list);
2074 if (!direct) {
2075 /*
2076 * we should do write protection before syncing pages
2077 * otherwise the content of the synced shadow page may
2078 * be inconsistent with guest page table.
2079 */
2080 account_shadowed(vcpu->kvm, sp);
2081 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2082 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2083
2084 if (level > PG_LEVEL_4K && need_sync)
2085 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2086 }
2087 trace_kvm_mmu_get_page(sp, true);
2088
2089 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2090out:
2091 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2092 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2093 return sp;
2094}
2095
2096static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2097 struct kvm_vcpu *vcpu, hpa_t root,
2098 u64 addr)
2099{
2100 iterator->addr = addr;
2101 iterator->shadow_addr = root;
2102 iterator->level = vcpu->arch.mmu->shadow_root_level;
2103
2104 if (iterator->level == PT64_ROOT_4LEVEL &&
2105 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2106 !vcpu->arch.mmu->direct_map)
2107 --iterator->level;
2108
2109 if (iterator->level == PT32E_ROOT_LEVEL) {
2110 /*
2111 * prev_root is currently only used for 64-bit hosts. So only
2112 * the active root_hpa is valid here.
2113 */
2114 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2115
2116 iterator->shadow_addr
2117 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2118 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2119 --iterator->level;
2120 if (!iterator->shadow_addr)
2121 iterator->level = 0;
2122 }
2123}
2124
2125static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2126 struct kvm_vcpu *vcpu, u64 addr)
2127{
2128 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2129 addr);
2130}
2131
2132static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2133{
2134 if (iterator->level < PG_LEVEL_4K)
2135 return false;
2136
2137 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2138 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2139 return true;
2140}
2141
2142static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2143 u64 spte)
2144{
2145 if (is_last_spte(spte, iterator->level)) {
2146 iterator->level = 0;
2147 return;
2148 }
2149
2150 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2151 --iterator->level;
2152}
2153
2154static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2155{
2156 __shadow_walk_next(iterator, *iterator->sptep);
2157}
2158
2159static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2160 struct kvm_mmu_page *sp)
2161{
2162 u64 spte;
2163
2164 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2165
2166 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2167
2168 mmu_spte_set(sptep, spte);
2169
2170 mmu_page_add_parent_pte(vcpu, sp, sptep);
2171
2172 if (sp->unsync_children || sp->unsync)
2173 mark_unsync(sptep);
2174}
2175
2176static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2177 unsigned direct_access)
2178{
2179 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2180 struct kvm_mmu_page *child;
2181
2182 /*
2183 * For the direct sp, if the guest pte's dirty bit
2184 * changed form clean to dirty, it will corrupt the
2185 * sp's access: allow writable in the read-only sp,
2186 * so we should update the spte at this point to get
2187 * a new sp with the correct access.
2188 */
2189 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2190 if (child->role.access == direct_access)
2191 return;
2192
2193 drop_parent_pte(child, sptep);
2194 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2195 }
2196}
2197
2198/* Returns the number of zapped non-leaf child shadow pages. */
2199static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2200 u64 *spte, struct list_head *invalid_list)
2201{
2202 u64 pte;
2203 struct kvm_mmu_page *child;
2204
2205 pte = *spte;
2206 if (is_shadow_present_pte(pte)) {
2207 if (is_last_spte(pte, sp->role.level)) {
2208 drop_spte(kvm, spte);
2209 if (is_large_pte(pte))
2210 --kvm->stat.lpages;
2211 } else {
2212 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2213 drop_parent_pte(child, spte);
2214
2215 /*
2216 * Recursively zap nested TDP SPs, parentless SPs are
2217 * unlikely to be used again in the near future. This
2218 * avoids retaining a large number of stale nested SPs.
2219 */
2220 if (tdp_enabled && invalid_list &&
2221 child->role.guest_mode && !child->parent_ptes.val)
2222 return kvm_mmu_prepare_zap_page(kvm, child,
2223 invalid_list);
2224 }
2225 } else if (is_mmio_spte(pte)) {
2226 mmu_spte_clear_no_track(spte);
2227 }
2228 return 0;
2229}
2230
2231static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2232 struct kvm_mmu_page *sp,
2233 struct list_head *invalid_list)
2234{
2235 int zapped = 0;
2236 unsigned i;
2237
2238 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2239 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2240
2241 return zapped;
2242}
2243
2244static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2245{
2246 u64 *sptep;
2247 struct rmap_iterator iter;
2248
2249 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2250 drop_parent_pte(sp, sptep);
2251}
2252
2253static int mmu_zap_unsync_children(struct kvm *kvm,
2254 struct kvm_mmu_page *parent,
2255 struct list_head *invalid_list)
2256{
2257 int i, zapped = 0;
2258 struct mmu_page_path parents;
2259 struct kvm_mmu_pages pages;
2260
2261 if (parent->role.level == PG_LEVEL_4K)
2262 return 0;
2263
2264 while (mmu_unsync_walk(parent, &pages)) {
2265 struct kvm_mmu_page *sp;
2266
2267 for_each_sp(pages, sp, parents, i) {
2268 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2269 mmu_pages_clear_parents(&parents);
2270 zapped++;
2271 }
2272 }
2273
2274 return zapped;
2275}
2276
2277static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2278 struct kvm_mmu_page *sp,
2279 struct list_head *invalid_list,
2280 int *nr_zapped)
2281{
2282 bool list_unstable;
2283
2284 trace_kvm_mmu_prepare_zap_page(sp);
2285 ++kvm->stat.mmu_shadow_zapped;
2286 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2287 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2288 kvm_mmu_unlink_parents(kvm, sp);
2289
2290 /* Zapping children means active_mmu_pages has become unstable. */
2291 list_unstable = *nr_zapped;
2292
2293 if (!sp->role.invalid && !sp->role.direct)
2294 unaccount_shadowed(kvm, sp);
2295
2296 if (sp->unsync)
2297 kvm_unlink_unsync_page(kvm, sp);
2298 if (!sp->root_count) {
2299 /* Count self */
2300 (*nr_zapped)++;
2301
2302 /*
2303 * Already invalid pages (previously active roots) are not on
2304 * the active page list. See list_del() in the "else" case of
2305 * !sp->root_count.
2306 */
2307 if (sp->role.invalid)
2308 list_add(&sp->link, invalid_list);
2309 else
2310 list_move(&sp->link, invalid_list);
2311 kvm_mod_used_mmu_pages(kvm, -1);
2312 } else {
2313 /*
2314 * Remove the active root from the active page list, the root
2315 * will be explicitly freed when the root_count hits zero.
2316 */
2317 list_del(&sp->link);
2318
2319 /*
2320 * Obsolete pages cannot be used on any vCPUs, see the comment
2321 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2322 * treats invalid shadow pages as being obsolete.
2323 */
2324 if (!is_obsolete_sp(kvm, sp))
2325 kvm_reload_remote_mmus(kvm);
2326 }
2327
2328 if (sp->lpage_disallowed)
2329 unaccount_huge_nx_page(kvm, sp);
2330
2331 sp->role.invalid = 1;
2332 return list_unstable;
2333}
2334
2335static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2336 struct list_head *invalid_list)
2337{
2338 int nr_zapped;
2339
2340 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2341 return nr_zapped;
2342}
2343
2344static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2345 struct list_head *invalid_list)
2346{
2347 struct kvm_mmu_page *sp, *nsp;
2348
2349 if (list_empty(invalid_list))
2350 return;
2351
2352 /*
2353 * We need to make sure everyone sees our modifications to
2354 * the page tables and see changes to vcpu->mode here. The barrier
2355 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2356 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2357 *
2358 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2359 * guest mode and/or lockless shadow page table walks.
2360 */
2361 kvm_flush_remote_tlbs(kvm);
2362
2363 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364 WARN_ON(!sp->role.invalid || sp->root_count);
2365 kvm_mmu_free_page(sp);
2366 }
2367}
2368
2369static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2370 unsigned long nr_to_zap)
2371{
2372 unsigned long total_zapped = 0;
2373 struct kvm_mmu_page *sp, *tmp;
2374 LIST_HEAD(invalid_list);
2375 bool unstable;
2376 int nr_zapped;
2377
2378 if (list_empty(&kvm->arch.active_mmu_pages))
2379 return 0;
2380
2381restart:
2382 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2383 /*
2384 * Don't zap active root pages, the page itself can't be freed
2385 * and zapping it will just force vCPUs to realloc and reload.
2386 */
2387 if (sp->root_count)
2388 continue;
2389
2390 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2391 &nr_zapped);
2392 total_zapped += nr_zapped;
2393 if (total_zapped >= nr_to_zap)
2394 break;
2395
2396 if (unstable)
2397 goto restart;
2398 }
2399
2400 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2401
2402 kvm->stat.mmu_recycled += total_zapped;
2403 return total_zapped;
2404}
2405
2406static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2407{
2408 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2409 return kvm->arch.n_max_mmu_pages -
2410 kvm->arch.n_used_mmu_pages;
2411
2412 return 0;
2413}
2414
2415static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2416{
2417 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2418
2419 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2420 return 0;
2421
2422 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2423
2424 /*
2425 * Note, this check is intentionally soft, it only guarantees that one
2426 * page is available, while the caller may end up allocating as many as
2427 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2428 * exceeding the (arbitrary by default) limit will not harm the host,
2429 * being too agressive may unnecessarily kill the guest, and getting an
2430 * exact count is far more trouble than it's worth, especially in the
2431 * page fault paths.
2432 */
2433 if (!kvm_mmu_available_pages(vcpu->kvm))
2434 return -ENOSPC;
2435 return 0;
2436}
2437
2438/*
2439 * Changing the number of mmu pages allocated to the vm
2440 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2441 */
2442void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2443{
2444 write_lock(&kvm->mmu_lock);
2445
2446 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2447 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2448 goal_nr_mmu_pages);
2449
2450 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2451 }
2452
2453 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2454
2455 write_unlock(&kvm->mmu_lock);
2456}
2457
2458int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2459{
2460 struct kvm_mmu_page *sp;
2461 LIST_HEAD(invalid_list);
2462 int r;
2463
2464 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2465 r = 0;
2466 write_lock(&kvm->mmu_lock);
2467 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2468 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2469 sp->role.word);
2470 r = 1;
2471 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2472 }
2473 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2474 write_unlock(&kvm->mmu_lock);
2475
2476 return r;
2477}
2478
2479static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2480{
2481 gpa_t gpa;
2482 int r;
2483
2484 if (vcpu->arch.mmu->direct_map)
2485 return 0;
2486
2487 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2488
2489 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2490
2491 return r;
2492}
2493
2494static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2495{
2496 trace_kvm_mmu_unsync_page(sp);
2497 ++vcpu->kvm->stat.mmu_unsync;
2498 sp->unsync = 1;
2499
2500 kvm_mmu_mark_parents_unsync(sp);
2501}
2502
2503bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2504 bool can_unsync)
2505{
2506 struct kvm_mmu_page *sp;
2507
2508 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2509 return true;
2510
2511 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2512 if (!can_unsync)
2513 return true;
2514
2515 if (sp->unsync)
2516 continue;
2517
2518 WARN_ON(sp->role.level != PG_LEVEL_4K);
2519 kvm_unsync_page(vcpu, sp);
2520 }
2521
2522 /*
2523 * We need to ensure that the marking of unsync pages is visible
2524 * before the SPTE is updated to allow writes because
2525 * kvm_mmu_sync_roots() checks the unsync flags without holding
2526 * the MMU lock and so can race with this. If the SPTE was updated
2527 * before the page had been marked as unsync-ed, something like the
2528 * following could happen:
2529 *
2530 * CPU 1 CPU 2
2531 * ---------------------------------------------------------------------
2532 * 1.2 Host updates SPTE
2533 * to be writable
2534 * 2.1 Guest writes a GPTE for GVA X.
2535 * (GPTE being in the guest page table shadowed
2536 * by the SP from CPU 1.)
2537 * This reads SPTE during the page table walk.
2538 * Since SPTE.W is read as 1, there is no
2539 * fault.
2540 *
2541 * 2.2 Guest issues TLB flush.
2542 * That causes a VM Exit.
2543 *
2544 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2545 * Since it is false, so it just returns.
2546 *
2547 * 2.4 Guest accesses GVA X.
2548 * Since the mapping in the SP was not updated,
2549 * so the old mapping for GVA X incorrectly
2550 * gets used.
2551 * 1.1 Host marks SP
2552 * as unsync
2553 * (sp->unsync = true)
2554 *
2555 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2556 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2557 * pairs with this write barrier.
2558 */
2559 smp_wmb();
2560
2561 return false;
2562}
2563
2564static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2565 unsigned int pte_access, int level,
2566 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2567 bool can_unsync, bool host_writable)
2568{
2569 u64 spte;
2570 struct kvm_mmu_page *sp;
2571 int ret;
2572
2573 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2574 return 0;
2575
2576 sp = sptep_to_sp(sptep);
2577
2578 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2579 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2580
2581 if (spte & PT_WRITABLE_MASK)
2582 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2583
2584 if (*sptep == spte)
2585 ret |= SET_SPTE_SPURIOUS;
2586 else if (mmu_spte_update(sptep, spte))
2587 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2588 return ret;
2589}
2590
2591static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2592 unsigned int pte_access, bool write_fault, int level,
2593 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2594 bool host_writable)
2595{
2596 int was_rmapped = 0;
2597 int rmap_count;
2598 int set_spte_ret;
2599 int ret = RET_PF_FIXED;
2600 bool flush = false;
2601
2602 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2603 *sptep, write_fault, gfn);
2604
2605 if (is_shadow_present_pte(*sptep)) {
2606 /*
2607 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2608 * the parent of the now unreachable PTE.
