]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - arch/x86/kvm/vmx.c
KVM: X86: MMU: no mmu_notifier_seq++ in kvm_age_hva
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include "irq.h"
20#include "mmu.h"
21#include "cpuid.h"
22#include "lapic.h"
23
24#include <linux/kvm_host.h>
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/mm.h>
28#include <linux/highmem.h>
29#include <linux/sched.h>
30#include <linux/moduleparam.h>
31#include <linux/mod_devicetable.h>
32#include <linux/trace_events.h>
33#include <linux/slab.h>
34#include <linux/tboot.h>
35#include <linux/hrtimer.h>
36#include "kvm_cache_regs.h"
37#include "x86.h"
38
39#include <asm/cpu.h>
40#include <asm/io.h>
41#include <asm/desc.h>
42#include <asm/vmx.h>
43#include <asm/virtext.h>
44#include <asm/mce.h>
45#include <asm/fpu/internal.h>
46#include <asm/perf_event.h>
47#include <asm/debugreg.h>
48#include <asm/kexec.h>
49#include <asm/apic.h>
50#include <asm/irq_remapping.h>
51
52#include "trace.h"
53#include "pmu.h"
54
55#define __ex(x) __kvm_handle_fault_on_reboot(x)
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68static bool __read_mostly enable_vpid = 1;
69module_param_named(vpid, enable_vpid, bool, 0444);
70
71static bool __read_mostly flexpriority_enabled = 1;
72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74static bool __read_mostly enable_ept = 1;
75module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77static bool __read_mostly enable_unrestricted_guest = 1;
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84static bool __read_mostly emulate_invalid_guest_state = true;
85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87static bool __read_mostly vmm_exclusive = 1;
88module_param(vmm_exclusive, bool, S_IRUGO);
89
90static bool __read_mostly fasteoi = 1;
91module_param(fasteoi, bool, S_IRUGO);
92
93static bool __read_mostly enable_apicv = 1;
94module_param(enable_apicv, bool, S_IRUGO);
95
96static bool __read_mostly enable_shadow_vmcs = 1;
97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98/*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
103static bool __read_mostly nested = 0;
104module_param(nested, bool, S_IRUGO);
105
106static u64 __read_mostly host_xss;
107
108static bool __read_mostly enable_pml = 1;
109module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
113/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
114static int __read_mostly cpu_preemption_timer_multi;
115static bool __read_mostly enable_preemption_timer = 1;
116#ifdef CONFIG_X86_64
117module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
118#endif
119
120#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
121#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
122#define KVM_VM_CR0_ALWAYS_ON \
123 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
124#define KVM_CR4_GUEST_OWNED_BITS \
125 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
126 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
127
128#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
129#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
130
131#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
132
133#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
134
135/*
136 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
137 * ple_gap: upper bound on the amount of time between two successive
138 * executions of PAUSE in a loop. Also indicate if ple enabled.
139 * According to test, this time is usually smaller than 128 cycles.
140 * ple_window: upper bound on the amount of time a guest is allowed to execute
141 * in a PAUSE loop. Tests indicate that most spinlocks are held for
142 * less than 2^12 cycles
143 * Time is measured based on a counter that runs at the same rate as the TSC,
144 * refer SDM volume 3b section 21.6.13 & 22.1.3.
145 */
146#define KVM_VMX_DEFAULT_PLE_GAP 128
147#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
148#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
149#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
150#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
151 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
152
153static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
154module_param(ple_gap, int, S_IRUGO);
155
156static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
157module_param(ple_window, int, S_IRUGO);
158
159/* Default doubles per-vcpu window every exit. */
160static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
161module_param(ple_window_grow, int, S_IRUGO);
162
163/* Default resets per-vcpu window every exit to ple_window. */
164static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
165module_param(ple_window_shrink, int, S_IRUGO);
166
167/* Default is to compute the maximum so we can never overflow. */
168static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
169static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
170module_param(ple_window_max, int, S_IRUGO);
171
172extern const ulong vmx_return;
173
174#define NR_AUTOLOAD_MSRS 8
175#define VMCS02_POOL_SIZE 1
176
177struct vmcs {
178 u32 revision_id;
179 u32 abort;
180 char data[0];
181};
182
183/*
184 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
185 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
186 * loaded on this CPU (so we can clear them if the CPU goes down).
187 */
188struct loaded_vmcs {
189 struct vmcs *vmcs;
190 struct vmcs *shadow_vmcs;
191 int cpu;
192 int launched;
193 struct list_head loaded_vmcss_on_cpu_link;
194};
195
196struct shared_msr_entry {
197 unsigned index;
198 u64 data;
199 u64 mask;
200};
201
202/*
203 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
204 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
205 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
206 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
207 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
208 * More than one of these structures may exist, if L1 runs multiple L2 guests.
209 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
210 * underlying hardware which will be used to run L2.
211 * This structure is packed to ensure that its layout is identical across
212 * machines (necessary for live migration).
213 * If there are changes in this struct, VMCS12_REVISION must be changed.
214 */
215typedef u64 natural_width;
216struct __packed vmcs12 {
217 /* According to the Intel spec, a VMCS region must start with the
218 * following two fields. Then follow implementation-specific data.
219 */
220 u32 revision_id;
221 u32 abort;
222
223 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
224 u32 padding[7]; /* room for future expansion */
225
226 u64 io_bitmap_a;
227 u64 io_bitmap_b;
228 u64 msr_bitmap;
229 u64 vm_exit_msr_store_addr;
230 u64 vm_exit_msr_load_addr;
231 u64 vm_entry_msr_load_addr;
232 u64 tsc_offset;
233 u64 virtual_apic_page_addr;
234 u64 apic_access_addr;
235 u64 posted_intr_desc_addr;
236 u64 ept_pointer;
237 u64 eoi_exit_bitmap0;
238 u64 eoi_exit_bitmap1;
239 u64 eoi_exit_bitmap2;
240 u64 eoi_exit_bitmap3;
241 u64 xss_exit_bitmap;
242 u64 guest_physical_address;
243 u64 vmcs_link_pointer;
244 u64 guest_ia32_debugctl;
245 u64 guest_ia32_pat;
246 u64 guest_ia32_efer;
247 u64 guest_ia32_perf_global_ctrl;
248 u64 guest_pdptr0;
249 u64 guest_pdptr1;
250 u64 guest_pdptr2;
251 u64 guest_pdptr3;
252 u64 guest_bndcfgs;
253 u64 host_ia32_pat;
254 u64 host_ia32_efer;
255 u64 host_ia32_perf_global_ctrl;
256 u64 padding64[8]; /* room for future expansion */
257 /*
258 * To allow migration of L1 (complete with its L2 guests) between
259 * machines of different natural widths (32 or 64 bit), we cannot have
260 * unsigned long fields with no explict size. We use u64 (aliased
261 * natural_width) instead. Luckily, x86 is little-endian.
262 */
263 natural_width cr0_guest_host_mask;
264 natural_width cr4_guest_host_mask;
265 natural_width cr0_read_shadow;
266 natural_width cr4_read_shadow;
267 natural_width cr3_target_value0;
268 natural_width cr3_target_value1;
269 natural_width cr3_target_value2;
270 natural_width cr3_target_value3;
271 natural_width exit_qualification;
272 natural_width guest_linear_address;
273 natural_width guest_cr0;
274 natural_width guest_cr3;
275 natural_width guest_cr4;
276 natural_width guest_es_base;
277 natural_width guest_cs_base;
278 natural_width guest_ss_base;
279 natural_width guest_ds_base;
280 natural_width guest_fs_base;
281 natural_width guest_gs_base;
282 natural_width guest_ldtr_base;
283 natural_width guest_tr_base;
284 natural_width guest_gdtr_base;
285 natural_width guest_idtr_base;
286 natural_width guest_dr7;
287 natural_width guest_rsp;
288 natural_width guest_rip;
289 natural_width guest_rflags;
290 natural_width guest_pending_dbg_exceptions;
291 natural_width guest_sysenter_esp;
292 natural_width guest_sysenter_eip;
293 natural_width host_cr0;
294 natural_width host_cr3;
295 natural_width host_cr4;
296 natural_width host_fs_base;
297 natural_width host_gs_base;
298 natural_width host_tr_base;
299 natural_width host_gdtr_base;
300 natural_width host_idtr_base;
301 natural_width host_ia32_sysenter_esp;
302 natural_width host_ia32_sysenter_eip;
303 natural_width host_rsp;
304 natural_width host_rip;
305 natural_width paddingl[8]; /* room for future expansion */
306 u32 pin_based_vm_exec_control;
307 u32 cpu_based_vm_exec_control;
308 u32 exception_bitmap;
309 u32 page_fault_error_code_mask;
310 u32 page_fault_error_code_match;
311 u32 cr3_target_count;
312 u32 vm_exit_controls;
313 u32 vm_exit_msr_store_count;
314 u32 vm_exit_msr_load_count;
315 u32 vm_entry_controls;
316 u32 vm_entry_msr_load_count;
317 u32 vm_entry_intr_info_field;
318 u32 vm_entry_exception_error_code;
319 u32 vm_entry_instruction_len;
320 u32 tpr_threshold;
321 u32 secondary_vm_exec_control;
322 u32 vm_instruction_error;
323 u32 vm_exit_reason;
324 u32 vm_exit_intr_info;
325 u32 vm_exit_intr_error_code;
326 u32 idt_vectoring_info_field;
327 u32 idt_vectoring_error_code;
328 u32 vm_exit_instruction_len;
329 u32 vmx_instruction_info;
330 u32 guest_es_limit;
331 u32 guest_cs_limit;
332 u32 guest_ss_limit;
333 u32 guest_ds_limit;
334 u32 guest_fs_limit;
335 u32 guest_gs_limit;
336 u32 guest_ldtr_limit;
337 u32 guest_tr_limit;
338 u32 guest_gdtr_limit;
339 u32 guest_idtr_limit;
340 u32 guest_es_ar_bytes;
341 u32 guest_cs_ar_bytes;
342 u32 guest_ss_ar_bytes;
343 u32 guest_ds_ar_bytes;
344 u32 guest_fs_ar_bytes;
345 u32 guest_gs_ar_bytes;
346 u32 guest_ldtr_ar_bytes;
347 u32 guest_tr_ar_bytes;
348 u32 guest_interruptibility_info;
349 u32 guest_activity_state;
350 u32 guest_sysenter_cs;
351 u32 host_ia32_sysenter_cs;
352 u32 vmx_preemption_timer_value;
353 u32 padding32[7]; /* room for future expansion */
354 u16 virtual_processor_id;
355 u16 posted_intr_nv;
356 u16 guest_es_selector;
357 u16 guest_cs_selector;
358 u16 guest_ss_selector;
359 u16 guest_ds_selector;
360 u16 guest_fs_selector;
361 u16 guest_gs_selector;
362 u16 guest_ldtr_selector;
363 u16 guest_tr_selector;
364 u16 guest_intr_status;
365 u16 host_es_selector;
366 u16 host_cs_selector;
367 u16 host_ss_selector;
368 u16 host_ds_selector;
369 u16 host_fs_selector;
370 u16 host_gs_selector;
371 u16 host_tr_selector;
372};
373
374/*
375 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
376 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
377 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
378 */
379#define VMCS12_REVISION 0x11e57ed0
380
381/*
382 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
383 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
384 * current implementation, 4K are reserved to avoid future complications.
385 */
386#define VMCS12_SIZE 0x1000
387
388/* Used to remember the last vmcs02 used for some recently used vmcs12s */
389struct vmcs02_list {
390 struct list_head list;
391 gpa_t vmptr;
392 struct loaded_vmcs vmcs02;
393};
394
395/*
396 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
397 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
398 */
399struct nested_vmx {
400 /* Has the level1 guest done vmxon? */
401 bool vmxon;
402 gpa_t vmxon_ptr;
403
404 /* The guest-physical address of the current VMCS L1 keeps for L2 */
405 gpa_t current_vmptr;
406 /* The host-usable pointer to the above */
407 struct page *current_vmcs12_page;
408 struct vmcs12 *current_vmcs12;
409 /*
410 * Cache of the guest's VMCS, existing outside of guest memory.
411 * Loaded from guest memory during VMPTRLD. Flushed to guest
412 * memory during VMXOFF, VMCLEAR, VMPTRLD.
413 */
414 struct vmcs12 *cached_vmcs12;
415 /*
416 * Indicates if the shadow vmcs must be updated with the
417 * data hold by vmcs12
418 */
419 bool sync_shadow_vmcs;
420
421 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
422 struct list_head vmcs02_pool;
423 int vmcs02_num;
424 bool change_vmcs01_virtual_x2apic_mode;
425 /* L2 must run next, and mustn't decide to exit to L1. */
426 bool nested_run_pending;
427 /*
428 * Guest pages referred to in vmcs02 with host-physical pointers, so
429 * we must keep them pinned while L2 runs.
430 */
431 struct page *apic_access_page;
432 struct page *virtual_apic_page;
433 struct page *pi_desc_page;
434 struct pi_desc *pi_desc;
435 bool pi_pending;
436 u16 posted_intr_nv;
437
438 unsigned long *msr_bitmap;
439
440 struct hrtimer preemption_timer;
441 bool preemption_timer_expired;
442
443 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
444 u64 vmcs01_debugctl;
445
446 u16 vpid02;
447 u16 last_vpid;
448
449 u32 nested_vmx_procbased_ctls_low;
450 u32 nested_vmx_procbased_ctls_high;
451 u32 nested_vmx_true_procbased_ctls_low;
452 u32 nested_vmx_secondary_ctls_low;
453 u32 nested_vmx_secondary_ctls_high;
454 u32 nested_vmx_pinbased_ctls_low;
455 u32 nested_vmx_pinbased_ctls_high;
456 u32 nested_vmx_exit_ctls_low;
457 u32 nested_vmx_exit_ctls_high;
458 u32 nested_vmx_true_exit_ctls_low;
459 u32 nested_vmx_entry_ctls_low;
460 u32 nested_vmx_entry_ctls_high;
461 u32 nested_vmx_true_entry_ctls_low;
462 u32 nested_vmx_misc_low;
463 u32 nested_vmx_misc_high;
464 u32 nested_vmx_ept_caps;
465 u32 nested_vmx_vpid_caps;
466};
467
468#define POSTED_INTR_ON 0
469#define POSTED_INTR_SN 1
470
471/* Posted-Interrupt Descriptor */
472struct pi_desc {
473 u32 pir[8]; /* Posted interrupt requested */
474 union {
475 struct {
476 /* bit 256 - Outstanding Notification */
477 u16 on : 1,
478 /* bit 257 - Suppress Notification */
479 sn : 1,
480 /* bit 271:258 - Reserved */
481 rsvd_1 : 14;
482 /* bit 279:272 - Notification Vector */
483 u8 nv;
484 /* bit 287:280 - Reserved */
485 u8 rsvd_2;
486 /* bit 319:288 - Notification Destination */
487 u32 ndst;
488 };
489 u64 control;
490 };
491 u32 rsvd[6];
492} __aligned(64);
493
494static bool pi_test_and_set_on(struct pi_desc *pi_desc)
495{
496 return test_and_set_bit(POSTED_INTR_ON,
497 (unsigned long *)&pi_desc->control);
498}
499
500static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
501{
502 return test_and_clear_bit(POSTED_INTR_ON,
503 (unsigned long *)&pi_desc->control);
504}
505
506static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
507{
508 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
509}
510
511static inline void pi_clear_sn(struct pi_desc *pi_desc)
512{
513 return clear_bit(POSTED_INTR_SN,
514 (unsigned long *)&pi_desc->control);
515}
516
517static inline void pi_set_sn(struct pi_desc *pi_desc)
518{
519 return set_bit(POSTED_INTR_SN,
520 (unsigned long *)&pi_desc->control);
521}
522
523static inline int pi_test_on(struct pi_desc *pi_desc)
524{
525 return test_bit(POSTED_INTR_ON,
526 (unsigned long *)&pi_desc->control);
527}
528
529static inline int pi_test_sn(struct pi_desc *pi_desc)
530{
531 return test_bit(POSTED_INTR_SN,
532 (unsigned long *)&pi_desc->control);
533}
534
535struct vcpu_vmx {
536 struct kvm_vcpu vcpu;
537 unsigned long host_rsp;
538 u8 fail;
539 bool nmi_known_unmasked;
540 u32 exit_intr_info;
541 u32 idt_vectoring_info;
542 ulong rflags;
543 struct shared_msr_entry *guest_msrs;
544 int nmsrs;
545 int save_nmsrs;
546 unsigned long host_idt_base;
547#ifdef CONFIG_X86_64
548 u64 msr_host_kernel_gs_base;
549 u64 msr_guest_kernel_gs_base;
550#endif
551 u32 vm_entry_controls_shadow;
552 u32 vm_exit_controls_shadow;
553 /*
554 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
555 * non-nested (L1) guest, it always points to vmcs01. For a nested
556 * guest (L2), it points to a different VMCS.
557 */
558 struct loaded_vmcs vmcs01;
559 struct loaded_vmcs *loaded_vmcs;
560 bool __launched; /* temporary, used in vmx_vcpu_run */
561 struct msr_autoload {
562 unsigned nr;
563 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
564 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
565 } msr_autoload;
566 struct {
567 int loaded;
568 u16 fs_sel, gs_sel, ldt_sel;
569#ifdef CONFIG_X86_64
570 u16 ds_sel, es_sel;
571#endif
572 int gs_ldt_reload_needed;
573 int fs_reload_needed;
574 u64 msr_host_bndcfgs;
575 unsigned long vmcs_host_cr4; /* May not match real cr4 */
576 } host_state;
577 struct {
578 int vm86_active;
579 ulong save_rflags;
580 struct kvm_segment segs[8];
581 } rmode;
582 struct {
583 u32 bitmask; /* 4 bits per segment (1 bit per field) */
584 struct kvm_save_segment {
585 u16 selector;
586 unsigned long base;
587 u32 limit;
588 u32 ar;
589 } seg[8];
590 } segment_cache;
591 int vpid;
592 bool emulation_required;
593
594 /* Support for vnmi-less CPUs */
595 int soft_vnmi_blocked;
596 ktime_t entry_time;
597 s64 vnmi_blocked_time;
598 u32 exit_reason;
599
600 /* Posted interrupt descriptor */
601 struct pi_desc pi_desc;
602
603 /* Support for a guest hypervisor (nested VMX) */
604 struct nested_vmx nested;
605
606 /* Dynamic PLE window. */
607 int ple_window;
608 bool ple_window_dirty;
609
610 /* Support for PML */
611#define PML_ENTITY_NUM 512
612 struct page *pml_pg;
613
614 /* apic deadline value in host tsc */
615 u64 hv_deadline_tsc;
616
617 u64 current_tsc_ratio;
618
619 bool guest_pkru_valid;
620 u32 guest_pkru;
621 u32 host_pkru;
622
623 /*
624 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
625 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
626 * in msr_ia32_feature_control_valid_bits.
627 */
628 u64 msr_ia32_feature_control;
629 u64 msr_ia32_feature_control_valid_bits;
630};
631
632enum segment_cache_field {
633 SEG_FIELD_SEL = 0,
634 SEG_FIELD_BASE = 1,
635 SEG_FIELD_LIMIT = 2,
636 SEG_FIELD_AR = 3,
637
638 SEG_FIELD_NR = 4
639};
640
641static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
642{
643 return container_of(vcpu, struct vcpu_vmx, vcpu);
644}
645
646static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
647{
648 return &(to_vmx(vcpu)->pi_desc);
649}
650
651#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
652#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
653#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
654 [number##_HIGH] = VMCS12_OFFSET(name)+4
655
656
657static unsigned long shadow_read_only_fields[] = {
658 /*
659 * We do NOT shadow fields that are modified when L0
660 * traps and emulates any vmx instruction (e.g. VMPTRLD,
661 * VMXON...) executed by L1.
662 * For example, VM_INSTRUCTION_ERROR is read
663 * by L1 if a vmx instruction fails (part of the error path).
664 * Note the code assumes this logic. If for some reason
665 * we start shadowing these fields then we need to
666 * force a shadow sync when L0 emulates vmx instructions
667 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
668 * by nested_vmx_failValid)
669 */
670 VM_EXIT_REASON,
671 VM_EXIT_INTR_INFO,
672 VM_EXIT_INSTRUCTION_LEN,
673 IDT_VECTORING_INFO_FIELD,
674 IDT_VECTORING_ERROR_CODE,
675 VM_EXIT_INTR_ERROR_CODE,
676 EXIT_QUALIFICATION,
677 GUEST_LINEAR_ADDRESS,
678 GUEST_PHYSICAL_ADDRESS
679};
680static int max_shadow_read_only_fields =
681 ARRAY_SIZE(shadow_read_only_fields);
682
683static unsigned long shadow_read_write_fields[] = {
684 TPR_THRESHOLD,
685 GUEST_RIP,
686 GUEST_RSP,
687 GUEST_CR0,
688 GUEST_CR3,
689 GUEST_CR4,
690 GUEST_INTERRUPTIBILITY_INFO,
691 GUEST_RFLAGS,
692 GUEST_CS_SELECTOR,
693 GUEST_CS_AR_BYTES,
694 GUEST_CS_LIMIT,
695 GUEST_CS_BASE,
696 GUEST_ES_BASE,
697 GUEST_BNDCFGS,
698 CR0_GUEST_HOST_MASK,
699 CR0_READ_SHADOW,
700 CR4_READ_SHADOW,
701 TSC_OFFSET,
702 EXCEPTION_BITMAP,
703 CPU_BASED_VM_EXEC_CONTROL,
704 VM_ENTRY_EXCEPTION_ERROR_CODE,
705 VM_ENTRY_INTR_INFO_FIELD,
706 VM_ENTRY_INSTRUCTION_LEN,
707 VM_ENTRY_EXCEPTION_ERROR_CODE,
708 HOST_FS_BASE,
709 HOST_GS_BASE,
710 HOST_FS_SELECTOR,
711 HOST_GS_SELECTOR
712};
713static int max_shadow_read_write_fields =
714 ARRAY_SIZE(shadow_read_write_fields);
715
716static const unsigned short vmcs_field_to_offset_table[] = {
717 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
718 FIELD(POSTED_INTR_NV, posted_intr_nv),
719 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
720 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
721 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
722 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
723 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
724 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
725 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
726 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
727 FIELD(GUEST_INTR_STATUS, guest_intr_status),
728 FIELD(HOST_ES_SELECTOR, host_es_selector),
729 FIELD(HOST_CS_SELECTOR, host_cs_selector),
730 FIELD(HOST_SS_SELECTOR, host_ss_selector),
731 FIELD(HOST_DS_SELECTOR, host_ds_selector),
732 FIELD(HOST_FS_SELECTOR, host_fs_selector),
733 FIELD(HOST_GS_SELECTOR, host_gs_selector),
734 FIELD(HOST_TR_SELECTOR, host_tr_selector),
735 FIELD64(IO_BITMAP_A, io_bitmap_a),
736 FIELD64(IO_BITMAP_B, io_bitmap_b),
737 FIELD64(MSR_BITMAP, msr_bitmap),
738 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
739 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
740 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
741 FIELD64(TSC_OFFSET, tsc_offset),
742 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
743 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
744 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
745 FIELD64(EPT_POINTER, ept_pointer),
746 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
747 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
748 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
749 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
750 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
751 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
752 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
753 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
754 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
755 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
756 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
757 FIELD64(GUEST_PDPTR0, guest_pdptr0),
758 FIELD64(GUEST_PDPTR1, guest_pdptr1),
759 FIELD64(GUEST_PDPTR2, guest_pdptr2),
760 FIELD64(GUEST_PDPTR3, guest_pdptr3),
761 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
762 FIELD64(HOST_IA32_PAT, host_ia32_pat),
763 FIELD64(HOST_IA32_EFER, host_ia32_efer),
764 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
765 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
766 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
767 FIELD(EXCEPTION_BITMAP, exception_bitmap),
768 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
769 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
770 FIELD(CR3_TARGET_COUNT, cr3_target_count),
771 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
772 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
773 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
774 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
775 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
776 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
777 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
778 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
779 FIELD(TPR_THRESHOLD, tpr_threshold),
780 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
781 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
782 FIELD(VM_EXIT_REASON, vm_exit_reason),
783 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
784 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
785 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
786 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
787 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
788 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
789 FIELD(GUEST_ES_LIMIT, guest_es_limit),
790 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
791 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
792 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
793 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
794 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
795 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
796 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
797 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
798 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
799 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
800 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
801 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
802 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
803 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
804 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
805 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
806 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
807 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
808 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
809 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
810 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
811 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
812 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
813 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
814 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
815 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
816 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
817 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
818 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
819 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
820 FIELD(EXIT_QUALIFICATION, exit_qualification),
821 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
822 FIELD(GUEST_CR0, guest_cr0),
823 FIELD(GUEST_CR3, guest_cr3),
824 FIELD(GUEST_CR4, guest_cr4),
825 FIELD(GUEST_ES_BASE, guest_es_base),
826 FIELD(GUEST_CS_BASE, guest_cs_base),
827 FIELD(GUEST_SS_BASE, guest_ss_base),
828 FIELD(GUEST_DS_BASE, guest_ds_base),
829 FIELD(GUEST_FS_BASE, guest_fs_base),
830 FIELD(GUEST_GS_BASE, guest_gs_base),
831 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
832 FIELD(GUEST_TR_BASE, guest_tr_base),
833 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
834 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
835 FIELD(GUEST_DR7, guest_dr7),
836 FIELD(GUEST_RSP, guest_rsp),
837 FIELD(GUEST_RIP, guest_rip),
838 FIELD(GUEST_RFLAGS, guest_rflags),
839 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
840 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
841 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
842 FIELD(HOST_CR0, host_cr0),
843 FIELD(HOST_CR3, host_cr3),
844 FIELD(HOST_CR4, host_cr4),
845 FIELD(HOST_FS_BASE, host_fs_base),
846 FIELD(HOST_GS_BASE, host_gs_base),
847 FIELD(HOST_TR_BASE, host_tr_base),
848 FIELD(HOST_GDTR_BASE, host_gdtr_base),
849 FIELD(HOST_IDTR_BASE, host_idtr_base),
850 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
851 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
852 FIELD(HOST_RSP, host_rsp),
853 FIELD(HOST_RIP, host_rip),
854};
855
856static inline short vmcs_field_to_offset(unsigned long field)
857{
858 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
859
860 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
861 vmcs_field_to_offset_table[field] == 0)
862 return -ENOENT;
863
864 return vmcs_field_to_offset_table[field];
865}
866
867static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
868{
869 return to_vmx(vcpu)->nested.cached_vmcs12;
870}
871
872static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
873{
874 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
875 if (is_error_page(page))
876 return NULL;
877
878 return page;
879}
880
881static void nested_release_page(struct page *page)
882{
883 kvm_release_page_dirty(page);
884}
885
886static void nested_release_page_clean(struct page *page)
887{
888 kvm_release_page_clean(page);
889}
890
891static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
892static u64 construct_eptp(unsigned long root_hpa);
893static void kvm_cpu_vmxon(u64 addr);
894static void kvm_cpu_vmxoff(void);
895static bool vmx_xsaves_supported(void);
896static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
897static void vmx_set_segment(struct kvm_vcpu *vcpu,
898 struct kvm_segment *var, int seg);
899static void vmx_get_segment(struct kvm_vcpu *vcpu,
900 struct kvm_segment *var, int seg);
901static bool guest_state_valid(struct kvm_vcpu *vcpu);
902static u32 vmx_segment_access_rights(struct kvm_segment *var);
903static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
904static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
905static int alloc_identity_pagetable(struct kvm *kvm);
906
907static DEFINE_PER_CPU(struct vmcs *, vmxarea);
908static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
909/*
910 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
911 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
912 */
913static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
914static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
915
916/*
917 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
918 * can find which vCPU should be waken up.
919 */
920static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
921static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
922
923static unsigned long *vmx_io_bitmap_a;
924static unsigned long *vmx_io_bitmap_b;
925static unsigned long *vmx_msr_bitmap_legacy;
926static unsigned long *vmx_msr_bitmap_longmode;
927static unsigned long *vmx_msr_bitmap_legacy_x2apic_apicv;
928static unsigned long *vmx_msr_bitmap_longmode_x2apic_apicv;
929static unsigned long *vmx_msr_bitmap_legacy_x2apic;
930static unsigned long *vmx_msr_bitmap_longmode_x2apic;
931static unsigned long *vmx_vmread_bitmap;
932static unsigned long *vmx_vmwrite_bitmap;
933
934static bool cpu_has_load_ia32_efer;
935static bool cpu_has_load_perf_global_ctrl;
936
937static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
938static DEFINE_SPINLOCK(vmx_vpid_lock);
939
940static struct vmcs_config {
941 int size;
942 int order;
943 u32 basic_cap;
944 u32 revision_id;
945 u32 pin_based_exec_ctrl;
946 u32 cpu_based_exec_ctrl;
947 u32 cpu_based_2nd_exec_ctrl;
948 u32 vmexit_ctrl;
949 u32 vmentry_ctrl;
950} vmcs_config;
951
952static struct vmx_capability {
953 u32 ept;
954 u32 vpid;
955} vmx_capability;
956
957#define VMX_SEGMENT_FIELD(seg) \
958 [VCPU_SREG_##seg] = { \
959 .selector = GUEST_##seg##_SELECTOR, \
960 .base = GUEST_##seg##_BASE, \
961 .limit = GUEST_##seg##_LIMIT, \
962 .ar_bytes = GUEST_##seg##_AR_BYTES, \
963 }
964
965static const struct kvm_vmx_segment_field {
966 unsigned selector;
967 unsigned base;
968 unsigned limit;
969 unsigned ar_bytes;
970} kvm_vmx_segment_fields[] = {
971 VMX_SEGMENT_FIELD(CS),
972 VMX_SEGMENT_FIELD(DS),
973 VMX_SEGMENT_FIELD(ES),
974 VMX_SEGMENT_FIELD(FS),
975 VMX_SEGMENT_FIELD(GS),
976 VMX_SEGMENT_FIELD(SS),
977 VMX_SEGMENT_FIELD(TR),
978 VMX_SEGMENT_FIELD(LDTR),
979};
980
981static u64 host_efer;
982
983static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
984
985/*
986 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
987 * away by decrementing the array size.