2609 */
2610 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2611 struct kvm_mmu_page *child;
2612 u64 pte = *sptep;
2613
2614 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2615 drop_parent_pte(child, sptep);
2616 flush = true;
2617 } else if (pfn != spte_to_pfn(*sptep)) {
2618 pgprintk("hfn old %llx new %llx\n",
2619 spte_to_pfn(*sptep), pfn);
2620 drop_spte(vcpu->kvm, sptep);
2621 flush = true;
2622 } else
2623 was_rmapped = 1;
2624 }
2625
2626 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2627 speculative, true, host_writable);
2628 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2629 if (write_fault)
2630 ret = RET_PF_EMULATE;
2631 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2632 }
2633
2634 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2635 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2636 KVM_PAGES_PER_HPAGE(level));
2637
2638 if (unlikely(is_mmio_spte(*sptep)))
2639 ret = RET_PF_EMULATE;
2640
2641 /*
2642 * The fault is fully spurious if and only if the new SPTE and old SPTE
2643 * are identical, and emulation is not required.
2644 */
2645 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2646 WARN_ON_ONCE(!was_rmapped);
2647 return RET_PF_SPURIOUS;
2648 }
2649
2650 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2651 trace_kvm_mmu_set_spte(level, gfn, sptep);
2652 if (!was_rmapped && is_large_pte(*sptep))
2653 ++vcpu->kvm->stat.lpages;
2654
2655 if (is_shadow_present_pte(*sptep)) {
2656 if (!was_rmapped) {
2657 rmap_count = rmap_add(vcpu, sptep, gfn);
2658 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2659 rmap_recycle(vcpu, sptep, gfn);
2660 }
2661 }
2662
2663 return ret;
2664}
2665
2666static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2667 bool no_dirty_log)
2668{
2669 struct kvm_memory_slot *slot;
2670
2671 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2672 if (!slot)
2673 return KVM_PFN_ERR_FAULT;
2674
2675 return gfn_to_pfn_memslot_atomic(slot, gfn);
2676}
2677
2678static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2679 struct kvm_mmu_page *sp,
2680 u64 *start, u64 *end)
2681{
2682 struct page *pages[PTE_PREFETCH_NUM];
2683 struct kvm_memory_slot *slot;
2684 unsigned int access = sp->role.access;
2685 int i, ret;
2686 gfn_t gfn;
2687
2688 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2689 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2690 if (!slot)
2691 return -1;
2692
2693 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2694 if (ret <= 0)
2695 return -1;
2696
2697 for (i = 0; i < ret; i++, gfn++, start++) {
2698 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2699 page_to_pfn(pages[i]), true, true);
2700 put_page(pages[i]);
2701 }
2702
2703 return 0;
2704}
2705
2706static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2707 struct kvm_mmu_page *sp, u64 *sptep)
2708{
2709 u64 *spte, *start = NULL;
2710 int i;
2711
2712 WARN_ON(!sp->role.direct);
2713
2714 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2715 spte = sp->spt + i;
2716
2717 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2718 if (is_shadow_present_pte(*spte) || spte == sptep) {
2719 if (!start)
2720 continue;
2721 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2722 break;
2723 start = NULL;
2724 } else if (!start)
2725 start = spte;
2726 }
2727}
2728
2729static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2730{
2731 struct kvm_mmu_page *sp;
2732
2733 sp = sptep_to_sp(sptep);
2734
2735 /*
2736 * Without accessed bits, there's no way to distinguish between
2737 * actually accessed translations and prefetched, so disable pte
2738 * prefetch if accessed bits aren't available.
2739 */
2740 if (sp_ad_disabled(sp))
2741 return;
2742
2743 if (sp->role.level > PG_LEVEL_4K)
2744 return;
2745
2746 /*
2747 * If addresses are being invalidated, skip prefetching to avoid
2748 * accidentally prefetching those addresses.
2749 */
2750 if (unlikely(vcpu->kvm->mmu_notifier_count))
2751 return;
2752
2753 __direct_pte_prefetch(vcpu, sp, sptep);
2754}
2755
2756static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2757 struct kvm_memory_slot *slot)
2758{
2759 unsigned long hva;
2760 pte_t *pte;
2761 int level;
2762
2763 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2764 return PG_LEVEL_4K;
2765
2766 /*
2767 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2768 * is not solely for performance, it's also necessary to avoid the
2769 * "writable" check in __gfn_to_hva_many(), which will always fail on
2770 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2771 * page fault steps have already verified the guest isn't writing a
2772 * read-only memslot.
2773 */
2774 hva = __gfn_to_hva_memslot(slot, gfn);
2775
2776 pte = lookup_address_in_mm(kvm->mm, hva, &level);
2777 if (unlikely(!pte))
2778 return PG_LEVEL_4K;
2779
2780 return level;
2781}
2782
2783int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
2784 gfn_t gfn, kvm_pfn_t pfn, int max_level)
2785{
2786 struct kvm_lpage_info *linfo;
2787
2788 max_level = min(max_level, max_huge_page_level);
2789 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2790 linfo = lpage_info_slot(gfn, slot, max_level);
2791 if (!linfo->disallow_lpage)
2792 break;
2793 }
2794
2795 if (max_level == PG_LEVEL_4K)
2796 return PG_LEVEL_4K;
2797
2798 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2799}
2800
2801int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2802 int max_level, kvm_pfn_t *pfnp,
2803 bool huge_page_disallowed, int *req_level)
2804{
2805 struct kvm_memory_slot *slot;
2806 kvm_pfn_t pfn = *pfnp;
2807 kvm_pfn_t mask;
2808 int level;
2809
2810 *req_level = PG_LEVEL_4K;
2811
2812 if (unlikely(max_level == PG_LEVEL_4K))
2813 return PG_LEVEL_4K;
2814
2815 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2816 return PG_LEVEL_4K;
2817
2818 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2819 if (!slot)
2820 return PG_LEVEL_4K;
2821
2822 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2823 if (level == PG_LEVEL_4K)
2824 return level;
2825
2826 *req_level = level = min(level, max_level);
2827
2828 /*
2829 * Enforce the iTLB multihit workaround after capturing the requested
2830 * level, which will be used to do precise, accurate accounting.
2831 */
2832 if (huge_page_disallowed)
2833 return PG_LEVEL_4K;
2834
2835 /*
2836 * mmu_notifier_retry() was successful and mmu_lock is held, so
2837 * the pmd can't be split from under us.
2838 */
2839 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2840 VM_BUG_ON((gfn & mask) != (pfn & mask));
2841 *pfnp = pfn & ~mask;
2842
2843 return level;
2844}
2845
2846void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2847 kvm_pfn_t *pfnp, int *goal_levelp)
2848{
2849 int level = *goal_levelp;
2850
2851 if (cur_level == level && level > PG_LEVEL_4K &&
2852 is_shadow_present_pte(spte) &&
2853 !is_large_pte(spte)) {
2854 /*
2855 * A small SPTE exists for this pfn, but FNAME(fetch)
2856 * and __direct_map would like to create a large PTE
2857 * instead: just force them to go down another level,
2858 * patching back for them into pfn the next 9 bits of
2859 * the address.
2860 */
2861 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2862 KVM_PAGES_PER_HPAGE(level - 1);
2863 *pfnp |= gfn & page_mask;
2864 (*goal_levelp)--;
2865 }
2866}
2867
2868static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2869 int map_writable, int max_level, kvm_pfn_t pfn,
2870 bool prefault, bool is_tdp)
2871{
2872 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2873 bool write = error_code & PFERR_WRITE_MASK;
2874 bool exec = error_code & PFERR_FETCH_MASK;
2875 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2876 struct kvm_shadow_walk_iterator it;
2877 struct kvm_mmu_page *sp;
2878 int level, req_level, ret;
2879 gfn_t gfn = gpa >> PAGE_SHIFT;
2880 gfn_t base_gfn = gfn;
2881
2882 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2883 return RET_PF_RETRY;
2884
2885 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2886 huge_page_disallowed, &req_level);
2887
2888 trace_kvm_mmu_spte_requested(gpa, level, pfn);
2889 for_each_shadow_entry(vcpu, gpa, it) {
2890 /*
2891 * We cannot overwrite existing page tables with an NX
2892 * large page, as the leaf could be executable.
2893 */
2894 if (nx_huge_page_workaround_enabled)
2895 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2896 &pfn, &level);
2897
2898 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2899 if (it.level == level)
2900 break;
2901
2902 drop_large_spte(vcpu, it.sptep);
2903 if (!is_shadow_present_pte(*it.sptep)) {
2904 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2905 it.level - 1, true, ACC_ALL);
2906
2907 link_shadow_page(vcpu, it.sptep, sp);
2908 if (is_tdp && huge_page_disallowed &&
2909 req_level >= it.level)
2910 account_huge_nx_page(vcpu->kvm, sp);
2911 }
2912 }
2913
2914 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2915 write, level, base_gfn, pfn, prefault,
2916 map_writable);
2917 if (ret == RET_PF_SPURIOUS)
2918 return ret;
2919
2920 direct_pte_prefetch(vcpu, it.sptep);
2921 ++vcpu->stat.pf_fixed;
2922 return ret;
2923}
2924
2925static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2926{
2927 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2928}
2929
2930static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2931{
2932 /*
2933 * Do not cache the mmio info caused by writing the readonly gfn
2934 * into the spte otherwise read access on readonly gfn also can
2935 * caused mmio page fault and treat it as mmio access.
2936 */
2937 if (pfn == KVM_PFN_ERR_RO_FAULT)
2938 return RET_PF_EMULATE;
2939
2940 if (pfn == KVM_PFN_ERR_HWPOISON) {
2941 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2942 return RET_PF_RETRY;
2943 }
2944
2945 return -EFAULT;
2946}
2947
2948static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2949 kvm_pfn_t pfn, unsigned int access,
2950 int *ret_val)
2951{
2952 /* The pfn is invalid, report the error! */
2953 if (unlikely(is_error_pfn(pfn))) {
2954 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2955 return true;
2956 }
2957
2958 if (unlikely(is_noslot_pfn(pfn)))
2959 vcpu_cache_mmio_info(vcpu, gva, gfn,
2960 access & shadow_mmio_access_mask);
2961
2962 return false;
2963}
2964
2965static bool page_fault_can_be_fast(u32 error_code)
2966{
2967 /*
2968 * Do not fix the mmio spte with invalid generation number which
2969 * need to be updated by slow page fault path.
2970 */
2971 if (unlikely(error_code & PFERR_RSVD_MASK))
2972 return false;
2973
2974 /* See if the page fault is due to an NX violation */
2975 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2976 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2977 return false;
2978
2979 /*
2980 * #PF can be fast if:
2981 * 1. The shadow page table entry is not present, which could mean that
2982 * the fault is potentially caused by access tracking (if enabled).
2983 * 2. The shadow page table entry is present and the fault
2984 * is caused by write-protect, that means we just need change the W
2985 * bit of the spte which can be done out of mmu-lock.
2986 *
2987 * However, if access tracking is disabled we know that a non-present
2988 * page must be a genuine page fault where we have to create a new SPTE.
2989 * So, if access tracking is disabled, we return true only for write
2990 * accesses to a present page.
2991 */
2992
2993 return shadow_acc_track_mask != 0 ||
2994 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2995 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2996}
2997
2998/*
2999 * Returns true if the SPTE was fixed successfully. Otherwise,
3000 * someone else modified the SPTE from its original value.
3001 */
3002static bool
3003fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3004 u64 *sptep, u64 old_spte, u64 new_spte)
3005{
3006 gfn_t gfn;
3007
3008 WARN_ON(!sp->role.direct);
3009
3010 /*
3011 * Theoretically we could also set dirty bit (and flush TLB) here in
3012 * order to eliminate unnecessary PML logging. See comments in
3013 * set_spte. But fast_page_fault is very unlikely to happen with PML
3014 * enabled, so we do not do this. This might result in the same GPA
3015 * to be logged in PML buffer again when the write really happens, and
3016 * eventually to be called by mark_page_dirty twice. But it's also no
3017 * harm. This also avoids the TLB flush needed after setting dirty bit
3018 * so non-PML cases won't be impacted.
3019 *
3020 * Compare with set_spte where instead shadow_dirty_mask is set.
3021 */
3022 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3023 return false;
3024
3025 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3026 /*
3027 * The gfn of direct spte is stable since it is
3028 * calculated by sp->gfn.
3029 */
3030 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3031 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3032 }
3033
3034 return true;
3035}
3036
3037static bool is_access_allowed(u32 fault_err_code, u64 spte)
3038{
3039 if (fault_err_code & PFERR_FETCH_MASK)
3040 return is_executable_pte(spte);
3041
3042 if (fault_err_code & PFERR_WRITE_MASK)
3043 return is_writable_pte(spte);
3044
3045 /* Fault was on Read access */
3046 return spte & PT_PRESENT_MASK;
3047}
3048
3049/*
3050 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3051 */
3052static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3053 u32 error_code)
3054{
3055 struct kvm_shadow_walk_iterator iterator;
3056 struct kvm_mmu_page *sp;
3057 int ret = RET_PF_INVALID;
3058 u64 spte = 0ull;
3059 uint retry_count = 0;
3060
3061 if (!page_fault_can_be_fast(error_code))
3062 return ret;
3063
3064 walk_shadow_page_lockless_begin(vcpu);
3065
3066 do {
3067 u64 new_spte;
3068
3069 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3070 if (!is_shadow_present_pte(spte))
3071 break;
3072
3073 sp = sptep_to_sp(iterator.sptep);
3074 if (!is_last_spte(spte, sp->role.level))
3075 break;
3076
3077 /*
3078 * Check whether the memory access that caused the fault would
3079 * still cause it if it were to be performed right now. If not,
3080 * then this is a spurious fault caused by TLB lazily flushed,
3081 * or some other CPU has already fixed the PTE after the
3082 * current CPU took the fault.