988 */
989static const u32 vmx_msr_index[] = {
990#ifdef CONFIG_X86_64
991 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
992#endif
993 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
994};
995
996static inline bool is_exception_n(u32 intr_info, u8 vector)
997{
998 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
999 INTR_INFO_VALID_MASK)) ==
1000 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1001}
1002
1003static inline bool is_debug(u32 intr_info)
1004{
1005 return is_exception_n(intr_info, DB_VECTOR);
1006}
1007
1008static inline bool is_breakpoint(u32 intr_info)
1009{
1010 return is_exception_n(intr_info, BP_VECTOR);
1011}
1012
1013static inline bool is_page_fault(u32 intr_info)
1014{
1015 return is_exception_n(intr_info, PF_VECTOR);
1016}
1017
1018static inline bool is_no_device(u32 intr_info)
1019{
1020 return is_exception_n(intr_info, NM_VECTOR);
1021}
1022
1023static inline bool is_invalid_opcode(u32 intr_info)
1024{
1025 return is_exception_n(intr_info, UD_VECTOR);
1026}
1027
1028static inline bool is_external_interrupt(u32 intr_info)
1029{
1030 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1031 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1032}
1033
1034static inline bool is_machine_check(u32 intr_info)
1035{
1036 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1037 INTR_INFO_VALID_MASK)) ==
1038 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1039}
1040
1041static inline bool cpu_has_vmx_msr_bitmap(void)
1042{
1043 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1044}
1045
1046static inline bool cpu_has_vmx_tpr_shadow(void)
1047{
1048 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1049}
1050
1051static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1052{
1053 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1054}
1055
1056static inline bool cpu_has_secondary_exec_ctrls(void)
1057{
1058 return vmcs_config.cpu_based_exec_ctrl &
1059 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1060}
1061
1062static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1063{
1064 return vmcs_config.cpu_based_2nd_exec_ctrl &
1065 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1066}
1067
1068static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1069{
1070 return vmcs_config.cpu_based_2nd_exec_ctrl &
1071 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1072}
1073
1074static inline bool cpu_has_vmx_apic_register_virt(void)
1075{
1076 return vmcs_config.cpu_based_2nd_exec_ctrl &
1077 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1078}
1079
1080static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1081{
1082 return vmcs_config.cpu_based_2nd_exec_ctrl &
1083 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1084}
1085
1086/*
1087 * Comment's format: document - errata name - stepping - processor name.
1088 * Refer from
1089 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1090 */
1091static u32 vmx_preemption_cpu_tfms[] = {
1092/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
10930x000206E6,
1094/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1095/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1096/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
10970x00020652,
1098/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
10990x00020655,
1100/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1101/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1102/*
1103 * 320767.pdf - AAP86 - B1 -
1104 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1105 */
11060x000106E5,
1107/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11080x000106A0,
1109/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11100x000106A1,
1111/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11120x000106A4,
1113 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1114 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1115 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11160x000106A5,
1117};
1118
1119static inline bool cpu_has_broken_vmx_preemption_timer(void)
1120{
1121 u32 eax = cpuid_eax(0x00000001), i;
1122
1123 /* Clear the reserved bits */
1124 eax &= ~(0x3U << 14 | 0xfU << 28);
1125 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1126 if (eax == vmx_preemption_cpu_tfms[i])
1127 return true;
1128
1129 return false;
1130}
1131
1132static inline bool cpu_has_vmx_preemption_timer(void)
1133{
1134 return vmcs_config.pin_based_exec_ctrl &
1135 PIN_BASED_VMX_PREEMPTION_TIMER;
1136}
1137
1138static inline bool cpu_has_vmx_posted_intr(void)
1139{
1140 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1141 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1142}
1143
1144static inline bool cpu_has_vmx_apicv(void)
1145{
1146 return cpu_has_vmx_apic_register_virt() &&
1147 cpu_has_vmx_virtual_intr_delivery() &&
1148 cpu_has_vmx_posted_intr();
1149}
1150
1151static inline bool cpu_has_vmx_flexpriority(void)
1152{
1153 return cpu_has_vmx_tpr_shadow() &&
1154 cpu_has_vmx_virtualize_apic_accesses();
1155}
1156
1157static inline bool cpu_has_vmx_ept_execute_only(void)
1158{
1159 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1160}
1161
1162static inline bool cpu_has_vmx_ept_2m_page(void)
1163{
1164 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1165}
1166
1167static inline bool cpu_has_vmx_ept_1g_page(void)
1168{
1169 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1170}
1171
1172static inline bool cpu_has_vmx_ept_4levels(void)
1173{
1174 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1175}
1176
1177static inline bool cpu_has_vmx_ept_ad_bits(void)
1178{
1179 return vmx_capability.ept & VMX_EPT_AD_BIT;
1180}
1181
1182static inline bool cpu_has_vmx_invept_context(void)
1183{
1184 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1185}
1186
1187static inline bool cpu_has_vmx_invept_global(void)
1188{
1189 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1190}
1191
1192static inline bool cpu_has_vmx_invvpid_single(void)
1193{
1194 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1195}
1196
1197static inline bool cpu_has_vmx_invvpid_global(void)
1198{
1199 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1200}
1201
1202static inline bool cpu_has_vmx_ept(void)
1203{
1204 return vmcs_config.cpu_based_2nd_exec_ctrl &
1205 SECONDARY_EXEC_ENABLE_EPT;
1206}
1207
1208static inline bool cpu_has_vmx_unrestricted_guest(void)
1209{
1210 return vmcs_config.cpu_based_2nd_exec_ctrl &
1211 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1212}
1213
1214static inline bool cpu_has_vmx_ple(void)
1215{
1216 return vmcs_config.cpu_based_2nd_exec_ctrl &
1217 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1218}
1219
1220static inline bool cpu_has_vmx_basic_inout(void)
1221{
1222 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1223}
1224
1225static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1226{
1227 return flexpriority_enabled && lapic_in_kernel(vcpu);
1228}
1229
1230static inline bool cpu_has_vmx_vpid(void)
1231{
1232 return vmcs_config.cpu_based_2nd_exec_ctrl &
1233 SECONDARY_EXEC_ENABLE_VPID;
1234}
1235
1236static inline bool cpu_has_vmx_rdtscp(void)
1237{
1238 return vmcs_config.cpu_based_2nd_exec_ctrl &
1239 SECONDARY_EXEC_RDTSCP;
1240}
1241
1242static inline bool cpu_has_vmx_invpcid(void)
1243{
1244 return vmcs_config.cpu_based_2nd_exec_ctrl &
1245 SECONDARY_EXEC_ENABLE_INVPCID;
1246}
1247
1248static inline bool cpu_has_virtual_nmis(void)
1249{
1250 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1251}
1252
1253static inline bool cpu_has_vmx_wbinvd_exit(void)
1254{
1255 return vmcs_config.cpu_based_2nd_exec_ctrl &
1256 SECONDARY_EXEC_WBINVD_EXITING;
1257}
1258
1259static inline bool cpu_has_vmx_shadow_vmcs(void)
1260{
1261 u64 vmx_msr;
1262 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1263 /* check if the cpu supports writing r/o exit information fields */
1264 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1265 return false;
1266
1267 return vmcs_config.cpu_based_2nd_exec_ctrl &
1268 SECONDARY_EXEC_SHADOW_VMCS;
1269}
1270
1271static inline bool cpu_has_vmx_pml(void)
1272{
1273 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1274}
1275
1276static inline bool cpu_has_vmx_tsc_scaling(void)
1277{
1278 return vmcs_config.cpu_based_2nd_exec_ctrl &
1279 SECONDARY_EXEC_TSC_SCALING;
1280}
1281
1282static inline bool report_flexpriority(void)
1283{
1284 return flexpriority_enabled;
1285}
1286
1287static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1288{
1289 return vmcs12->cpu_based_vm_exec_control & bit;
1290}
1291
1292static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1293{
1294 return (vmcs12->cpu_based_vm_exec_control &
1295 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1296 (vmcs12->secondary_vm_exec_control & bit);
1297}
1298
1299static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1300{
1301 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1302}
1303
1304static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1305{
1306 return vmcs12->pin_based_vm_exec_control &
1307 PIN_BASED_VMX_PREEMPTION_TIMER;
1308}
1309
1310static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1311{
1312 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1313}
1314
1315static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1316{
1317 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1318 vmx_xsaves_supported();
1319}
1320
1321static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1322{
1323 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1324}
1325
1326static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1327{
1328 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1329}
1330
1331static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1332{
1333 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1334}
1335
1336static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1337{
1338 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1339}
1340
1341static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1342{
1343 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1344}
1345
1346static inline bool is_exception(u32 intr_info)
1347{
1348 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1349 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1350}
1351
1352static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1353 u32 exit_intr_info,
1354 unsigned long exit_qualification);
1355static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1356 struct vmcs12 *vmcs12,
1357 u32 reason, unsigned long qualification);
1358
1359static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1360{
1361 int i;
1362
1363 for (i = 0; i < vmx->nmsrs; ++i)
1364 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1365 return i;
1366 return -1;
1367}
1368
1369static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1370{
1371 struct {
1372 u64 vpid : 16;
1373 u64 rsvd : 48;
1374 u64 gva;
1375 } operand = { vpid, 0, gva };
1376
1377 asm volatile (__ex(ASM_VMX_INVVPID)
1378 /* CF==1 or ZF==1 --> rc = -1 */
1379 "; ja 1f ; ud2 ; 1:"
1380 : : "a"(&operand), "c"(ext) : "cc", "memory");
1381}
1382
1383static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1384{
1385 struct {
1386 u64 eptp, gpa;
1387 } operand = {eptp, gpa};
1388
1389 asm volatile (__ex(ASM_VMX_INVEPT)
1390 /* CF==1 or ZF==1 --> rc = -1 */
1391 "; ja 1f ; ud2 ; 1:\n"
1392 : : "a" (&operand), "c" (ext) : "cc", "memory");
1393}
1394
1395static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1396{
1397 int i;
1398
1399 i = __find_msr_index(vmx, msr);
1400 if (i >= 0)
1401 return &vmx->guest_msrs[i];
1402 return NULL;
1403}
1404
1405static void vmcs_clear(struct vmcs *vmcs)
1406{
1407 u64 phys_addr = __pa(vmcs);
1408 u8 error;
1409
1410 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1411 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1412 : "cc", "memory");
1413 if (error)
1414 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1415 vmcs, phys_addr);
1416}
1417
1418static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1419{
1420 vmcs_clear(loaded_vmcs->vmcs);
1421 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1422 vmcs_clear(loaded_vmcs->shadow_vmcs);
1423 loaded_vmcs->cpu = -1;
1424 loaded_vmcs->launched = 0;
1425}
1426
1427static void vmcs_load(struct vmcs *vmcs)
1428{
1429 u64 phys_addr = __pa(vmcs);
1430 u8 error;
1431
1432 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1433 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1434 : "cc", "memory");
1435 if (error)
1436 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1437 vmcs, phys_addr);
1438}
1439
1440#ifdef CONFIG_KEXEC_CORE
1441/*
1442 * This bitmap is used to indicate whether the vmclear
1443 * operation is enabled on all cpus. All disabled by
1444 * default.
1445 */
1446static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1447
1448static inline void crash_enable_local_vmclear(int cpu)
1449{
1450 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1451}
1452
1453static inline void crash_disable_local_vmclear(int cpu)
1454{
1455 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1456}
1457
1458static inline int crash_local_vmclear_enabled(int cpu)
1459{
1460 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1461}
1462
1463static void crash_vmclear_local_loaded_vmcss(void)
1464{
1465 int cpu = raw_smp_processor_id();
1466 struct loaded_vmcs *v;
1467
1468 if (!crash_local_vmclear_enabled(cpu))
1469 return;
1470
1471 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1472 loaded_vmcss_on_cpu_link)
1473 vmcs_clear(v->vmcs);
1474}
1475#else
1476static inline void crash_enable_local_vmclear(int cpu) { }
1477static inline void crash_disable_local_vmclear(int cpu) { }
1478#endif /* CONFIG_KEXEC_CORE */
1479
1480static void __loaded_vmcs_clear(void *arg)
1481{
1482 struct loaded_vmcs *loaded_vmcs = arg;
1483 int cpu = raw_smp_processor_id();
1484
1485 if (loaded_vmcs->cpu != cpu)
1486 return; /* vcpu migration can race with cpu offline */
1487 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1488 per_cpu(current_vmcs, cpu) = NULL;
1489 crash_disable_local_vmclear(cpu);
1490 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1491
1492 /*
1493 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1494 * is before setting loaded_vmcs->vcpu to -1 which is done in
1495 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1496 * then adds the vmcs into percpu list before it is deleted.
1497 */
1498 smp_wmb();
1499
1500 loaded_vmcs_init(loaded_vmcs);
1501 crash_enable_local_vmclear(cpu);
1502}
1503
1504static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1505{
1506 int cpu = loaded_vmcs->cpu;
1507
1508 if (cpu != -1)
1509 smp_call_function_single(cpu,
1510 __loaded_vmcs_clear, loaded_vmcs, 1);
1511}
1512
1513static inline void vpid_sync_vcpu_single(int vpid)
1514{
1515 if (vpid == 0)
1516 return;
1517
1518 if (cpu_has_vmx_invvpid_single())
1519 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1520}
1521
1522static inline void vpid_sync_vcpu_global(void)
1523{
1524 if (cpu_has_vmx_invvpid_global())
1525 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1526}
1527
1528static inline void vpid_sync_context(int vpid)
1529{
1530 if (cpu_has_vmx_invvpid_single())
1531 vpid_sync_vcpu_single(vpid);
1532 else
1533 vpid_sync_vcpu_global();
1534}
1535
1536static inline void ept_sync_global(void)
1537{
1538 if (cpu_has_vmx_invept_global())
1539 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1540}
1541
1542static inline void ept_sync_context(u64 eptp)
1543{
1544 if (enable_ept) {
1545 if (cpu_has_vmx_invept_context())
1546 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1547 else
1548 ept_sync_global();
1549 }
1550}
1551
1552static __always_inline void vmcs_check16(unsigned long field)
1553{
1554 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1555 "16-bit accessor invalid for 64-bit field");
1556 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1557 "16-bit accessor invalid for 64-bit high field");
1558 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1559 "16-bit accessor invalid for 32-bit high field");
1560 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1561 "16-bit accessor invalid for natural width field");
1562}
1563
1564static __always_inline void vmcs_check32(unsigned long field)
1565{
1566 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1567 "32-bit accessor invalid for 16-bit field");
1568 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1569 "32-bit accessor invalid for natural width field");
1570}
1571
1572static __always_inline void vmcs_check64(unsigned long field)
1573{
1574 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1575 "64-bit accessor invalid for 16-bit field");
1576 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1577 "64-bit accessor invalid for 64-bit high field");
1578 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1579 "64-bit accessor invalid for 32-bit field");
1580 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1581 "64-bit accessor invalid for natural width field");
1582}
1583
1584static __always_inline void vmcs_checkl(unsigned long field)
1585{
1586 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1587 "Natural width accessor invalid for 16-bit field");
1588 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1589 "Natural width accessor invalid for 64-bit field");
1590 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1591 "Natural width accessor invalid for 64-bit high field");
1592 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1593 "Natural width accessor invalid for 32-bit field");
1594}
1595
1596static __always_inline unsigned long __vmcs_readl(unsigned long field)
1597{
1598 unsigned long value;
1599
1600 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1601 : "=a"(value) : "d"(field) : "cc");
1602 return value;
1603}
1604
1605static __always_inline u16 vmcs_read16(unsigned long field)
1606{
1607 vmcs_check16(field);
1608 return __vmcs_readl(field);
1609}
1610
1611static __always_inline u32 vmcs_read32(unsigned long field)
1612{
1613 vmcs_check32(field);
1614 return __vmcs_readl(field);
1615}
1616
1617static __always_inline u64 vmcs_read64(unsigned long field)
1618{
1619 vmcs_check64(field);
1620#ifdef CONFIG_X86_64
1621 return __vmcs_readl(field);
1622#else
1623 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1624#endif
1625}
1626
1627static __always_inline unsigned long vmcs_readl(unsigned long field)
1628{
1629 vmcs_checkl(field);
1630 return __vmcs_readl(field);
1631}
1632
1633static noinline void vmwrite_error(unsigned long field, unsigned long value)
1634{
1635 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1636 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1637 dump_stack();
1638}
1639
1640static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1641{
1642 u8 error;
1643
1644 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1645 : "=q"(error) : "a"(value), "d"(field) : "cc");
1646 if (unlikely(error))
1647 vmwrite_error(field, value);
1648}
1649
1650static __always_inline void vmcs_write16(unsigned long field, u16 value)
1651{
1652 vmcs_check16(field);
1653 __vmcs_writel(field, value);
1654}
1655
1656static __always_inline void vmcs_write32(unsigned long field, u32 value)
1657{
1658 vmcs_check32(field);
1659 __vmcs_writel(field, value);
1660}
1661
1662static __always_inline void vmcs_write64(unsigned long field, u64 value)
1663{
1664 vmcs_check64(field);
1665 __vmcs_writel(field, value);
1666#ifndef CONFIG_X86_64
1667 asm volatile ("");
1668 __vmcs_writel(field+1, value >> 32);
1669#endif
1670}
1671
1672static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1673{
1674 vmcs_checkl(field);
1675 __vmcs_writel(field, value);
1676}
1677
1678static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1679{
1680 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1681 "vmcs_clear_bits does not support 64-bit fields");
1682 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1683}
1684
1685static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1686{
1687 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1688 "vmcs_set_bits does not support 64-bit fields");
1689 __vmcs_writel(field, __vmcs_readl(field) | mask);
1690}
1691
1692static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1693{
1694 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1695}
1696
1697static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1698{
1699 vmcs_write32(VM_ENTRY_CONTROLS, val);
1700 vmx->vm_entry_controls_shadow = val;
1701}
1702
1703static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1704{
1705 if (vmx->vm_entry_controls_shadow != val)
1706 vm_entry_controls_init(vmx, val);
1707}
1708
1709static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1710{
1711 return vmx->vm_entry_controls_shadow;
1712}
1713
1714
1715static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1716{
1717 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1718}
1719
1720static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1721{
1722 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1723}
1724
1725static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1726{
1727 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1728}
1729
1730static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1731{
1732 vmcs_write32(VM_EXIT_CONTROLS, val);
1733 vmx->vm_exit_controls_shadow = val;
1734}
1735
1736static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1737{
1738 if (vmx->vm_exit_controls_shadow != val)
1739 vm_exit_controls_init(vmx, val);
1740}
1741
1742static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1743{
1744 return vmx->vm_exit_controls_shadow;
1745}
1746
1747
1748static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1749{
1750 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1751}
1752
1753static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1754{
1755 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1756}
1757
1758static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1759{
1760 vmx->segment_cache.bitmask = 0;
1761}
1762
1763static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1764 unsigned field)
1765{
1766 bool ret;
1767 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1768
1769 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1770 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1771 vmx->segment_cache.bitmask = 0;
1772 }
1773 ret = vmx->segment_cache.bitmask & mask;
1774 vmx->segment_cache.bitmask |= mask;
1775 return ret;
1776}
1777
1778static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1779{
1780 u16 *p = &vmx->segment_cache.seg[seg].selector;
1781
1782 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1783 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1784 return *p;
1785}
1786
1787static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1788{
1789 ulong *p = &vmx->segment_cache.seg[seg].base;
1790
1791 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1792 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1793 return *p;
1794}
1795
1796static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1797{
1798 u32 *p = &vmx->segment_cache.seg[seg].limit;
1799
1800 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1801 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1802 return *p;
1803}
1804
1805static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1806{
1807 u32 *p = &vmx->segment_cache.seg[seg].ar;
1808
1809 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1810 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1811 return *p;
1812}
1813
1814static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1815{
1816 u32 eb;
1817
1818 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1819 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1820 if ((vcpu->guest_debug &
1821 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1822 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1823 eb |= 1u << BP_VECTOR;
1824 if (to_vmx(vcpu)->rmode.vm86_active)
1825 eb = ~0;
1826 if (enable_ept)
1827 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1828 if (vcpu->fpu_active)
1829 eb &= ~(1u << NM_VECTOR);
1830
1831 /* When we are running a nested L2 guest and L1 specified for it a
1832 * certain exception bitmap, we must trap the same exceptions and pass
1833 * them to L1. When running L2, we will only handle the exceptions
1834 * specified above if L1 did not want them.
1835 */
1836 if (is_guest_mode(vcpu))
1837 eb |= get_vmcs12(vcpu)->exception_bitmap;
1838
1839 vmcs_write32(EXCEPTION_BITMAP, eb);
1840}
1841
1842static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1843 unsigned long entry, unsigned long exit)
1844{
1845 vm_entry_controls_clearbit(vmx, entry);
1846 vm_exit_controls_clearbit(vmx, exit);
1847}
1848
1849static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1850{
1851 unsigned i;
1852 struct msr_autoload *m = &vmx->msr_autoload;
1853
1854 switch (msr) {
1855 case MSR_EFER:
1856 if (cpu_has_load_ia32_efer) {
1857 clear_atomic_switch_msr_special(vmx,
1858 VM_ENTRY_LOAD_IA32_EFER,
1859 VM_EXIT_LOAD_IA32_EFER);
1860 return;
1861 }
1862 break;
1863 case MSR_CORE_PERF_GLOBAL_CTRL:
1864 if (cpu_has_load_perf_global_ctrl) {
1865 clear_atomic_switch_msr_special(vmx,
1866 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1867 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1868 return;
1869 }
1870 break;
1871 }
1872
1873 for (i = 0; i < m->nr; ++i)
1874 if (m->guest[i].index == msr)
1875 break;
1876
1877 if (i == m->nr)
1878 return;
1879 --m->nr;
1880 m->guest[i] = m->guest[m->nr];
1881 m->host[i] = m->host[m->nr];
1882 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1883 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1884}
1885
1886static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1887 unsigned long entry, unsigned long exit,
1888 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1889 u64 guest_val, u64 host_val)
1890{
1891 vmcs_write64(guest_val_vmcs, guest_val);
1892 vmcs_write64(host_val_vmcs, host_val);
1893 vm_entry_controls_setbit(vmx, entry);
1894 vm_exit_controls_setbit(vmx, exit);
1895}
1896
1897static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1898 u64 guest_val, u64 host_val)
1899{
1900 unsigned i;
1901 struct msr_autoload *m = &vmx->msr_autoload;
1902
1903 switch (msr) {
1904 case MSR_EFER:
1905 if (cpu_has_load_ia32_efer) {
1906 add_atomic_switch_msr_special(vmx,
1907 VM_ENTRY_LOAD_IA32_EFER,
1908 VM_EXIT_LOAD_IA32_EFER,
1909 GUEST_IA32_EFER,
1910 HOST_IA32_EFER,
1911 guest_val, host_val);
1912 return;
1913 }
1914 break;
1915 case MSR_CORE_PERF_GLOBAL_CTRL:
1916 if (cpu_has_load_perf_global_ctrl) {
1917 add_atomic_switch_msr_special(vmx,
1918 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1919 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1920 GUEST_IA32_PERF_GLOBAL_CTRL,
1921 HOST_IA32_PERF_GLOBAL_CTRL,
1922 guest_val, host_val);
1923 return;
1924 }
1925 break;
1926 case MSR_IA32_PEBS_ENABLE:
1927 /* PEBS needs a quiescent period after being disabled (to write
1928 * a record). Disabling PEBS through VMX MSR swapping doesn't
1929 * provide that period, so a CPU could write host's record into
1930 * guest's memory.
1931 */
1932 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1933 }
1934
1935 for (i = 0; i < m->nr; ++i)
1936 if (m->guest[i].index == msr)
1937 break;
1938
1939 if (i == NR_AUTOLOAD_MSRS) {
1940 printk_once(KERN_WARNING "Not enough msr switch entries. "
1941 "Can't add msr %x\n", msr);
1942 return;
1943 } else if (i == m->nr) {
1944 ++m->nr;
1945 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1946 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1947 }
1948
1949 m->guest[i].index = msr;
1950 m->guest[i].value = guest_val;
1951 m->host[i].index = msr;
1952 m->host[i].value = host_val;
1953}
1954
1955static void reload_tss(void)
1956{
1957 /*
1958 * VT restores TR but not its size. Useless.
1959 */
1960 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1961 struct desc_struct *descs;
1962
1963 descs = (void *)gdt->address;
1964 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1965 load_TR_desc();
1966}
1967
1968static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1969{
1970 u64 guest_efer = vmx->vcpu.arch.efer;
1971 u64 ignore_bits = 0;
1972
1973 if (!enable_ept) {
1974 /*
1975 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1976 * host CPUID is more efficient than testing guest CPUID
1977 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1978 */
1979 if (boot_cpu_has(X86_FEATURE_SMEP))
1980 guest_efer |= EFER_NX;
1981 else if (!(guest_efer & EFER_NX))
1982 ignore_bits |= EFER_NX;
1983 }
1984
1985 /*
1986 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1987 */
1988 ignore_bits |= EFER_SCE;
1989#ifdef CONFIG_X86_64
1990 ignore_bits |= EFER_LMA | EFER_LME;
1991 /* SCE is meaningful only in long mode on Intel */
1992 if (guest_efer & EFER_LMA)
1993 ignore_bits &= ~(u64)EFER_SCE;
1994#endif
1995
1996 clear_atomic_switch_msr(vmx, MSR_EFER);
1997
1998 /*
1999 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2000 * On CPUs that support "load IA32_EFER", always switch EFER
2001 * atomically, since it's faster than switching it manually.
2002 */
2003 if (cpu_has_load_ia32_efer ||
2004 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2005 if (!(guest_efer & EFER_LMA))
2006 guest_efer &= ~EFER_LME;
2007 if (guest_efer != host_efer)
2008 add_atomic_switch_msr(vmx, MSR_EFER,
2009 guest_efer, host_efer);
2010 return false;
2011 } else {
2012 guest_efer &= ~ignore_bits;
2013 guest_efer |= host_efer & ignore_bits;
2014
2015 vmx->guest_msrs[efer_offset].data = guest_efer;
2016 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2017
2018 return true;
2019 }
2020}
2021
2022static unsigned long segment_base(u16 selector)
2023{
2024 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2025 struct desc_struct *d;
2026 unsigned long table_base;
2027 unsigned long v;
2028
2029 if (!(selector & ~3))
2030 return 0;
2031
2032 table_base = gdt->address;
2033
2034 if (selector & 4) { /* from ldt */
2035 u16 ldt_selector = kvm_read_ldt();
2036
2037 if (!(ldt_selector & ~3))
2038 return 0;
2039
2040 table_base = segment_base(ldt_selector);
2041 }
2042 d = (struct desc_struct *)(table_base + (selector & ~7));
2043 v = get_desc_base(d);
2044#ifdef CONFIG_X86_64
2045 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
2046 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
2047#endif
2048 return v;
2049}
2050
2051static inline unsigned long kvm_read_tr_base(void)
2052{
2053 u16 tr;
2054 asm("str %0" : "=g"(tr));
2055 return segment_base(tr);
2056}
2057
2058static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2059{
2060 struct vcpu_vmx *vmx = to_vmx(vcpu);
2061 int i;
2062
2063 if (vmx->host_state.loaded)
2064 return;
2065
2066 vmx->host_state.loaded = 1;
2067 /*
2068 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2069 * allow segment selectors with cpl > 0 or ti == 1.
2070 */
2071 vmx->host_state.ldt_sel = kvm_read_ldt();
2072 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2073 savesegment(fs, vmx->host_state.fs_sel);
2074 if (!(vmx->host_state.fs_sel & 7)) {
2075 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2076 vmx->host_state.fs_reload_needed = 0;
2077 } else {
2078 vmcs_write16(HOST_FS_SELECTOR, 0);
2079 vmx->host_state.fs_reload_needed = 1;
2080 }
2081 savesegment(gs, vmx->host_state.gs_sel);
2082 if (!(vmx->host_state.gs_sel & 7))
2083 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2084 else {
2085 vmcs_write16(HOST_GS_SELECTOR, 0);
2086 vmx->host_state.gs_ldt_reload_needed = 1;
2087 }
2088
2089#ifdef CONFIG_X86_64
2090 savesegment(ds, vmx->host_state.ds_sel);
2091 savesegment(es, vmx->host_state.es_sel);
2092#endif
2093
2094#ifdef CONFIG_X86_64
2095 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2096 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2097#else
2098 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2099 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2100#endif
2101
2102#ifdef CONFIG_X86_64
2103 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2104 if (is_long_mode(&vmx->vcpu))
2105 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2106#endif
2107 if (boot_cpu_has(X86_FEATURE_MPX))
2108 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2109 for (i = 0; i < vmx->save_nmsrs; ++i)
2110 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2111 vmx->guest_msrs[i].data,
2112 vmx->guest_msrs[i].mask);
2113}
2114
2115static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2116{
2117 if (!vmx->host_state.loaded)
2118 return;
2119
2120 ++vmx->vcpu.stat.host_state_reload;
2121 vmx->host_state.loaded = 0;
2122#ifdef CONFIG_X86_64
2123 if (is_long_mode(&vmx->vcpu))
2124 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2125#endif
2126 if (vmx->host_state.gs_ldt_reload_needed) {
2127 kvm_load_ldt(vmx->host_state.ldt_sel);
2128#ifdef CONFIG_X86_64
2129 load_gs_index(vmx->host_state.gs_sel);
2130#else
2131 loadsegment(gs, vmx->host_state.gs_sel);
2132#endif
2133 }
2134 if (vmx->host_state.fs_reload_needed)
2135 loadsegment(fs, vmx->host_state.fs_sel);
2136#ifdef CONFIG_X86_64
2137 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2138 loadsegment(ds, vmx->host_state.ds_sel);
2139 loadsegment(es, vmx->host_state.es_sel);
2140 }
2141#endif
2142 reload_tss();
2143#ifdef CONFIG_X86_64
2144 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2145#endif
2146 if (vmx->host_state.msr_host_bndcfgs)
2147 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2148 /*
2149 * If the FPU is not active (through the host task or
2150 * the guest vcpu), then restore the cr0.TS bit.
2151 */
2152 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2153 stts();
2154 load_gdt(this_cpu_ptr(&host_gdt));
2155}
2156
2157static void vmx_load_host_state(struct vcpu_vmx *vmx)
2158{
2159 preempt_disable();
2160 __vmx_load_host_state(vmx);
2161 preempt_enable();
2162}
2163
2164static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2165{
2166 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2167 struct pi_desc old, new;
2168 unsigned int dest;
2169
2170 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2171 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2172 !kvm_vcpu_apicv_active(vcpu))
2173 return;
2174
2175 do {
2176 old.control = new.control = pi_desc->control;
2177
2178 /*
2179 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2180 * are two possible cases:
2181 * 1. After running 'pre_block', context switch
2182 * happened. For this case, 'sn' was set in
2183 * vmx_vcpu_put(), so we need to clear it here.
2184 * 2. After running 'pre_block', we were blocked,
2185 * and woken up by some other guy. For this case,
2186 * we don't need to do anything, 'pi_post_block'
2187 * will do everything for us. However, we cannot
2188 * check whether it is case #1 or case #2 here
2189 * (maybe, not needed), so we also clear sn here,
2190 * I think it is not a big deal.
2191 */
2192 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2193 if (vcpu->cpu != cpu) {
2194 dest = cpu_physical_id(cpu);
2195
2196 if (x2apic_enabled())
2197 new.ndst = dest;
2198 else
2199 new.ndst = (dest << 8) & 0xFF00;
2200 }
2201
2202 /* set 'NV' to 'notification vector' */
2203 new.nv = POSTED_INTR_VECTOR;
2204 }
2205
2206 /* Allow posting non-urgent interrupts */
2207 new.sn = 0;
2208 } while (cmpxchg(&pi_desc->control, old.control,
2209 new.control) != old.control);
2210}
2211
2212static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2213{
2214 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2215 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2216}
2217
2218/*
2219 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2220 * vcpu mutex is already taken.
2221 */
2222static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2223{
2224 struct vcpu_vmx *vmx = to_vmx(vcpu);
2225 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2226 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2227
2228 if (!vmm_exclusive)
2229 kvm_cpu_vmxon(phys_addr);
2230 else if (!already_loaded)
2231 loaded_vmcs_clear(vmx->loaded_vmcs);
2232
2233 if (!already_loaded) {
2234 local_irq_disable();
2235 crash_disable_local_vmclear(cpu);
2236
2237 /*
2238 * Read loaded_vmcs->cpu should be before fetching
2239 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2240 * See the comments in __loaded_vmcs_clear().
2241 */
2242 smp_rmb();
2243
2244 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2245 &per_cpu(loaded_vmcss_on_cpu, cpu));
2246 crash_enable_local_vmclear(cpu);
2247 local_irq_enable();
2248 }
2249
2250 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2251 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2252 vmcs_load(vmx->loaded_vmcs->vmcs);
2253 }
2254
2255 if (!already_loaded) {
2256 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2257 unsigned long sysenter_esp;
2258
2259 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2260
2261 /*
2262 * Linux uses per-cpu TSS and GDT, so set these when switching
2263 * processors.
2264 */
2265 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2266 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2267
2268 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2269 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2270
2271 vmx->loaded_vmcs->cpu = cpu;
2272 }
2273
2274 /* Setup TSC multiplier */
2275 if (kvm_has_tsc_control &&
2276 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2277 decache_tsc_multiplier(vmx);
2278
2279 vmx_vcpu_pi_load(vcpu, cpu);
2280 vmx->host_pkru = read_pkru();
2281}
2282
2283static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2284{
2285 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2286
2287 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2288 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2289 !kvm_vcpu_apicv_active(vcpu))
2290 return;
2291
2292 /* Set SN when the vCPU is preempted */
2293 if (vcpu->preempted)
2294 pi_set_sn(pi_desc);
2295}
2296
2297static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2298{
2299 vmx_vcpu_pi_put(vcpu);
2300
2301 __vmx_load_host_state(to_vmx(vcpu));
2302 if (!vmm_exclusive) {
2303 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2304 vcpu->cpu = -1;
2305 kvm_cpu_vmxoff();
2306 }
2307}
2308
2309static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2310{
2311 ulong cr0;
2312
2313 if (vcpu->fpu_active)
2314 return;
2315 vcpu->fpu_active = 1;
2316 cr0 = vmcs_readl(GUEST_CR0);
2317 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2318 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2319 vmcs_writel(GUEST_CR0, cr0);
2320 update_exception_bitmap(vcpu);
2321 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2322 if (is_guest_mode(vcpu))
2323 vcpu->arch.cr0_guest_owned_bits &=
2324 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2325 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2326}
2327
2328static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2329
2330/*
2331 * Return the cr0 value that a nested guest would read. This is a combination
2332 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2333 * its hypervisor (cr0_read_shadow).
2334 */
2335static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2336{
2337 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2338 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2339}
2340static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2341{
2342 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2343 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2344}
2345
2346static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2347{
2348 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2349 * set this *before* calling this function.
2350 */
2351 vmx_decache_cr0_guest_bits(vcpu);
2352 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2353 update_exception_bitmap(vcpu);
2354 vcpu->arch.cr0_guest_owned_bits = 0;
2355 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2356 if (is_guest_mode(vcpu)) {
2357 /*
2358 * L1's specified read shadow might not contain the TS bit,
2359 * so now that we turned on shadowing of this bit, we need to
2360 * set this bit of the shadow. Like in nested_vmx_run we need
2361 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2362 * up-to-date here because we just decached cr0.TS (and we'll
2363 * only update vmcs12->guest_cr0 on nested exit).
2364 */
2365 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2366 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2367 (vcpu->arch.cr0 & X86_CR0_TS);
2368 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2369 } else
2370 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2371}
2372
2373static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2374{
2375 unsigned long rflags, save_rflags;
2376
2377 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2378 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2379 rflags = vmcs_readl(GUEST_RFLAGS);
2380 if (to_vmx(vcpu)->rmode.vm86_active) {
2381 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2382 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2383 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2384 }
2385 to_vmx(vcpu)->rflags = rflags;
2386 }
2387 return to_vmx(vcpu)->rflags;
2388}
2389
2390static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2391{
2392 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2393 to_vmx(vcpu)->rflags = rflags;
2394 if (to_vmx(vcpu)->rmode.vm86_active) {
2395 to_vmx(vcpu)->rmode.save_rflags = rflags;
2396 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2397 }
2398 vmcs_writel(GUEST_RFLAGS, rflags);
2399}
2400
2401static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2402{
2403 return to_vmx(vcpu)->guest_pkru;
2404}
2405
2406static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2407{
2408 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2409 int ret = 0;
2410
2411 if (interruptibility & GUEST_INTR_STATE_STI)
2412 ret |= KVM_X86_SHADOW_INT_STI;
2413 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2414 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2415
2416 return ret;
2417}
2418
2419static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2420{
2421 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2422 u32 interruptibility = interruptibility_old;
2423
2424 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2425
2426 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2427 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2428 else if (mask & KVM_X86_SHADOW_INT_STI)
2429 interruptibility |= GUEST_INTR_STATE_STI;
2430
2431 if ((interruptibility != interruptibility_old))
2432 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2433}
2434
2435static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2436{
2437 unsigned long rip;
2438
2439 rip = kvm_rip_read(vcpu);
2440 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2441 kvm_rip_write(vcpu, rip);
2442
2443 /* skipping an emulated instruction also counts */
2444 vmx_set_interrupt_shadow(vcpu, 0);
2445}
2446
2447/*
2448 * KVM wants to inject page-faults which it got to the guest. This function
2449 * checks whether in a nested guest, we need to inject them to L1 or L2.
2450 */
2451static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2452{
2453 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2454
2455 if (!(vmcs12->exception_bitmap & (1u << nr)))
2456 return 0;
2457
2458 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2459 vmcs_read32(VM_EXIT_INTR_INFO),
2460 vmcs_readl(EXIT_QUALIFICATION));
2461 return 1;
2462}
2463
2464static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2465 bool has_error_code, u32 error_code,
2466 bool reinject)
2467{
2468 struct vcpu_vmx *vmx = to_vmx(vcpu);
2469 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2470
2471 if (!reinject && is_guest_mode(vcpu) &&
2472 nested_vmx_check_exception(vcpu, nr))
2473 return;
2474
2475 if (has_error_code) {
2476 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2477 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2478 }
2479
2480 if (vmx->rmode.vm86_active) {
2481 int inc_eip = 0;
2482 if (kvm_exception_is_soft(nr))
2483 inc_eip = vcpu->arch.event_exit_inst_len;
2484 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2485 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2486 return;
2487 }
2488
2489 if (kvm_exception_is_soft(nr)) {
2490 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2491 vmx->vcpu.arch.event_exit_inst_len);
2492 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2493 } else
2494 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2495
2496 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2497}
2498
2499static bool vmx_rdtscp_supported(void)
2500{
2501 return cpu_has_vmx_rdtscp();
2502}
2503
2504static bool vmx_invpcid_supported(void)
2505{
2506 return cpu_has_vmx_invpcid() && enable_ept;
2507}
2508
2509/*
2510 * Swap MSR entry in host/guest MSR entry array.
2511 */
2512static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2513{
2514 struct shared_msr_entry tmp;
2515
2516 tmp = vmx->guest_msrs[to];
2517 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2518 vmx->guest_msrs[from] = tmp;
2519}
2520
2521static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2522{
2523 unsigned long *msr_bitmap;
2524
2525 if (is_guest_mode(vcpu))
2526 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2527 else if (cpu_has_secondary_exec_ctrls() &&
2528 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2529 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2530 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2531 if (is_long_mode(vcpu))
2532 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2533 else
2534 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2535 } else {
2536 if (is_long_mode(vcpu))
2537 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2538 else
2539 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2540 }
2541 } else {
2542 if (is_long_mode(vcpu))
2543 msr_bitmap = vmx_msr_bitmap_longmode;
2544 else
2545 msr_bitmap = vmx_msr_bitmap_legacy;
2546 }
2547
2548 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2549}
2550
2551/*
2552 * Set up the vmcs to automatically save and restore system
2553 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2554 * mode, as fiddling with msrs is very expensive.
2555 */
2556static void setup_msrs(struct vcpu_vmx *vmx)
2557{
2558 int save_nmsrs, index;
2559
2560 save_nmsrs = 0;
2561#ifdef CONFIG_X86_64
2562 if (is_long_mode(&vmx->vcpu)) {
2563 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2564 if (index >= 0)
2565 move_msr_up(vmx, index, save_nmsrs++);
2566 index = __find_msr_index(vmx, MSR_LSTAR);
2567 if (index >= 0)
2568 move_msr_up(vmx, index, save_nmsrs++);
2569 index = __find_msr_index(vmx, MSR_CSTAR);
2570 if (index >= 0)
2571 move_msr_up(vmx, index, save_nmsrs++);
2572 index = __find_msr_index(vmx, MSR_TSC_AUX);
2573 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2574 move_msr_up(vmx, index, save_nmsrs++);
2575 /*
2576 * MSR_STAR is only needed on long mode guests, and only
2577 * if efer.sce is enabled.
2578 */
2579 index = __find_msr_index(vmx, MSR_STAR);
2580 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2581 move_msr_up(vmx, index, save_nmsrs++);
2582 }
2583#endif
2584 index = __find_msr_index(vmx, MSR_EFER);
2585 if (index >= 0 && update_transition_efer(vmx, index))
2586 move_msr_up(vmx, index, save_nmsrs++);
2587
2588 vmx->save_nmsrs = save_nmsrs;
2589
2590 if (cpu_has_vmx_msr_bitmap())
2591 vmx_set_msr_bitmap(&vmx->vcpu);
2592}
2593
2594/*
2595 * reads and returns guest's timestamp counter "register"
2596 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2597 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2598 */
2599static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2600{
2601 u64 host_tsc, tsc_offset;
2602
2603 host_tsc = rdtsc();
2604 tsc_offset = vmcs_read64(TSC_OFFSET);
2605 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2606}
2607
2608/*
2609 * writes 'offset' into guest's timestamp counter offset register
2610 */
2611static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2612{
2613 if (is_guest_mode(vcpu)) {
2614 /*
2615 * We're here if L1 chose not to trap WRMSR to TSC. According
2616 * to the spec, this should set L1's TSC; The offset that L1
2617 * set for L2 remains unchanged, and still needs to be added
2618 * to the newly set TSC to get L2's TSC.
2619 */
2620 struct vmcs12 *vmcs12;
2621 /* recalculate vmcs02.TSC_OFFSET: */
2622 vmcs12 = get_vmcs12(vcpu);
2623 vmcs_write64(TSC_OFFSET, offset +
2624 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2625 vmcs12->tsc_offset : 0));
2626 } else {
2627 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2628 vmcs_read64(TSC_OFFSET), offset);
2629 vmcs_write64(TSC_OFFSET, offset);
2630 }
2631}
2632
2633static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2634{
2635 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2636 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2637}
2638
2639/*
2640 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2641 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2642 * all guests if the "nested" module option is off, and can also be disabled
2643 * for a single guest by disabling its VMX cpuid bit.
2644 */
2645static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2646{
2647 return nested && guest_cpuid_has_vmx(vcpu);
2648}
2649
2650/*
2651 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2652 * returned for the various VMX controls MSRs when nested VMX is enabled.
2653 * The same values should also be used to verify that vmcs12 control fields are
2654 * valid during nested entry from L1 to L2.
2655 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2656 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2657 * bit in the high half is on if the corresponding bit in the control field
2658 * may be on. See also vmx_control_verify().
2659 */
2660static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2661{
2662 /*
2663 * Note that as a general rule, the high half of the MSRs (bits in
2664 * the control fields which may be 1) should be initialized by the
2665 * intersection of the underlying hardware's MSR (i.e., features which
2666 * can be supported) and the list of features we want to expose -
2667 * because they are known to be properly supported in our code.
2668 * Also, usually, the low half of the MSRs (bits which must be 1) can
2669 * be set to 0, meaning that L1 may turn off any of these bits. The
2670 * reason is that if one of these bits is necessary, it will appear
2671 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2672 * fields of vmcs01 and vmcs02, will turn these bits off - and
2673 * nested_vmx_exit_handled() will not pass related exits to L1.
2674 * These rules have exceptions below.
2675 */
2676
2677 /* pin-based controls */
2678 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2679 vmx->nested.nested_vmx_pinbased_ctls_low,
2680 vmx->nested.nested_vmx_pinbased_ctls_high);
2681 vmx->nested.nested_vmx_pinbased_ctls_low |=
2682 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2683 vmx->nested.nested_vmx_pinbased_ctls_high &=
2684 PIN_BASED_EXT_INTR_MASK |
2685 PIN_BASED_NMI_EXITING |
2686 PIN_BASED_VIRTUAL_NMIS;
2687 vmx->nested.nested_vmx_pinbased_ctls_high |=
2688 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2689 PIN_BASED_VMX_PREEMPTION_TIMER;
2690 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2691 vmx->nested.nested_vmx_pinbased_ctls_high |=
2692 PIN_BASED_POSTED_INTR;
2693
2694 /* exit controls */
2695 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2696 vmx->nested.nested_vmx_exit_ctls_low,
2697 vmx->nested.nested_vmx_exit_ctls_high);
2698 vmx->nested.nested_vmx_exit_ctls_low =
2699 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2700
2701 vmx->nested.nested_vmx_exit_ctls_high &=
2702#ifdef CONFIG_X86_64
2703 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2704#endif
2705 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2706 vmx->nested.nested_vmx_exit_ctls_high |=
2707 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2708 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2709 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2710
2711 if (kvm_mpx_supported())
2712 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2713
2714 /* We support free control of debug control saving. */
2715 vmx->nested.nested_vmx_true_exit_ctls_low =
2716 vmx->nested.nested_vmx_exit_ctls_low &
2717 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2718
2719 /* entry controls */
2720 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2721 vmx->nested.nested_vmx_entry_ctls_low,
2722 vmx->nested.nested_vmx_entry_ctls_high);
2723 vmx->nested.nested_vmx_entry_ctls_low =
2724 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2725 vmx->nested.nested_vmx_entry_ctls_high &=
2726#ifdef CONFIG_X86_64
2727 VM_ENTRY_IA32E_MODE |
2728#endif
2729 VM_ENTRY_LOAD_IA32_PAT;
2730 vmx->nested.nested_vmx_entry_ctls_high |=
2731 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2732 if (kvm_mpx_supported())
2733 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2734
2735 /* We support free control of debug control loading. */
2736 vmx->nested.nested_vmx_true_entry_ctls_low =
2737 vmx->nested.nested_vmx_entry_ctls_low &
2738 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2739
2740 /* cpu-based controls */
2741 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2742 vmx->nested.nested_vmx_procbased_ctls_low,
2743 vmx->nested.nested_vmx_procbased_ctls_high);
2744 vmx->nested.nested_vmx_procbased_ctls_low =
2745 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2746 vmx->nested.nested_vmx_procbased_ctls_high &=
2747 CPU_BASED_VIRTUAL_INTR_PENDING |
2748 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2749 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2750 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2751 CPU_BASED_CR3_STORE_EXITING |
2752#ifdef CONFIG_X86_64
2753 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2754#endif
2755 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2756 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2757 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2758 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2759 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2760 /*
2761 * We can allow some features even when not supported by the
2762 * hardware. For example, L1 can specify an MSR bitmap - and we
2763 * can use it to avoid exits to L1 - even when L0 runs L2
2764 * without MSR bitmaps.
2765 */
2766 vmx->nested.nested_vmx_procbased_ctls_high |=
2767 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2768 CPU_BASED_USE_MSR_BITMAPS;
2769
2770 /* We support free control of CR3 access interception. */
2771 vmx->nested.nested_vmx_true_procbased_ctls_low =
2772 vmx->nested.nested_vmx_procbased_ctls_low &
2773 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2774
2775 /* secondary cpu-based controls */
2776 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2777 vmx->nested.nested_vmx_secondary_ctls_low,
2778 vmx->nested.nested_vmx_secondary_ctls_high);
2779 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2780 vmx->nested.nested_vmx_secondary_ctls_high &=
2781 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2782 SECONDARY_EXEC_RDTSCP |
2783 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2784 SECONDARY_EXEC_ENABLE_VPID |
2785 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2786 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2787 SECONDARY_EXEC_WBINVD_EXITING |
2788 SECONDARY_EXEC_XSAVES;
2789
2790 if (enable_ept) {
2791 /* nested EPT: emulate EPT also to L1 */
2792 vmx->nested.nested_vmx_secondary_ctls_high |=
2793 SECONDARY_EXEC_ENABLE_EPT;
2794 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2795 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2796 VMX_EPT_INVEPT_BIT;
2797 if (cpu_has_vmx_ept_execute_only())
2798 vmx->nested.nested_vmx_ept_caps |=
2799 VMX_EPT_EXECUTE_ONLY_BIT;
2800 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2801 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2802 VMX_EPT_EXTENT_CONTEXT_BIT;
2803 } else
2804 vmx->nested.nested_vmx_ept_caps = 0;
2805
2806 /*
2807 * Old versions of KVM use the single-context version without
2808 * checking for support, so declare that it is supported even
2809 * though it is treated as global context. The alternative is
2810 * not failing the single-context invvpid, and it is worse.
2811 */
2812 if (enable_vpid)
2813 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2814 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
2815 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2816 else
2817 vmx->nested.nested_vmx_vpid_caps = 0;
2818
2819 if (enable_unrestricted_guest)
2820 vmx->nested.nested_vmx_secondary_ctls_high |=
2821 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2822
2823 /* miscellaneous data */
2824 rdmsr(MSR_IA32_VMX_MISC,
2825 vmx->nested.nested_vmx_misc_low,
2826 vmx->nested.nested_vmx_misc_high);
2827 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2828 vmx->nested.nested_vmx_misc_low |=
2829 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2830 VMX_MISC_ACTIVITY_HLT;
2831 vmx->nested.nested_vmx_misc_high = 0;
2832}
2833
2834static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2835{
2836 /*
2837 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2838 */
2839 return ((control & high) | low) == control;
2840}
2841
2842static inline u64 vmx_control_msr(u32 low, u32 high)
2843{
2844 return low | ((u64)high << 32);
2845}
2846
2847/* Returns 0 on success, non-0 otherwise. */
2848static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2849{
2850 struct vcpu_vmx *vmx = to_vmx(vcpu);
2851
2852 switch (msr_index) {
2853 case MSR_IA32_VMX_BASIC:
2854 /*
2855 * This MSR reports some information about VMX support. We
2856 * should return information about the VMX we emulate for the
2857 * guest, and the VMCS structure we give it - not about the
2858 * VMX support of the underlying hardware.
2859 */
2860 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2861 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2862 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2863 if (cpu_has_vmx_basic_inout())
2864 *pdata |= VMX_BASIC_INOUT;
2865 break;
2866 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2867 case MSR_IA32_VMX_PINBASED_CTLS:
2868 *pdata = vmx_control_msr(
2869 vmx->nested.nested_vmx_pinbased_ctls_low,
2870 vmx->nested.nested_vmx_pinbased_ctls_high);
2871 break;
2872 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2873 *pdata = vmx_control_msr(
2874 vmx->nested.nested_vmx_true_procbased_ctls_low,
2875 vmx->nested.nested_vmx_procbased_ctls_high);
2876 break;
2877 case MSR_IA32_VMX_PROCBASED_CTLS:
2878 *pdata = vmx_control_msr(
2879 vmx->nested.nested_vmx_procbased_ctls_low,
2880 vmx->nested.nested_vmx_procbased_ctls_high);
2881 break;
2882 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2883 *pdata = vmx_control_msr(
2884 vmx->nested.nested_vmx_true_exit_ctls_low,
2885 vmx->nested.nested_vmx_exit_ctls_high);
2886 break;
2887 case MSR_IA32_VMX_EXIT_CTLS:
2888 *pdata = vmx_control_msr(
2889 vmx->nested.nested_vmx_exit_ctls_low,
2890 vmx->nested.nested_vmx_exit_ctls_high);
2891 break;
2892 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2893 *pdata = vmx_control_msr(
2894 vmx->nested.nested_vmx_true_entry_ctls_low,
2895 vmx->nested.nested_vmx_entry_ctls_high);
2896 break;
2897 case MSR_IA32_VMX_ENTRY_CTLS:
2898 *pdata = vmx_control_msr(
2899 vmx->nested.nested_vmx_entry_ctls_low,
2900 vmx->nested.nested_vmx_entry_ctls_high);
2901 break;
2902 case MSR_IA32_VMX_MISC:
2903 *pdata = vmx_control_msr(
2904 vmx->nested.nested_vmx_misc_low,
2905 vmx->nested.nested_vmx_misc_high);
2906 break;
2907 /*
2908 * These MSRs specify bits which the guest must keep fixed (on or off)
2909 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2910 * We picked the standard core2 setting.
2911 */
2912#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2913#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2914 case MSR_IA32_VMX_CR0_FIXED0:
2915 *pdata = VMXON_CR0_ALWAYSON;
2916 break;
2917 case MSR_IA32_VMX_CR0_FIXED1:
2918 *pdata = -1ULL;
2919 break;
2920 case MSR_IA32_VMX_CR4_FIXED0:
2921 *pdata = VMXON_CR4_ALWAYSON;
2922 break;
2923 case MSR_IA32_VMX_CR4_FIXED1:
2924 *pdata = -1ULL;
2925 break;
2926 case MSR_IA32_VMX_VMCS_ENUM:
2927 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2928 break;
2929 case MSR_IA32_VMX_PROCBASED_CTLS2:
2930 *pdata = vmx_control_msr(
2931 vmx->nested.nested_vmx_secondary_ctls_low,
2932 vmx->nested.nested_vmx_secondary_ctls_high);
2933 break;
2934 case MSR_IA32_VMX_EPT_VPID_CAP:
2935 *pdata = vmx->nested.nested_vmx_ept_caps |
2936 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2937 break;
2938 default:
2939 return 1;
2940 }
2941
2942 return 0;
2943}
2944
2945static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
2946 uint64_t val)
2947{
2948 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
2949
2950 return !(val & ~valid_bits);
2951}
2952
2953/*
2954 * Reads an msr value (of 'msr_index') into 'pdata'.
2955 * Returns 0 on success, non-0 otherwise.
2956 * Assumes vcpu_load() was already called.
2957 */
2958static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2959{
2960 struct shared_msr_entry *msr;
2961
2962 switch (msr_info->index) {
2963#ifdef CONFIG_X86_64
2964 case MSR_FS_BASE:
2965 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2966 break;
2967 case MSR_GS_BASE:
2968 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2969 break;
2970 case MSR_KERNEL_GS_BASE:
2971 vmx_load_host_state(to_vmx(vcpu));
2972 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2973 break;
2974#endif
2975 case MSR_EFER:
2976 return kvm_get_msr_common(vcpu, msr_info);
2977 case MSR_IA32_TSC:
2978 msr_info->data = guest_read_tsc(vcpu);
2979 break;
2980 case MSR_IA32_SYSENTER_CS:
2981 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2982 break;
2983 case MSR_IA32_SYSENTER_EIP:
2984 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2985 break;
2986 case MSR_IA32_SYSENTER_ESP:
2987 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2988 break;
2989 case MSR_IA32_BNDCFGS:
2990 if (!kvm_mpx_supported())
2991 return 1;
2992 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2993 break;
2994 case MSR_IA32_MCG_EXT_CTL:
2995 if (!msr_info->host_initiated &&
2996 !(to_vmx(vcpu)->msr_ia32_feature_control &
2997 FEATURE_CONTROL_LMCE))
2998 return 1;
2999 msr_info->data = vcpu->arch.mcg_ext_ctl;
3000 break;
3001 case MSR_IA32_FEATURE_CONTROL:
3002 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3003 break;
3004 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3005 if (!nested_vmx_allowed(vcpu))
3006 return 1;
3007 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3008 case MSR_IA32_XSS:
3009 if (!vmx_xsaves_supported())
3010 return 1;
3011 msr_info->data = vcpu->arch.ia32_xss;
3012 break;
3013 case MSR_TSC_AUX:
3014 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3015 return 1;
3016 /* Otherwise falls through */
3017 default:
3018 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3019 if (msr) {
3020 msr_info->data = msr->data;
3021 break;
3022 }
3023 return kvm_get_msr_common(vcpu, msr_info);
3024 }
3025
3026 return 0;
3027}
3028
3029static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3030
3031/*
3032 * Writes msr value into into the appropriate "register".
3033 * Returns 0 on success, non-0 otherwise.
3034 * Assumes vcpu_load() was already called.
3035 */
3036static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3037{
3038 struct vcpu_vmx *vmx = to_vmx(vcpu);
3039 struct shared_msr_entry *msr;
3040 int ret = 0;
3041 u32 msr_index = msr_info->index;
3042 u64 data = msr_info->data;
3043
3044 switch (msr_index) {
3045 case MSR_EFER:
3046 ret = kvm_set_msr_common(vcpu, msr_info);
3047 break;
3048#ifdef CONFIG_X86_64
3049 case MSR_FS_BASE:
3050 vmx_segment_cache_clear(vmx);
3051 vmcs_writel(GUEST_FS_BASE, data);
3052 break;
3053 case MSR_GS_BASE:
3054 vmx_segment_cache_clear(vmx);
3055 vmcs_writel(GUEST_GS_BASE, data);
3056 break;
3057 case MSR_KERNEL_GS_BASE:
3058 vmx_load_host_state(vmx);
3059 vmx->msr_guest_kernel_gs_base = data;
3060 break;
3061#endif
3062 case MSR_IA32_SYSENTER_CS:
3063 vmcs_write32(GUEST_SYSENTER_CS, data);
3064 break;
3065 case MSR_IA32_SYSENTER_EIP:
3066 vmcs_writel(GUEST_SYSENTER_EIP, data);
3067 break;
3068 case MSR_IA32_SYSENTER_ESP:
3069 vmcs_writel(GUEST_SYSENTER_ESP, data);
3070 break;
3071 case MSR_IA32_BNDCFGS:
3072 if (!kvm_mpx_supported())
3073 return 1;
3074 vmcs_write64(GUEST_BNDCFGS, data);
3075 break;
3076 case MSR_IA32_TSC:
3077 kvm_write_tsc(vcpu, msr_info);
3078 break;
3079 case MSR_IA32_CR_PAT:
3080 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3081 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3082 return 1;
3083 vmcs_write64(GUEST_IA32_PAT, data);
3084 vcpu->arch.pat = data;
3085 break;
3086 }
3087 ret = kvm_set_msr_common(vcpu, msr_info);
3088 break;
3089 case MSR_IA32_TSC_ADJUST:
3090 ret = kvm_set_msr_common(vcpu, msr_info);
3091 break;
3092 case MSR_IA32_MCG_EXT_CTL:
3093 if ((!msr_info->host_initiated &&
3094 !(to_vmx(vcpu)->msr_ia32_feature_control &
3095 FEATURE_CONTROL_LMCE)) ||
3096 (data & ~MCG_EXT_CTL_LMCE_EN))
3097 return 1;
3098 vcpu->arch.mcg_ext_ctl = data;
3099 break;
3100 case MSR_IA32_FEATURE_CONTROL:
3101 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3102 (to_vmx(vcpu)->msr_ia32_feature_control &
3103 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3104 return 1;
3105 vmx->msr_ia32_feature_control = data;
3106 if (msr_info->host_initiated && data == 0)
3107 vmx_leave_nested(vcpu);
3108 break;
3109 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3110 return 1; /* they are read-only */
3111 case MSR_IA32_XSS:
3112 if (!vmx_xsaves_supported())
3113 return 1;
3114 /*
3115 * The only supported bit as of Skylake is bit 8, but
3116 * it is not supported on KVM.