3083 *
3084 * Need not check the access of upper level table entries since
3085 * they are always ACC_ALL.
3086 */
3087 if (is_access_allowed(error_code, spte)) {
3088 ret = RET_PF_SPURIOUS;
3089 break;
3090 }
3091
3092 new_spte = spte;
3093
3094 if (is_access_track_spte(spte))
3095 new_spte = restore_acc_track_spte(new_spte);
3096
3097 /*
3098 * Currently, to simplify the code, write-protection can
3099 * be removed in the fast path only if the SPTE was
3100 * write-protected for dirty-logging or access tracking.
3101 */
3102 if ((error_code & PFERR_WRITE_MASK) &&
3103 spte_can_locklessly_be_made_writable(spte)) {
3104 new_spte |= PT_WRITABLE_MASK;
3105
3106 /*
3107 * Do not fix write-permission on the large spte. Since
3108 * we only dirty the first page into the dirty-bitmap in
3109 * fast_pf_fix_direct_spte(), other pages are missed
3110 * if its slot has dirty logging enabled.
3111 *
3112 * Instead, we let the slow page fault path create a
3113 * normal spte to fix the access.
3114 *
3115 * See the comments in kvm_arch_commit_memory_region().
3116 */
3117 if (sp->role.level > PG_LEVEL_4K)
3118 break;
3119 }
3120
3121 /* Verify that the fault can be handled in the fast path */
3122 if (new_spte == spte ||
3123 !is_access_allowed(error_code, new_spte))
3124 break;
3125
3126 /*
3127 * Currently, fast page fault only works for direct mapping
3128 * since the gfn is not stable for indirect shadow page. See
3129 * Documentation/virt/kvm/locking.rst to get more detail.
3130 */
3131 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3132 new_spte)) {
3133 ret = RET_PF_FIXED;
3134 break;
3135 }
3136
3137 if (++retry_count > 4) {
3138 printk_once(KERN_WARNING
3139 "kvm: Fast #PF retrying more than 4 times.\n");
3140 break;
3141 }
3142
3143 } while (true);
3144
3145 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3146 spte, ret);
3147 walk_shadow_page_lockless_end(vcpu);
3148
3149 return ret;
3150}
3151
3152static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3153 struct list_head *invalid_list)
3154{
3155 struct kvm_mmu_page *sp;
3156
3157 if (!VALID_PAGE(*root_hpa))
3158 return;
3159
3160 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3161
3162 if (kvm_mmu_put_root(kvm, sp)) {
3163 if (is_tdp_mmu_page(sp))
3164 kvm_tdp_mmu_free_root(kvm, sp);
3165 else if (sp->role.invalid)
3166 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3167 }
3168
3169 *root_hpa = INVALID_PAGE;
3170}
3171
3172/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3173void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3174 ulong roots_to_free)
3175{
3176 struct kvm *kvm = vcpu->kvm;
3177 int i;
3178 LIST_HEAD(invalid_list);
3179 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3180
3181 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3182
3183 /* Before acquiring the MMU lock, see if we need to do any real work. */
3184 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3185 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3186 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3187 VALID_PAGE(mmu->prev_roots[i].hpa))
3188 break;
3189
3190 if (i == KVM_MMU_NUM_PREV_ROOTS)
3191 return;
3192 }
3193
3194 write_lock(&kvm->mmu_lock);
3195
3196 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3197 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3198 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3199 &invalid_list);
3200
3201 if (free_active_root) {
3202 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3203 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3204 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3205 } else if (mmu->pae_root) {
3206 for (i = 0; i < 4; ++i)
3207 if (mmu->pae_root[i] != 0)
3208 mmu_free_root_page(kvm,
3209 &mmu->pae_root[i],
3210 &invalid_list);
3211 }
3212 mmu->root_hpa = INVALID_PAGE;
3213 mmu->root_pgd = 0;
3214 }
3215
3216 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3217 write_unlock(&kvm->mmu_lock);
3218}
3219EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3220
3221static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3222{
3223 int ret = 0;
3224
3225 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3226 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3227 ret = 1;
3228 }
3229
3230 return ret;
3231}
3232
3233static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3234 u8 level, bool direct)
3235{
3236 struct kvm_mmu_page *sp;
3237
3238 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3239 ++sp->root_count;
3240
3241 return __pa(sp->spt);
3242}
3243
3244static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3245{
3246 struct kvm_mmu *mmu = vcpu->arch.mmu;
3247 u8 shadow_root_level = mmu->shadow_root_level;
3248 hpa_t root;
3249 unsigned i;
3250
3251 if (is_tdp_mmu_enabled(vcpu->kvm)) {
3252 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3253 mmu->root_hpa = root;
3254 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3255 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3256 mmu->root_hpa = root;
3257 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3258 for (i = 0; i < 4; ++i) {
3259 WARN_ON_ONCE(mmu->pae_root[i] &&
3260 VALID_PAGE(mmu->pae_root[i]));
3261
3262 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3263 i << 30, PT32_ROOT_LEVEL, true);
3264 mmu->pae_root[i] = root | PT_PRESENT_MASK;
3265 }
3266 mmu->root_hpa = __pa(mmu->pae_root);
3267 } else
3268 BUG();
3269
3270 /* root_pgd is ignored for direct MMUs. */
3271 mmu->root_pgd = 0;
3272
3273 return 0;
3274}
3275
3276static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3277{
3278 struct kvm_mmu *mmu = vcpu->arch.mmu;
3279 u64 pdptrs[4], pm_mask;
3280 gfn_t root_gfn, root_pgd;
3281 hpa_t root;
3282 int i;
3283
3284 root_pgd = mmu->get_guest_pgd(vcpu);
3285 root_gfn = root_pgd >> PAGE_SHIFT;
3286
3287 if (mmu_check_root(vcpu, root_gfn))
3288 return 1;
3289
3290 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3291 for (i = 0; i < 4; ++i) {
3292 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3293 if (!(pdptrs[i] & PT_PRESENT_MASK))
3294 continue;
3295
3296 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3297 return 1;
3298 }
3299 }
3300
3301 /*
3302 * Do we shadow a long mode page table? If so we need to
3303 * write-protect the guests page table root.
3304 */
3305 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3306 root = mmu_alloc_root(vcpu, root_gfn, 0,
3307 mmu->shadow_root_level, false);
3308 mmu->root_hpa = root;
3309 goto set_root_pgd;
3310 }
3311
3312 /*
3313 * We shadow a 32 bit page table. This may be a legacy 2-level
3314 * or a PAE 3-level page table. In either case we need to be aware that
3315 * the shadow page table may be a PAE or a long mode page table.
3316 */
3317 pm_mask = PT_PRESENT_MASK;
3318 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3319 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3320
3321 mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
3322 }
3323
3324 for (i = 0; i < 4; ++i) {
3325 WARN_ON_ONCE(mmu->pae_root[i] && VALID_PAGE(mmu->pae_root[i]));
3326
3327 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3328 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3329 mmu->pae_root[i] = 0;
3330 continue;
3331 }
3332 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3333 }
3334
3335 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3336 PT32_ROOT_LEVEL, false);
3337 mmu->pae_root[i] = root | pm_mask;
3338 }
3339
3340 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3341 mmu->root_hpa = __pa(mmu->lm_root);
3342 else
3343 mmu->root_hpa = __pa(mmu->pae_root);
3344
3345set_root_pgd:
3346 mmu->root_pgd = root_pgd;
3347
3348 return 0;
3349}
3350
3351static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3352{
3353 struct kvm_mmu *mmu = vcpu->arch.mmu;
3354 u64 *lm_root, *pae_root;
3355
3356 /*
3357 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3358 * tables are allocated and initialized at root creation as there is no
3359 * equivalent level in the guest's NPT to shadow. Allocate the tables
3360 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3361 */
3362 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3363 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3364 return 0;
3365
3366 /*
3367 * This mess only works with 4-level paging and needs to be updated to
3368 * work with 5-level paging.
3369 */
3370 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3371 return -EIO;
3372
3373 if (mmu->pae_root && mmu->lm_root)
3374 return 0;
3375
3376 /*
3377 * The special roots should always be allocated in concert. Yell and
3378 * bail if KVM ends up in a state where only one of the roots is valid.
3379 */
3380 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
3381 return -EIO;
3382
3383 /* Unlike 32-bit NPT, the PDP table doesn't need to be in low mem. */
3384 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3385 if (!pae_root)
3386 return -ENOMEM;
3387
3388 lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3389 if (!lm_root) {
3390 free_page((unsigned long)pae_root);
3391 return -ENOMEM;
3392 }
3393
3394 mmu->pae_root = pae_root;
3395 mmu->lm_root = lm_root;
3396
3397 return 0;
3398}
3399
3400void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3401{
3402 int i;
3403 struct kvm_mmu_page *sp;
3404
3405 if (vcpu->arch.mmu->direct_map)
3406 return;
3407
3408 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3409 return;
3410
3411 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3412
3413 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3414 hpa_t root = vcpu->arch.mmu->root_hpa;
3415 sp = to_shadow_page(root);
3416
3417 /*
3418 * Even if another CPU was marking the SP as unsync-ed
3419 * simultaneously, any guest page table changes are not
3420 * guaranteed to be visible anyway until this VCPU issues a TLB
3421 * flush strictly after those changes are made. We only need to
3422 * ensure that the other CPU sets these flags before any actual
3423 * changes to the page tables are made. The comments in
3424 * mmu_need_write_protect() describe what could go wrong if this
3425 * requirement isn't satisfied.
3426 */
3427 if (!smp_load_acquire(&sp->unsync) &&
3428 !smp_load_acquire(&sp->unsync_children))
3429 return;
3430
3431 write_lock(&vcpu->kvm->mmu_lock);
3432 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3433
3434 mmu_sync_children(vcpu, sp);
3435
3436 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3437 write_unlock(&vcpu->kvm->mmu_lock);
3438 return;
3439 }
3440
3441 write_lock(&vcpu->kvm->mmu_lock);
3442 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3443
3444 for (i = 0; i < 4; ++i) {
3445 hpa_t root = vcpu->arch.mmu->pae_root[i];
3446
3447 if (root && VALID_PAGE(root)) {
3448 root &= PT64_BASE_ADDR_MASK;
3449 sp = to_shadow_page(root);
3450 mmu_sync_children(vcpu, sp);
3451 }
3452 }
3453
3454 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3455 write_unlock(&vcpu->kvm->mmu_lock);
3456}
3457
3458static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3459 u32 access, struct x86_exception *exception)
3460{
3461 if (exception)
3462 exception->error_code = 0;
3463 return vaddr;
3464}
3465
3466static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3467 u32 access,
3468 struct x86_exception *exception)
3469{
3470 if (exception)
3471 exception->error_code = 0;
3472 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3473}
3474
3475static bool
3476__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3477{
3478 int bit7 = (pte >> 7) & 1;
3479
3480 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3481}
3482
3483static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3484{
3485 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3486}
3487
3488static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3489{
3490 /*
3491 * A nested guest cannot use the MMIO cache if it is using nested
3492 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3493 */
3494 if (mmu_is_nested(vcpu))
3495 return false;
3496
3497 if (direct)
3498 return vcpu_match_mmio_gpa(vcpu, addr);
3499
3500 return vcpu_match_mmio_gva(vcpu, addr);
3501}
3502
3503/*
3504 * Return the level of the lowest level SPTE added to sptes.
3505 * That SPTE may be non-present.
3506 */
3507static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3508{
3509 struct kvm_shadow_walk_iterator iterator;
3510 int leaf = -1;
3511 u64 spte;
3512
3513 walk_shadow_page_lockless_begin(vcpu);
3514
3515 for (shadow_walk_init(&iterator, vcpu, addr),
3516 *root_level = iterator.level;
3517 shadow_walk_okay(&iterator);
3518 __shadow_walk_next(&iterator, spte)) {
3519 leaf = iterator.level;
3520 spte = mmu_spte_get_lockless(iterator.sptep);
3521
3522 sptes[leaf] = spte;
3523
3524 if (!is_shadow_present_pte(spte))
3525 break;
3526 }
3527
3528 walk_shadow_page_lockless_end(vcpu);
3529
3530 return leaf;
3531}
3532
3533/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3534static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3535{
3536 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3537 struct rsvd_bits_validate *rsvd_check;
3538 int root, leaf, level;
3539 bool reserved = false;
3540
3541 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3542 *sptep = 0ull;
3543 return reserved;
3544 }
3545
3546 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3547 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3548 else
3549 leaf = get_walk(vcpu, addr, sptes, &root);
3550
3551 if (unlikely(leaf < 0)) {
3552 *sptep = 0ull;
3553 return reserved;
3554 }
3555
3556 *sptep = sptes[leaf];
3557
3558 /*
3559 * Skip reserved bits checks on the terminal leaf if it's not a valid
3560 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3561 * design, always have reserved bits set. The purpose of the checks is
3562 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3563 */
3564 if (!is_shadow_present_pte(sptes[leaf]))
3565 leaf++;
3566
3567 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3568
3569 for (level = root; level >= leaf; level--)
3570 /*
3571 * Use a bitwise-OR instead of a logical-OR to aggregate the
3572 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3573 * adding a Jcc in the loop.
3574 */
3575 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3576 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3577
3578 if (reserved) {
3579 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3580 __func__, addr);
3581 for (level = root; level >= leaf; level--)
3582 pr_err("------ spte 0x%llx level %d.\n",
3583 sptes[level], level);
3584 }
3585
3586 return reserved;
3587}
3588
3589static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3590{
3591 u64 spte;
3592 bool reserved;
3593
3594 if (mmio_info_in_cache(vcpu, addr, direct))
3595 return RET_PF_EMULATE;
3596
3597 reserved = get_mmio_spte(vcpu, addr, &spte);
3598 if (WARN_ON(reserved))
3599 return -EINVAL;
3600
3601 if (is_mmio_spte(spte)) {
3602 gfn_t gfn = get_mmio_spte_gfn(spte);
3603 unsigned int access = get_mmio_spte_access(spte);
3604
3605 if (!check_mmio_spte(vcpu, spte))
3606 return RET_PF_INVALID;
3607
3608 if (direct)
3609 addr = 0;
3610
3611 trace_handle_mmio_page_fault(addr, gfn, access);
3612 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3613 return RET_PF_EMULATE;
3614 }
3615
3616 /*
3617 * If the page table is zapped by other cpus, let CPU fault again on
3618 * the address.
3619 */
3620 return RET_PF_RETRY;
3621}
3622
3623static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3624 u32 error_code, gfn_t gfn)
3625{
3626 if (unlikely(error_code & PFERR_RSVD_MASK))
3627 return false;
3628
3629 if (!(error_code & PFERR_PRESENT_MASK) ||
3630 !(error_code & PFERR_WRITE_MASK))
3631 return false;
3632
3633 /*
3634 * guest is writing the page which is write tracked which can
3635 * not be fixed by page fault handler.
3636 */
3637 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3638 return true;
3639
3640 return false;
3641}
3642
3643static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3644{
3645 struct kvm_shadow_walk_iterator iterator;
3646 u64 spte;
3647
3648 walk_shadow_page_lockless_begin(vcpu);
3649 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3650 clear_sp_write_flooding_count(iterator.sptep);
3651 if (!is_shadow_present_pte(spte))
3652 break;
3653 }
3654 walk_shadow_page_lockless_end(vcpu);
3655}
3656
3657static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3658 gfn_t gfn)
3659{
3660 struct kvm_arch_async_pf arch;
3661
3662 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3663 arch.gfn = gfn;
3664 arch.direct_map = vcpu->arch.mmu->direct_map;
3665 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3666
3667 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3668 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3669}
3670
3671static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3672 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3673 bool write, bool *writable)
3674{
3675 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3676 bool async;
3677
3678 /* Don't expose private memslots to L2. */
3679 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3680 *pfn = KVM_PFN_NOSLOT;
3681 *writable = false;
3682 return false;
3683 }
3684
3685 async = false;
3686 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3687 write, writable, hva);
3688 if (!async)
3689 return false; /* *pfn has correct page already */
3690
3691 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3692 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3693 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3694 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3695 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3696 return true;
3697 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3698 return true;
3699 }
3700
3701 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3702 write, writable, hva);
3703 return false;
3704}
3705
3706static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3707 bool prefault, int max_level, bool is_tdp)
3708{
3709 bool write = error_code & PFERR_WRITE_MASK;
3710 bool map_writable;
3711
3712 gfn_t gfn = gpa >> PAGE_SHIFT;
3713 unsigned long mmu_seq;
3714 kvm_pfn_t pfn;
3715 hva_t hva;
3716 int r;
3717
3718 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3719 return RET_PF_EMULATE;
3720
3721 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3722 r = fast_page_fault(vcpu, gpa, error_code);
3723 if (r != RET_PF_INVALID)
3724 return r;
3725 }
3726
3727 r = mmu_topup_memory_caches(vcpu, false);
3728 if (r)
3729 return r;
3730
3731 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3732 smp_rmb();
3733
3734 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3735 write, &map_writable))
3736 return RET_PF_RETRY;
3737
3738 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3739 return r;
3740
3741 r = RET_PF_RETRY;
3742
3743 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3744 read_lock(&vcpu->kvm->mmu_lock);
3745 else
3746 write_lock(&vcpu->kvm->mmu_lock);
3747
3748 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3749 goto out_unlock;
3750 r = make_mmu_pages_available(vcpu);
3751 if (r)
3752 goto out_unlock;
3753
3754 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3755 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3756 pfn, prefault);
3757 else
3758 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3759 prefault, is_tdp);
3760
3761out_unlock:
3762 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3763 read_unlock(&vcpu->kvm->mmu_lock);
3764 else
3765 write_unlock(&vcpu->kvm->mmu_lock);
3766 kvm_release_pfn_clean(pfn);
3767 return r;
3768}
3769
3770static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3771 u32 error_code, bool prefault)
3772{
3773 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3774
3775 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3776 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3777 PG_LEVEL_2M, false);
3778}
3779
3780int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3781 u64 fault_address, char *insn, int insn_len)
3782{
3783 int r = 1;
3784 u32 flags = vcpu->arch.apf.host_apf_flags;
3785
3786#ifndef CONFIG_X86_64
3787 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3788 if (WARN_ON_ONCE(fault_address >> 32))
3789 return -EFAULT;
3790#endif
3791
3792 vcpu->arch.l1tf_flush_l1d = true;
3793 if (!flags) {
3794 trace_kvm_page_fault(fault_address, error_code);
3795
3796 if (kvm_event_needs_reinjection(vcpu))
3797 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3798 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3799 insn_len);
3800 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3801 vcpu->arch.apf.host_apf_flags = 0;
3802 local_irq_disable();
3803 kvm_async_pf_task_wait_schedule(fault_address);
3804 local_irq_enable();
3805 } else {
3806 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3807 }
3808
3809 return r;
3810}
3811EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3812
3813int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3814 bool prefault)
3815{
3816 int max_level;
3817
3818 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3819 max_level > PG_LEVEL_4K;
3820 max_level--) {
3821 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3822 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3823
3824 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3825 break;
3826 }
3827
3828 return direct_page_fault(vcpu, gpa, error_code, prefault,
3829 max_level, true);
3830}
3831
3832static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3833 struct kvm_mmu *context)
3834{
3835 context->page_fault = nonpaging_page_fault;
3836 context->gva_to_gpa = nonpaging_gva_to_gpa;
3837 context->sync_page = nonpaging_sync_page;
3838 context->invlpg = NULL;
3839 context->root_level = 0;
3840 context->shadow_root_level = PT32E_ROOT_LEVEL;
3841 context->direct_map = true;
3842 context->nx = false;
3843}
3844
3845static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3846 union kvm_mmu_page_role role)
3847{
3848 return (role.direct || pgd == root->pgd) &&
3849 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3850 role.word == to_shadow_page(root->hpa)->role.word;
3851}
3852
3853/*
3854 * Find out if a previously cached root matching the new pgd/role is available.
3855 * The current root is also inserted into the cache.
3856 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3857 * returned.
3858 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3859 * false is returned. This root should now be freed by the caller.
3860 */
3861static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3862 union kvm_mmu_page_role new_role)
3863{
3864 uint i;
3865 struct kvm_mmu_root_info root;
3866 struct kvm_mmu *mmu = vcpu->arch.mmu;
3867
3868 root.pgd = mmu->root_pgd;
3869 root.hpa = mmu->root_hpa;
3870
3871 if (is_root_usable(&root, new_pgd, new_role))
3872 return true;
3873
3874 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3875 swap(root, mmu->prev_roots[i]);
3876
3877 if (is_root_usable(&root, new_pgd, new_role))
3878 break;
3879 }
3880
3881 mmu->root_hpa = root.hpa;
3882 mmu->root_pgd = root.pgd;
3883
3884 return i < KVM_MMU_NUM_PREV_ROOTS;
3885}
3886
3887static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3888 union kvm_mmu_page_role new_role)
3889{
3890 struct kvm_mmu *mmu = vcpu->arch.mmu;
3891
3892 /*
3893 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3894 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3895 * later if necessary.
3896 */
3897 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3898 mmu->root_level >= PT64_ROOT_4LEVEL)
3899 return cached_root_available(vcpu, new_pgd, new_role);
3900
3901 return false;
3902}
3903
3904static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3905 union kvm_mmu_page_role new_role,
3906 bool skip_tlb_flush, bool skip_mmu_sync)
3907{
3908 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3909 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3910 return;
3911 }
3912
3913 /*
3914 * It's possible that the cached previous root page is obsolete because
3915 * of a change in the MMU generation number. However, changing the
3916 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3917 * free the root set here and allocate a new one.
3918 */
3919 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3920
3921 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3922 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3923 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3924 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3925
3926 /*
3927 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3928 * switching to a new CR3, that GVA->GPA mapping may no longer be
3929 * valid. So clear any cached MMIO info even when we don't need to sync
3930 * the shadow page tables.
3931 */
3932 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3933
3934 /*
3935 * If this is a direct root page, it doesn't have a write flooding
3936 * count. Otherwise, clear the write flooding count.
3937 */
3938 if (!new_role.direct)
3939 __clear_sp_write_flooding_count(
3940 to_shadow_page(vcpu->arch.mmu->root_hpa));
3941}
3942
3943void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3944 bool skip_mmu_sync)
3945{
3946 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3947 skip_tlb_flush, skip_mmu_sync);
3948}
3949EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3950
3951static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3952{
3953 return kvm_read_cr3(vcpu);
3954}
3955
3956static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3957 unsigned int access, int *nr_present)
3958{
3959 if (unlikely(is_mmio_spte(*sptep))) {
3960 if (gfn != get_mmio_spte_gfn(*sptep)) {
3961 mmu_spte_clear_no_track(sptep);
3962 return true;
3963 }
3964
3965 (*nr_present)++;
3966 mark_mmio_spte(vcpu, sptep, gfn, access);
3967 return true;
3968 }
3969
3970 return false;
3971}
3972
3973static inline bool is_last_gpte(struct kvm_mmu *mmu,
3974 unsigned level, unsigned gpte)
3975{
3976 /*
3977 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3978 * If it is clear, there are no large pages at this level, so clear
3979 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3980 */
3981 gpte &= level - mmu->last_nonleaf_level;
3982
3983 /*
3984 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3985 * iff level <= PG_LEVEL_4K, which for our purpose means
3986 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3987 */
3988 gpte |= level - PG_LEVEL_4K - 1;
3989
3990 return gpte & PT_PAGE_SIZE_MASK;
3991}
3992
3993#define PTTYPE_EPT 18 /* arbitrary */
3994#define PTTYPE PTTYPE_EPT
3995#include "paging_tmpl.h"
3996#undef PTTYPE
3997
3998#define PTTYPE 64
3999#include "paging_tmpl.h"
4000#undef PTTYPE
4001
4002#define PTTYPE 32
4003#include "paging_tmpl.h"
4004#undef PTTYPE
4005
4006static void
4007__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4008 struct rsvd_bits_validate *rsvd_check,
4009 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4010 bool pse, bool amd)
4011{
4012 u64 gbpages_bit_rsvd = 0;
4013 u64 nonleaf_bit8_rsvd = 0;
4014 u64 high_bits_rsvd;
4015
4016 rsvd_check->bad_mt_xwr = 0;
4017
4018 if (!gbpages)
4019 gbpages_bit_rsvd = rsvd_bits(7, 7);
4020
4021 if (level == PT32E_ROOT_LEVEL)
4022 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4023 else
4024 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4025
4026 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4027 if (!nx)
4028 high_bits_rsvd |= rsvd_bits(63, 63);
4029
4030 /*
4031 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4032 * leaf entries) on AMD CPUs only.
4033 */
4034 if (amd)
4035 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4036
4037 switch (level) {
4038 case PT32_ROOT_LEVEL:
4039 /* no rsvd bits for 2 level 4K page table entries */
4040 rsvd_check->rsvd_bits_mask[0][1] = 0;
4041 rsvd_check->rsvd_bits_mask[0][0] = 0;
4042 rsvd_check->rsvd_bits_mask[1][0] =
4043 rsvd_check->rsvd_bits_mask[0][0];
4044
4045 if (!pse) {
4046 rsvd_check->rsvd_bits_mask[1][1] = 0;
4047 break;
4048 }
4049
4050 if (is_cpuid_PSE36())
4051 /* 36bits PSE 4MB page */
4052 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4053 else
4054 /* 32 bits PSE 4MB page */
4055 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4056 break;
4057 case PT32E_ROOT_LEVEL:
4058 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4059 high_bits_rsvd |
4060 rsvd_bits(5, 8) |
4061 rsvd_bits(1, 2); /* PDPTE */
4062 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4063 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4064 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4065 rsvd_bits(13, 20); /* large page */
4066 rsvd_check->rsvd_bits_mask[1][0] =
4067 rsvd_check->rsvd_bits_mask[0][0];
4068 break;
4069 case PT64_ROOT_5LEVEL:
4070 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4071 nonleaf_bit8_rsvd |
4072 rsvd_bits(7, 7);
4073 rsvd_check->rsvd_bits_mask[1][4] =
4074 rsvd_check->rsvd_bits_mask[0][4];
4075 fallthrough;
4076 case PT64_ROOT_4LEVEL:
4077 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4078 nonleaf_bit8_rsvd |
4079 rsvd_bits(7, 7);
4080 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4081 gbpages_bit_rsvd;
4082 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4083 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4084 rsvd_check->rsvd_bits_mask[1][3] =
4085 rsvd_check->rsvd_bits_mask[0][3];
4086 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4087 gbpages_bit_rsvd |
4088 rsvd_bits(13, 29);
4089 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4090 rsvd_bits(13, 20); /* large page */
4091 rsvd_check->rsvd_bits_mask[1][0] =
4092 rsvd_check->rsvd_bits_mask[0][0];
4093 break;
4094 }
4095}
4096
4097static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4098 struct kvm_mmu *context)
4099{
4100 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4101 vcpu->arch.reserved_gpa_bits,
4102 context->root_level, context->nx,
4103 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4104 is_pse(vcpu),
4105 guest_cpuid_is_amd_or_hygon(vcpu));
4106}
4107
4108static void
4109__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4110 u64 pa_bits_rsvd, bool execonly)
4111{
4112 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4113 u64 bad_mt_xwr;
4114
4115 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4116 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4117 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4118 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4119 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4120
4121 /* large page */
4122 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4123 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4124 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4125 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4126 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4127
4128 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4129 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4130 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4131 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4132 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4133 if (!execonly) {
4134 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4135 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4136 }
4137 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4138}
4139
4140static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4141 struct kvm_mmu *context, bool execonly)
4142{
4143 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4144 vcpu->arch.reserved_gpa_bits, execonly);
4145}
4146
4147static inline u64 reserved_hpa_bits(void)
4148{
4149 return rsvd_bits(shadow_phys_bits, 63);
4150}
4151
4152/*
4153 * the page table on host is the shadow page table for the page
4154 * table in guest or amd nested guest, its mmu features completely
4155 * follow the features in guest.