3117 */
3118 if (data != 0)
3119 return 1;
3120 vcpu->arch.ia32_xss = data;
3121 if (vcpu->arch.ia32_xss != host_xss)
3122 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3123 vcpu->arch.ia32_xss, host_xss);
3124 else
3125 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3126 break;
3127 case MSR_TSC_AUX:
3128 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3129 return 1;
3130 /* Check reserved bit, higher 32 bits should be zero */
3131 if ((data >> 32) != 0)
3132 return 1;
3133 /* Otherwise falls through */
3134 default:
3135 msr = find_msr_entry(vmx, msr_index);
3136 if (msr) {
3137 u64 old_msr_data = msr->data;
3138 msr->data = data;
3139 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3140 preempt_disable();
3141 ret = kvm_set_shared_msr(msr->index, msr->data,
3142 msr->mask);
3143 preempt_enable();
3144 if (ret)
3145 msr->data = old_msr_data;
3146 }
3147 break;
3148 }
3149 ret = kvm_set_msr_common(vcpu, msr_info);
3150 }
3151
3152 return ret;
3153}
3154
3155static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3156{
3157 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3158 switch (reg) {
3159 case VCPU_REGS_RSP:
3160 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3161 break;
3162 case VCPU_REGS_RIP:
3163 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3164 break;
3165 case VCPU_EXREG_PDPTR:
3166 if (enable_ept)
3167 ept_save_pdptrs(vcpu);
3168 break;
3169 default:
3170 break;
3171 }
3172}
3173
3174static __init int cpu_has_kvm_support(void)
3175{
3176 return cpu_has_vmx();
3177}
3178
3179static __init int vmx_disabled_by_bios(void)
3180{
3181 u64 msr;
3182
3183 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3184 if (msr & FEATURE_CONTROL_LOCKED) {
3185 /* launched w/ TXT and VMX disabled */
3186 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3187 && tboot_enabled())
3188 return 1;
3189 /* launched w/o TXT and VMX only enabled w/ TXT */
3190 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3191 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3192 && !tboot_enabled()) {
3193 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3194 "activate TXT before enabling KVM\n");
3195 return 1;
3196 }
3197 /* launched w/o TXT and VMX disabled */
3198 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3199 && !tboot_enabled())
3200 return 1;
3201 }
3202
3203 return 0;
3204}
3205
3206static void kvm_cpu_vmxon(u64 addr)
3207{
3208 intel_pt_handle_vmx(1);
3209
3210 asm volatile (ASM_VMX_VMXON_RAX
3211 : : "a"(&addr), "m"(addr)
3212 : "memory", "cc");
3213}
3214
3215static int hardware_enable(void)
3216{
3217 int cpu = raw_smp_processor_id();
3218 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3219 u64 old, test_bits;
3220
3221 if (cr4_read_shadow() & X86_CR4_VMXE)
3222 return -EBUSY;
3223
3224 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3225 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3226 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3227
3228 /*
3229 * Now we can enable the vmclear operation in kdump
3230 * since the loaded_vmcss_on_cpu list on this cpu
3231 * has been initialized.
3232 *
3233 * Though the cpu is not in VMX operation now, there
3234 * is no problem to enable the vmclear operation
3235 * for the loaded_vmcss_on_cpu list is empty!
3236 */
3237 crash_enable_local_vmclear(cpu);
3238
3239 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3240
3241 test_bits = FEATURE_CONTROL_LOCKED;
3242 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3243 if (tboot_enabled())
3244 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3245
3246 if ((old & test_bits) != test_bits) {
3247 /* enable and lock */
3248 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3249 }
3250 cr4_set_bits(X86_CR4_VMXE);
3251
3252 if (vmm_exclusive) {
3253 kvm_cpu_vmxon(phys_addr);
3254 ept_sync_global();
3255 }
3256
3257 native_store_gdt(this_cpu_ptr(&host_gdt));
3258
3259 return 0;
3260}
3261
3262static void vmclear_local_loaded_vmcss(void)
3263{
3264 int cpu = raw_smp_processor_id();
3265 struct loaded_vmcs *v, *n;
3266
3267 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3268 loaded_vmcss_on_cpu_link)
3269 __loaded_vmcs_clear(v);
3270}
3271
3272
3273/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3274 * tricks.
3275 */
3276static void kvm_cpu_vmxoff(void)
3277{
3278 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3279
3280 intel_pt_handle_vmx(0);
3281}
3282
3283static void hardware_disable(void)
3284{
3285 if (vmm_exclusive) {
3286 vmclear_local_loaded_vmcss();
3287 kvm_cpu_vmxoff();
3288 }
3289 cr4_clear_bits(X86_CR4_VMXE);
3290}
3291
3292static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3293 u32 msr, u32 *result)
3294{
3295 u32 vmx_msr_low, vmx_msr_high;
3296 u32 ctl = ctl_min | ctl_opt;
3297
3298 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3299
3300 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3301 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3302
3303 /* Ensure minimum (required) set of control bits are supported. */
3304 if (ctl_min & ~ctl)
3305 return -EIO;
3306
3307 *result = ctl;
3308 return 0;
3309}
3310
3311static __init bool allow_1_setting(u32 msr, u32 ctl)
3312{
3313 u32 vmx_msr_low, vmx_msr_high;
3314
3315 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3316 return vmx_msr_high & ctl;
3317}
3318
3319static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3320{
3321 u32 vmx_msr_low, vmx_msr_high;
3322 u32 min, opt, min2, opt2;
3323 u32 _pin_based_exec_control = 0;
3324 u32 _cpu_based_exec_control = 0;
3325 u32 _cpu_based_2nd_exec_control = 0;
3326 u32 _vmexit_control = 0;
3327 u32 _vmentry_control = 0;
3328
3329 min = CPU_BASED_HLT_EXITING |
3330#ifdef CONFIG_X86_64
3331 CPU_BASED_CR8_LOAD_EXITING |
3332 CPU_BASED_CR8_STORE_EXITING |
3333#endif
3334 CPU_BASED_CR3_LOAD_EXITING |
3335 CPU_BASED_CR3_STORE_EXITING |
3336 CPU_BASED_USE_IO_BITMAPS |
3337 CPU_BASED_MOV_DR_EXITING |
3338 CPU_BASED_USE_TSC_OFFSETING |
3339 CPU_BASED_MWAIT_EXITING |
3340 CPU_BASED_MONITOR_EXITING |
3341 CPU_BASED_INVLPG_EXITING |
3342 CPU_BASED_RDPMC_EXITING;
3343
3344 opt = CPU_BASED_TPR_SHADOW |
3345 CPU_BASED_USE_MSR_BITMAPS |
3346 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3347 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3348 &_cpu_based_exec_control) < 0)
3349 return -EIO;
3350#ifdef CONFIG_X86_64
3351 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3352 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3353 ~CPU_BASED_CR8_STORE_EXITING;
3354#endif
3355 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3356 min2 = 0;
3357 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3358 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3359 SECONDARY_EXEC_WBINVD_EXITING |
3360 SECONDARY_EXEC_ENABLE_VPID |
3361 SECONDARY_EXEC_ENABLE_EPT |
3362 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3363 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3364 SECONDARY_EXEC_RDTSCP |
3365 SECONDARY_EXEC_ENABLE_INVPCID |
3366 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3367 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3368 SECONDARY_EXEC_SHADOW_VMCS |
3369 SECONDARY_EXEC_XSAVES |
3370 SECONDARY_EXEC_ENABLE_PML |
3371 SECONDARY_EXEC_TSC_SCALING;
3372 if (adjust_vmx_controls(min2, opt2,
3373 MSR_IA32_VMX_PROCBASED_CTLS2,
3374 &_cpu_based_2nd_exec_control) < 0)
3375 return -EIO;
3376 }
3377#ifndef CONFIG_X86_64
3378 if (!(_cpu_based_2nd_exec_control &
3379 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3380 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3381#endif
3382
3383 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3384 _cpu_based_2nd_exec_control &= ~(
3385 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3386 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3387 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3388
3389 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3390 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3391 enabled */
3392 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3393 CPU_BASED_CR3_STORE_EXITING |
3394 CPU_BASED_INVLPG_EXITING);
3395 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3396 vmx_capability.ept, vmx_capability.vpid);
3397 }
3398
3399 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3400#ifdef CONFIG_X86_64
3401 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3402#endif
3403 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3404 VM_EXIT_CLEAR_BNDCFGS;
3405 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3406 &_vmexit_control) < 0)
3407 return -EIO;
3408
3409 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3410 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3411 PIN_BASED_VMX_PREEMPTION_TIMER;
3412 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3413 &_pin_based_exec_control) < 0)
3414 return -EIO;
3415
3416 if (cpu_has_broken_vmx_preemption_timer())
3417 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3418 if (!(_cpu_based_2nd_exec_control &
3419 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3420 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3421
3422 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3423 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3424 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3425 &_vmentry_control) < 0)
3426 return -EIO;
3427
3428 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3429
3430 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3431 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3432 return -EIO;
3433
3434#ifdef CONFIG_X86_64
3435 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3436 if (vmx_msr_high & (1u<<16))
3437 return -EIO;
3438#endif
3439
3440 /* Require Write-Back (WB) memory type for VMCS accesses. */
3441 if (((vmx_msr_high >> 18) & 15) != 6)
3442 return -EIO;
3443
3444 vmcs_conf->size = vmx_msr_high & 0x1fff;
3445 vmcs_conf->order = get_order(vmcs_conf->size);
3446 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3447 vmcs_conf->revision_id = vmx_msr_low;
3448
3449 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3450 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3451 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3452 vmcs_conf->vmexit_ctrl = _vmexit_control;
3453 vmcs_conf->vmentry_ctrl = _vmentry_control;
3454
3455 cpu_has_load_ia32_efer =
3456 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3457 VM_ENTRY_LOAD_IA32_EFER)
3458 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3459 VM_EXIT_LOAD_IA32_EFER);
3460
3461 cpu_has_load_perf_global_ctrl =
3462 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3463 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3464 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3465 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3466
3467 /*
3468 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3469 * but due to errata below it can't be used. Workaround is to use
3470 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3471 *
3472 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3473 *
3474 * AAK155 (model 26)
3475 * AAP115 (model 30)
3476 * AAT100 (model 37)
3477 * BC86,AAY89,BD102 (model 44)
3478 * BA97 (model 46)
3479 *
3480 */
3481 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3482 switch (boot_cpu_data.x86_model) {
3483 case 26:
3484 case 30:
3485 case 37:
3486 case 44:
3487 case 46:
3488 cpu_has_load_perf_global_ctrl = false;
3489 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3490 "does not work properly. Using workaround\n");
3491 break;
3492 default:
3493 break;
3494 }
3495 }
3496
3497 if (boot_cpu_has(X86_FEATURE_XSAVES))
3498 rdmsrl(MSR_IA32_XSS, host_xss);
3499
3500 return 0;
3501}
3502
3503static struct vmcs *alloc_vmcs_cpu(int cpu)
3504{
3505 int node = cpu_to_node(cpu);
3506 struct page *pages;
3507 struct vmcs *vmcs;
3508
3509 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3510 if (!pages)
3511 return NULL;
3512 vmcs = page_address(pages);
3513 memset(vmcs, 0, vmcs_config.size);
3514 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3515 return vmcs;
3516}
3517
3518static struct vmcs *alloc_vmcs(void)
3519{
3520 return alloc_vmcs_cpu(raw_smp_processor_id());
3521}
3522
3523static void free_vmcs(struct vmcs *vmcs)
3524{
3525 free_pages((unsigned long)vmcs, vmcs_config.order);
3526}
3527
3528/*
3529 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3530 */
3531static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3532{
3533 if (!loaded_vmcs->vmcs)
3534 return;
3535 loaded_vmcs_clear(loaded_vmcs);
3536 free_vmcs(loaded_vmcs->vmcs);
3537 loaded_vmcs->vmcs = NULL;
3538 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3539}
3540
3541static void free_kvm_area(void)
3542{
3543 int cpu;
3544
3545 for_each_possible_cpu(cpu) {
3546 free_vmcs(per_cpu(vmxarea, cpu));
3547 per_cpu(vmxarea, cpu) = NULL;
3548 }
3549}
3550
3551static void init_vmcs_shadow_fields(void)
3552{
3553 int i, j;
3554
3555 /* No checks for read only fields yet */
3556
3557 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3558 switch (shadow_read_write_fields[i]) {
3559 case GUEST_BNDCFGS:
3560 if (!kvm_mpx_supported())
3561 continue;
3562 break;
3563 default:
3564 break;
3565 }
3566
3567 if (j < i)
3568 shadow_read_write_fields[j] =
3569 shadow_read_write_fields[i];
3570 j++;
3571 }
3572 max_shadow_read_write_fields = j;
3573
3574 /* shadowed fields guest access without vmexit */
3575 for (i = 0; i < max_shadow_read_write_fields; i++) {
3576 clear_bit(shadow_read_write_fields[i],
3577 vmx_vmwrite_bitmap);
3578 clear_bit(shadow_read_write_fields[i],
3579 vmx_vmread_bitmap);
3580 }
3581 for (i = 0; i < max_shadow_read_only_fields; i++)
3582 clear_bit(shadow_read_only_fields[i],
3583 vmx_vmread_bitmap);
3584}
3585
3586static __init int alloc_kvm_area(void)
3587{
3588 int cpu;
3589
3590 for_each_possible_cpu(cpu) {
3591 struct vmcs *vmcs;
3592
3593 vmcs = alloc_vmcs_cpu(cpu);
3594 if (!vmcs) {
3595 free_kvm_area();
3596 return -ENOMEM;
3597 }
3598
3599 per_cpu(vmxarea, cpu) = vmcs;
3600 }
3601 return 0;
3602}
3603
3604static bool emulation_required(struct kvm_vcpu *vcpu)
3605{
3606 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3607}
3608
3609static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3610 struct kvm_segment *save)
3611{
3612 if (!emulate_invalid_guest_state) {
3613 /*
3614 * CS and SS RPL should be equal during guest entry according
3615 * to VMX spec, but in reality it is not always so. Since vcpu
3616 * is in the middle of the transition from real mode to
3617 * protected mode it is safe to assume that RPL 0 is a good
3618 * default value.
3619 */
3620 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3621 save->selector &= ~SEGMENT_RPL_MASK;
3622 save->dpl = save->selector & SEGMENT_RPL_MASK;
3623 save->s = 1;
3624 }
3625 vmx_set_segment(vcpu, save, seg);
3626}
3627
3628static void enter_pmode(struct kvm_vcpu *vcpu)
3629{
3630 unsigned long flags;
3631 struct vcpu_vmx *vmx = to_vmx(vcpu);
3632
3633 /*
3634 * Update real mode segment cache. It may be not up-to-date if sement
3635 * register was written while vcpu was in a guest mode.
3636 */
3637 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3638 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3639 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3640 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3641 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3642 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3643
3644 vmx->rmode.vm86_active = 0;
3645
3646 vmx_segment_cache_clear(vmx);
3647
3648 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3649
3650 flags = vmcs_readl(GUEST_RFLAGS);
3651 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3652 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3653 vmcs_writel(GUEST_RFLAGS, flags);
3654
3655 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3656 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3657
3658 update_exception_bitmap(vcpu);
3659
3660 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3661 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3662 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3663 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3664 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3665 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3666}
3667
3668static void fix_rmode_seg(int seg, struct kvm_segment *save)
3669{
3670 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3671 struct kvm_segment var = *save;
3672
3673 var.dpl = 0x3;
3674 if (seg == VCPU_SREG_CS)
3675 var.type = 0x3;
3676
3677 if (!emulate_invalid_guest_state) {
3678 var.selector = var.base >> 4;
3679 var.base = var.base & 0xffff0;
3680 var.limit = 0xffff;
3681 var.g = 0;
3682 var.db = 0;
3683 var.present = 1;
3684 var.s = 1;
3685 var.l = 0;
3686 var.unusable = 0;
3687 var.type = 0x3;
3688 var.avl = 0;
3689 if (save->base & 0xf)
3690 printk_once(KERN_WARNING "kvm: segment base is not "
3691 "paragraph aligned when entering "
3692 "protected mode (seg=%d)", seg);
3693 }
3694
3695 vmcs_write16(sf->selector, var.selector);
3696 vmcs_write32(sf->base, var.base);
3697 vmcs_write32(sf->limit, var.limit);
3698 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3699}
3700
3701static void enter_rmode(struct kvm_vcpu *vcpu)
3702{
3703 unsigned long flags;
3704 struct vcpu_vmx *vmx = to_vmx(vcpu);
3705
3706 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3707 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3708 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3709 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3710 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3711 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3712 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3713
3714 vmx->rmode.vm86_active = 1;
3715
3716 /*
3717 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3718 * vcpu. Warn the user that an update is overdue.
3719 */
3720 if (!vcpu->kvm->arch.tss_addr)
3721 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3722 "called before entering vcpu\n");
3723
3724 vmx_segment_cache_clear(vmx);
3725
3726 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3727 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3728 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3729
3730 flags = vmcs_readl(GUEST_RFLAGS);
3731 vmx->rmode.save_rflags = flags;
3732
3733 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3734
3735 vmcs_writel(GUEST_RFLAGS, flags);
3736 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3737 update_exception_bitmap(vcpu);
3738
3739 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3740 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3741 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3742 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3743 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3744 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3745
3746 kvm_mmu_reset_context(vcpu);
3747}
3748
3749static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3750{
3751 struct vcpu_vmx *vmx = to_vmx(vcpu);
3752 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3753
3754 if (!msr)
3755 return;
3756
3757 /*
3758 * Force kernel_gs_base reloading before EFER changes, as control
3759 * of this msr depends on is_long_mode().
3760 */
3761 vmx_load_host_state(to_vmx(vcpu));
3762 vcpu->arch.efer = efer;
3763 if (efer & EFER_LMA) {
3764 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3765 msr->data = efer;
3766 } else {
3767 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3768
3769 msr->data = efer & ~EFER_LME;
3770 }
3771 setup_msrs(vmx);
3772}
3773
3774#ifdef CONFIG_X86_64
3775
3776static void enter_lmode(struct kvm_vcpu *vcpu)
3777{
3778 u32 guest_tr_ar;
3779
3780 vmx_segment_cache_clear(to_vmx(vcpu));
3781
3782 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3783 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3784 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3785 __func__);
3786 vmcs_write32(GUEST_TR_AR_BYTES,
3787 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3788 | VMX_AR_TYPE_BUSY_64_TSS);
3789 }
3790 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3791}
3792
3793static void exit_lmode(struct kvm_vcpu *vcpu)
3794{
3795 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3796 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3797}
3798
3799#endif
3800
3801static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3802{
3803 vpid_sync_context(vpid);
3804 if (enable_ept) {
3805 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3806 return;
3807 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3808 }
3809}
3810
3811static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3812{
3813 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3814}
3815
3816static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3817{
3818 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3819
3820 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3821 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3822}
3823
3824static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3825{
3826 if (enable_ept && is_paging(vcpu))
3827 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3828 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3829}
3830
3831static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3832{
3833 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3834
3835 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3836 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3837}
3838
3839static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3840{
3841 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3842
3843 if (!test_bit(VCPU_EXREG_PDPTR,
3844 (unsigned long *)&vcpu->arch.regs_dirty))
3845 return;
3846
3847 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3848 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3849 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3850 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3851 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3852 }
3853}
3854
3855static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3856{
3857 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3858
3859 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3860 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3861 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3862 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3863 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3864 }
3865
3866 __set_bit(VCPU_EXREG_PDPTR,
3867 (unsigned long *)&vcpu->arch.regs_avail);
3868 __set_bit(VCPU_EXREG_PDPTR,
3869 (unsigned long *)&vcpu->arch.regs_dirty);
3870}
3871
3872static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3873
3874static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3875 unsigned long cr0,
3876 struct kvm_vcpu *vcpu)
3877{
3878 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3879 vmx_decache_cr3(vcpu);
3880 if (!(cr0 & X86_CR0_PG)) {
3881 /* From paging/starting to nonpaging */
3882 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3883 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3884 (CPU_BASED_CR3_LOAD_EXITING |
3885 CPU_BASED_CR3_STORE_EXITING));
3886 vcpu->arch.cr0 = cr0;
3887 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3888 } else if (!is_paging(vcpu)) {
3889 /* From nonpaging to paging */
3890 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3891 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3892 ~(CPU_BASED_CR3_LOAD_EXITING |
3893 CPU_BASED_CR3_STORE_EXITING));
3894 vcpu->arch.cr0 = cr0;
3895 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3896 }
3897
3898 if (!(cr0 & X86_CR0_WP))
3899 *hw_cr0 &= ~X86_CR0_WP;
3900}
3901
3902static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3903{
3904 struct vcpu_vmx *vmx = to_vmx(vcpu);
3905 unsigned long hw_cr0;
3906
3907 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3908 if (enable_unrestricted_guest)
3909 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3910 else {
3911 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3912
3913 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3914 enter_pmode(vcpu);
3915
3916 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3917 enter_rmode(vcpu);
3918 }
3919
3920#ifdef CONFIG_X86_64
3921 if (vcpu->arch.efer & EFER_LME) {
3922 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3923 enter_lmode(vcpu);
3924 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3925 exit_lmode(vcpu);
3926 }
3927#endif
3928
3929 if (enable_ept)
3930 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3931
3932 if (!vcpu->fpu_active)
3933 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3934
3935 vmcs_writel(CR0_READ_SHADOW, cr0);
3936 vmcs_writel(GUEST_CR0, hw_cr0);
3937 vcpu->arch.cr0 = cr0;
3938
3939 /* depends on vcpu->arch.cr0 to be set to a new value */
3940 vmx->emulation_required = emulation_required(vcpu);
3941}
3942
3943static u64 construct_eptp(unsigned long root_hpa)
3944{
3945 u64 eptp;
3946
3947 /* TODO write the value reading from MSR */
3948 eptp = VMX_EPT_DEFAULT_MT |
3949 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3950 if (enable_ept_ad_bits)
3951 eptp |= VMX_EPT_AD_ENABLE_BIT;
3952 eptp |= (root_hpa & PAGE_MASK);
3953
3954 return eptp;
3955}
3956
3957static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3958{
3959 unsigned long guest_cr3;
3960 u64 eptp;
3961
3962 guest_cr3 = cr3;
3963 if (enable_ept) {
3964 eptp = construct_eptp(cr3);
3965 vmcs_write64(EPT_POINTER, eptp);
3966 if (is_paging(vcpu) || is_guest_mode(vcpu))
3967 guest_cr3 = kvm_read_cr3(vcpu);
3968 else
3969 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3970 ept_load_pdptrs(vcpu);
3971 }
3972
3973 vmx_flush_tlb(vcpu);
3974 vmcs_writel(GUEST_CR3, guest_cr3);
3975}
3976
3977static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3978{
3979 /*
3980 * Pass through host's Machine Check Enable value to hw_cr4, which
3981 * is in force while we are in guest mode. Do not let guests control
3982 * this bit, even if host CR4.MCE == 0.
3983 */
3984 unsigned long hw_cr4 =
3985 (cr4_read_shadow() & X86_CR4_MCE) |
3986 (cr4 & ~X86_CR4_MCE) |
3987 (to_vmx(vcpu)->rmode.vm86_active ?
3988 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3989
3990 if (cr4 & X86_CR4_VMXE) {
3991 /*
3992 * To use VMXON (and later other VMX instructions), a guest
3993 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3994 * So basically the check on whether to allow nested VMX
3995 * is here.
3996 */
3997 if (!nested_vmx_allowed(vcpu))
3998 return 1;
3999 }
4000 if (to_vmx(vcpu)->nested.vmxon &&
4001 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
4002 return 1;
4003
4004 vcpu->arch.cr4 = cr4;
4005 if (enable_ept) {
4006 if (!is_paging(vcpu)) {
4007 hw_cr4 &= ~X86_CR4_PAE;
4008 hw_cr4 |= X86_CR4_PSE;
4009 } else if (!(cr4 & X86_CR4_PAE)) {
4010 hw_cr4 &= ~X86_CR4_PAE;
4011 }
4012 }
4013
4014 if (!enable_unrestricted_guest && !is_paging(vcpu))
4015 /*
4016 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4017 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4018 * to be manually disabled when guest switches to non-paging
4019 * mode.
4020 *
4021 * If !enable_unrestricted_guest, the CPU is always running
4022 * with CR0.PG=1 and CR4 needs to be modified.
4023 * If enable_unrestricted_guest, the CPU automatically
4024 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4025 */
4026 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4027
4028 vmcs_writel(CR4_READ_SHADOW, cr4);
4029 vmcs_writel(GUEST_CR4, hw_cr4);
4030 return 0;
4031}
4032
4033static void vmx_get_segment(struct kvm_vcpu *vcpu,
4034 struct kvm_segment *var, int seg)
4035{
4036 struct vcpu_vmx *vmx = to_vmx(vcpu);
4037 u32 ar;
4038
4039 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4040 *var = vmx->rmode.segs[seg];
4041 if (seg == VCPU_SREG_TR
4042 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4043 return;
4044 var->base = vmx_read_guest_seg_base(vmx, seg);
4045 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4046 return;
4047 }
4048 var->base = vmx_read_guest_seg_base(vmx, seg);
4049 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4050 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4051 ar = vmx_read_guest_seg_ar(vmx, seg);
4052 var->unusable = (ar >> 16) & 1;
4053 var->type = ar & 15;
4054 var->s = (ar >> 4) & 1;
4055 var->dpl = (ar >> 5) & 3;
4056 /*
4057 * Some userspaces do not preserve unusable property. Since usable
4058 * segment has to be present according to VMX spec we can use present
4059 * property to amend userspace bug by making unusable segment always
4060 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4061 * segment as unusable.
4062 */
4063 var->present = !var->unusable;
4064 var->avl = (ar >> 12) & 1;
4065 var->l = (ar >> 13) & 1;
4066 var->db = (ar >> 14) & 1;
4067 var->g = (ar >> 15) & 1;
4068}
4069
4070static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4071{
4072 struct kvm_segment s;
4073
4074 if (to_vmx(vcpu)->rmode.vm86_active) {
4075 vmx_get_segment(vcpu, &s, seg);
4076 return s.base;
4077 }
4078 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4079}
4080
4081static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4082{
4083 struct vcpu_vmx *vmx = to_vmx(vcpu);
4084
4085 if (unlikely(vmx->rmode.vm86_active))
4086 return 0;
4087 else {
4088 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4089 return VMX_AR_DPL(ar);
4090 }
4091}
4092
4093static u32 vmx_segment_access_rights(struct kvm_segment *var)
4094{
4095 u32 ar;
4096
4097 if (var->unusable || !var->present)
4098 ar = 1 << 16;
4099 else {
4100 ar = var->type & 15;
4101 ar |= (var->s & 1) << 4;
4102 ar |= (var->dpl & 3) << 5;
4103 ar |= (var->present & 1) << 7;
4104 ar |= (var->avl & 1) << 12;
4105 ar |= (var->l & 1) << 13;
4106 ar |= (var->db & 1) << 14;
4107 ar |= (var->g & 1) << 15;
4108 }
4109
4110 return ar;
4111}
4112
4113static void vmx_set_segment(struct kvm_vcpu *vcpu,
4114 struct kvm_segment *var, int seg)
4115{
4116 struct vcpu_vmx *vmx = to_vmx(vcpu);
4117 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4118
4119 vmx_segment_cache_clear(vmx);
4120
4121 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4122 vmx->rmode.segs[seg] = *var;
4123 if (seg == VCPU_SREG_TR)
4124 vmcs_write16(sf->selector, var->selector);
4125 else if (var->s)
4126 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4127 goto out;
4128 }
4129
4130 vmcs_writel(sf->base, var->base);
4131 vmcs_write32(sf->limit, var->limit);
4132 vmcs_write16(sf->selector, var->selector);
4133
4134 /*
4135 * Fix the "Accessed" bit in AR field of segment registers for older
4136 * qemu binaries.
4137 * IA32 arch specifies that at the time of processor reset the
4138 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4139 * is setting it to 0 in the userland code. This causes invalid guest
4140 * state vmexit when "unrestricted guest" mode is turned on.
4141 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4142 * tree. Newer qemu binaries with that qemu fix would not need this
4143 * kvm hack.
4144 */
4145 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4146 var->type |= 0x1; /* Accessed */
4147
4148 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4149
4150out:
4151 vmx->emulation_required = emulation_required(vcpu);
4152}
4153
4154static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4155{
4156 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4157
4158 *db = (ar >> 14) & 1;
4159 *l = (ar >> 13) & 1;
4160}
4161
4162static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4163{
4164 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4165 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4166}
4167
4168static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4169{
4170 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4171 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4172}
4173
4174static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4175{
4176 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4177 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4178}
4179
4180static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4181{
4182 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4183 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4184}
4185
4186static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4187{
4188 struct kvm_segment var;
4189 u32 ar;
4190
4191 vmx_get_segment(vcpu, &var, seg);
4192 var.dpl = 0x3;
4193 if (seg == VCPU_SREG_CS)
4194 var.type = 0x3;
4195 ar = vmx_segment_access_rights(&var);
4196
4197 if (var.base != (var.selector << 4))
4198 return false;
4199 if (var.limit != 0xffff)
4200 return false;
4201 if (ar != 0xf3)
4202 return false;
4203
4204 return true;
4205}
4206
4207static bool code_segment_valid(struct kvm_vcpu *vcpu)
4208{
4209 struct kvm_segment cs;
4210 unsigned int cs_rpl;
4211
4212 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4213 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4214
4215 if (cs.unusable)
4216 return false;
4217 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4218 return false;
4219 if (!cs.s)
4220 return false;
4221 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4222 if (cs.dpl > cs_rpl)
4223 return false;
4224 } else {
4225 if (cs.dpl != cs_rpl)
4226 return false;
4227 }
4228 if (!cs.present)
4229 return false;
4230
4231 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4232 return true;
4233}
4234
4235static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4236{
4237 struct kvm_segment ss;
4238 unsigned int ss_rpl;
4239
4240 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4241 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4242
4243 if (ss.unusable)
4244 return true;
4245 if (ss.type != 3 && ss.type != 7)
4246 return false;
4247 if (!ss.s)
4248 return false;
4249 if (ss.dpl != ss_rpl) /* DPL != RPL */
4250 return false;
4251 if (!ss.present)
4252 return false;
4253
4254 return true;
4255}
4256
4257static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4258{
4259 struct kvm_segment var;
4260 unsigned int rpl;
4261
4262 vmx_get_segment(vcpu, &var, seg);
4263 rpl = var.selector & SEGMENT_RPL_MASK;
4264
4265 if (var.unusable)
4266 return true;
4267 if (!var.s)
4268 return false;
4269 if (!var.present)
4270 return false;
4271 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4272 if (var.dpl < rpl) /* DPL < RPL */
4273 return false;
4274 }
4275
4276 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4277 * rights flags
4278 */
4279 return true;
4280}
4281
4282static bool tr_valid(struct kvm_vcpu *vcpu)
4283{
4284 struct kvm_segment tr;
4285
4286 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4287
4288 if (tr.unusable)
4289 return false;
4290 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4291 return false;
4292 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4293 return false;
4294 if (!tr.present)
4295 return false;
4296
4297 return true;
4298}
4299
4300static bool ldtr_valid(struct kvm_vcpu *vcpu)
4301{
4302 struct kvm_segment ldtr;
4303
4304 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4305
4306 if (ldtr.unusable)
4307 return true;
4308 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4309 return false;
4310 if (ldtr.type != 2)
4311 return false;
4312 if (!ldtr.present)
4313 return false;
4314
4315 return true;
4316}
4317
4318static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4319{
4320 struct kvm_segment cs, ss;
4321
4322 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4323 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4324
4325 return ((cs.selector & SEGMENT_RPL_MASK) ==
4326 (ss.selector & SEGMENT_RPL_MASK));
4327}
4328
4329/*
4330 * Check if guest state is valid. Returns true if valid, false if
4331 * not.
4332 * We assume that registers are always usable
4333 */
4334static bool guest_state_valid(struct kvm_vcpu *vcpu)
4335{
4336 if (enable_unrestricted_guest)
4337 return true;
4338
4339 /* real mode guest state checks */
4340 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4341 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4342 return false;
4343 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4344 return false;
4345 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4346 return false;
4347 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4348 return false;
4349 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4350 return false;
4351 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4352 return false;
4353 } else {
4354 /* protected mode guest state checks */
4355 if (!cs_ss_rpl_check(vcpu))
4356 return false;
4357 if (!code_segment_valid(vcpu))
4358 return false;
4359 if (!stack_segment_valid(vcpu))
4360 return false;
4361 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4362 return false;
4363 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4364 return false;
4365 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4366 return false;
4367 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4368 return false;
4369 if (!tr_valid(vcpu))
4370 return false;
4371 if (!ldtr_valid(vcpu))
4372 return false;
4373 }
4374 /* TODO:
4375 * - Add checks on RIP
4376 * - Add checks on RFLAGS
4377 */
4378
4379 return true;
4380}
4381
4382static int init_rmode_tss(struct kvm *kvm)
4383{
4384 gfn_t fn;
4385 u16 data = 0;
4386 int idx, r;
4387
4388 idx = srcu_read_lock(&kvm->srcu);
4389 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4390 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4391 if (r < 0)
4392 goto out;
4393 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4394 r = kvm_write_guest_page(kvm, fn++, &data,
4395 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4396 if (r < 0)
4397 goto out;
4398 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4399 if (r < 0)
4400 goto out;
4401 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4402 if (r < 0)
4403 goto out;
4404 data = ~0;
4405 r = kvm_write_guest_page(kvm, fn, &data,
4406 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4407 sizeof(u8));
4408out:
4409 srcu_read_unlock(&kvm->srcu, idx);
4410 return r;
4411}
4412
4413static int init_rmode_identity_map(struct kvm *kvm)
4414{
4415 int i, idx, r = 0;
4416 kvm_pfn_t identity_map_pfn;
4417 u32 tmp;
4418
4419 if (!enable_ept)
4420 return 0;
4421
4422 /* Protect kvm->arch.ept_identity_pagetable_done. */
4423 mutex_lock(&kvm->slots_lock);
4424
4425 if (likely(kvm->arch.ept_identity_pagetable_done))
4426 goto out2;
4427
4428 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4429
4430 r = alloc_identity_pagetable(kvm);
4431 if (r < 0)
4432 goto out2;
4433
4434 idx = srcu_read_lock(&kvm->srcu);
4435 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4436 if (r < 0)
4437 goto out;
4438 /* Set up identity-mapping pagetable for EPT in real mode */
4439 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4440 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4441 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4442 r = kvm_write_guest_page(kvm, identity_map_pfn,
4443 &tmp, i * sizeof(tmp), sizeof(tmp));
4444 if (r < 0)
4445 goto out;
4446 }
4447 kvm->arch.ept_identity_pagetable_done = true;
4448
4449out:
4450 srcu_read_unlock(&kvm->srcu, idx);
4451
4452out2:
4453 mutex_unlock(&kvm->slots_lock);
4454 return r;
4455}
4456
4457static void seg_setup(int seg)
4458{
4459 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4460 unsigned int ar;
4461
4462 vmcs_write16(sf->selector, 0);
4463 vmcs_writel(sf->base, 0);
4464 vmcs_write32(sf->limit, 0xffff);
4465 ar = 0x93;
4466 if (seg == VCPU_SREG_CS)
4467 ar |= 0x08; /* code segment */
4468
4469 vmcs_write32(sf->ar_bytes, ar);
4470}
4471
4472static int alloc_apic_access_page(struct kvm *kvm)
4473{
4474 struct page *page;
4475 int r = 0;
4476
4477 mutex_lock(&kvm->slots_lock);
4478 if (kvm->arch.apic_access_page_done)
4479 goto out;
4480 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4481 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4482 if (r)
4483 goto out;
4484
4485 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4486 if (is_error_page(page)) {
4487 r = -EFAULT;
4488 goto out;
4489 }
4490
4491 /*
4492 * Do not pin the page in memory, so that memory hot-unplug
4493 * is able to migrate it.
4494 */
4495 put_page(page);
4496 kvm->arch.apic_access_page_done = true;
4497out:
4498 mutex_unlock(&kvm->slots_lock);
4499 return r;
4500}
4501
4502static int alloc_identity_pagetable(struct kvm *kvm)
4503{
4504 /* Called with kvm->slots_lock held. */
4505
4506 int r = 0;
4507
4508 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4509
4510 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4511 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4512
4513 return r;
4514}
4515
4516static int allocate_vpid(void)
4517{
4518 int vpid;
4519
4520 if (!enable_vpid)
4521 return 0;
4522 spin_lock(&vmx_vpid_lock);
4523 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4524 if (vpid < VMX_NR_VPIDS)
4525 __set_bit(vpid, vmx_vpid_bitmap);
4526 else
4527 vpid = 0;
4528 spin_unlock(&vmx_vpid_lock);
4529 return vpid;
4530}
4531
4532static void free_vpid(int vpid)
4533{
4534 if (!enable_vpid || vpid == 0)
4535 return;
4536 spin_lock(&vmx_vpid_lock);
4537 __clear_bit(vpid, vmx_vpid_bitmap);
4538 spin_unlock(&vmx_vpid_lock);
4539}
4540
4541#define MSR_TYPE_R 1
4542#define MSR_TYPE_W 2
4543static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4544 u32 msr, int type)
4545{
4546 int f = sizeof(unsigned long);
4547
4548 if (!cpu_has_vmx_msr_bitmap())
4549 return;
4550
4551 /*
4552 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4553 * have the write-low and read-high bitmap offsets the wrong way round.
4554 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4555 */
4556 if (msr <= 0x1fff) {
4557 if (type & MSR_TYPE_R)
4558 /* read-low */
4559 __clear_bit(msr, msr_bitmap + 0x000 / f);
4560
4561 if (type & MSR_TYPE_W)
4562 /* write-low */
4563 __clear_bit(msr, msr_bitmap + 0x800 / f);
4564
4565 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4566 msr &= 0x1fff;
4567 if (type & MSR_TYPE_R)
4568 /* read-high */
4569 __clear_bit(msr, msr_bitmap + 0x400 / f);
4570
4571 if (type & MSR_TYPE_W)
4572 /* write-high */
4573 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4574
4575 }
4576}
4577
4578static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4579 u32 msr, int type)
4580{
4581 int f = sizeof(unsigned long);
4582
4583 if (!cpu_has_vmx_msr_bitmap())
4584 return;
4585
4586 /*
4587 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4588 * have the write-low and read-high bitmap offsets the wrong way round.
4589 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4590 */
4591 if (msr <= 0x1fff) {
4592 if (type & MSR_TYPE_R)
4593 /* read-low */
4594 __set_bit(msr, msr_bitmap + 0x000 / f);
4595
4596 if (type & MSR_TYPE_W)
4597 /* write-low */
4598 __set_bit(msr, msr_bitmap + 0x800 / f);
4599
4600 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4601 msr &= 0x1fff;
4602 if (type & MSR_TYPE_R)
4603 /* read-high */
4604 __set_bit(msr, msr_bitmap + 0x400 / f);
4605
4606 if (type & MSR_TYPE_W)
4607 /* write-high */
4608 __set_bit(msr, msr_bitmap + 0xc00 / f);
4609
4610 }
4611}
4612
4613/*
4614 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4615 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4616 */
4617static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4618 unsigned long *msr_bitmap_nested,
4619 u32 msr, int type)
4620{
4621 int f = sizeof(unsigned long);
4622
4623 if (!cpu_has_vmx_msr_bitmap()) {
4624 WARN_ON(1);
4625 return;
4626 }
4627
4628 /*
4629 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4630 * have the write-low and read-high bitmap offsets the wrong way round.
4631 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4632 */
4633 if (msr <= 0x1fff) {
4634 if (type & MSR_TYPE_R &&
4635 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4636 /* read-low */
4637 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4638
4639 if (type & MSR_TYPE_W &&
4640 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4641 /* write-low */
4642 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4643
4644 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4645 msr &= 0x1fff;
4646 if (type & MSR_TYPE_R &&
4647 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4648 /* read-high */
4649 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4650
4651 if (type & MSR_TYPE_W &&
4652 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4653 /* write-high */
4654 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4655
4656 }
4657}
4658
4659static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4660{
4661 if (!longmode_only)
4662 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4663 msr, MSR_TYPE_R | MSR_TYPE_W);
4664 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4665 msr, MSR_TYPE_R | MSR_TYPE_W);
4666}
4667
4668static void vmx_enable_intercept_msr_read_x2apic(u32 msr, bool apicv_active)
4669{
4670 if (apicv_active) {
4671 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4672 msr, MSR_TYPE_R);
4673 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4674 msr, MSR_TYPE_R);
4675 } else {
4676 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4677 msr, MSR_TYPE_R);
4678 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4679 msr, MSR_TYPE_R);
4680 }
4681}
4682
4683static void vmx_disable_intercept_msr_read_x2apic(u32 msr, bool apicv_active)
4684{
4685 if (apicv_active) {
4686 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4687 msr, MSR_TYPE_R);
4688 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4689 msr, MSR_TYPE_R);
4690 } else {
4691 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4692 msr, MSR_TYPE_R);
4693 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4694 msr, MSR_TYPE_R);
4695 }
4696}
4697
4698static void vmx_disable_intercept_msr_write_x2apic(u32 msr, bool apicv_active)
4699{
4700 if (apicv_active) {
4701 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4702 msr, MSR_TYPE_W);
4703 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4704 msr, MSR_TYPE_W);
4705 } else {
4706 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4707 msr, MSR_TYPE_W);
4708 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4709 msr, MSR_TYPE_W);
4710 }
4711}
4712
4713static bool vmx_get_enable_apicv(void)
4714{
4715 return enable_apicv;
4716}
4717
4718static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4719{
4720 struct vcpu_vmx *vmx = to_vmx(vcpu);
4721 int max_irr;
4722 void *vapic_page;
4723 u16 status;
4724
4725 if (vmx->nested.pi_desc &&
4726 vmx->nested.pi_pending) {
4727 vmx->nested.pi_pending = false;
4728 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4729 return 0;
4730
4731 max_irr = find_last_bit(
4732 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4733
4734 if (max_irr == 256)
4735 return 0;
4736
4737 vapic_page = kmap(vmx->nested.virtual_apic_page);
4738 if (!vapic_page) {
4739 WARN_ON(1);
4740 return -ENOMEM;
4741 }
4742 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4743 kunmap(vmx->nested.virtual_apic_page);
4744
4745 status = vmcs_read16(GUEST_INTR_STATUS);
4746 if ((u8)max_irr > ((u8)status & 0xff)) {
4747 status &= ~0xff;
4748 status |= (u8)max_irr;
4749 vmcs_write16(GUEST_INTR_STATUS, status);
4750 }
4751 }
4752 return 0;
4753}
4754
4755static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4756{
4757#ifdef CONFIG_SMP
4758 if (vcpu->mode == IN_GUEST_MODE) {
4759 struct vcpu_vmx *vmx = to_vmx(vcpu);
4760
4761 /*
4762 * Currently, we don't support urgent interrupt,
4763 * all interrupts are recognized as non-urgent
4764 * interrupt, so we cannot post interrupts when
4765 * 'SN' is set.
4766 *
4767 * If the vcpu is in guest mode, it means it is
4768 * running instead of being scheduled out and
4769 * waiting in the run queue, and that's the only
4770 * case when 'SN' is set currently, warning if
4771 * 'SN' is set.
4772 */
4773 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4774
4775 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4776 POSTED_INTR_VECTOR);
4777 return true;
4778 }
4779#endif
4780 return false;
4781}
4782
4783static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4784 int vector)
4785{
4786 struct vcpu_vmx *vmx = to_vmx(vcpu);
4787
4788 if (is_guest_mode(vcpu) &&
4789 vector == vmx->nested.posted_intr_nv) {
4790 /* the PIR and ON have been set by L1. */
4791 kvm_vcpu_trigger_posted_interrupt(vcpu);
4792 /*
4793 * If a posted intr is not recognized by hardware,
4794 * we will accomplish it in the next vmentry.
4795 */
4796 vmx->nested.pi_pending = true;
4797 kvm_make_request(KVM_REQ_EVENT, vcpu);
4798 return 0;
4799 }
4800 return -1;
4801}
4802/*
4803 * Send interrupt to vcpu via posted interrupt way.
4804 * 1. If target vcpu is running(non-root mode), send posted interrupt
4805 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4806 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4807 * interrupt from PIR in next vmentry.
4808 */
4809static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4810{
4811 struct vcpu_vmx *vmx = to_vmx(vcpu);
4812 int r;
4813
4814 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4815 if (!r)
4816 return;
4817
4818 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4819 return;
4820
4821 r = pi_test_and_set_on(&vmx->pi_desc);
4822 kvm_make_request(KVM_REQ_EVENT, vcpu);
4823 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4824 kvm_vcpu_kick(vcpu);
4825}
4826
4827static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4828{
4829 struct vcpu_vmx *vmx = to_vmx(vcpu);
4830
4831 if (!pi_test_and_clear_on(&vmx->pi_desc))
4832 return;
4833
4834 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4835}
4836
4837/*
4838 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4839 * will not change in the lifetime of the guest.
4840 * Note that host-state that does change is set elsewhere. E.g., host-state
4841 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4842 */
4843static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4844{
4845 u32 low32, high32;
4846 unsigned long tmpl;
4847 struct desc_ptr dt;
4848 unsigned long cr4;
4849
4850 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4851 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4852
4853 /* Save the most likely value for this task's CR4 in the VMCS. */
4854 cr4 = cr4_read_shadow();
4855 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4856 vmx->host_state.vmcs_host_cr4 = cr4;
4857
4858 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4859#ifdef CONFIG_X86_64
4860 /*
4861 * Load null selectors, so we can avoid reloading them in
4862 * __vmx_load_host_state(), in case userspace uses the null selectors
4863 * too (the expected case).
4864 */
4865 vmcs_write16(HOST_DS_SELECTOR, 0);
4866 vmcs_write16(HOST_ES_SELECTOR, 0);
4867#else
4868 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4869 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4870#endif
4871 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4872 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4873
4874 native_store_idt(&dt);
4875 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4876 vmx->host_idt_base = dt.address;
4877
4878 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4879
4880 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4881 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4882 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4883 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4884
4885 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4886 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4887 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4888 }
4889}
4890
4891static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4892{
4893 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4894 if (enable_ept)
4895 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4896 if (is_guest_mode(&vmx->vcpu))
4897 vmx->vcpu.arch.cr4_guest_owned_bits &=
4898 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4899 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4900}
4901
4902static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4903{
4904 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4905
4906 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4907 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4908 /* Enable the preemption timer dynamically */
4909 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4910 return pin_based_exec_ctrl;
4911}
4912
4913static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4914{
4915 struct vcpu_vmx *vmx = to_vmx(vcpu);
4916
4917 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4918 if (cpu_has_secondary_exec_ctrls()) {
4919 if (kvm_vcpu_apicv_active(vcpu))
4920 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4921 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4922 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4923 else
4924 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4925 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4926 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4927 }
4928
4929 if (cpu_has_vmx_msr_bitmap())
4930 vmx_set_msr_bitmap(vcpu);
4931}
4932
4933static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4934{
4935 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4936
4937 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4938 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4939
4940 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4941 exec_control &= ~CPU_BASED_TPR_SHADOW;
4942#ifdef CONFIG_X86_64
4943 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4944 CPU_BASED_CR8_LOAD_EXITING;
4945#endif
4946 }
4947 if (!enable_ept)
4948 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4949 CPU_BASED_CR3_LOAD_EXITING |
4950 CPU_BASED_INVLPG_EXITING;
4951 return exec_control;
4952}
4953
4954static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4955{
4956 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4957 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4958 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4959 if (vmx->vpid == 0)
4960 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4961 if (!enable_ept) {
4962 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4963 enable_unrestricted_guest = 0;
4964 /* Enable INVPCID for non-ept guests may cause performance regression. */
4965 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4966 }
4967 if (!enable_unrestricted_guest)
4968 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4969 if (!ple_gap)
4970 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4971 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4972 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4973 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4974 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4975 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4976 (handle_vmptrld).
4977 We can NOT enable shadow_vmcs here because we don't have yet
4978 a current VMCS12
4979 */
4980 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4981
4982 if (!enable_pml)
4983 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4984
4985 return exec_control;
4986}
4987
4988static void ept_set_mmio_spte_mask(void)
4989{
4990 /*
4991 * EPT Misconfigurations can be generated if the value of bits 2:0
4992 * of an EPT paging-structure entry is 110b (write/execute).
4993 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4994 * spte.
4995 */
4996 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4997}
4998
4999#define VMX_XSS_EXIT_BITMAP 0
5000/*
5001 * Sets up the vmcs for emulated real mode.
5002 */
5003static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5004{
5005#ifdef CONFIG_X86_64
5006 unsigned long a;
5007#endif
5008 int i;
5009
5010 /* I/O */
5011 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5012 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5013
5014 if (enable_shadow_vmcs) {
5015 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5016 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5017 }
5018 if (cpu_has_vmx_msr_bitmap())
5019 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5020
5021 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5022
5023 /* Control */
5024 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5025 vmx->hv_deadline_tsc = -1;
5026
5027 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5028
5029 if (cpu_has_secondary_exec_ctrls()) {
5030 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5031 vmx_secondary_exec_control(vmx));
5032 }
5033
5034 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5035 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5036 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5037 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5038 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5039
5040 vmcs_write16(GUEST_INTR_STATUS, 0);
5041
5042 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5043 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5044 }
5045
5046 if (ple_gap) {
5047 vmcs_write32(PLE_GAP, ple_gap);
5048 vmx->ple_window = ple_window;
5049 vmx->ple_window_dirty = true;
5050 }
5051
5052 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5053 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5054 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5055
5056 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5057 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5058 vmx_set_constant_host_state(vmx);
5059#ifdef CONFIG_X86_64
5060 rdmsrl(MSR_FS_BASE, a);
5061 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5062 rdmsrl(MSR_GS_BASE, a);
5063 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5064#else
5065 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5066 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5067#endif
5068
5069 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5070 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5071 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5072 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5073 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5074
5075 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5076 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5077
5078 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5079 u32 index = vmx_msr_index[i];
5080 u32 data_low, data_high;
5081 int j = vmx->nmsrs;
5082
5083 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5084 continue;
5085 if (wrmsr_safe(index, data_low, data_high) < 0)
5086 continue;
5087 vmx->guest_msrs[j].index = i;
5088 vmx->guest_msrs[j].data = 0;
5089 vmx->guest_msrs[j].mask = -1ull;
5090 ++vmx->nmsrs;
5091 }
5092
5093
5094 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5095
5096 /* 22.2.1, 20.8.1 */
5097 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5098
5099 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
5100 set_cr4_guest_host_mask(vmx);
5101
5102 if (vmx_xsaves_supported())
5103 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5104
5105 if (enable_pml) {
5106 ASSERT(vmx->pml_pg);
5107 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5108 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5109 }
5110
5111 return 0;
5112}
5113
5114static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5115{
5116 struct vcpu_vmx *vmx = to_vmx(vcpu);
5117 struct msr_data apic_base_msr;
5118 u64 cr0;
5119
5120 vmx->rmode.vm86_active = 0;
5121
5122 vmx->soft_vnmi_blocked = 0;
5123
5124 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5125 kvm_set_cr8(vcpu, 0);
5126
5127 if (!init_event) {
5128 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5129 MSR_IA32_APICBASE_ENABLE;
5130 if (kvm_vcpu_is_reset_bsp(vcpu))
5131 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5132 apic_base_msr.host_initiated = true;
5133 kvm_set_apic_base(vcpu, &apic_base_msr);
5134 }
5135
5136 vmx_segment_cache_clear(vmx);
5137
5138 seg_setup(VCPU_SREG_CS);
5139 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5140 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5141
5142 seg_setup(VCPU_SREG_DS);
5143 seg_setup(VCPU_SREG_ES);
5144 seg_setup(VCPU_SREG_FS);
5145 seg_setup(VCPU_SREG_GS);
5146 seg_setup(VCPU_SREG_SS);
5147
5148 vmcs_write16(GUEST_TR_SELECTOR, 0);
5149 vmcs_writel(GUEST_TR_BASE, 0);
5150 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5151 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5152
5153 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5154 vmcs_writel(GUEST_LDTR_BASE, 0);
5155 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5156 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5157
5158 if (!init_event) {
5159 vmcs_write32(GUEST_SYSENTER_CS, 0);
5160 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5161 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5162 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5163 }
5164
5165 vmcs_writel(GUEST_RFLAGS, 0x02);
5166 kvm_rip_write(vcpu, 0xfff0);
5167
5168 vmcs_writel(GUEST_GDTR_BASE, 0);
5169 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5170
5171 vmcs_writel(GUEST_IDTR_BASE, 0);
5172 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5173
5174 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5175 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5176 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5177
5178 setup_msrs(vmx);
5179
5180 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5181
5182 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5183 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5184 if (cpu_need_tpr_shadow(vcpu))
5185 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5186 __pa(vcpu->arch.apic->regs));
5187 vmcs_write32(TPR_THRESHOLD, 0);
5188 }
5189
5190 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5191
5192 if (kvm_vcpu_apicv_active(vcpu))
5193 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5194
5195 if (vmx->vpid != 0)
5196 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5197
5198 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5199 vmx->vcpu.arch.cr0 = cr0;
5200 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5201 vmx_set_cr4(vcpu, 0);
5202 vmx_set_efer(vcpu, 0);
5203 vmx_fpu_activate(vcpu);
5204 update_exception_bitmap(vcpu);
5205
5206 vpid_sync_context(vmx->vpid);
5207}
5208
5209/*
5210 * In nested virtualization, check if L1 asked to exit on external interrupts.
5211 * For most existing hypervisors, this will always return true.
5212 */
5213static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5214{
5215 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5216 PIN_BASED_EXT_INTR_MASK;
5217}
5218
5219/*
5220 * In nested virtualization, check if L1 has set
5221 * VM_EXIT_ACK_INTR_ON_EXIT
5222 */
5223static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5224{
5225 return get_vmcs12(vcpu)->vm_exit_controls &
5226 VM_EXIT_ACK_INTR_ON_EXIT;
5227}
5228
5229static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5230{
5231 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5232 PIN_BASED_NMI_EXITING;
5233}
5234
5235static void enable_irq_window(struct kvm_vcpu *vcpu)
5236{
5237 u32 cpu_based_vm_exec_control;
5238
5239 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5240 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5241 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5242}
5243
5244static void enable_nmi_window(struct kvm_vcpu *vcpu)
5245{
5246 u32 cpu_based_vm_exec_control;
5247
5248 if (!cpu_has_virtual_nmis() ||
5249 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5250 enable_irq_window(vcpu);
5251 return;
5252 }
5253
5254 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5255 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5256 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5257}
5258
5259static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5260{
5261 struct vcpu_vmx *vmx = to_vmx(vcpu);
5262 uint32_t intr;
5263 int irq = vcpu->arch.interrupt.nr;
5264
5265 trace_kvm_inj_virq(irq);
5266
5267 ++vcpu->stat.irq_injections;
5268 if (vmx->rmode.vm86_active) {
5269 int inc_eip = 0;
5270 if (vcpu->arch.interrupt.soft)
5271 inc_eip = vcpu->arch.event_exit_inst_len;
5272 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5273 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5274 return;
5275 }
5276 intr = irq | INTR_INFO_VALID_MASK;
5277 if (vcpu->arch.interrupt.soft) {
5278 intr |= INTR_TYPE_SOFT_INTR;
5279 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5280 vmx->vcpu.arch.event_exit_inst_len);
5281 } else
5282 intr |= INTR_TYPE_EXT_INTR;
5283 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5284}
5285
5286static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5287{
5288 struct vcpu_vmx *vmx = to_vmx(vcpu);
5289
5290 if (!is_guest_mode(vcpu)) {
5291 if (!cpu_has_virtual_nmis()) {
5292 /*
5293 * Tracking the NMI-blocked state in software is built upon
5294 * finding the next open IRQ window. This, in turn, depends on
5295 * well-behaving guests: They have to keep IRQs disabled at
5296 * least as long as the NMI handler runs. Otherwise we may
5297 * cause NMI nesting, maybe breaking the guest. But as this is
5298 * highly unlikely, we can live with the residual risk.
5299 */
5300 vmx->soft_vnmi_blocked = 1;
5301 vmx->vnmi_blocked_time = 0;
5302 }
5303
5304 ++vcpu->stat.nmi_injections;
5305 vmx->nmi_known_unmasked = false;
5306 }
5307
5308 if (vmx->rmode.vm86_active) {
5309 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5311 return;
5312 }
5313
5314 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5315 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5316}
5317
5318static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5319{
5320 if (!cpu_has_virtual_nmis())
5321 return to_vmx(vcpu)->soft_vnmi_blocked;
5322 if (to_vmx(vcpu)->nmi_known_unmasked)
5323 return false;
5324 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5325}
5326
5327static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5328{
5329 struct vcpu_vmx *vmx = to_vmx(vcpu);
5330
5331 if (!cpu_has_virtual_nmis()) {
5332 if (vmx->soft_vnmi_blocked != masked) {
5333 vmx->soft_vnmi_blocked = masked;
5334 vmx->vnmi_blocked_time = 0;
5335 }
5336 } else {
5337 vmx->nmi_known_unmasked = !masked;
5338 if (masked)
5339 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5340 GUEST_INTR_STATE_NMI);
5341 else
5342 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5343 GUEST_INTR_STATE_NMI);
5344 }
5345}
5346
5347static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5348{
5349 if (to_vmx(vcpu)->nested.nested_run_pending)
5350 return 0;
5351
5352 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5353 return 0;
5354
5355 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5356 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5357 | GUEST_INTR_STATE_NMI));
5358}
5359
5360static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5361{
5362 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5363 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5364 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5365 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5366}
5367
5368static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5369{
5370 int ret;
5371
5372 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5373 PAGE_SIZE * 3);
5374 if (ret)
5375 return ret;
5376 kvm->arch.tss_addr = addr;
5377 return init_rmode_tss(kvm);
5378}
5379
5380static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5381{
5382 switch (vec) {
5383 case BP_VECTOR:
5384 /*
5385 * Update instruction length as we may reinject the exception
5386 * from user space while in guest debugging mode.
5387 */
5388 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5389 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5390 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5391 return false;
5392 /* fall through */
5393 case DB_VECTOR:
5394 if (vcpu->guest_debug &
5395 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5396 return false;
5397 /* fall through */
5398 case DE_VECTOR:
5399 case OF_VECTOR:
5400 case BR_VECTOR:
5401 case UD_VECTOR:
5402 case DF_VECTOR:
5403 case SS_VECTOR:
5404 case GP_VECTOR:
5405 case MF_VECTOR:
5406 return true;
5407 break;
5408 }
5409 return false;
5410}
5411
5412static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5413 int vec, u32 err_code)
5414{
5415 /*
5416 * Instruction with address size override prefix opcode 0x67
5417 * Cause the #SS fault with 0 error code in VM86 mode.
5418 */
5419 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5420 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5421 if (vcpu->arch.halt_request) {
5422 vcpu->arch.halt_request = 0;
5423 return kvm_vcpu_halt(vcpu);
5424 }
5425 return 1;
5426 }
5427 return 0;
5428 }
5429
5430 /*
5431 * Forward all other exceptions that are valid in real mode.
5432 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5433 * the required debugging infrastructure rework.
5434 */
5435 kvm_queue_exception(vcpu, vec);
5436 return 1;
5437}
5438
5439/*
5440 * Trigger machine check on the host. We assume all the MSRs are already set up
5441 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5442 * We pass a fake environment to the machine check handler because we want
5443 * the guest to be always treated like user space, no matter what context
5444 * it used internally.
5445 */
5446static void kvm_machine_check(void)
5447{
5448#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5449 struct pt_regs regs = {
5450 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5451 .flags = X86_EFLAGS_IF,
5452 };
5453
5454 do_machine_check(&regs, 0);
5455#endif
5456}
5457
5458static int handle_machine_check(struct kvm_vcpu *vcpu)
5459{
5460 /* already handled by vcpu_run */
5461 return 1;
5462}
5463
5464static int handle_exception(struct kvm_vcpu *vcpu)
5465{
5466 struct vcpu_vmx *vmx = to_vmx(vcpu);
5467 struct kvm_run *kvm_run = vcpu->run;
5468 u32 intr_info, ex_no, error_code;
5469 unsigned long cr2, rip, dr6;
5470 u32 vect_info;
5471 enum emulation_result er;
5472
5473 vect_info = vmx->idt_vectoring_info;
5474 intr_info = vmx->exit_intr_info;
5475
5476 if (is_machine_check(intr_info))
5477 return handle_machine_check(vcpu);
5478
5479 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5480 return 1; /* already handled by vmx_vcpu_run() */
5481
5482 if (is_no_device(intr_info)) {
5483 vmx_fpu_activate(vcpu);
5484 return 1;
5485 }
5486
5487 if (is_invalid_opcode(intr_info)) {
5488 if (is_guest_mode(vcpu)) {
5489 kvm_queue_exception(vcpu, UD_VECTOR);
5490 return 1;
5491 }
5492 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5493 if (er != EMULATE_DONE)
5494 kvm_queue_exception(vcpu, UD_VECTOR);
5495 return 1;
5496 }
5497
5498 error_code = 0;
5499 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5500 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5501
5502 /*
5503 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5504 * MMIO, it is better to report an internal error.
5505 * See the comments in vmx_handle_exit.