4156 */
4157void
4158reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4159{
4160 bool uses_nx = context->nx ||
4161 context->mmu_role.base.smep_andnot_wp;
4162 struct rsvd_bits_validate *shadow_zero_check;
4163 int i;
4164
4165 /*
4166 * Passing "true" to the last argument is okay; it adds a check
4167 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4168 */
4169 shadow_zero_check = &context->shadow_zero_check;
4170 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4171 reserved_hpa_bits(),
4172 context->shadow_root_level, uses_nx,
4173 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4174 is_pse(vcpu), true);
4175
4176 if (!shadow_me_mask)
4177 return;
4178
4179 for (i = context->shadow_root_level; --i >= 0;) {
4180 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4181 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4182 }
4183
4184}
4185EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4186
4187static inline bool boot_cpu_is_amd(void)
4188{
4189 WARN_ON_ONCE(!tdp_enabled);
4190 return shadow_x_mask == 0;
4191}
4192
4193/*
4194 * the direct page table on host, use as much mmu features as
4195 * possible, however, kvm currently does not do execution-protection.
4196 */
4197static void
4198reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4199 struct kvm_mmu *context)
4200{
4201 struct rsvd_bits_validate *shadow_zero_check;
4202 int i;
4203
4204 shadow_zero_check = &context->shadow_zero_check;
4205
4206 if (boot_cpu_is_amd())
4207 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4208 reserved_hpa_bits(),
4209 context->shadow_root_level, false,
4210 boot_cpu_has(X86_FEATURE_GBPAGES),
4211 true, true);
4212 else
4213 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4214 reserved_hpa_bits(), false);
4215
4216 if (!shadow_me_mask)
4217 return;
4218
4219 for (i = context->shadow_root_level; --i >= 0;) {
4220 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4221 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4222 }
4223}
4224
4225/*
4226 * as the comments in reset_shadow_zero_bits_mask() except it
4227 * is the shadow page table for intel nested guest.
4228 */
4229static void
4230reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4231 struct kvm_mmu *context, bool execonly)
4232{
4233 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4234 reserved_hpa_bits(), execonly);
4235}
4236
4237#define BYTE_MASK(access) \
4238 ((1 & (access) ? 2 : 0) | \
4239 (2 & (access) ? 4 : 0) | \
4240 (3 & (access) ? 8 : 0) | \
4241 (4 & (access) ? 16 : 0) | \
4242 (5 & (access) ? 32 : 0) | \
4243 (6 & (access) ? 64 : 0) | \
4244 (7 & (access) ? 128 : 0))
4245
4246
4247static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4248 struct kvm_mmu *mmu, bool ept)
4249{
4250 unsigned byte;
4251
4252 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4253 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4254 const u8 u = BYTE_MASK(ACC_USER_MASK);
4255
4256 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4257 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4258 bool cr0_wp = is_write_protection(vcpu);
4259
4260 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4261 unsigned pfec = byte << 1;
4262
4263 /*
4264 * Each "*f" variable has a 1 bit for each UWX value
4265 * that causes a fault with the given PFEC.
4266 */
4267
4268 /* Faults from writes to non-writable pages */
4269 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4270 /* Faults from user mode accesses to supervisor pages */
4271 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4272 /* Faults from fetches of non-executable pages*/
4273 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4274 /* Faults from kernel mode fetches of user pages */
4275 u8 smepf = 0;
4276 /* Faults from kernel mode accesses of user pages */
4277 u8 smapf = 0;
4278
4279 if (!ept) {
4280 /* Faults from kernel mode accesses to user pages */
4281 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4282
4283 /* Not really needed: !nx will cause pte.nx to fault */
4284 if (!mmu->nx)
4285 ff = 0;
4286
4287 /* Allow supervisor writes if !cr0.wp */
4288 if (!cr0_wp)
4289 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4290
4291 /* Disallow supervisor fetches of user code if cr4.smep */
4292 if (cr4_smep)
4293 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4294
4295 /*
4296 * SMAP:kernel-mode data accesses from user-mode
4297 * mappings should fault. A fault is considered
4298 * as a SMAP violation if all of the following
4299 * conditions are true:
4300 * - X86_CR4_SMAP is set in CR4
4301 * - A user page is accessed
4302 * - The access is not a fetch
4303 * - Page fault in kernel mode
4304 * - if CPL = 3 or X86_EFLAGS_AC is clear
4305 *
4306 * Here, we cover the first three conditions.
4307 * The fourth is computed dynamically in permission_fault();
4308 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4309 * *not* subject to SMAP restrictions.
4310 */
4311 if (cr4_smap)
4312 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4313 }
4314
4315 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4316 }
4317}
4318
4319/*
4320* PKU is an additional mechanism by which the paging controls access to
4321* user-mode addresses based on the value in the PKRU register. Protection
4322* key violations are reported through a bit in the page fault error code.
4323* Unlike other bits of the error code, the PK bit is not known at the
4324* call site of e.g. gva_to_gpa; it must be computed directly in
4325* permission_fault based on two bits of PKRU, on some machine state (CR4,
4326* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4327*
4328* In particular the following conditions come from the error code, the
4329* page tables and the machine state:
4330* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4331* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4332* - PK is always zero if U=0 in the page tables
4333* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4334*
4335* The PKRU bitmask caches the result of these four conditions. The error
4336* code (minus the P bit) and the page table's U bit form an index into the
4337* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4338* with the two bits of the PKRU register corresponding to the protection key.
4339* For the first three conditions above the bits will be 00, thus masking
4340* away both AD and WD. For all reads or if the last condition holds, WD
4341* only will be masked away.
4342*/
4343static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4344 bool ept)
4345{
4346 unsigned bit;
4347 bool wp;
4348
4349 if (ept) {
4350 mmu->pkru_mask = 0;
4351 return;
4352 }
4353
4354 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4355 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4356 mmu->pkru_mask = 0;
4357 return;
4358 }
4359
4360 wp = is_write_protection(vcpu);
4361
4362 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4363 unsigned pfec, pkey_bits;
4364 bool check_pkey, check_write, ff, uf, wf, pte_user;
4365
4366 pfec = bit << 1;
4367 ff = pfec & PFERR_FETCH_MASK;
4368 uf = pfec & PFERR_USER_MASK;
4369 wf = pfec & PFERR_WRITE_MASK;
4370
4371 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4372 pte_user = pfec & PFERR_RSVD_MASK;
4373
4374 /*
4375 * Only need to check the access which is not an
4376 * instruction fetch and is to a user page.
4377 */
4378 check_pkey = (!ff && pte_user);
4379 /*
4380 * write access is controlled by PKRU if it is a
4381 * user access or CR0.WP = 1.
4382 */
4383 check_write = check_pkey && wf && (uf || wp);
4384
4385 /* PKRU.AD stops both read and write access. */
4386 pkey_bits = !!check_pkey;
4387 /* PKRU.WD stops write access. */
4388 pkey_bits |= (!!check_write) << 1;
4389
4390 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4391 }
4392}
4393
4394static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4395{
4396 unsigned root_level = mmu->root_level;
4397
4398 mmu->last_nonleaf_level = root_level;
4399 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4400 mmu->last_nonleaf_level++;
4401}
4402
4403static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4404 struct kvm_mmu *context,
4405 int level)
4406{
4407 context->nx = is_nx(vcpu);
4408 context->root_level = level;
4409
4410 reset_rsvds_bits_mask(vcpu, context);
4411 update_permission_bitmask(vcpu, context, false);
4412 update_pkru_bitmask(vcpu, context, false);
4413 update_last_nonleaf_level(vcpu, context);
4414
4415 MMU_WARN_ON(!is_pae(vcpu));
4416 context->page_fault = paging64_page_fault;
4417 context->gva_to_gpa = paging64_gva_to_gpa;
4418 context->sync_page = paging64_sync_page;
4419 context->invlpg = paging64_invlpg;
4420 context->shadow_root_level = level;
4421 context->direct_map = false;
4422}
4423
4424static void paging64_init_context(struct kvm_vcpu *vcpu,
4425 struct kvm_mmu *context)
4426{
4427 int root_level = is_la57_mode(vcpu) ?
4428 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4429
4430 paging64_init_context_common(vcpu, context, root_level);
4431}
4432
4433static void paging32_init_context(struct kvm_vcpu *vcpu,
4434 struct kvm_mmu *context)
4435{
4436 context->nx = false;
4437 context->root_level = PT32_ROOT_LEVEL;
4438
4439 reset_rsvds_bits_mask(vcpu, context);
4440 update_permission_bitmask(vcpu, context, false);
4441 update_pkru_bitmask(vcpu, context, false);
4442 update_last_nonleaf_level(vcpu, context);
4443
4444 context->page_fault = paging32_page_fault;
4445 context->gva_to_gpa = paging32_gva_to_gpa;
4446 context->sync_page = paging32_sync_page;
4447 context->invlpg = paging32_invlpg;
4448 context->shadow_root_level = PT32E_ROOT_LEVEL;
4449 context->direct_map = false;
4450}
4451
4452static void paging32E_init_context(struct kvm_vcpu *vcpu,
4453 struct kvm_mmu *context)
4454{
4455 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4456}
4457
4458static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4459{
4460 union kvm_mmu_extended_role ext = {0};
4461
4462 ext.cr0_pg = !!is_paging(vcpu);
4463 ext.cr4_pae = !!is_pae(vcpu);
4464 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4465 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4466 ext.cr4_pse = !!is_pse(vcpu);
4467 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4468 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4469
4470 ext.valid = 1;
4471
4472 return ext;
4473}
4474
4475static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4476 bool base_only)
4477{
4478 union kvm_mmu_role role = {0};
4479
4480 role.base.access = ACC_ALL;
4481 role.base.nxe = !!is_nx(vcpu);
4482 role.base.cr0_wp = is_write_protection(vcpu);
4483 role.base.smm = is_smm(vcpu);
4484 role.base.guest_mode = is_guest_mode(vcpu);
4485
4486 if (base_only)
4487 return role;
4488
4489 role.ext = kvm_calc_mmu_role_ext(vcpu);
4490
4491 return role;
4492}
4493
4494static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4495{
4496 /* Use 5-level TDP if and only if it's useful/necessary. */
4497 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4498 return 4;
4499
4500 return max_tdp_level;
4501}
4502
4503static union kvm_mmu_role
4504kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4505{
4506 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4507
4508 role.base.ad_disabled = (shadow_accessed_mask == 0);
4509 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4510 role.base.direct = true;
4511 role.base.gpte_is_8_bytes = true;
4512
4513 return role;
4514}
4515
4516static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4517{
4518 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4519 union kvm_mmu_role new_role =
4520 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4521
4522 if (new_role.as_u64 == context->mmu_role.as_u64)
4523 return;
4524
4525 context->mmu_role.as_u64 = new_role.as_u64;
4526 context->page_fault = kvm_tdp_page_fault;
4527 context->sync_page = nonpaging_sync_page;
4528 context->invlpg = NULL;
4529 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4530 context->direct_map = true;
4531 context->get_guest_pgd = get_cr3;
4532 context->get_pdptr = kvm_pdptr_read;
4533 context->inject_page_fault = kvm_inject_page_fault;
4534
4535 if (!is_paging(vcpu)) {
4536 context->nx = false;
4537 context->gva_to_gpa = nonpaging_gva_to_gpa;
4538 context->root_level = 0;
4539 } else if (is_long_mode(vcpu)) {
4540 context->nx = is_nx(vcpu);
4541 context->root_level = is_la57_mode(vcpu) ?