5506 */
5507 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5508 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5509 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5510 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5511 vcpu->run->internal.ndata = 3;
5512 vcpu->run->internal.data[0] = vect_info;
5513 vcpu->run->internal.data[1] = intr_info;
5514 vcpu->run->internal.data[2] = error_code;
5515 return 0;
5516 }
5517
5518 if (is_page_fault(intr_info)) {
5519 /* EPT won't cause page fault directly */
5520 BUG_ON(enable_ept);
5521 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5522 trace_kvm_page_fault(cr2, error_code);
5523
5524 if (kvm_event_needs_reinjection(vcpu))
5525 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5526 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5527 }
5528
5529 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5530
5531 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5532 return handle_rmode_exception(vcpu, ex_no, error_code);
5533
5534 switch (ex_no) {
5535 case AC_VECTOR:
5536 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5537 return 1;
5538 case DB_VECTOR:
5539 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5540 if (!(vcpu->guest_debug &
5541 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5542 vcpu->arch.dr6 &= ~15;
5543 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5544 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5545 skip_emulated_instruction(vcpu);
5546
5547 kvm_queue_exception(vcpu, DB_VECTOR);
5548 return 1;
5549 }
5550 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5551 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5552 /* fall through */
5553 case BP_VECTOR:
5554 /*
5555 * Update instruction length as we may reinject #BP from
5556 * user space while in guest debugging mode. Reading it for
5557 * #DB as well causes no harm, it is not used in that case.
5558 */
5559 vmx->vcpu.arch.event_exit_inst_len =
5560 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5561 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5562 rip = kvm_rip_read(vcpu);
5563 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5564 kvm_run->debug.arch.exception = ex_no;
5565 break;
5566 default:
5567 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5568 kvm_run->ex.exception = ex_no;
5569 kvm_run->ex.error_code = error_code;
5570 break;
5571 }
5572 return 0;
5573}
5574
5575static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5576{
5577 ++vcpu->stat.irq_exits;
5578 return 1;
5579}
5580
5581static int handle_triple_fault(struct kvm_vcpu *vcpu)
5582{
5583 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5584 return 0;
5585}
5586
5587static int handle_io(struct kvm_vcpu *vcpu)
5588{
5589 unsigned long exit_qualification;
5590 int size, in, string;
5591 unsigned port;
5592
5593 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5594 string = (exit_qualification & 16) != 0;
5595 in = (exit_qualification & 8) != 0;
5596
5597 ++vcpu->stat.io_exits;
5598
5599 if (string || in)
5600 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5601
5602 port = exit_qualification >> 16;
5603 size = (exit_qualification & 7) + 1;
5604 skip_emulated_instruction(vcpu);
5605
5606 return kvm_fast_pio_out(vcpu, size, port);
5607}
5608
5609static void
5610vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5611{
5612 /*
5613 * Patch in the VMCALL instruction:
5614 */
5615 hypercall[0] = 0x0f;
5616 hypercall[1] = 0x01;
5617 hypercall[2] = 0xc1;
5618}
5619
5620static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5621{
5622 unsigned long always_on = VMXON_CR0_ALWAYSON;
5623 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5624
5625 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5626 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5627 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5628 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5629 return (val & always_on) == always_on;
5630}
5631
5632/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5633static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5634{
5635 if (is_guest_mode(vcpu)) {
5636 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5637 unsigned long orig_val = val;
5638
5639 /*
5640 * We get here when L2 changed cr0 in a way that did not change
5641 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5642 * but did change L0 shadowed bits. So we first calculate the
5643 * effective cr0 value that L1 would like to write into the
5644 * hardware. It consists of the L2-owned bits from the new
5645 * value combined with the L1-owned bits from L1's guest_cr0.
5646 */
5647 val = (val & ~vmcs12->cr0_guest_host_mask) |
5648 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5649
5650 if (!nested_cr0_valid(vcpu, val))
5651 return 1;
5652
5653 if (kvm_set_cr0(vcpu, val))
5654 return 1;
5655 vmcs_writel(CR0_READ_SHADOW, orig_val);
5656 return 0;
5657 } else {
5658 if (to_vmx(vcpu)->nested.vmxon &&
5659 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5660 return 1;
5661 return kvm_set_cr0(vcpu, val);
5662 }
5663}
5664
5665static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5666{
5667 if (is_guest_mode(vcpu)) {
5668 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5669 unsigned long orig_val = val;
5670
5671 /* analogously to handle_set_cr0 */
5672 val = (val & ~vmcs12->cr4_guest_host_mask) |
5673 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5674 if (kvm_set_cr4(vcpu, val))
5675 return 1;
5676 vmcs_writel(CR4_READ_SHADOW, orig_val);
5677 return 0;
5678 } else
5679 return kvm_set_cr4(vcpu, val);
5680}
5681
5682/* called to set cr0 as appropriate for clts instruction exit. */
5683static void handle_clts(struct kvm_vcpu *vcpu)
5684{
5685 if (is_guest_mode(vcpu)) {
5686 /*
5687 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5688 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5689 * just pretend it's off (also in arch.cr0 for fpu_activate).
5690 */
5691 vmcs_writel(CR0_READ_SHADOW,
5692 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5693 vcpu->arch.cr0 &= ~X86_CR0_TS;
5694 } else
5695 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5696}
5697
5698static int handle_cr(struct kvm_vcpu *vcpu)
5699{
5700 unsigned long exit_qualification, val;
5701 int cr;
5702 int reg;
5703 int err;
5704
5705 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5706 cr = exit_qualification & 15;
5707 reg = (exit_qualification >> 8) & 15;
5708 switch ((exit_qualification >> 4) & 3) {
5709 case 0: /* mov to cr */
5710 val = kvm_register_readl(vcpu, reg);
5711 trace_kvm_cr_write(cr, val);
5712 switch (cr) {
5713 case 0:
5714 err = handle_set_cr0(vcpu, val);
5715 kvm_complete_insn_gp(vcpu, err);
5716 return 1;
5717 case 3:
5718 err = kvm_set_cr3(vcpu, val);
5719 kvm_complete_insn_gp(vcpu, err);
5720 return 1;
5721 case 4:
5722 err = handle_set_cr4(vcpu, val);
5723 kvm_complete_insn_gp(vcpu, err);
5724 return 1;
5725 case 8: {
5726 u8 cr8_prev = kvm_get_cr8(vcpu);
5727 u8 cr8 = (u8)val;
5728 err = kvm_set_cr8(vcpu, cr8);
5729 kvm_complete_insn_gp(vcpu, err);
5730 if (lapic_in_kernel(vcpu))
5731 return 1;
5732 if (cr8_prev <= cr8)
5733 return 1;
5734 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5735 return 0;
5736 }
5737 }
5738 break;
5739 case 2: /* clts */
5740 handle_clts(vcpu);
5741 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5742 skip_emulated_instruction(vcpu);
5743 vmx_fpu_activate(vcpu);
5744 return 1;
5745 case 1: /*mov from cr*/
5746 switch (cr) {
5747 case 3:
5748 val = kvm_read_cr3(vcpu);
5749 kvm_register_write(vcpu, reg, val);
5750 trace_kvm_cr_read(cr, val);
5751 skip_emulated_instruction(vcpu);
5752 return 1;
5753 case 8:
5754 val = kvm_get_cr8(vcpu);
5755 kvm_register_write(vcpu, reg, val);
5756 trace_kvm_cr_read(cr, val);
5757 skip_emulated_instruction(vcpu);
5758 return 1;
5759 }
5760 break;
5761 case 3: /* lmsw */
5762 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5763 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5764 kvm_lmsw(vcpu, val);
5765
5766 skip_emulated_instruction(vcpu);
5767 return 1;
5768 default:
5769 break;
5770 }
5771 vcpu->run->exit_reason = 0;
5772 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5773 (int)(exit_qualification >> 4) & 3, cr);
5774 return 0;
5775}
5776
5777static int handle_dr(struct kvm_vcpu *vcpu)
5778{
5779 unsigned long exit_qualification;
5780 int dr, dr7, reg;
5781
5782 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5783 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5784
5785 /* First, if DR does not exist, trigger UD */
5786 if (!kvm_require_dr(vcpu, dr))
5787 return 1;
5788
5789 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5790 if (!kvm_require_cpl(vcpu, 0))
5791 return 1;
5792 dr7 = vmcs_readl(GUEST_DR7);
5793 if (dr7 & DR7_GD) {
5794 /*
5795 * As the vm-exit takes precedence over the debug trap, we
5796 * need to emulate the latter, either for the host or the
5797 * guest debugging itself.
5798 */
5799 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5800 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5801 vcpu->run->debug.arch.dr7 = dr7;
5802 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5803 vcpu->run->debug.arch.exception = DB_VECTOR;
5804 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5805 return 0;
5806 } else {
5807 vcpu->arch.dr6 &= ~15;
5808 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5809 kvm_queue_exception(vcpu, DB_VECTOR);
5810 return 1;
5811 }
5812 }
5813
5814 if (vcpu->guest_debug == 0) {
5815 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5816 CPU_BASED_MOV_DR_EXITING);
5817
5818 /*
5819 * No more DR vmexits; force a reload of the debug registers
5820 * and reenter on this instruction. The next vmexit will
5821 * retrieve the full state of the debug registers.
5822 */
5823 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5824 return 1;
5825 }
5826
5827 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5828 if (exit_qualification & TYPE_MOV_FROM_DR) {
5829 unsigned long val;
5830
5831 if (kvm_get_dr(vcpu, dr, &val))
5832 return 1;
5833 kvm_register_write(vcpu, reg, val);
5834 } else
5835 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5836 return 1;
5837
5838 skip_emulated_instruction(vcpu);
5839 return 1;
5840}
5841
5842static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5843{
5844 return vcpu->arch.dr6;
5845}
5846
5847static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5848{
5849}
5850
5851static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5852{
5853 get_debugreg(vcpu->arch.db[0], 0);
5854 get_debugreg(vcpu->arch.db[1], 1);
5855 get_debugreg(vcpu->arch.db[2], 2);
5856 get_debugreg(vcpu->arch.db[3], 3);
5857 get_debugreg(vcpu->arch.dr6, 6);
5858 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5859
5860 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5861 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5862}
5863
5864static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5865{
5866 vmcs_writel(GUEST_DR7, val);
5867}
5868
5869static int handle_cpuid(struct kvm_vcpu *vcpu)
5870{
5871 kvm_emulate_cpuid(vcpu);
5872 return 1;
5873}
5874
5875static int handle_rdmsr(struct kvm_vcpu *vcpu)
5876{
5877 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5878 struct msr_data msr_info;
5879
5880 msr_info.index = ecx;
5881 msr_info.host_initiated = false;
5882 if (vmx_get_msr(vcpu, &msr_info)) {
5883 trace_kvm_msr_read_ex(ecx);
5884 kvm_inject_gp(vcpu, 0);
5885 return 1;
5886 }
5887
5888 trace_kvm_msr_read(ecx, msr_info.data);
5889
5890 /* FIXME: handling of bits 32:63 of rax, rdx */
5891 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5892 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5893 skip_emulated_instruction(vcpu);
5894 return 1;
5895}
5896
5897static int handle_wrmsr(struct kvm_vcpu *vcpu)
5898{
5899 struct msr_data msr;
5900 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5901 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5902 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5903
5904 msr.data = data;
5905 msr.index = ecx;
5906 msr.host_initiated = false;
5907 if (kvm_set_msr(vcpu, &msr) != 0) {
5908 trace_kvm_msr_write_ex(ecx, data);
5909 kvm_inject_gp(vcpu, 0);
5910 return 1;
5911 }
5912
5913 trace_kvm_msr_write(ecx, data);
5914 skip_emulated_instruction(vcpu);
5915 return 1;
5916}
5917
5918static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5919{
5920 kvm_make_request(KVM_REQ_EVENT, vcpu);
5921 return 1;
5922}
5923
5924static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5925{
5926 u32 cpu_based_vm_exec_control;
5927
5928 /* clear pending irq */
5929 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5930 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5931 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5932
5933 kvm_make_request(KVM_REQ_EVENT, vcpu);
5934
5935 ++vcpu->stat.irq_window_exits;
5936 return 1;
5937}
5938
5939static int handle_halt(struct kvm_vcpu *vcpu)
5940{
5941 return kvm_emulate_halt(vcpu);
5942}
5943
5944static int handle_vmcall(struct kvm_vcpu *vcpu)
5945{
5946 return kvm_emulate_hypercall(vcpu);
5947}
5948
5949static int handle_invd(struct kvm_vcpu *vcpu)
5950{
5951 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5952}
5953
5954static int handle_invlpg(struct kvm_vcpu *vcpu)
5955{
5956 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5957
5958 kvm_mmu_invlpg(vcpu, exit_qualification);
5959 skip_emulated_instruction(vcpu);
5960 return 1;
5961}
5962
5963static int handle_rdpmc(struct kvm_vcpu *vcpu)
5964{
5965 int err;
5966
5967 err = kvm_rdpmc(vcpu);
5968 kvm_complete_insn_gp(vcpu, err);
5969
5970 return 1;
5971}
5972
5973static int handle_wbinvd(struct kvm_vcpu *vcpu)
5974{
5975 kvm_emulate_wbinvd(vcpu);
5976 return 1;
5977}
5978
5979static int handle_xsetbv(struct kvm_vcpu *vcpu)
5980{
5981 u64 new_bv = kvm_read_edx_eax(vcpu);
5982 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5983
5984 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5985 skip_emulated_instruction(vcpu);
5986 return 1;
5987}
5988
5989static int handle_xsaves(struct kvm_vcpu *vcpu)
5990{
5991 skip_emulated_instruction(vcpu);
5992 WARN(1, "this should never happen\n");
5993 return 1;
5994}
5995
5996static int handle_xrstors(struct kvm_vcpu *vcpu)
5997{
5998 skip_emulated_instruction(vcpu);
5999 WARN(1, "this should never happen\n");
6000 return 1;
6001}
6002
6003static int handle_apic_access(struct kvm_vcpu *vcpu)
6004{
6005 if (likely(fasteoi)) {
6006 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6007 int access_type, offset;
6008
6009 access_type = exit_qualification & APIC_ACCESS_TYPE;
6010 offset = exit_qualification & APIC_ACCESS_OFFSET;
6011 /*
6012 * Sane guest uses MOV to write EOI, with written value
6013 * not cared. So make a short-circuit here by avoiding
6014 * heavy instruction emulation.
6015 */
6016 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6017 (offset == APIC_EOI)) {
6018 kvm_lapic_set_eoi(vcpu);
6019 skip_emulated_instruction(vcpu);
6020 return 1;
6021 }
6022 }
6023 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6024}
6025
6026static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6027{
6028 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6029 int vector = exit_qualification & 0xff;
6030
6031 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6032 kvm_apic_set_eoi_accelerated(vcpu, vector);
6033 return 1;
6034}
6035
6036static int handle_apic_write(struct kvm_vcpu *vcpu)
6037{
6038 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6039 u32 offset = exit_qualification & 0xfff;
6040
6041 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6042 kvm_apic_write_nodecode(vcpu, offset);
6043 return 1;
6044}
6045
6046static int handle_task_switch(struct kvm_vcpu *vcpu)
6047{
6048 struct vcpu_vmx *vmx = to_vmx(vcpu);
6049 unsigned long exit_qualification;
6050 bool has_error_code = false;
6051 u32 error_code = 0;
6052 u16 tss_selector;
6053 int reason, type, idt_v, idt_index;
6054
6055 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6056 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6057 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6058
6059 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6060
6061 reason = (u32)exit_qualification >> 30;
6062 if (reason == TASK_SWITCH_GATE && idt_v) {
6063 switch (type) {
6064 case INTR_TYPE_NMI_INTR:
6065 vcpu->arch.nmi_injected = false;
6066 vmx_set_nmi_mask(vcpu, true);
6067 break;
6068 case INTR_TYPE_EXT_INTR:
6069 case INTR_TYPE_SOFT_INTR:
6070 kvm_clear_interrupt_queue(vcpu);
6071 break;
6072 case INTR_TYPE_HARD_EXCEPTION:
6073 if (vmx->idt_vectoring_info &
6074 VECTORING_INFO_DELIVER_CODE_MASK) {
6075 has_error_code = true;
6076 error_code =
6077 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6078 }
6079 /* fall through */
6080 case INTR_TYPE_SOFT_EXCEPTION:
6081 kvm_clear_exception_queue(vcpu);
6082 break;
6083 default:
6084 break;
6085 }
6086 }
6087 tss_selector = exit_qualification;
6088
6089 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6090 type != INTR_TYPE_EXT_INTR &&
6091 type != INTR_TYPE_NMI_INTR))
6092 skip_emulated_instruction(vcpu);
6093
6094 if (kvm_task_switch(vcpu, tss_selector,
6095 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6096 has_error_code, error_code) == EMULATE_FAIL) {
6097 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6098 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6099 vcpu->run->internal.ndata = 0;
6100 return 0;
6101 }
6102
6103 /*
6104 * TODO: What about debug traps on tss switch?
6105 * Are we supposed to inject them and update dr6?
6106 */
6107
6108 return 1;
6109}
6110
6111static int handle_ept_violation(struct kvm_vcpu *vcpu)
6112{
6113 unsigned long exit_qualification;
6114 gpa_t gpa;
6115 u32 error_code;
6116 int gla_validity;
6117
6118 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6119
6120 gla_validity = (exit_qualification >> 7) & 0x3;
6121 if (gla_validity == 0x2) {
6122 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6123 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6124 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6125 vmcs_readl(GUEST_LINEAR_ADDRESS));
6126 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6127 (long unsigned int)exit_qualification);
6128 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6129 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6130 return 0;
6131 }
6132
6133 /*
6134 * EPT violation happened while executing iret from NMI,
6135 * "blocked by NMI" bit has to be set before next VM entry.
6136 * There are errata that may cause this bit to not be set:
6137 * AAK134, BY25.
6138 */
6139 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6140 cpu_has_virtual_nmis() &&
6141 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6142 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6143
6144 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6145 trace_kvm_page_fault(gpa, exit_qualification);
6146
6147 /* it is a read fault? */
6148 error_code = (exit_qualification << 2) & PFERR_USER_MASK;
6149 /* it is a write fault? */
6150 error_code |= exit_qualification & PFERR_WRITE_MASK;
6151 /* It is a fetch fault? */
6152 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6153 /* ept page table is present? */
6154 error_code |= (exit_qualification & 0x38) != 0;
6155
6156 vcpu->arch.exit_qualification = exit_qualification;
6157
6158 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6159}
6160
6161static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6162{
6163 int ret;
6164 gpa_t gpa;
6165
6166 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6167 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6168 skip_emulated_instruction(vcpu);
6169 trace_kvm_fast_mmio(gpa);
6170 return 1;
6171 }
6172
6173 ret = handle_mmio_page_fault(vcpu, gpa, true);
6174 if (likely(ret == RET_MMIO_PF_EMULATE))
6175 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6176 EMULATE_DONE;
6177
6178 if (unlikely(ret == RET_MMIO_PF_INVALID))
6179 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6180
6181 if (unlikely(ret == RET_MMIO_PF_RETRY))
6182 return 1;
6183
6184 /* It is the real ept misconfig */
6185 WARN_ON(1);
6186
6187 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6188 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6189
6190 return 0;
6191}
6192
6193static int handle_nmi_window(struct kvm_vcpu *vcpu)
6194{
6195 u32 cpu_based_vm_exec_control;
6196
6197 /* clear pending NMI */
6198 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6199 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6200 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6201 ++vcpu->stat.nmi_window_exits;
6202 kvm_make_request(KVM_REQ_EVENT, vcpu);
6203
6204 return 1;
6205}
6206
6207static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6208{
6209 struct vcpu_vmx *vmx = to_vmx(vcpu);
6210 enum emulation_result err = EMULATE_DONE;
6211 int ret = 1;
6212 u32 cpu_exec_ctrl;
6213 bool intr_window_requested;
6214 unsigned count = 130;
6215
6216 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6217 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6218
6219 while (vmx->emulation_required && count-- != 0) {
6220 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6221 return handle_interrupt_window(&vmx->vcpu);
6222
6223 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6224 return 1;
6225
6226 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6227
6228 if (err == EMULATE_USER_EXIT) {
6229 ++vcpu->stat.mmio_exits;
6230 ret = 0;
6231 goto out;
6232 }
6233
6234 if (err != EMULATE_DONE) {
6235 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6236 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6237 vcpu->run->internal.ndata = 0;
6238 return 0;
6239 }
6240
6241 if (vcpu->arch.halt_request) {
6242 vcpu->arch.halt_request = 0;
6243 ret = kvm_vcpu_halt(vcpu);
6244 goto out;
6245 }
6246
6247 if (signal_pending(current))
6248 goto out;
6249 if (need_resched())
6250 schedule();
6251 }
6252
6253out:
6254 return ret;
6255}
6256
6257static int __grow_ple_window(int val)
6258{
6259 if (ple_window_grow < 1)
6260 return ple_window;
6261
6262 val = min(val, ple_window_actual_max);
6263
6264 if (ple_window_grow < ple_window)
6265 val *= ple_window_grow;
6266 else
6267 val += ple_window_grow;
6268
6269 return val;
6270}
6271
6272static int __shrink_ple_window(int val, int modifier, int minimum)
6273{
6274 if (modifier < 1)
6275 return ple_window;
6276
6277 if (modifier < ple_window)
6278 val /= modifier;
6279 else
6280 val -= modifier;
6281
6282 return max(val, minimum);
6283}
6284
6285static void grow_ple_window(struct kvm_vcpu *vcpu)
6286{
6287 struct vcpu_vmx *vmx = to_vmx(vcpu);
6288 int old = vmx->ple_window;
6289
6290 vmx->ple_window = __grow_ple_window(old);
6291
6292 if (vmx->ple_window != old)
6293 vmx->ple_window_dirty = true;
6294
6295 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6296}
6297
6298static void shrink_ple_window(struct kvm_vcpu *vcpu)
6299{
6300 struct vcpu_vmx *vmx = to_vmx(vcpu);
6301 int old = vmx->ple_window;
6302
6303 vmx->ple_window = __shrink_ple_window(old,
6304 ple_window_shrink, ple_window);
6305
6306 if (vmx->ple_window != old)
6307 vmx->ple_window_dirty = true;
6308
6309 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6310}
6311
6312/*
6313 * ple_window_actual_max is computed to be one grow_ple_window() below
6314 * ple_window_max. (See __grow_ple_window for the reason.)
6315 * This prevents overflows, because ple_window_max is int.
6316 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6317 * this process.
6318 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6319 */
6320static void update_ple_window_actual_max(void)
6321{
6322 ple_window_actual_max =
6323 __shrink_ple_window(max(ple_window_max, ple_window),
6324 ple_window_grow, INT_MIN);
6325}
6326
6327/*
6328 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6329 */
6330static void wakeup_handler(void)
6331{
6332 struct kvm_vcpu *vcpu;
6333 int cpu = smp_processor_id();
6334
6335 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6336 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6337 blocked_vcpu_list) {
6338 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6339
6340 if (pi_test_on(pi_desc) == 1)
6341 kvm_vcpu_kick(vcpu);
6342 }
6343 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6344}
6345
6346static __init int hardware_setup(void)
6347{
6348 int r = -ENOMEM, i, msr;
6349
6350 rdmsrl_safe(MSR_EFER, &host_efer);
6351
6352 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6353 kvm_define_shared_msr(i, vmx_msr_index[i]);
6354
6355 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6356 if (!vmx_io_bitmap_a)
6357 return r;
6358
6359 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6360 if (!vmx_io_bitmap_b)
6361 goto out;
6362
6363 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6364 if (!vmx_msr_bitmap_legacy)
6365 goto out1;
6366
6367 vmx_msr_bitmap_legacy_x2apic_apicv =
6368 (unsigned long *)__get_free_page(GFP_KERNEL);
6369 if (!vmx_msr_bitmap_legacy_x2apic_apicv)
6370 goto out2;
6371
6372 vmx_msr_bitmap_legacy_x2apic =
6373 (unsigned long *)__get_free_page(GFP_KERNEL);
6374 if (!vmx_msr_bitmap_legacy_x2apic)
6375 goto out3;
6376
6377 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6378 if (!vmx_msr_bitmap_longmode)
6379 goto out4;
6380
6381 vmx_msr_bitmap_longmode_x2apic_apicv =
6382 (unsigned long *)__get_free_page(GFP_KERNEL);
6383 if (!vmx_msr_bitmap_longmode_x2apic_apicv)
6384 goto out5;
6385
6386 vmx_msr_bitmap_longmode_x2apic =
6387 (unsigned long *)__get_free_page(GFP_KERNEL);
6388 if (!vmx_msr_bitmap_longmode_x2apic)
6389 goto out6;
6390
6391 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6392 if (!vmx_vmread_bitmap)
6393 goto out7;
6394
6395 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6396 if (!vmx_vmwrite_bitmap)
6397 goto out8;
6398
6399 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6400 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6401
6402 /*
6403 * Allow direct access to the PC debug port (it is often used for I/O
6404 * delays, but the vmexits simply slow things down).
6405 */
6406 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6407 clear_bit(0x80, vmx_io_bitmap_a);
6408
6409 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6410
6411 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6412 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6413
6414 if (setup_vmcs_config(&vmcs_config) < 0) {
6415 r = -EIO;
6416 goto out9;
6417 }
6418
6419 if (boot_cpu_has(X86_FEATURE_NX))
6420 kvm_enable_efer_bits(EFER_NX);
6421
6422 if (!cpu_has_vmx_vpid())
6423 enable_vpid = 0;
6424 if (!cpu_has_vmx_shadow_vmcs())
6425 enable_shadow_vmcs = 0;
6426 if (enable_shadow_vmcs)
6427 init_vmcs_shadow_fields();
6428
6429 if (!cpu_has_vmx_ept() ||
6430 !cpu_has_vmx_ept_4levels()) {
6431 enable_ept = 0;
6432 enable_unrestricted_guest = 0;
6433 enable_ept_ad_bits = 0;
6434 }
6435
6436 if (!cpu_has_vmx_ept_ad_bits())
6437 enable_ept_ad_bits = 0;
6438
6439 if (!cpu_has_vmx_unrestricted_guest())
6440 enable_unrestricted_guest = 0;
6441
6442 if (!cpu_has_vmx_flexpriority())
6443 flexpriority_enabled = 0;
6444
6445 /*
6446 * set_apic_access_page_addr() is used to reload apic access
6447 * page upon invalidation. No need to do anything if not
6448 * using the APIC_ACCESS_ADDR VMCS field.
6449 */
6450 if (!flexpriority_enabled)
6451 kvm_x86_ops->set_apic_access_page_addr = NULL;
6452
6453 if (!cpu_has_vmx_tpr_shadow())
6454 kvm_x86_ops->update_cr8_intercept = NULL;
6455
6456 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6457 kvm_disable_largepages();
6458
6459 if (!cpu_has_vmx_ple())
6460 ple_gap = 0;
6461
6462 if (!cpu_has_vmx_apicv())
6463 enable_apicv = 0;
6464
6465 if (cpu_has_vmx_tsc_scaling()) {
6466 kvm_has_tsc_control = true;
6467 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6468 kvm_tsc_scaling_ratio_frac_bits = 48;
6469 }
6470
6471 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6472 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6473 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6474 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6475 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6476 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6477 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6478
6479 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6480 vmx_msr_bitmap_legacy, PAGE_SIZE);
6481 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6482 vmx_msr_bitmap_longmode, PAGE_SIZE);
6483 memcpy(vmx_msr_bitmap_legacy_x2apic,
6484 vmx_msr_bitmap_legacy, PAGE_SIZE);
6485 memcpy(vmx_msr_bitmap_longmode_x2apic,
6486 vmx_msr_bitmap_longmode, PAGE_SIZE);
6487
6488 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6489
6490 /*
6491 * enable_apicv && kvm_vcpu_apicv_active()
6492 */
6493 for (msr = 0x800; msr <= 0x8ff; msr++)
6494 vmx_disable_intercept_msr_read_x2apic(msr, true);
6495
6496 /* TMCCT */
6497 vmx_enable_intercept_msr_read_x2apic(0x839, true);
6498 /* TPR */
6499 vmx_disable_intercept_msr_write_x2apic(0x808, true);
6500 /* EOI */
6501 vmx_disable_intercept_msr_write_x2apic(0x80b, true);
6502 /* SELF-IPI */
6503 vmx_disable_intercept_msr_write_x2apic(0x83f, true);
6504
6505 /*
6506 * (enable_apicv && !kvm_vcpu_apicv_active()) ||
6507 * !enable_apicv
6508 */
6509 /* TPR */
6510 vmx_disable_intercept_msr_read_x2apic(0x808, false);
6511 vmx_disable_intercept_msr_write_x2apic(0x808, false);
6512
6513 if (enable_ept) {
6514 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6515 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6516 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6517 0ull, VMX_EPT_EXECUTABLE_MASK,
6518 cpu_has_vmx_ept_execute_only() ?
6519 0ull : VMX_EPT_READABLE_MASK);
6520 ept_set_mmio_spte_mask();
6521 kvm_enable_tdp();
6522 } else
6523 kvm_disable_tdp();
6524
6525 update_ple_window_actual_max();
6526
6527 /*
6528 * Only enable PML when hardware supports PML feature, and both EPT
6529 * and EPT A/D bit features are enabled -- PML depends on them to work.