4542 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4543 reset_rsvds_bits_mask(vcpu, context);
4544 context->gva_to_gpa = paging64_gva_to_gpa;
4545 } else if (is_pae(vcpu)) {
4546 context->nx = is_nx(vcpu);
4547 context->root_level = PT32E_ROOT_LEVEL;
4548 reset_rsvds_bits_mask(vcpu, context);
4549 context->gva_to_gpa = paging64_gva_to_gpa;
4550 } else {
4551 context->nx = false;
4552 context->root_level = PT32_ROOT_LEVEL;
4553 reset_rsvds_bits_mask(vcpu, context);
4554 context->gva_to_gpa = paging32_gva_to_gpa;
4555 }
4556
4557 update_permission_bitmask(vcpu, context, false);
4558 update_pkru_bitmask(vcpu, context, false);
4559 update_last_nonleaf_level(vcpu, context);
4560 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4561}
4562
4563static union kvm_mmu_role
4564kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4565{
4566 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4567
4568 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4569 !is_write_protection(vcpu);
4570 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4571 !is_write_protection(vcpu);
4572 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4573
4574 return role;
4575}
4576
4577static union kvm_mmu_role
4578kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4579{
4580 union kvm_mmu_role role =
4581 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4582
4583 role.base.direct = !is_paging(vcpu);
4584
4585 if (!is_long_mode(vcpu))
4586 role.base.level = PT32E_ROOT_LEVEL;
4587 else if (is_la57_mode(vcpu))
4588 role.base.level = PT64_ROOT_5LEVEL;
4589 else
4590 role.base.level = PT64_ROOT_4LEVEL;
4591
4592 return role;
4593}
4594
4595static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4596 u32 cr0, u32 cr4, u32 efer,
4597 union kvm_mmu_role new_role)
4598{
4599 if (!(cr0 & X86_CR0_PG))
4600 nonpaging_init_context(vcpu, context);
4601 else if (efer & EFER_LMA)
4602 paging64_init_context(vcpu, context);
4603 else if (cr4 & X86_CR4_PAE)
4604 paging32E_init_context(vcpu, context);
4605 else
4606 paging32_init_context(vcpu, context);
4607
4608 context->mmu_role.as_u64 = new_role.as_u64;
4609 reset_shadow_zero_bits_mask(vcpu, context);
4610}
4611
4612static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4613{
4614 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4615 union kvm_mmu_role new_role =
4616 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4617
4618 if (new_role.as_u64 != context->mmu_role.as_u64)
4619 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4620}
4621
4622static union kvm_mmu_role
4623kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4624{
4625 union kvm_mmu_role role =
4626 kvm_calc_shadow_root_page_role_common(vcpu, false);
4627
4628 role.base.direct = false;
4629 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4630
4631 return role;
4632}
4633
4634void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4635 gpa_t nested_cr3)
4636{
4637 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4638 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4639
4640 context->shadow_root_level = new_role.base.level;
4641
4642 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4643
4644 if (new_role.as_u64 != context->mmu_role.as_u64)
4645 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4646}
4647EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4648
4649static union kvm_mmu_role
4650kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4651 bool execonly, u8 level)
4652{
4653 union kvm_mmu_role role = {0};
4654
4655 /* SMM flag is inherited from root_mmu */
4656 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4657
4658 role.base.level = level;
4659 role.base.gpte_is_8_bytes = true;
4660 role.base.direct = false;
4661 role.base.ad_disabled = !accessed_dirty;
4662 role.base.guest_mode = true;
4663 role.base.access = ACC_ALL;
4664
4665 /*
4666 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4667 * SMAP variation to denote shadow EPT entries.
4668 */
4669 role.base.cr0_wp = true;
4670 role.base.smap_andnot_wp = true;
4671
4672 role.ext = kvm_calc_mmu_role_ext(vcpu);
4673 role.ext.execonly = execonly;
4674
4675 return role;
4676}
4677
4678void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4679 bool accessed_dirty, gpa_t new_eptp)
4680{
4681 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4682 u8 level = vmx_eptp_page_walk_level(new_eptp);
4683 union kvm_mmu_role new_role =
4684 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4685 execonly, level);
4686
4687 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4688
4689 if (new_role.as_u64 == context->mmu_role.as_u64)
4690 return;
4691
4692 context->shadow_root_level = level;
4693
4694 context->nx = true;
4695 context->ept_ad = accessed_dirty;
4696 context->page_fault = ept_page_fault;
4697 context->gva_to_gpa = ept_gva_to_gpa;
4698 context->sync_page = ept_sync_page;
4699 context->invlpg = ept_invlpg;
4700 context->root_level = level;
4701 context->direct_map = false;
4702 context->mmu_role.as_u64 = new_role.as_u64;
4703
4704 update_permission_bitmask(vcpu, context, true);
4705 update_pkru_bitmask(vcpu, context, true);
4706 update_last_nonleaf_level(vcpu, context);
4707 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4708 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4709}
4710EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4711
4712static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4713{
4714 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4715
4716 kvm_init_shadow_mmu(vcpu,
4717 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4718 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4719 vcpu->arch.efer);
4720
4721 context->get_guest_pgd = get_cr3;
4722 context->get_pdptr = kvm_pdptr_read;
4723 context->inject_page_fault = kvm_inject_page_fault;
4724}
4725
4726static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4727{
4728 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4729 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4730
4731 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4732 return;
4733
4734 g_context->mmu_role.as_u64 = new_role.as_u64;
4735 g_context->get_guest_pgd = get_cr3;
4736 g_context->get_pdptr = kvm_pdptr_read;
4737 g_context->inject_page_fault = kvm_inject_page_fault;
4738
4739 /*
4740 * L2 page tables are never shadowed, so there is no need to sync
4741 * SPTEs.
4742 */
4743 g_context->invlpg = NULL;
4744
4745 /*
4746 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4747 * L1's nested page tables (e.g. EPT12). The nested translation
4748 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4749 * L2's page tables as the first level of translation and L1's
4750 * nested page tables as the second level of translation. Basically
4751 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4752 */
4753 if (!is_paging(vcpu)) {
4754 g_context->nx = false;
4755 g_context->root_level = 0;
4756 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4757 } else if (is_long_mode(vcpu)) {
4758 g_context->nx = is_nx(vcpu);
4759 g_context->root_level = is_la57_mode(vcpu) ?
4760 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4761 reset_rsvds_bits_mask(vcpu, g_context);
4762 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4763 } else if (is_pae(vcpu)) {
4764 g_context->nx = is_nx(vcpu);
4765 g_context->root_level = PT32E_ROOT_LEVEL;
4766 reset_rsvds_bits_mask(vcpu, g_context);
4767 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4768 } else {
4769 g_context->nx = false;
4770 g_context->root_level = PT32_ROOT_LEVEL;
4771 reset_rsvds_bits_mask(vcpu, g_context);
4772 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4773 }
4774
4775 update_permission_bitmask(vcpu, g_context, false);
4776 update_pkru_bitmask(vcpu, g_context, false);
4777 update_last_nonleaf_level(vcpu, g_context);
4778}
4779
4780void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4781{
4782 if (reset_roots) {
4783 uint i;
4784
4785 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4786
4787 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4788 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4789 }
4790
4791 if (mmu_is_nested(vcpu))
4792 init_kvm_nested_mmu(vcpu);
4793 else if (tdp_enabled)
4794 init_kvm_tdp_mmu(vcpu);
4795 else
4796 init_kvm_softmmu(vcpu);
4797}
4798EXPORT_SYMBOL_GPL(kvm_init_mmu);
4799
4800static union kvm_mmu_page_role
4801kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4802{
4803 union kvm_mmu_role role;
4804
4805 if (tdp_enabled)
4806 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4807 else
4808 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4809
4810 return role.base;
4811}
4812
4813void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4814{
4815 kvm_mmu_unload(vcpu);
4816 kvm_init_mmu(vcpu, true);
4817}
4818EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4819
4820int kvm_mmu_load(struct kvm_vcpu *vcpu)
4821{
4822 int r;
4823
4824 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4825 if (r)
4826 goto out;
4827 r = mmu_alloc_special_roots(vcpu);
4828 if (r)
4829 goto out;
4830 write_lock(&vcpu->kvm->mmu_lock);
4831 if (make_mmu_pages_available(vcpu))
4832 r = -ENOSPC;
4833 else if (vcpu->arch.mmu->direct_map)
4834 r = mmu_alloc_direct_roots(vcpu);
4835 else
4836 r = mmu_alloc_shadow_roots(vcpu);
4837 write_unlock(&vcpu->kvm->mmu_lock);
4838
4839 kvm_mmu_sync_roots(vcpu);
4840 if (r)
4841 goto out;
4842 kvm_mmu_load_pgd(vcpu);
4843 static_call(kvm_x86_tlb_flush_current)(vcpu);
4844out:
4845 return r;
4846}
4847EXPORT_SYMBOL_GPL(kvm_mmu_load);
4848
4849void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4850{
4851 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4852 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4853 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4854 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4855}
4856EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4857
4858static bool need_remote_flush(u64 old, u64 new)
4859{
4860 if (!is_shadow_present_pte(old))
4861 return false;
4862 if (!is_shadow_present_pte(new))
4863 return true;
4864 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4865 return true;
4866 old ^= shadow_nx_mask;
4867 new ^= shadow_nx_mask;
4868 return (old & ~new & PT64_PERM_MASK) != 0;
4869}
4870
4871static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4872 int *bytes)
4873{
4874 u64 gentry = 0;
4875 int r;
4876
4877 /*
4878 * Assume that the pte write on a page table of the same type
4879 * as the current vcpu paging mode since we update the sptes only
4880 * when they have the same mode.
4881 */
4882 if (is_pae(vcpu) && *bytes == 4) {
4883 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4884 *gpa &= ~(gpa_t)7;
4885 *bytes = 8;
4886 }
4887
4888 if (*bytes == 4 || *bytes == 8) {
4889 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4890 if (r)
4891 gentry = 0;
4892 }
4893
4894 return gentry;
4895}
4896
4897/*
4898 * If we're seeing too many writes to a page, it may no longer be a page table,
4899 * or we may be forking, in which case it is better to unmap the page.
4900 */
4901static bool detect_write_flooding(struct kvm_mmu_page *sp)
4902{
4903 /*
4904 * Skip write-flooding detected for the sp whose level is 1, because
4905 * it can become unsync, then the guest page is not write-protected.
4906 */
4907 if (sp->role.level == PG_LEVEL_4K)
4908 return false;
4909
4910 atomic_inc(&sp->write_flooding_count);
4911 return atomic_read(&sp->write_flooding_count) >= 3;
4912}
4913
4914/*
4915 * Misaligned accesses are too much trouble to fix up; also, they usually
4916 * indicate a page is not used as a page table.
4917 */
4918static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4919 int bytes)
4920{
4921 unsigned offset, pte_size, misaligned;
4922
4923 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4924 gpa, bytes, sp->role.word);
4925
4926 offset = offset_in_page(gpa);
4927 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4928
4929 /*
4930 * Sometimes, the OS only writes the last one bytes to update status
4931 * bits, for example, in linux, andb instruction is used in clear_bit().
4932 */
4933 if (!(offset & (pte_size - 1)) && bytes == 1)
4934 return false;
4935
4936 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4937 misaligned |= bytes < 4;
4938
4939 return misaligned;
4940}
4941
4942static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4943{
4944 unsigned page_offset, quadrant;
4945 u64 *spte;
4946 int level;
4947
4948 page_offset = offset_in_page(gpa);
4949 level = sp->role.level;
4950 *nspte = 1;
4951 if (!sp->role.gpte_is_8_bytes) {
4952 page_offset <<= 1; /* 32->64 */
4953 /*
4954 * A 32-bit pde maps 4MB while the shadow pdes map
4955 * only 2MB. So we need to double the offset again
4956 * and zap two pdes instead of one.
4957 */
4958 if (level == PT32_ROOT_LEVEL) {
4959 page_offset &= ~7; /* kill rounding error */
4960 page_offset <<= 1;
4961 *nspte = 2;
4962 }
4963 quadrant = page_offset >> PAGE_SHIFT;
4964 page_offset &= ~PAGE_MASK;
4965 if (quadrant != sp->role.quadrant)
4966 return NULL;
4967 }
4968
4969 spte = &sp->spt[page_offset / sizeof(*spte)];
4970 return spte;
4971}
4972
4973static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4974 const u8 *new, int bytes,
4975 struct kvm_page_track_notifier_node *node)
4976{
4977 gfn_t gfn = gpa >> PAGE_SHIFT;
4978 struct kvm_mmu_page *sp;
4979 LIST_HEAD(invalid_list);
4980 u64 entry, gentry, *spte;
4981 int npte;
4982 bool remote_flush, local_flush;
4983
4984 /*
4985 * If we don't have indirect shadow pages, it means no page is
4986 * write-protected, so we can exit simply.
4987 */
4988 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4989 return;
4990
4991 remote_flush = local_flush = false;
4992
4993 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4994
4995 /*
4996 * No need to care whether allocation memory is successful
4997 * or not since pte prefetch is skiped if it does not have
4998 * enough objects in the cache.
4999 */
5000 mmu_topup_memory_caches(vcpu, true);
5001
5002 write_lock(&vcpu->kvm->mmu_lock);
5003
5004 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5005
5006 ++vcpu->kvm->stat.mmu_pte_write;
5007 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5008
5009 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5010 if (detect_write_misaligned(sp, gpa, bytes) ||
5011 detect_write_flooding(sp)) {
5012 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5013 ++vcpu->kvm->stat.mmu_flooded;
5014 continue;
5015 }
5016
5017 spte = get_written_sptes(sp, gpa, &npte);
5018 if (!spte)
5019 continue;
5020
5021 local_flush = true;
5022 while (npte--) {
5023 entry = *spte;
5024 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5025 if (gentry && sp->role.level != PG_LEVEL_4K)
5026 ++vcpu->kvm->stat.mmu_pde_zapped;
5027 if (need_remote_flush(entry, *spte))
5028 remote_flush = true;
5029 ++spte;
5030 }
5031 }
5032 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5033 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5034 write_unlock(&vcpu->kvm->mmu_lock);
5035}
5036
5037int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5038 void *insn, int insn_len)
5039{
5040 int r, emulation_type = EMULTYPE_PF;
5041 bool direct = vcpu->arch.mmu->direct_map;
5042
5043 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5044 return RET_PF_RETRY;
5045
5046 r = RET_PF_INVALID;
5047 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5048 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5049 if (r == RET_PF_EMULATE)
5050 goto emulate;
5051 }
5052
5053 if (r == RET_PF_INVALID) {
5054 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5055 lower_32_bits(error_code), false);
5056 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5057 return -EIO;
5058 }
5059
5060 if (r < 0)
5061 return r;
5062 if (r != RET_PF_EMULATE)
5063 return 1;
5064
5065 /*
5066 * Before emulating the instruction, check if the error code
5067 * was due to a RO violation while translating the guest page.
5068 * This can occur when using nested virtualization with nested
5069 * paging in both guests. If true, we simply unprotect the page
5070 * and resume the guest.
5071 */
5072 if (vcpu->arch.mmu->direct_map &&
5073 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5074 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5075 return 1;
5076 }
5077
5078 /*
5079 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5080 * optimistically try to just unprotect the page and let the processor
5081 * re-execute the instruction that caused the page fault. Do not allow
5082 * retrying MMIO emulation, as it's not only pointless but could also
5083 * cause us to enter an infinite loop because the processor will keep
5084 * faulting on the non-existent MMIO address. Retrying an instruction
5085 * from a nested guest is also pointless and dangerous as we are only
5086 * explicitly shadowing L1's page tables, i.e. unprotecting something
5087 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5088 */
5089 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5090 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5091emulate:
5092 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5093 insn_len);
5094}
5095EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5096
5097void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5098 gva_t gva, hpa_t root_hpa)
5099{
5100 int i;
5101
5102 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5103 if (mmu != &vcpu->arch.guest_mmu) {
5104 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5105 if (is_noncanonical_address(gva, vcpu))
5106 return;
5107
5108 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5109 }
5110
5111 if (!mmu->invlpg)
5112 return;
5113
5114 if (root_hpa == INVALID_PAGE) {
5115 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5116
5117 /*
5118 * INVLPG is required to invalidate any global mappings for the VA,
5119 * irrespective of PCID. Since it would take us roughly similar amount
5120 * of work to determine whether any of the prev_root mappings of the VA
5121 * is marked global, or to just sync it blindly, so we might as well
5122 * just always sync it.
5123 *
5124 * Mappings not reachable via the current cr3 or the prev_roots will be
5125 * synced when switching to that cr3, so nothing needs to be done here
5126 * for them.
5127 */
5128 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5129 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5130 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5131 } else {
5132 mmu->invlpg(vcpu, gva, root_hpa);
5133 }
5134}
5135
5136void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5137{
5138 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5139 ++vcpu->stat.invlpg;
5140}
5141EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5142
5143
5144void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5145{
5146 struct kvm_mmu *mmu = vcpu->arch.mmu;
5147 bool tlb_flush = false;
5148 uint i;
5149
5150 if (pcid == kvm_get_active_pcid(vcpu)) {
5151 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5152 tlb_flush = true;
5153 }
5154
5155 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5156 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5157 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5158 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5159 tlb_flush = true;
5160 }
5161 }
5162
5163 if (tlb_flush)
5164 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5165
5166 ++vcpu->stat.invlpg;
5167
5168 /*
5169 * Mappings not reachable via the current cr3 or the prev_roots will be
5170 * synced when switching to that cr3, so nothing needs to be done here
5171 * for them.
5172 */
5173}
5174
5175void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5176 int tdp_huge_page_level)
5177{
5178 tdp_enabled = enable_tdp;
5179 max_tdp_level = tdp_max_root_level;
5180
5181 /*
5182 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5183 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5184 * the kernel is not. But, KVM never creates a page size greater than
5185 * what is used by the kernel for any given HVA, i.e. the kernel's
5186 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5187 */
5188 if (tdp_enabled)
5189 max_huge_page_level = tdp_huge_page_level;
5190 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5191 max_huge_page_level = PG_LEVEL_1G;
5192 else
5193 max_huge_page_level = PG_LEVEL_2M;
5194}
5195EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5196
5197/* The return value indicates if tlb flush on all vcpus is needed. */
5198typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5199 struct kvm_memory_slot *slot);
5200
5201/* The caller should hold mmu-lock before calling this function. */
5202static __always_inline bool
5203slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5204 slot_level_handler fn, int start_level, int end_level,
5205 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5206{
5207 struct slot_rmap_walk_iterator iterator;
5208 bool flush = false;
5209
5210 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5211 end_gfn, &iterator) {
5212 if (iterator.rmap)
5213 flush |= fn(kvm, iterator.rmap, memslot);
5214
5215 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5216 if (flush && lock_flush_tlb) {
5217 kvm_flush_remote_tlbs_with_address(kvm,
5218 start_gfn,
5219 iterator.gfn - start_gfn + 1);
5220 flush = false;
5221 }
5222 cond_resched_rwlock_write(&kvm->mmu_lock);
5223 }
5224 }
5225
5226 if (flush && lock_flush_tlb) {
5227 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5228 end_gfn - start_gfn + 1);
5229 flush = false;
5230 }
5231
5232 return flush;
5233}
5234
5235static __always_inline bool
5236slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5237 slot_level_handler fn, int start_level, int end_level,
5238 bool lock_flush_tlb)
5239{
5240 return slot_handle_level_range(kvm, memslot, fn, start_level,
5241 end_level, memslot->base_gfn,
5242 memslot->base_gfn + memslot->npages - 1,
5243 lock_flush_tlb);
5244}
5245
5246static __always_inline bool
5247slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5248 slot_level_handler fn, bool lock_flush_tlb)
5249{
5250 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5251 PG_LEVEL_4K, lock_flush_tlb);
5252}
5253
5254static void free_mmu_pages(struct kvm_mmu *mmu)
5255{
5256 free_page((unsigned long)mmu->pae_root);
5257 free_page((unsigned long)mmu->lm_root);
5258}
5259
5260static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5261{
5262 struct page *page;
5263 int i;
5264
5265 mmu->root_hpa = INVALID_PAGE;
5266 mmu->root_pgd = 0;
5267 mmu->translate_gpa = translate_gpa;
5268 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5269 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5270
5271 /*
5272 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5273 * while the PDP table is a per-vCPU construct that's allocated at MMU
5274 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5275 * x86_64. Therefore we need to allocate the PDP table in the first
5276 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5277 * generally doesn't use PAE paging and can skip allocating the PDP
5278 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5279 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5280 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5281 */
5282 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5283 return 0;
5284
5285 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5286 if (!page)
5287 return -ENOMEM;
5288
5289 mmu->pae_root = page_address(page);
5290 for (i = 0; i < 4; ++i)
5291 mmu->pae_root[i] = INVALID_PAGE;
5292
5293 return 0;
5294}
5295
5296int kvm_mmu_create(struct kvm_vcpu *vcpu)
5297{
5298 int ret;
5299
5300 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5301 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5302
5303 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5304 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5305
5306 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5307
5308 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5309 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5310
5311 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5312
5313 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5314 if (ret)
5315 return ret;
5316
5317 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5318 if (ret)
5319 goto fail_allocate_root;
5320
5321 return ret;
5322 fail_allocate_root:
5323 free_mmu_pages(&vcpu->arch.guest_mmu);
5324 return ret;
5325}
5326
5327#define BATCH_ZAP_PAGES 10
5328static void kvm_zap_obsolete_pages(struct kvm *kvm)
5329{
5330 struct kvm_mmu_page *sp, *node;
5331 int nr_zapped, batch = 0;
5332
5333restart:
5334 list_for_each_entry_safe_reverse(sp, node,
5335 &kvm->arch.active_mmu_pages, link) {
5336 /*
5337 * No obsolete valid page exists before a newly created page
5338 * since active_mmu_pages is a FIFO list.
5339 */
5340 if (!is_obsolete_sp(kvm, sp))
5341 break;
5342
5343 /*
5344 * Invalid pages should never land back on the list of active
5345 * pages. Skip the bogus page, otherwise we'll get stuck in an
5346 * infinite loop if the page gets put back on the list (again).
5347 */
5348 if (WARN_ON(sp->role.invalid))
5349 continue;
5350
5351 /*
5352 * No need to flush the TLB since we're only zapping shadow
5353 * pages with an obsolete generation number and all vCPUS have
5354 * loaded a new root, i.e. the shadow pages being zapped cannot
5355 * be in active use by the guest.
5356 */
5357 if (batch >= BATCH_ZAP_PAGES &&
5358 cond_resched_rwlock_write(&kvm->mmu_lock)) {
5359 batch = 0;
5360 goto restart;
5361 }
5362
5363 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5364 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5365 batch += nr_zapped;
5366 goto restart;
5367 }
5368 }
5369
5370 /*
5371 * Trigger a remote TLB flush before freeing the page tables to ensure
5372 * KVM is not in the middle of a lockless shadow page table walk, which
5373 * may reference the pages.
5374 */
5375 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5376}
5377
5378/*
5379 * Fast invalidate all shadow pages and use lock-break technique
5380 * to zap obsolete pages.
5381 *
5382 * It's required when memslot is being deleted or VM is being
5383 * destroyed, in these cases, we should ensure that KVM MMU does
5384 * not use any resource of the being-deleted slot or all slots
5385 * after calling the function.
5386 */
5387static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5388{
5389 lockdep_assert_held(&kvm->slots_lock);
5390
5391 write_lock(&kvm->mmu_lock);
5392 trace_kvm_mmu_zap_all_fast(kvm);
5393
5394 /*
5395 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5396 * held for the entire duration of zapping obsolete pages, it's
5397 * impossible for there to be multiple invalid generations associated
5398 * with *valid* shadow pages at any given time, i.e. there is exactly
5399 * one valid generation and (at most) one invalid generation.
5400 */
5401 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5402
5403 /*
5404 * Notify all vcpus to reload its shadow page table and flush TLB.
5405 * Then all vcpus will switch to new shadow page table with the new
5406 * mmu_valid_gen.
5407 *
5408 * Note: we need to do this under the protection of mmu_lock,
5409 * otherwise, vcpu would purge shadow page but miss tlb flush.
5410 */
5411 kvm_reload_remote_mmus(kvm);
5412
5413 kvm_zap_obsolete_pages(kvm);
5414
5415 if (is_tdp_mmu_enabled(kvm))
5416 kvm_tdp_mmu_zap_all(kvm);
5417
5418 write_unlock(&kvm->mmu_lock);
5419}
5420
5421static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5422{
5423 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5424}
5425
5426static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5427 struct kvm_memory_slot *slot,
5428 struct kvm_page_track_notifier_node *node)
5429{
5430 kvm_mmu_zap_all_fast(kvm);
5431}
5432
5433void kvm_mmu_init_vm(struct kvm *kvm)
5434{
5435 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5436
5437 kvm_mmu_init_tdp_mmu(kvm);
5438
5439 node->track_write = kvm_mmu_pte_write;
5440 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5441 kvm_page_track_register_notifier(kvm, node);
5442}
5443
5444void kvm_mmu_uninit_vm(struct kvm *kvm)
5445{
5446 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5447
5448 kvm_page_track_unregister_notifier(kvm, node);
5449
5450 kvm_mmu_uninit_tdp_mmu(kvm);
5451}
5452
5453void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5454{
5455 struct kvm_memslots *slots;
5456 struct kvm_memory_slot *memslot;
5457 int i;
5458 bool flush;
5459
5460 write_lock(&kvm->mmu_lock);
5461 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5462 slots = __kvm_memslots(kvm, i);
5463 kvm_for_each_memslot(memslot, slots) {
5464 gfn_t start, end;
5465
5466 start = max(gfn_start, memslot->base_gfn);
5467 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5468 if (start >= end)
5469 continue;
5470
5471 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5472 PG_LEVEL_4K,
5473 KVM_MAX_HUGEPAGE_LEVEL,
5474 start, end - 1, true);
5475 }
5476 }
5477
5478 if (is_tdp_mmu_enabled(kvm)) {
5479 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5480 if (flush)
5481 kvm_flush_remote_tlbs(kvm);
5482 }
5483
5484 write_unlock(&kvm->mmu_lock);
5485}
5486
5487static bool slot_rmap_write_protect(struct kvm *kvm,
5488 struct kvm_rmap_head *rmap_head,
5489 struct kvm_memory_slot *slot)
5490{
5491 return __rmap_write_protect(kvm, rmap_head, false);
5492}
5493
5494void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5495 struct kvm_memory_slot *memslot,
5496 int start_level)
5497{
5498 bool flush;
5499
5500 write_lock(&kvm->mmu_lock);
5501 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5502 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5503 if (is_tdp_mmu_enabled(kvm))
5504 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5505 write_unlock(&kvm->mmu_lock);
5506
5507 /*
5508 * We can flush all the TLBs out of the mmu lock without TLB
5509 * corruption since we just change the spte from writable to
5510 * readonly so that we only need to care the case of changing
5511 * spte from present to present (changing the spte from present
5512 * to nonpresent will flush all the TLBs immediately), in other
5513 * words, the only case we care is mmu_spte_update() where we
5514 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5515 * instead of PT_WRITABLE_MASK, that means it does not depend
5516 * on PT_WRITABLE_MASK anymore.