6530 */
6531 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6532 enable_pml = 0;
6533
6534 if (!enable_pml) {
6535 kvm_x86_ops->slot_enable_log_dirty = NULL;
6536 kvm_x86_ops->slot_disable_log_dirty = NULL;
6537 kvm_x86_ops->flush_log_dirty = NULL;
6538 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6539 }
6540
6541 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6542 u64 vmx_msr;
6543
6544 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6545 cpu_preemption_timer_multi =
6546 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6547 } else {
6548 kvm_x86_ops->set_hv_timer = NULL;
6549 kvm_x86_ops->cancel_hv_timer = NULL;
6550 }
6551
6552 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6553
6554 kvm_mce_cap_supported |= MCG_LMCE_P;
6555
6556 return alloc_kvm_area();
6557
6558out9:
6559 free_page((unsigned long)vmx_vmwrite_bitmap);
6560out8:
6561 free_page((unsigned long)vmx_vmread_bitmap);
6562out7:
6563 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6564out6:
6565 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic_apicv);
6566out5:
6567 free_page((unsigned long)vmx_msr_bitmap_longmode);
6568out4:
6569 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6570out3:
6571 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic_apicv);
6572out2:
6573 free_page((unsigned long)vmx_msr_bitmap_legacy);
6574out1:
6575 free_page((unsigned long)vmx_io_bitmap_b);
6576out:
6577 free_page((unsigned long)vmx_io_bitmap_a);
6578
6579 return r;
6580}
6581
6582static __exit void hardware_unsetup(void)
6583{
6584 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic_apicv);
6585 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6586 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic_apicv);
6587 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6588 free_page((unsigned long)vmx_msr_bitmap_legacy);
6589 free_page((unsigned long)vmx_msr_bitmap_longmode);
6590 free_page((unsigned long)vmx_io_bitmap_b);
6591 free_page((unsigned long)vmx_io_bitmap_a);
6592 free_page((unsigned long)vmx_vmwrite_bitmap);
6593 free_page((unsigned long)vmx_vmread_bitmap);
6594
6595 free_kvm_area();
6596}
6597
6598/*
6599 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6600 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6601 */
6602static int handle_pause(struct kvm_vcpu *vcpu)
6603{
6604 if (ple_gap)
6605 grow_ple_window(vcpu);
6606
6607 skip_emulated_instruction(vcpu);
6608 kvm_vcpu_on_spin(vcpu);
6609
6610 return 1;
6611}
6612
6613static int handle_nop(struct kvm_vcpu *vcpu)
6614{
6615 skip_emulated_instruction(vcpu);
6616 return 1;
6617}
6618
6619static int handle_mwait(struct kvm_vcpu *vcpu)
6620{
6621 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6622 return handle_nop(vcpu);
6623}
6624
6625static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6626{
6627 return 1;
6628}
6629
6630static int handle_monitor(struct kvm_vcpu *vcpu)
6631{
6632 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6633 return handle_nop(vcpu);
6634}
6635
6636/*
6637 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6638 * We could reuse a single VMCS for all the L2 guests, but we also want the
6639 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6640 * allows keeping them loaded on the processor, and in the future will allow
6641 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6642 * every entry if they never change.
6643 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6644 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6645 *
6646 * The following functions allocate and free a vmcs02 in this pool.
6647 */
6648
6649/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6650static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6651{
6652 struct vmcs02_list *item;
6653 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6654 if (item->vmptr == vmx->nested.current_vmptr) {
6655 list_move(&item->list, &vmx->nested.vmcs02_pool);
6656 return &item->vmcs02;
6657 }
6658
6659 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6660 /* Recycle the least recently used VMCS. */
6661 item = list_last_entry(&vmx->nested.vmcs02_pool,
6662 struct vmcs02_list, list);
6663 item->vmptr = vmx->nested.current_vmptr;
6664 list_move(&item->list, &vmx->nested.vmcs02_pool);
6665 return &item->vmcs02;
6666 }
6667
6668 /* Create a new VMCS */
6669 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6670 if (!item)
6671 return NULL;
6672 item->vmcs02.vmcs = alloc_vmcs();
6673 item->vmcs02.shadow_vmcs = NULL;
6674 if (!item->vmcs02.vmcs) {
6675 kfree(item);
6676 return NULL;
6677 }
6678 loaded_vmcs_init(&item->vmcs02);
6679 item->vmptr = vmx->nested.current_vmptr;
6680 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6681 vmx->nested.vmcs02_num++;
6682 return &item->vmcs02;
6683}
6684
6685/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6686static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6687{
6688 struct vmcs02_list *item;
6689 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6690 if (item->vmptr == vmptr) {
6691 free_loaded_vmcs(&item->vmcs02);
6692 list_del(&item->list);
6693 kfree(item);
6694 vmx->nested.vmcs02_num--;
6695 return;
6696 }
6697}
6698
6699/*
6700 * Free all VMCSs saved for this vcpu, except the one pointed by
6701 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6702 * must be &vmx->vmcs01.
6703 */
6704static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6705{
6706 struct vmcs02_list *item, *n;
6707
6708 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6709 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6710 /*
6711 * Something will leak if the above WARN triggers. Better than
6712 * a use-after-free.
6713 */
6714 if (vmx->loaded_vmcs == &item->vmcs02)
6715 continue;
6716
6717 free_loaded_vmcs(&item->vmcs02);
6718 list_del(&item->list);
6719 kfree(item);
6720 vmx->nested.vmcs02_num--;
6721 }
6722}
6723
6724/*
6725 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6726 * set the success or error code of an emulated VMX instruction, as specified
6727 * by Vol 2B, VMX Instruction Reference, "Conventions".
6728 */
6729static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6730{
6731 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6732 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6733 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6734}
6735
6736static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6737{
6738 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6739 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6740 X86_EFLAGS_SF | X86_EFLAGS_OF))
6741 | X86_EFLAGS_CF);
6742}
6743
6744static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6745 u32 vm_instruction_error)
6746{
6747 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6748 /*
6749 * failValid writes the error number to the current VMCS, which
6750 * can't be done there isn't a current VMCS.
6751 */
6752 nested_vmx_failInvalid(vcpu);
6753 return;
6754 }
6755 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6756 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6757 X86_EFLAGS_SF | X86_EFLAGS_OF))
6758 | X86_EFLAGS_ZF);
6759 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6760 /*
6761 * We don't need to force a shadow sync because
6762 * VM_INSTRUCTION_ERROR is not shadowed
6763 */
6764}
6765
6766static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6767{
6768 /* TODO: not to reset guest simply here. */
6769 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6770 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6771}
6772
6773static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6774{
6775 struct vcpu_vmx *vmx =
6776 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6777
6778 vmx->nested.preemption_timer_expired = true;
6779 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6780 kvm_vcpu_kick(&vmx->vcpu);
6781
6782 return HRTIMER_NORESTART;
6783}
6784
6785/*
6786 * Decode the memory-address operand of a vmx instruction, as recorded on an
6787 * exit caused by such an instruction (run by a guest hypervisor).
6788 * On success, returns 0. When the operand is invalid, returns 1 and throws
6789 * #UD or #GP.
6790 */
6791static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6792 unsigned long exit_qualification,
6793 u32 vmx_instruction_info, bool wr, gva_t *ret)
6794{
6795 gva_t off;
6796 bool exn;
6797 struct kvm_segment s;
6798
6799 /*
6800 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6801 * Execution", on an exit, vmx_instruction_info holds most of the
6802 * addressing components of the operand. Only the displacement part
6803 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6804 * For how an actual address is calculated from all these components,
6805 * refer to Vol. 1, "Operand Addressing".
6806 */
6807 int scaling = vmx_instruction_info & 3;
6808 int addr_size = (vmx_instruction_info >> 7) & 7;
6809 bool is_reg = vmx_instruction_info & (1u << 10);
6810 int seg_reg = (vmx_instruction_info >> 15) & 7;
6811 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6812 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6813 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6814 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6815
6816 if (is_reg) {
6817 kvm_queue_exception(vcpu, UD_VECTOR);
6818 return 1;
6819 }
6820
6821 /* Addr = segment_base + offset */
6822 /* offset = base + [index * scale] + displacement */
6823 off = exit_qualification; /* holds the displacement */
6824 if (base_is_valid)
6825 off += kvm_register_read(vcpu, base_reg);
6826 if (index_is_valid)
6827 off += kvm_register_read(vcpu, index_reg)<<scaling;
6828 vmx_get_segment(vcpu, &s, seg_reg);
6829 *ret = s.base + off;
6830
6831 if (addr_size == 1) /* 32 bit */
6832 *ret &= 0xffffffff;
6833
6834 /* Checks for #GP/#SS exceptions. */
6835 exn = false;
6836 if (is_long_mode(vcpu)) {
6837 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6838 * non-canonical form. This is the only check on the memory
6839 * destination for long mode!
6840 */
6841 exn = is_noncanonical_address(*ret);
6842 } else if (is_protmode(vcpu)) {
6843 /* Protected mode: apply checks for segment validity in the
6844 * following order:
6845 * - segment type check (#GP(0) may be thrown)
6846 * - usability check (#GP(0)/#SS(0))
6847 * - limit check (#GP(0)/#SS(0))
6848 */
6849 if (wr)
6850 /* #GP(0) if the destination operand is located in a
6851 * read-only data segment or any code segment.
6852 */
6853 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6854 else
6855 /* #GP(0) if the source operand is located in an
6856 * execute-only code segment
6857 */
6858 exn = ((s.type & 0xa) == 8);
6859 if (exn) {
6860 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6861 return 1;
6862 }
6863 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6864 */
6865 exn = (s.unusable != 0);
6866 /* Protected mode: #GP(0)/#SS(0) if the memory
6867 * operand is outside the segment limit.
6868 */
6869 exn = exn || (off + sizeof(u64) > s.limit);
6870 }
6871 if (exn) {
6872 kvm_queue_exception_e(vcpu,
6873 seg_reg == VCPU_SREG_SS ?
6874 SS_VECTOR : GP_VECTOR,
6875 0);
6876 return 1;
6877 }
6878
6879 return 0;
6880}
6881
6882/*
6883 * This function performs the various checks including
6884 * - if it's 4KB aligned
6885 * - No bits beyond the physical address width are set
6886 * - Returns 0 on success or else 1
6887 * (Intel SDM Section 30.3)
6888 */
6889static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6890 gpa_t *vmpointer)
6891{
6892 gva_t gva;
6893 gpa_t vmptr;
6894 struct x86_exception e;
6895 struct page *page;
6896 struct vcpu_vmx *vmx = to_vmx(vcpu);
6897 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6898
6899 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6900 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6901 return 1;
6902
6903 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6904 sizeof(vmptr), &e)) {
6905 kvm_inject_page_fault(vcpu, &e);
6906 return 1;
6907 }
6908
6909 switch (exit_reason) {
6910 case EXIT_REASON_VMON:
6911 /*
6912 * SDM 3: 24.11.5
6913 * The first 4 bytes of VMXON region contain the supported
6914 * VMCS revision identifier
6915 *
6916 * Note - IA32_VMX_BASIC[48] will never be 1
6917 * for the nested case;
6918 * which replaces physical address width with 32
6919 *
6920 */
6921 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6922 nested_vmx_failInvalid(vcpu);
6923 skip_emulated_instruction(vcpu);
6924 return 1;
6925 }
6926
6927 page = nested_get_page(vcpu, vmptr);
6928 if (page == NULL ||
6929 *(u32 *)kmap(page) != VMCS12_REVISION) {
6930 nested_vmx_failInvalid(vcpu);
6931 kunmap(page);
6932 skip_emulated_instruction(vcpu);
6933 return 1;
6934 }
6935 kunmap(page);
6936 vmx->nested.vmxon_ptr = vmptr;
6937 break;
6938 case EXIT_REASON_VMCLEAR:
6939 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6940 nested_vmx_failValid(vcpu,
6941 VMXERR_VMCLEAR_INVALID_ADDRESS);
6942 skip_emulated_instruction(vcpu);
6943 return 1;
6944 }
6945
6946 if (vmptr == vmx->nested.vmxon_ptr) {
6947 nested_vmx_failValid(vcpu,
6948 VMXERR_VMCLEAR_VMXON_POINTER);
6949 skip_emulated_instruction(vcpu);
6950 return 1;
6951 }
6952 break;
6953 case EXIT_REASON_VMPTRLD:
6954 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6955 nested_vmx_failValid(vcpu,
6956 VMXERR_VMPTRLD_INVALID_ADDRESS);
6957 skip_emulated_instruction(vcpu);
6958 return 1;
6959 }
6960
6961 if (vmptr == vmx->nested.vmxon_ptr) {
6962 nested_vmx_failValid(vcpu,
6963 VMXERR_VMCLEAR_VMXON_POINTER);
6964 skip_emulated_instruction(vcpu);
6965 return 1;
6966 }
6967 break;
6968 default:
6969 return 1; /* shouldn't happen */
6970 }
6971
6972 if (vmpointer)
6973 *vmpointer = vmptr;
6974 return 0;
6975}
6976
6977/*
6978 * Emulate the VMXON instruction.
6979 * Currently, we just remember that VMX is active, and do not save or even
6980 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6981 * do not currently need to store anything in that guest-allocated memory
6982 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6983 * argument is different from the VMXON pointer (which the spec says they do).
6984 */
6985static int handle_vmon(struct kvm_vcpu *vcpu)
6986{
6987 struct kvm_segment cs;
6988 struct vcpu_vmx *vmx = to_vmx(vcpu);
6989 struct vmcs *shadow_vmcs;
6990 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6991 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6992
6993 /* The Intel VMX Instruction Reference lists a bunch of bits that
6994 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6995 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6996 * Otherwise, we should fail with #UD. We test these now:
6997 */
6998 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6999 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
7000 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
7001 kvm_queue_exception(vcpu, UD_VECTOR);
7002 return 1;
7003 }
7004
7005 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7006 if (is_long_mode(vcpu) && !cs.l) {
7007 kvm_queue_exception(vcpu, UD_VECTOR);
7008 return 1;
7009 }
7010
7011 if (vmx_get_cpl(vcpu)) {
7012 kvm_inject_gp(vcpu, 0);
7013 return 1;
7014 }
7015
7016 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
7017 return 1;
7018
7019 if (vmx->nested.vmxon) {
7020 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7021 skip_emulated_instruction(vcpu);
7022 return 1;
7023 }
7024
7025 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7026 != VMXON_NEEDED_FEATURES) {
7027 kvm_inject_gp(vcpu, 0);
7028 return 1;
7029 }
7030
7031 if (cpu_has_vmx_msr_bitmap()) {
7032 vmx->nested.msr_bitmap =
7033 (unsigned long *)__get_free_page(GFP_KERNEL);
7034 if (!vmx->nested.msr_bitmap)
7035 goto out_msr_bitmap;
7036 }
7037
7038 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7039 if (!vmx->nested.cached_vmcs12)
7040 goto out_cached_vmcs12;
7041
7042 if (enable_shadow_vmcs) {
7043 shadow_vmcs = alloc_vmcs();
7044 if (!shadow_vmcs)
7045 goto out_shadow_vmcs;
7046 /* mark vmcs as shadow */
7047 shadow_vmcs->revision_id |= (1u << 31);
7048 /* init shadow vmcs */
7049 vmcs_clear(shadow_vmcs);
7050 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7051 }
7052
7053 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7054 vmx->nested.vmcs02_num = 0;
7055
7056 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7057 HRTIMER_MODE_REL_PINNED);
7058 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7059
7060 vmx->nested.vmxon = true;
7061
7062 skip_emulated_instruction(vcpu);
7063 nested_vmx_succeed(vcpu);
7064 return 1;
7065
7066out_shadow_vmcs:
7067 kfree(vmx->nested.cached_vmcs12);
7068
7069out_cached_vmcs12:
7070 free_page((unsigned long)vmx->nested.msr_bitmap);
7071
7072out_msr_bitmap:
7073 return -ENOMEM;
7074}
7075
7076/*
7077 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7078 * for running VMX instructions (except VMXON, whose prerequisites are
7079 * slightly different). It also specifies what exception to inject otherwise.
7080 */
7081static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7082{
7083 struct kvm_segment cs;
7084 struct vcpu_vmx *vmx = to_vmx(vcpu);
7085
7086 if (!vmx->nested.vmxon) {
7087 kvm_queue_exception(vcpu, UD_VECTOR);
7088 return 0;
7089 }
7090
7091 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7092 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7093 (is_long_mode(vcpu) && !cs.l)) {
7094 kvm_queue_exception(vcpu, UD_VECTOR);
7095 return 0;
7096 }
7097
7098 if (vmx_get_cpl(vcpu)) {
7099 kvm_inject_gp(vcpu, 0);
7100 return 0;
7101 }
7102
7103 return 1;
7104}
7105
7106static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7107{
7108 if (vmx->nested.current_vmptr == -1ull)
7109 return;
7110
7111 /* current_vmptr and current_vmcs12 are always set/reset together */
7112 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7113 return;
7114
7115 if (enable_shadow_vmcs) {
7116 /* copy to memory all shadowed fields in case
7117 they were modified */
7118 copy_shadow_to_vmcs12(vmx);
7119 vmx->nested.sync_shadow_vmcs = false;
7120 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7121 SECONDARY_EXEC_SHADOW_VMCS);
7122 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7123 }
7124 vmx->nested.posted_intr_nv = -1;
7125
7126 /* Flush VMCS12 to guest memory */
7127 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7128 VMCS12_SIZE);
7129
7130 kunmap(vmx->nested.current_vmcs12_page);
7131 nested_release_page(vmx->nested.current_vmcs12_page);
7132 vmx->nested.current_vmptr = -1ull;
7133 vmx->nested.current_vmcs12 = NULL;
7134}
7135
7136/*
7137 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7138 * just stops using VMX.
7139 */
7140static void free_nested(struct vcpu_vmx *vmx)
7141{
7142 if (!vmx->nested.vmxon)
7143 return;
7144
7145 vmx->nested.vmxon = false;
7146 free_vpid(vmx->nested.vpid02);
7147 nested_release_vmcs12(vmx);
7148 if (vmx->nested.msr_bitmap) {
7149 free_page((unsigned long)vmx->nested.msr_bitmap);
7150 vmx->nested.msr_bitmap = NULL;
7151 }
7152 if (enable_shadow_vmcs) {
7153 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7154 free_vmcs(vmx->vmcs01.shadow_vmcs);
7155 vmx->vmcs01.shadow_vmcs = NULL;
7156 }
7157 kfree(vmx->nested.cached_vmcs12);
7158 /* Unpin physical memory we referred to in current vmcs02 */
7159 if (vmx->nested.apic_access_page) {
7160 nested_release_page(vmx->nested.apic_access_page);
7161 vmx->nested.apic_access_page = NULL;
7162 }
7163 if (vmx->nested.virtual_apic_page) {
7164 nested_release_page(vmx->nested.virtual_apic_page);
7165 vmx->nested.virtual_apic_page = NULL;
7166 }
7167 if (vmx->nested.pi_desc_page) {
7168 kunmap(vmx->nested.pi_desc_page);
7169 nested_release_page(vmx->nested.pi_desc_page);
7170 vmx->nested.pi_desc_page = NULL;
7171 vmx->nested.pi_desc = NULL;
7172 }
7173
7174 nested_free_all_saved_vmcss(vmx);
7175}
7176
7177/* Emulate the VMXOFF instruction */
7178static int handle_vmoff(struct kvm_vcpu *vcpu)
7179{
7180 if (!nested_vmx_check_permission(vcpu))
7181 return 1;
7182 free_nested(to_vmx(vcpu));
7183 skip_emulated_instruction(vcpu);
7184 nested_vmx_succeed(vcpu);
7185 return 1;
7186}
7187
7188/* Emulate the VMCLEAR instruction */
7189static int handle_vmclear(struct kvm_vcpu *vcpu)
7190{
7191 struct vcpu_vmx *vmx = to_vmx(vcpu);
7192 gpa_t vmptr;
7193 struct vmcs12 *vmcs12;
7194 struct page *page;
7195
7196 if (!nested_vmx_check_permission(vcpu))
7197 return 1;
7198
7199 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7200 return 1;
7201
7202 if (vmptr == vmx->nested.current_vmptr)
7203 nested_release_vmcs12(vmx);
7204
7205 page = nested_get_page(vcpu, vmptr);
7206 if (page == NULL) {
7207 /*
7208 * For accurate processor emulation, VMCLEAR beyond available
7209 * physical memory should do nothing at all. However, it is
7210 * possible that a nested vmx bug, not a guest hypervisor bug,
7211 * resulted in this case, so let's shut down before doing any
7212 * more damage:
7213 */
7214 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7215 return 1;
7216 }
7217 vmcs12 = kmap(page);
7218 vmcs12->launch_state = 0;
7219 kunmap(page);
7220 nested_release_page(page);
7221
7222 nested_free_vmcs02(vmx, vmptr);
7223
7224 skip_emulated_instruction(vcpu);
7225 nested_vmx_succeed(vcpu);
7226 return 1;
7227}
7228
7229static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7230
7231/* Emulate the VMLAUNCH instruction */
7232static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7233{
7234 return nested_vmx_run(vcpu, true);
7235}
7236
7237/* Emulate the VMRESUME instruction */
7238static int handle_vmresume(struct kvm_vcpu *vcpu)
7239{
7240
7241 return nested_vmx_run(vcpu, false);
7242}
7243
7244enum vmcs_field_type {
7245 VMCS_FIELD_TYPE_U16 = 0,
7246 VMCS_FIELD_TYPE_U64 = 1,
7247 VMCS_FIELD_TYPE_U32 = 2,
7248 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7249};
7250
7251static inline int vmcs_field_type(unsigned long field)
7252{
7253 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7254 return VMCS_FIELD_TYPE_U32;
7255 return (field >> 13) & 0x3 ;
7256}
7257
7258static inline int vmcs_field_readonly(unsigned long field)
7259{
7260 return (((field >> 10) & 0x3) == 1);
7261}
7262
7263/*
7264 * Read a vmcs12 field. Since these can have varying lengths and we return
7265 * one type, we chose the biggest type (u64) and zero-extend the return value
7266 * to that size. Note that the caller, handle_vmread, might need to use only
7267 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7268 * 64-bit fields are to be returned).
7269 */
7270static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7271 unsigned long field, u64 *ret)
7272{
7273 short offset = vmcs_field_to_offset(field);
7274 char *p;
7275
7276 if (offset < 0)
7277 return offset;
7278
7279 p = ((char *)(get_vmcs12(vcpu))) + offset;
7280
7281 switch (vmcs_field_type(field)) {
7282 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7283 *ret = *((natural_width *)p);
7284 return 0;
7285 case VMCS_FIELD_TYPE_U16:
7286 *ret = *((u16 *)p);
7287 return 0;
7288 case VMCS_FIELD_TYPE_U32:
7289 *ret = *((u32 *)p);
7290 return 0;
7291 case VMCS_FIELD_TYPE_U64:
7292 *ret = *((u64 *)p);
7293 return 0;
7294 default:
7295 WARN_ON(1);
7296 return -ENOENT;
7297 }
7298}
7299
7300
7301static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7302 unsigned long field, u64 field_value){
7303 short offset = vmcs_field_to_offset(field);
7304 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7305 if (offset < 0)
7306 return offset;
7307
7308 switch (vmcs_field_type(field)) {
7309 case VMCS_FIELD_TYPE_U16:
7310 *(u16 *)p = field_value;
7311 return 0;
7312 case VMCS_FIELD_TYPE_U32:
7313 *(u32 *)p = field_value;
7314 return 0;
7315 case VMCS_FIELD_TYPE_U64:
7316 *(u64 *)p = field_value;
7317 return 0;
7318 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7319 *(natural_width *)p = field_value;
7320 return 0;
7321 default:
7322 WARN_ON(1);
7323 return -ENOENT;
7324 }
7325
7326}
7327
7328static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7329{
7330 int i;
7331 unsigned long field;
7332 u64 field_value;
7333 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7334 const unsigned long *fields = shadow_read_write_fields;
7335 const int num_fields = max_shadow_read_write_fields;
7336
7337 preempt_disable();
7338
7339 vmcs_load(shadow_vmcs);
7340
7341 for (i = 0; i < num_fields; i++) {
7342 field = fields[i];
7343 switch (vmcs_field_type(field)) {
7344 case VMCS_FIELD_TYPE_U16:
7345 field_value = vmcs_read16(field);
7346 break;
7347 case VMCS_FIELD_TYPE_U32:
7348 field_value = vmcs_read32(field);
7349 break;
7350 case VMCS_FIELD_TYPE_U64:
7351 field_value = vmcs_read64(field);
7352 break;
7353 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7354 field_value = vmcs_readl(field);
7355 break;
7356 default:
7357 WARN_ON(1);
7358 continue;
7359 }
7360 vmcs12_write_any(&vmx->vcpu, field, field_value);
7361 }
7362
7363 vmcs_clear(shadow_vmcs);
7364 vmcs_load(vmx->loaded_vmcs->vmcs);
7365
7366 preempt_enable();
7367}
7368
7369static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7370{
7371 const unsigned long *fields[] = {
7372 shadow_read_write_fields,
7373 shadow_read_only_fields
7374 };
7375 const int max_fields[] = {
7376 max_shadow_read_write_fields,
7377 max_shadow_read_only_fields
7378 };
7379 int i, q;
7380 unsigned long field;
7381 u64 field_value = 0;
7382 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7383
7384 vmcs_load(shadow_vmcs);
7385
7386 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7387 for (i = 0; i < max_fields[q]; i++) {
7388 field = fields[q][i];
7389 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7390
7391 switch (vmcs_field_type(field)) {
7392 case VMCS_FIELD_TYPE_U16:
7393 vmcs_write16(field, (u16)field_value);
7394 break;
7395 case VMCS_FIELD_TYPE_U32:
7396 vmcs_write32(field, (u32)field_value);
7397 break;
7398 case VMCS_FIELD_TYPE_U64:
7399 vmcs_write64(field, (u64)field_value);
7400 break;
7401 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7402 vmcs_writel(field, (long)field_value);
7403 break;
7404 default:
7405 WARN_ON(1);
7406 break;
7407 }
7408 }
7409 }
7410
7411 vmcs_clear(shadow_vmcs);
7412 vmcs_load(vmx->loaded_vmcs->vmcs);
7413}
7414
7415/*
7416 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7417 * used before) all generate the same failure when it is missing.
7418 */
7419static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7420{
7421 struct vcpu_vmx *vmx = to_vmx(vcpu);
7422 if (vmx->nested.current_vmptr == -1ull) {
7423 nested_vmx_failInvalid(vcpu);
7424 skip_emulated_instruction(vcpu);
7425 return 0;
7426 }
7427 return 1;
7428}
7429
7430static int handle_vmread(struct kvm_vcpu *vcpu)
7431{
7432 unsigned long field;
7433 u64 field_value;
7434 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7435 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7436 gva_t gva = 0;
7437
7438 if (!nested_vmx_check_permission(vcpu) ||
7439 !nested_vmx_check_vmcs12(vcpu))
7440 return 1;
7441
7442 /* Decode instruction info and find the field to read */
7443 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7444 /* Read the field, zero-extended to a u64 field_value */
7445 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7446 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7447 skip_emulated_instruction(vcpu);
7448 return 1;
7449 }
7450 /*
7451 * Now copy part of this value to register or memory, as requested.
7452 * Note that the number of bits actually copied is 32 or 64 depending
7453 * on the guest's mode (32 or 64 bit), not on the given field's length.
7454 */
7455 if (vmx_instruction_info & (1u << 10)) {
7456 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7457 field_value);
7458 } else {
7459 if (get_vmx_mem_address(vcpu, exit_qualification,
7460 vmx_instruction_info, true, &gva))
7461 return 1;
7462 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7463 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7464 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7465 }
7466
7467 nested_vmx_succeed(vcpu);
7468 skip_emulated_instruction(vcpu);
7469 return 1;
7470}
7471
7472
7473static int handle_vmwrite(struct kvm_vcpu *vcpu)
7474{
7475 unsigned long field;
7476 gva_t gva;
7477 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7478 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7479 /* The value to write might be 32 or 64 bits, depending on L1's long
7480 * mode, and eventually we need to write that into a field of several
7481 * possible lengths. The code below first zero-extends the value to 64
7482 * bit (field_value), and then copies only the appropriate number of
7483 * bits into the vmcs12 field.
7484 */
7485 u64 field_value = 0;
7486 struct x86_exception e;
7487
7488 if (!nested_vmx_check_permission(vcpu) ||
7489 !nested_vmx_check_vmcs12(vcpu))
7490 return 1;
7491
7492 if (vmx_instruction_info & (1u << 10))
7493 field_value = kvm_register_readl(vcpu,
7494 (((vmx_instruction_info) >> 3) & 0xf));
7495 else {
7496 if (get_vmx_mem_address(vcpu, exit_qualification,
7497 vmx_instruction_info, false, &gva))
7498 return 1;
7499 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7500 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7501 kvm_inject_page_fault(vcpu, &e);
7502 return 1;
7503 }
7504 }
7505
7506
7507 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7508 if (vmcs_field_readonly(field)) {
7509 nested_vmx_failValid(vcpu,
7510 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7511 skip_emulated_instruction(vcpu);
7512 return 1;
7513 }
7514
7515 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7516 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7517 skip_emulated_instruction(vcpu);
7518 return 1;
7519 }
7520
7521 nested_vmx_succeed(vcpu);
7522 skip_emulated_instruction(vcpu);
7523 return 1;
7524}
7525
7526/* Emulate the VMPTRLD instruction */
7527static int handle_vmptrld(struct kvm_vcpu *vcpu)
7528{
7529 struct vcpu_vmx *vmx = to_vmx(vcpu);
7530 gpa_t vmptr;
7531
7532 if (!nested_vmx_check_permission(vcpu))
7533 return 1;
7534
7535 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7536 return 1;
7537
7538 if (vmx->nested.current_vmptr != vmptr) {
7539 struct vmcs12 *new_vmcs12;
7540 struct page *page;
7541 page = nested_get_page(vcpu, vmptr);
7542 if (page == NULL) {
7543 nested_vmx_failInvalid(vcpu);
7544 skip_emulated_instruction(vcpu);
7545 return 1;
7546 }
7547 new_vmcs12 = kmap(page);
7548 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7549 kunmap(page);
7550 nested_release_page_clean(page);
7551 nested_vmx_failValid(vcpu,
7552 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7553 skip_emulated_instruction(vcpu);
7554 return 1;
7555 }
7556
7557 nested_release_vmcs12(vmx);
7558 vmx->nested.current_vmptr = vmptr;
7559 vmx->nested.current_vmcs12 = new_vmcs12;
7560 vmx->nested.current_vmcs12_page = page;
7561 /*
7562 * Load VMCS12 from guest memory since it is not already
7563 * cached.