5517 */
5518 if (flush)
5519 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5520}
5521
5522static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5523 struct kvm_rmap_head *rmap_head,
5524 struct kvm_memory_slot *slot)
5525{
5526 u64 *sptep;
5527 struct rmap_iterator iter;
5528 int need_tlb_flush = 0;
5529 kvm_pfn_t pfn;
5530 struct kvm_mmu_page *sp;
5531
5532restart:
5533 for_each_rmap_spte(rmap_head, &iter, sptep) {
5534 sp = sptep_to_sp(sptep);
5535 pfn = spte_to_pfn(*sptep);
5536
5537 /*
5538 * We cannot do huge page mapping for indirect shadow pages,
5539 * which are found on the last rmap (level = 1) when not using
5540 * tdp; such shadow pages are synced with the page table in
5541 * the guest, and the guest page table is using 4K page size
5542 * mapping if the indirect sp has level = 1.
5543 */
5544 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5545 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5546 pfn, PG_LEVEL_NUM)) {
5547 pte_list_remove(rmap_head, sptep);
5548
5549 if (kvm_available_flush_tlb_with_range())
5550 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5551 KVM_PAGES_PER_HPAGE(sp->role.level));
5552 else
5553 need_tlb_flush = 1;
5554
5555 goto restart;
5556 }
5557 }
5558
5559 return need_tlb_flush;
5560}
5561
5562void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5563 const struct kvm_memory_slot *memslot)
5564{
5565 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5566 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5567
5568 write_lock(&kvm->mmu_lock);
5569 slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5570
5571 if (is_tdp_mmu_enabled(kvm))
5572 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5573 write_unlock(&kvm->mmu_lock);
5574}
5575
5576void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5577 struct kvm_memory_slot *memslot)
5578{
5579 /*
5580 * All current use cases for flushing the TLBs for a specific memslot
5581 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5582 * The interaction between the various operations on memslot must be
5583 * serialized by slots_locks to ensure the TLB flush from one operation
5584 * is observed by any other operation on the same memslot.
5585 */
5586 lockdep_assert_held(&kvm->slots_lock);
5587 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5588 memslot->npages);
5589}
5590
5591void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5592 struct kvm_memory_slot *memslot)
5593{
5594 bool flush;
5595
5596 write_lock(&kvm->mmu_lock);
5597 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5598 if (is_tdp_mmu_enabled(kvm))
5599 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5600 write_unlock(&kvm->mmu_lock);
5601
5602 /*
5603 * It's also safe to flush TLBs out of mmu lock here as currently this
5604 * function is only used for dirty logging, in which case flushing TLB
5605 * out of mmu lock also guarantees no dirty pages will be lost in
5606 * dirty_bitmap.
5607 */
5608 if (flush)
5609 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5610}
5611
5612void kvm_mmu_zap_all(struct kvm *kvm)
5613{
5614 struct kvm_mmu_page *sp, *node;
5615 LIST_HEAD(invalid_list);
5616 int ign;
5617
5618 write_lock(&kvm->mmu_lock);
5619restart:
5620 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5621 if (WARN_ON(sp->role.invalid))
5622 continue;
5623 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5624 goto restart;
5625 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5626 goto restart;
5627 }
5628
5629 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5630
5631 if (is_tdp_mmu_enabled(kvm))
5632 kvm_tdp_mmu_zap_all(kvm);
5633
5634 write_unlock(&kvm->mmu_lock);
5635}
5636
5637void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5638{
5639 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5640
5641 gen &= MMIO_SPTE_GEN_MASK;
5642
5643 /*
5644 * Generation numbers are incremented in multiples of the number of
5645 * address spaces in order to provide unique generations across all
5646 * address spaces. Strip what is effectively the address space
5647 * modifier prior to checking for a wrap of the MMIO generation so
5648 * that a wrap in any address space is detected.
5649 */
5650 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5651
5652 /*
5653 * The very rare case: if the MMIO generation number has wrapped,
5654 * zap all shadow pages.
5655 */
5656 if (unlikely(gen == 0)) {
5657 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5658 kvm_mmu_zap_all_fast(kvm);
5659 }
5660}
5661
5662static unsigned long
5663mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5664{
5665 struct kvm *kvm;
5666 int nr_to_scan = sc->nr_to_scan;
5667 unsigned long freed = 0;
5668
5669 mutex_lock(&kvm_lock);
5670
5671 list_for_each_entry(kvm, &vm_list, vm_list) {
5672 int idx;
5673 LIST_HEAD(invalid_list);
5674
5675 /*
5676 * Never scan more than sc->nr_to_scan VM instances.
5677 * Will not hit this condition practically since we do not try
5678 * to shrink more than one VM and it is very unlikely to see
5679 * !n_used_mmu_pages so many times.
5680 */
5681 if (!nr_to_scan--)
5682 break;
5683 /*
5684 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5685 * here. We may skip a VM instance errorneosly, but we do not
5686 * want to shrink a VM that only started to populate its MMU
5687 * anyway.
5688 */
5689 if (!kvm->arch.n_used_mmu_pages &&
5690 !kvm_has_zapped_obsolete_pages(kvm))
5691 continue;
5692
5693 idx = srcu_read_lock(&kvm->srcu);
5694 write_lock(&kvm->mmu_lock);
5695
5696 if (kvm_has_zapped_obsolete_pages(kvm)) {
5697 kvm_mmu_commit_zap_page(kvm,
5698 &kvm->arch.zapped_obsolete_pages);
5699 goto unlock;
5700 }
5701
5702 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5703
5704unlock:
5705 write_unlock(&kvm->mmu_lock);
5706 srcu_read_unlock(&kvm->srcu, idx);
5707
5708 /*
5709 * unfair on small ones
5710 * per-vm shrinkers cry out
5711 * sadness comes quickly
5712 */
5713 list_move_tail(&kvm->vm_list, &vm_list);
5714 break;
5715 }
5716
5717 mutex_unlock(&kvm_lock);
5718 return freed;
5719}
5720
5721static unsigned long
5722mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5723{
5724 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5725}
5726
5727static struct shrinker mmu_shrinker = {
5728 .count_objects = mmu_shrink_count,
5729 .scan_objects = mmu_shrink_scan,
5730 .seeks = DEFAULT_SEEKS * 10,
5731};
5732
5733static void mmu_destroy_caches(void)
5734{
5735 kmem_cache_destroy(pte_list_desc_cache);
5736 kmem_cache_destroy(mmu_page_header_cache);
5737}
5738
5739static void kvm_set_mmio_spte_mask(void)
5740{
5741 u64 mask;
5742
5743 /*
5744 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5745 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5746 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5747 * 52-bit physical addresses then there are no reserved PA bits in the
5748 * PTEs and so the reserved PA approach must be disabled.
5749 */
5750 if (shadow_phys_bits < 52)
5751 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5752 else
5753 mask = 0;
5754
5755 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5756}
5757
5758static bool get_nx_auto_mode(void)
5759{
5760 /* Return true when CPU has the bug, and mitigations are ON */
5761 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5762}
5763
5764static void __set_nx_huge_pages(bool val)
5765{
5766 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5767}
5768
5769static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5770{
5771 bool old_val = nx_huge_pages;
5772 bool new_val;
5773
5774 /* In "auto" mode deploy workaround only if CPU has the bug. */
5775 if (sysfs_streq(val, "off"))
5776 new_val = 0;
5777 else if (sysfs_streq(val, "force"))
5778 new_val = 1;
5779 else if (sysfs_streq(val, "auto"))
5780 new_val = get_nx_auto_mode();
5781 else if (strtobool(val, &new_val) < 0)
5782 return -EINVAL;
5783
5784 __set_nx_huge_pages(new_val);
5785
5786 if (new_val != old_val) {
5787 struct kvm *kvm;
5788
5789 mutex_lock(&kvm_lock);
5790
5791 list_for_each_entry(kvm, &vm_list, vm_list) {
5792 mutex_lock(&kvm->slots_lock);
5793 kvm_mmu_zap_all_fast(kvm);
5794 mutex_unlock(&kvm->slots_lock);
5795
5796 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5797 }
5798 mutex_unlock(&kvm_lock);
5799 }
5800
5801 return 0;
5802}
5803
5804int kvm_mmu_module_init(void)
5805{
5806 int ret = -ENOMEM;
5807
5808 if (nx_huge_pages == -1)
5809 __set_nx_huge_pages(get_nx_auto_mode());
5810
5811 /*
5812 * MMU roles use union aliasing which is, generally speaking, an
5813 * undefined behavior. However, we supposedly know how compilers behave
5814 * and the current status quo is unlikely to change. Guardians below are
5815 * supposed to let us know if the assumption becomes false.
5816 */
5817 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5818 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5819 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5820
5821 kvm_mmu_reset_all_pte_masks();
5822
5823 kvm_set_mmio_spte_mask();
5824
5825 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5826 sizeof(struct pte_list_desc),
5827 0, SLAB_ACCOUNT, NULL);
5828 if (!pte_list_desc_cache)
5829 goto out;
5830
5831 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5832 sizeof(struct kvm_mmu_page),
5833 0, SLAB_ACCOUNT, NULL);
5834 if (!mmu_page_header_cache)
5835 goto out;
5836
5837 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5838 goto out;
5839
5840 ret = register_shrinker(&mmu_shrinker);
5841 if (ret)
5842 goto out;
5843
5844 return 0;
5845
5846out:
5847 mmu_destroy_caches();
5848 return ret;
5849}
5850
5851/*
5852 * Calculate mmu pages needed for kvm.
5853 */
5854unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5855{
5856 unsigned long nr_mmu_pages;
5857 unsigned long nr_pages = 0;
5858 struct kvm_memslots *slots;
5859 struct kvm_memory_slot *memslot;
5860 int i;
5861
5862 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5863 slots = __kvm_memslots(kvm, i);
5864
5865 kvm_for_each_memslot(memslot, slots)
5866 nr_pages += memslot->npages;
5867 }
5868
5869 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5870 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5871
5872 return nr_mmu_pages;
5873}
5874
5875void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5876{
5877 kvm_mmu_unload(vcpu);
5878 free_mmu_pages(&vcpu->arch.root_mmu);
5879 free_mmu_pages(&vcpu->arch.guest_mmu);
5880 mmu_free_memory_caches(vcpu);
5881}
5882
5883void kvm_mmu_module_exit(void)
5884{
5885 mmu_destroy_caches();
5886 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5887 unregister_shrinker(&mmu_shrinker);
5888 mmu_audit_disable();
5889}
5890
5891static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5892{
5893 unsigned int old_val;
5894 int err;
5895
5896 old_val = nx_huge_pages_recovery_ratio;
5897 err = param_set_uint(val, kp);
5898 if (err)
5899 return err;
5900
5901 if (READ_ONCE(nx_huge_pages) &&
5902 !old_val && nx_huge_pages_recovery_ratio) {
5903 struct kvm *kvm;
5904
5905 mutex_lock(&kvm_lock);
5906
5907 list_for_each_entry(kvm, &vm_list, vm_list)
5908 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5909
5910 mutex_unlock(&kvm_lock);
5911 }
5912
5913 return err;
5914}
5915
5916static void kvm_recover_nx_lpages(struct kvm *kvm)
5917{
5918 int rcu_idx;
5919 struct kvm_mmu_page *sp;
5920 unsigned int ratio;
5921 LIST_HEAD(invalid_list);
5922 ulong to_zap;
5923
5924 rcu_idx = srcu_read_lock(&kvm->srcu);
5925 write_lock(&kvm->mmu_lock);
5926
5927 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5928 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5929 for ( ; to_zap; --to_zap) {
5930 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5931 break;
5932
5933 /*
5934 * We use a separate list instead of just using active_mmu_pages
5935 * because the number of lpage_disallowed pages is expected to
5936 * be relatively small compared to the total.
5937 */
5938 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5939 struct kvm_mmu_page,
5940 lpage_disallowed_link);
5941 WARN_ON_ONCE(!sp->lpage_disallowed);
5942 if (is_tdp_mmu_page(sp)) {
5943 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5944 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5945 } else {
5946 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5947 WARN_ON_ONCE(sp->lpage_disallowed);
5948 }
5949
5950 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5951 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5952 cond_resched_rwlock_write(&kvm->mmu_lock);
5953 }
5954 }
5955 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5956
5957 write_unlock(&kvm->mmu_lock);
5958 srcu_read_unlock(&kvm->srcu, rcu_idx);
5959}
5960
5961static long get_nx_lpage_recovery_timeout(u64 start_time)
5962{
5963 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5964 ? start_time + 60 * HZ - get_jiffies_64()
5965 : MAX_SCHEDULE_TIMEOUT;
5966}
5967
5968static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5969{
5970 u64 start_time;
5971 long remaining_time;
5972
5973 while (true) {
5974 start_time = get_jiffies_64();
5975 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5976
5977 set_current_state(TASK_INTERRUPTIBLE);
5978 while (!kthread_should_stop() && remaining_time > 0) {
5979 schedule_timeout(remaining_time);
5980 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5981 set_current_state(TASK_INTERRUPTIBLE);
5982 }
5983
5984 set_current_state(TASK_RUNNING);
5985
5986 if (kthread_should_stop())
5987 return 0;
5988
5989 kvm_recover_nx_lpages(kvm);
5990 }
5991}
5992
5993int kvm_mmu_post_init_vm(struct kvm *kvm)
5994{
5995 int err;
5996
5997 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5998 "kvm-nx-lpage-recovery",
5999 &kvm->arch.nx_lpage_recovery_thread);
6000 if (!err)
6001 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6002
6003 return err;
6004}
6005
6006void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6007{
6008 if (kvm->arch.nx_lpage_recovery_thread)
6009 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6010}