7564 */
7565 memcpy(vmx->nested.cached_vmcs12,
7566 vmx->nested.current_vmcs12, VMCS12_SIZE);
7567
7568 if (enable_shadow_vmcs) {
7569 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7570 SECONDARY_EXEC_SHADOW_VMCS);
7571 vmcs_write64(VMCS_LINK_POINTER,
7572 __pa(vmx->vmcs01.shadow_vmcs));
7573 vmx->nested.sync_shadow_vmcs = true;
7574 }
7575 }
7576
7577 nested_vmx_succeed(vcpu);
7578 skip_emulated_instruction(vcpu);
7579 return 1;
7580}
7581
7582/* Emulate the VMPTRST instruction */
7583static int handle_vmptrst(struct kvm_vcpu *vcpu)
7584{
7585 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7586 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7587 gva_t vmcs_gva;
7588 struct x86_exception e;
7589
7590 if (!nested_vmx_check_permission(vcpu))
7591 return 1;
7592
7593 if (get_vmx_mem_address(vcpu, exit_qualification,
7594 vmx_instruction_info, true, &vmcs_gva))
7595 return 1;
7596 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7597 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7598 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7599 sizeof(u64), &e)) {
7600 kvm_inject_page_fault(vcpu, &e);
7601 return 1;
7602 }
7603 nested_vmx_succeed(vcpu);
7604 skip_emulated_instruction(vcpu);
7605 return 1;
7606}
7607
7608/* Emulate the INVEPT instruction */
7609static int handle_invept(struct kvm_vcpu *vcpu)
7610{
7611 struct vcpu_vmx *vmx = to_vmx(vcpu);
7612 u32 vmx_instruction_info, types;
7613 unsigned long type;
7614 gva_t gva;
7615 struct x86_exception e;
7616 struct {
7617 u64 eptp, gpa;
7618 } operand;
7619
7620 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7621 SECONDARY_EXEC_ENABLE_EPT) ||
7622 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7623 kvm_queue_exception(vcpu, UD_VECTOR);
7624 return 1;
7625 }
7626
7627 if (!nested_vmx_check_permission(vcpu))
7628 return 1;
7629
7630 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7631 kvm_queue_exception(vcpu, UD_VECTOR);
7632 return 1;
7633 }
7634
7635 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7636 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7637
7638 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7639
7640 if (type >= 32 || !(types & (1 << type))) {
7641 nested_vmx_failValid(vcpu,
7642 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7643 skip_emulated_instruction(vcpu);
7644 return 1;
7645 }
7646
7647 /* According to the Intel VMX instruction reference, the memory
7648 * operand is read even if it isn't needed (e.g., for type==global)
7649 */
7650 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7651 vmx_instruction_info, false, &gva))
7652 return 1;
7653 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7654 sizeof(operand), &e)) {
7655 kvm_inject_page_fault(vcpu, &e);
7656 return 1;
7657 }
7658
7659 switch (type) {
7660 case VMX_EPT_EXTENT_GLOBAL:
7661 /*
7662 * TODO: track mappings and invalidate
7663 * single context requests appropriately
7664 */
7665 case VMX_EPT_EXTENT_CONTEXT:
7666 kvm_mmu_sync_roots(vcpu);
7667 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7668 nested_vmx_succeed(vcpu);
7669 break;
7670 default:
7671 BUG_ON(1);
7672 break;
7673 }
7674
7675 skip_emulated_instruction(vcpu);
7676 return 1;
7677}
7678
7679static int handle_invvpid(struct kvm_vcpu *vcpu)
7680{
7681 struct vcpu_vmx *vmx = to_vmx(vcpu);
7682 u32 vmx_instruction_info;
7683 unsigned long type, types;
7684 gva_t gva;
7685 struct x86_exception e;
7686 int vpid;
7687
7688 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7689 SECONDARY_EXEC_ENABLE_VPID) ||
7690 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7691 kvm_queue_exception(vcpu, UD_VECTOR);
7692 return 1;
7693 }
7694
7695 if (!nested_vmx_check_permission(vcpu))
7696 return 1;
7697
7698 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7699 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7700
7701 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7702
7703 if (type >= 32 || !(types & (1 << type))) {
7704 nested_vmx_failValid(vcpu,
7705 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7706 skip_emulated_instruction(vcpu);
7707 return 1;
7708 }
7709
7710 /* according to the intel vmx instruction reference, the memory
7711 * operand is read even if it isn't needed (e.g., for type==global)
7712 */
7713 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7714 vmx_instruction_info, false, &gva))
7715 return 1;
7716 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7717 sizeof(u32), &e)) {
7718 kvm_inject_page_fault(vcpu, &e);
7719 return 1;
7720 }
7721
7722 switch (type) {
7723 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7724 /*
7725 * Old versions of KVM use the single-context version so we
7726 * have to support it; just treat it the same as all-context.
7727 */
7728 case VMX_VPID_EXTENT_ALL_CONTEXT:
7729 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7730 nested_vmx_succeed(vcpu);
7731 break;
7732 default:
7733 /* Trap individual address invalidation invvpid calls */
7734 BUG_ON(1);
7735 break;
7736 }
7737
7738 skip_emulated_instruction(vcpu);
7739 return 1;
7740}
7741
7742static int handle_pml_full(struct kvm_vcpu *vcpu)
7743{
7744 unsigned long exit_qualification;
7745
7746 trace_kvm_pml_full(vcpu->vcpu_id);
7747
7748 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7749
7750 /*
7751 * PML buffer FULL happened while executing iret from NMI,
7752 * "blocked by NMI" bit has to be set before next VM entry.
7753 */
7754 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7755 cpu_has_virtual_nmis() &&
7756 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7757 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7758 GUEST_INTR_STATE_NMI);
7759
7760 /*
7761 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7762 * here.., and there's no userspace involvement needed for PML.
7763 */
7764 return 1;
7765}
7766
7767static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7768{
7769 kvm_lapic_expired_hv_timer(vcpu);
7770 return 1;
7771}
7772
7773/*
7774 * The exit handlers return 1 if the exit was handled fully and guest execution
7775 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7776 * to be done to userspace and return 0.
7777 */
7778static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7779 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7780 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7781 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7782 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7783 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7784 [EXIT_REASON_CR_ACCESS] = handle_cr,
7785 [EXIT_REASON_DR_ACCESS] = handle_dr,
7786 [EXIT_REASON_CPUID] = handle_cpuid,
7787 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7788 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7789 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7790 [EXIT_REASON_HLT] = handle_halt,
7791 [EXIT_REASON_INVD] = handle_invd,
7792 [EXIT_REASON_INVLPG] = handle_invlpg,
7793 [EXIT_REASON_RDPMC] = handle_rdpmc,
7794 [EXIT_REASON_VMCALL] = handle_vmcall,
7795 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7796 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7797 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7798 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7799 [EXIT_REASON_VMREAD] = handle_vmread,
7800 [EXIT_REASON_VMRESUME] = handle_vmresume,
7801 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7802 [EXIT_REASON_VMOFF] = handle_vmoff,
7803 [EXIT_REASON_VMON] = handle_vmon,
7804 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7805 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7806 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7807 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7808 [EXIT_REASON_WBINVD] = handle_wbinvd,
7809 [EXIT_REASON_XSETBV] = handle_xsetbv,
7810 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7811 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7812 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7813 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7814 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7815 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7816 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7817 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7818 [EXIT_REASON_INVEPT] = handle_invept,
7819 [EXIT_REASON_INVVPID] = handle_invvpid,
7820 [EXIT_REASON_XSAVES] = handle_xsaves,
7821 [EXIT_REASON_XRSTORS] = handle_xrstors,
7822 [EXIT_REASON_PML_FULL] = handle_pml_full,
7823 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
7824};
7825
7826static const int kvm_vmx_max_exit_handlers =
7827 ARRAY_SIZE(kvm_vmx_exit_handlers);
7828
7829static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7830 struct vmcs12 *vmcs12)
7831{
7832 unsigned long exit_qualification;
7833 gpa_t bitmap, last_bitmap;
7834 unsigned int port;
7835 int size;
7836 u8 b;
7837
7838 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7839 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7840
7841 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7842
7843 port = exit_qualification >> 16;
7844 size = (exit_qualification & 7) + 1;
7845
7846 last_bitmap = (gpa_t)-1;
7847 b = -1;
7848
7849 while (size > 0) {
7850 if (port < 0x8000)
7851 bitmap = vmcs12->io_bitmap_a;
7852 else if (port < 0x10000)
7853 bitmap = vmcs12->io_bitmap_b;
7854 else
7855 return true;
7856 bitmap += (port & 0x7fff) / 8;
7857
7858 if (last_bitmap != bitmap)
7859 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7860 return true;
7861 if (b & (1 << (port & 7)))
7862 return true;
7863
7864 port++;
7865 size--;
7866 last_bitmap = bitmap;
7867 }
7868
7869 return false;
7870}
7871
7872/*
7873 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7874 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7875 * disinterest in the current event (read or write a specific MSR) by using an
7876 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7877 */
7878static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7879 struct vmcs12 *vmcs12, u32 exit_reason)
7880{
7881 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7882 gpa_t bitmap;
7883
7884 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7885 return true;
7886
7887 /*
7888 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7889 * for the four combinations of read/write and low/high MSR numbers.
7890 * First we need to figure out which of the four to use:
7891 */
7892 bitmap = vmcs12->msr_bitmap;
7893 if (exit_reason == EXIT_REASON_MSR_WRITE)
7894 bitmap += 2048;
7895 if (msr_index >= 0xc0000000) {
7896 msr_index -= 0xc0000000;
7897 bitmap += 1024;
7898 }
7899
7900 /* Then read the msr_index'th bit from this bitmap: */
7901 if (msr_index < 1024*8) {
7902 unsigned char b;
7903 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7904 return true;
7905 return 1 & (b >> (msr_index & 7));
7906 } else
7907 return true; /* let L1 handle the wrong parameter */
7908}
7909
7910/*
7911 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7912 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7913 * intercept (via guest_host_mask etc.) the current event.
7914 */
7915static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7916 struct vmcs12 *vmcs12)
7917{
7918 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7919 int cr = exit_qualification & 15;
7920 int reg = (exit_qualification >> 8) & 15;
7921 unsigned long val = kvm_register_readl(vcpu, reg);
7922
7923 switch ((exit_qualification >> 4) & 3) {
7924 case 0: /* mov to cr */
7925 switch (cr) {
7926 case 0:
7927 if (vmcs12->cr0_guest_host_mask &
7928 (val ^ vmcs12->cr0_read_shadow))
7929 return true;
7930 break;
7931 case 3:
7932 if ((vmcs12->cr3_target_count >= 1 &&
7933 vmcs12->cr3_target_value0 == val) ||
7934 (vmcs12->cr3_target_count >= 2 &&
7935 vmcs12->cr3_target_value1 == val) ||
7936 (vmcs12->cr3_target_count >= 3 &&
7937 vmcs12->cr3_target_value2 == val) ||
7938 (vmcs12->cr3_target_count >= 4 &&
7939 vmcs12->cr3_target_value3 == val))
7940 return false;
7941 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7942 return true;
7943 break;
7944 case 4:
7945 if (vmcs12->cr4_guest_host_mask &
7946 (vmcs12->cr4_read_shadow ^ val))
7947 return true;
7948 break;
7949 case 8:
7950 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7951 return true;
7952 break;
7953 }
7954 break;
7955 case 2: /* clts */
7956 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7957 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7958 return true;
7959 break;
7960 case 1: /* mov from cr */
7961 switch (cr) {
7962 case 3:
7963 if (vmcs12->cpu_based_vm_exec_control &
7964 CPU_BASED_CR3_STORE_EXITING)
7965 return true;
7966 break;
7967 case 8:
7968 if (vmcs12->cpu_based_vm_exec_control &
7969 CPU_BASED_CR8_STORE_EXITING)
7970 return true;
7971 break;
7972 }
7973 break;
7974 case 3: /* lmsw */
7975 /*
7976 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7977 * cr0. Other attempted changes are ignored, with no exit.
7978 */
7979 if (vmcs12->cr0_guest_host_mask & 0xe &
7980 (val ^ vmcs12->cr0_read_shadow))
7981 return true;
7982 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7983 !(vmcs12->cr0_read_shadow & 0x1) &&
7984 (val & 0x1))
7985 return true;
7986 break;
7987 }
7988 return false;
7989}
7990
7991/*
7992 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7993 * should handle it ourselves in L0 (and then continue L2). Only call this
7994 * when in is_guest_mode (L2).
7995 */
7996static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7997{
7998 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7999 struct vcpu_vmx *vmx = to_vmx(vcpu);
8000 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8001 u32 exit_reason = vmx->exit_reason;
8002
8003 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8004 vmcs_readl(EXIT_QUALIFICATION),
8005 vmx->idt_vectoring_info,
8006 intr_info,
8007 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8008 KVM_ISA_VMX);
8009
8010 if (vmx->nested.nested_run_pending)
8011 return false;
8012
8013 if (unlikely(vmx->fail)) {
8014 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8015 vmcs_read32(VM_INSTRUCTION_ERROR));
8016 return true;
8017 }
8018
8019 switch (exit_reason) {
8020 case EXIT_REASON_EXCEPTION_NMI:
8021 if (!is_exception(intr_info))
8022 return false;
8023 else if (is_page_fault(intr_info))
8024 return enable_ept;
8025 else if (is_no_device(intr_info) &&
8026 !(vmcs12->guest_cr0 & X86_CR0_TS))
8027 return false;
8028 else if (is_debug(intr_info) &&
8029 vcpu->guest_debug &
8030 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8031 return false;
8032 else if (is_breakpoint(intr_info) &&
8033 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8034 return false;
8035 return vmcs12->exception_bitmap &
8036 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8037 case EXIT_REASON_EXTERNAL_INTERRUPT:
8038 return false;
8039 case EXIT_REASON_TRIPLE_FAULT:
8040 return true;
8041 case EXIT_REASON_PENDING_INTERRUPT:
8042 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8043 case EXIT_REASON_NMI_WINDOW:
8044 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8045 case EXIT_REASON_TASK_SWITCH:
8046 return true;
8047 case EXIT_REASON_CPUID:
8048 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
8049 return false;
8050 return true;
8051 case EXIT_REASON_HLT:
8052 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8053 case EXIT_REASON_INVD:
8054 return true;
8055 case EXIT_REASON_INVLPG:
8056 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8057 case EXIT_REASON_RDPMC:
8058 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8059 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8060 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8061 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8062 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8063 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8064 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8065 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8066 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8067 /*
8068 * VMX instructions trap unconditionally. This allows L1 to
8069 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8070 */
8071 return true;
8072 case EXIT_REASON_CR_ACCESS:
8073 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8074 case EXIT_REASON_DR_ACCESS:
8075 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8076 case EXIT_REASON_IO_INSTRUCTION:
8077 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8078 case EXIT_REASON_MSR_READ:
8079 case EXIT_REASON_MSR_WRITE:
8080 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8081 case EXIT_REASON_INVALID_STATE:
8082 return true;
8083 case EXIT_REASON_MWAIT_INSTRUCTION:
8084 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8085 case EXIT_REASON_MONITOR_TRAP_FLAG:
8086 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8087 case EXIT_REASON_MONITOR_INSTRUCTION:
8088 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8089 case EXIT_REASON_PAUSE_INSTRUCTION:
8090 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8091 nested_cpu_has2(vmcs12,
8092 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8093 case EXIT_REASON_MCE_DURING_VMENTRY:
8094 return false;
8095 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8096 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8097 case EXIT_REASON_APIC_ACCESS:
8098 return nested_cpu_has2(vmcs12,
8099 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8100 case EXIT_REASON_APIC_WRITE:
8101 case EXIT_REASON_EOI_INDUCED:
8102 /* apic_write and eoi_induced should exit unconditionally. */
8103 return true;
8104 case EXIT_REASON_EPT_VIOLATION:
8105 /*
8106 * L0 always deals with the EPT violation. If nested EPT is
8107 * used, and the nested mmu code discovers that the address is
8108 * missing in the guest EPT table (EPT12), the EPT violation
8109 * will be injected with nested_ept_inject_page_fault()
8110 */
8111 return false;
8112 case EXIT_REASON_EPT_MISCONFIG:
8113 /*
8114 * L2 never uses directly L1's EPT, but rather L0's own EPT
8115 * table (shadow on EPT) or a merged EPT table that L0 built
8116 * (EPT on EPT). So any problems with the structure of the
8117 * table is L0's fault.
8118 */
8119 return false;
8120 case EXIT_REASON_WBINVD:
8121 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8122 case EXIT_REASON_XSETBV:
8123 return true;
8124 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8125 /*
8126 * This should never happen, since it is not possible to
8127 * set XSS to a non-zero value---neither in L1 nor in L2.
8128 * If if it were, XSS would have to be checked against
8129 * the XSS exit bitmap in vmcs12.
8130 */
8131 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8132 case EXIT_REASON_PREEMPTION_TIMER:
8133 return false;
8134 default:
8135 return true;
8136 }
8137}
8138
8139static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8140{
8141 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8142 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8143}
8144
8145static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8146{
8147 if (vmx->pml_pg) {
8148 __free_page(vmx->pml_pg);
8149 vmx->pml_pg = NULL;
8150 }
8151}
8152
8153static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8154{
8155 struct vcpu_vmx *vmx = to_vmx(vcpu);
8156 u64 *pml_buf;
8157 u16 pml_idx;
8158
8159 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8160
8161 /* Do nothing if PML buffer is empty */
8162 if (pml_idx == (PML_ENTITY_NUM - 1))
8163 return;
8164
8165 /* PML index always points to next available PML buffer entity */
8166 if (pml_idx >= PML_ENTITY_NUM)
8167 pml_idx = 0;
8168 else
8169 pml_idx++;
8170
8171 pml_buf = page_address(vmx->pml_pg);
8172 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8173 u64 gpa;
8174
8175 gpa = pml_buf[pml_idx];
8176 WARN_ON(gpa & (PAGE_SIZE - 1));
8177 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8178 }
8179
8180 /* reset PML index */
8181 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8182}
8183
8184/*
8185 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8186 * Called before reporting dirty_bitmap to userspace.
8187 */
8188static void kvm_flush_pml_buffers(struct kvm *kvm)
8189{
8190 int i;
8191 struct kvm_vcpu *vcpu;
8192 /*
8193 * We only need to kick vcpu out of guest mode here, as PML buffer
8194 * is flushed at beginning of all VMEXITs, and it's obvious that only
8195 * vcpus running in guest are possible to have unflushed GPAs in PML
8196 * buffer.
8197 */
8198 kvm_for_each_vcpu(i, vcpu, kvm)
8199 kvm_vcpu_kick(vcpu);
8200}
8201
8202static void vmx_dump_sel(char *name, uint32_t sel)
8203{
8204 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8205 name, vmcs_read32(sel),
8206 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8207 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8208 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8209}
8210
8211static void vmx_dump_dtsel(char *name, uint32_t limit)
8212{
8213 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8214 name, vmcs_read32(limit),
8215 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8216}
8217
8218static void dump_vmcs(void)
8219{
8220 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8221 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8222 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8223 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8224 u32 secondary_exec_control = 0;
8225 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8226 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8227 int i, n;
8228
8229 if (cpu_has_secondary_exec_ctrls())
8230 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8231
8232 pr_err("*** Guest State ***\n");
8233 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8234 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8235 vmcs_readl(CR0_GUEST_HOST_MASK));
8236 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8237 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8238 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8239 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8240 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8241 {
8242 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8243 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8244 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8245 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8246 }
8247 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8248 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8249 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8250 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8251 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8252 vmcs_readl(GUEST_SYSENTER_ESP),
8253 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8254 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8255 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8256 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8257 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8258 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8259 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8260 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8261 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8262 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8263 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8264 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8265 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8266 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8267 efer, vmcs_read64(GUEST_IA32_PAT));
8268 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8269 vmcs_read64(GUEST_IA32_DEBUGCTL),
8270 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8271 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8272 pr_err("PerfGlobCtl = 0x%016llx\n",
8273 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8274 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8275 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8276 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8277 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8278 vmcs_read32(GUEST_ACTIVITY_STATE));
8279 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8280 pr_err("InterruptStatus = %04x\n",
8281 vmcs_read16(GUEST_INTR_STATUS));
8282
8283 pr_err("*** Host State ***\n");
8284 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8285 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8286 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8287 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8288 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8289 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8290 vmcs_read16(HOST_TR_SELECTOR));
8291 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8292 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8293 vmcs_readl(HOST_TR_BASE));
8294 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8295 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8296 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8297 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8298 vmcs_readl(HOST_CR4));
8299 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8300 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8301 vmcs_read32(HOST_IA32_SYSENTER_CS),
8302 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8303 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8304 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8305 vmcs_read64(HOST_IA32_EFER),
8306 vmcs_read64(HOST_IA32_PAT));
8307 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8308 pr_err("PerfGlobCtl = 0x%016llx\n",
8309 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8310
8311 pr_err("*** Control State ***\n");
8312 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8313 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8314 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8315 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8316 vmcs_read32(EXCEPTION_BITMAP),
8317 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8318 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8319 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8320 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8321 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8322 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8323 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8324 vmcs_read32(VM_EXIT_INTR_INFO),
8325 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8326 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8327 pr_err(" reason=%08x qualification=%016lx\n",
8328 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8329 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8330 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8331 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8332 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8333 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8334 pr_err("TSC Multiplier = 0x%016llx\n",
8335 vmcs_read64(TSC_MULTIPLIER));
8336 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8337 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8338 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8339 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8340 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8341 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8342 n = vmcs_read32(CR3_TARGET_COUNT);
8343 for (i = 0; i + 1 < n; i += 4)
8344 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8345 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8346 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8347 if (i < n)
8348 pr_err("CR3 target%u=%016lx\n",
8349 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8350 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8351 pr_err("PLE Gap=%08x Window=%08x\n",
8352 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8353 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8354 pr_err("Virtual processor ID = 0x%04x\n",
8355 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8356}
8357
8358/*
8359 * The guest has exited. See if we can fix it or if we need userspace
8360 * assistance.
8361 */
8362static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8363{
8364 struct vcpu_vmx *vmx = to_vmx(vcpu);
8365 u32 exit_reason = vmx->exit_reason;
8366 u32 vectoring_info = vmx->idt_vectoring_info;
8367
8368 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8369
8370 /*
8371 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8372 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8373 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8374 * mode as if vcpus is in root mode, the PML buffer must has been
8375 * flushed already.
8376 */
8377 if (enable_pml)
8378 vmx_flush_pml_buffer(vcpu);
8379
8380 /* If guest state is invalid, start emulating */
8381 if (vmx->emulation_required)
8382 return handle_invalid_guest_state(vcpu);
8383
8384 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8385 nested_vmx_vmexit(vcpu, exit_reason,
8386 vmcs_read32(VM_EXIT_INTR_INFO),
8387 vmcs_readl(EXIT_QUALIFICATION));
8388 return 1;
8389 }
8390
8391 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8392 dump_vmcs();
8393 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8394 vcpu->run->fail_entry.hardware_entry_failure_reason
8395 = exit_reason;
8396 return 0;
8397 }
8398
8399 if (unlikely(vmx->fail)) {
8400 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8401 vcpu->run->fail_entry.hardware_entry_failure_reason
8402 = vmcs_read32(VM_INSTRUCTION_ERROR);
8403 return 0;
8404 }
8405
8406 /*
8407 * Note:
8408 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8409 * delivery event since it indicates guest is accessing MMIO.
8410 * The vm-exit can be triggered again after return to guest that
8411 * will cause infinite loop.
8412 */
8413 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8414 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8415 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8416 exit_reason != EXIT_REASON_PML_FULL &&
8417 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8418 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8419 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8420 vcpu->run->internal.ndata = 2;
8421 vcpu->run->internal.data[0] = vectoring_info;
8422 vcpu->run->internal.data[1] = exit_reason;
8423 return 0;
8424 }
8425
8426 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8427 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8428 get_vmcs12(vcpu))))) {
8429 if (vmx_interrupt_allowed(vcpu)) {
8430 vmx->soft_vnmi_blocked = 0;
8431 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8432 vcpu->arch.nmi_pending) {
8433 /*
8434 * This CPU don't support us in finding the end of an
8435 * NMI-blocked window if the guest runs with IRQs
8436 * disabled. So we pull the trigger after 1 s of
8437 * futile waiting, but inform the user about this.
8438 */
8439 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8440 "state on VCPU %d after 1 s timeout\n",
8441 __func__, vcpu->vcpu_id);
8442 vmx->soft_vnmi_blocked = 0;
8443 }
8444 }
8445
8446 if (exit_reason < kvm_vmx_max_exit_handlers
8447 && kvm_vmx_exit_handlers[exit_reason])
8448 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8449 else {
8450 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8451 kvm_queue_exception(vcpu, UD_VECTOR);
8452 return 1;
8453 }
8454}
8455
8456static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8457{
8458 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8459
8460 if (is_guest_mode(vcpu) &&
8461 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8462 return;
8463
8464 if (irr == -1 || tpr < irr) {
8465 vmcs_write32(TPR_THRESHOLD, 0);
8466 return;
8467 }
8468
8469 vmcs_write32(TPR_THRESHOLD, irr);
8470}
8471
8472static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8473{
8474 u32 sec_exec_control;
8475
8476 /* Postpone execution until vmcs01 is the current VMCS. */
8477 if (is_guest_mode(vcpu)) {
8478 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8479 return;
8480 }
8481
8482 if (!cpu_has_vmx_virtualize_x2apic_mode())
8483 return;
8484
8485 if (!cpu_need_tpr_shadow(vcpu))
8486 return;
8487
8488 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8489
8490 if (set) {
8491 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8492 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8493 } else {
8494 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8495 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8496 }
8497 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8498
8499 vmx_set_msr_bitmap(vcpu);
8500}
8501
8502static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8503{
8504 struct vcpu_vmx *vmx = to_vmx(vcpu);
8505
8506 /*
8507 * Currently we do not handle the nested case where L2 has an
8508 * APIC access page of its own; that page is still pinned.
8509 * Hence, we skip the case where the VCPU is in guest mode _and_
8510 * L1 prepared an APIC access page for L2.
8511 *
8512 * For the case where L1 and L2 share the same APIC access page
8513 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8514 * in the vmcs12), this function will only update either the vmcs01
8515 * or the vmcs02. If the former, the vmcs02 will be updated by
8516 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8517 * the next L2->L1 exit.
8518 */
8519 if (!is_guest_mode(vcpu) ||
8520 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8521 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8522 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8523}
8524
8525static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8526{
8527 u16 status;
8528 u8 old;
8529
8530 if (max_isr == -1)
8531 max_isr = 0;
8532
8533 status = vmcs_read16(GUEST_INTR_STATUS);
8534 old = status >> 8;
8535 if (max_isr != old) {
8536 status &= 0xff;
8537 status |= max_isr << 8;
8538 vmcs_write16(GUEST_INTR_STATUS, status);
8539 }
8540}
8541
8542static void vmx_set_rvi(int vector)
8543{
8544 u16 status;
8545 u8 old;
8546
8547 if (vector == -1)
8548 vector = 0;
8549
8550 status = vmcs_read16(GUEST_INTR_STATUS);
8551 old = (u8)status & 0xff;
8552 if ((u8)vector != old) {
8553 status &= ~0xff;
8554 status |= (u8)vector;
8555 vmcs_write16(GUEST_INTR_STATUS, status);
8556 }
8557}
8558
8559static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8560{
8561 if (!is_guest_mode(vcpu)) {
8562 vmx_set_rvi(max_irr);
8563 return;
8564 }
8565
8566 if (max_irr == -1)
8567 return;
8568
8569 /*
8570 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8571 * handles it.
8572 */
8573 if (nested_exit_on_intr(vcpu))
8574 return;
8575
8576 /*
8577 * Else, fall back to pre-APICv interrupt injection since L2
8578 * is run without virtual interrupt delivery.
8579 */
8580 if (!kvm_event_needs_reinjection(vcpu) &&
8581 vmx_interrupt_allowed(vcpu)) {
8582 kvm_queue_interrupt(vcpu, max_irr, false);
8583 vmx_inject_irq(vcpu);
8584 }
8585}
8586
8587static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8588{
8589 if (!kvm_vcpu_apicv_active(vcpu))
8590 return;
8591
8592 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8593 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8594 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8595 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8596}
8597
8598static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8599{
8600 u32 exit_intr_info;
8601
8602 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8603 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8604 return;
8605
8606 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8607 exit_intr_info = vmx->exit_intr_info;
8608
8609 /* Handle machine checks before interrupts are enabled */
8610 if (is_machine_check(exit_intr_info))
8611 kvm_machine_check();
8612
8613 /* We need to handle NMIs before interrupts are enabled */
8614 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8615 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8616 kvm_before_handle_nmi(&vmx->vcpu);
8617 asm("int $2");
8618 kvm_after_handle_nmi(&vmx->vcpu);
8619 }
8620}
8621
8622static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8623{
8624 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8625 register void *__sp asm(_ASM_SP);
8626
8627 /*
8628 * If external interrupt exists, IF bit is set in rflags/eflags on the
8629 * interrupt stack frame, and interrupt will be enabled on a return
8630 * from interrupt handler.
8631 */
8632 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8633 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8634 unsigned int vector;
8635 unsigned long entry;
8636 gate_desc *desc;
8637 struct vcpu_vmx *vmx = to_vmx(vcpu);
8638#ifdef CONFIG_X86_64
8639 unsigned long tmp;
8640#endif
8641
8642 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8643 desc = (gate_desc *)vmx->host_idt_base + vector;
8644 entry = gate_offset(*desc);
8645 asm volatile(
8646#ifdef CONFIG_X86_64
8647 "mov %%" _ASM_SP ", %[sp]\n\t"
8648 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8649 "push $%c[ss]\n\t"
8650 "push %[sp]\n\t"
8651#endif
8652 "pushf\n\t"
8653 __ASM_SIZE(push) " $%c[cs]\n\t"
8654 "call *%[entry]\n\t"
8655 :
8656#ifdef CONFIG_X86_64
8657 [sp]"=&r"(tmp),
8658#endif
8659 "+r"(__sp)
8660 :
8661 [entry]"r"(entry),
8662 [ss]"i"(__KERNEL_DS),
8663 [cs]"i"(__KERNEL_CS)
8664 );
8665 }
8666}
8667
8668static bool vmx_has_high_real_mode_segbase(void)
8669{
8670 return enable_unrestricted_guest || emulate_invalid_guest_state;
8671}
8672
8673static bool vmx_mpx_supported(void)
8674{
8675 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8676 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8677}
8678
8679static bool vmx_xsaves_supported(void)
8680{
8681 return vmcs_config.cpu_based_2nd_exec_ctrl &
8682 SECONDARY_EXEC_XSAVES;
8683}
8684
8685static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8686{
8687 u32 exit_intr_info;
8688 bool unblock_nmi;
8689 u8 vector;
8690 bool idtv_info_valid;
8691
8692 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8693
8694 if (cpu_has_virtual_nmis()) {
8695 if (vmx->nmi_known_unmasked)
8696 return;
8697 /*
8698 * Can't use vmx->exit_intr_info since we're not sure what
8699 * the exit reason is.
8700 */
8701 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8702 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8703 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8704 /*
8705 * SDM 3: 27.7.1.2 (September 2008)
8706 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8707 * a guest IRET fault.
8708 * SDM 3: 23.2.2 (September 2008)
8709 * Bit 12 is undefined in any of the following cases:
8710 * If the VM exit sets the valid bit in the IDT-vectoring
8711 * information field.
8712 * If the VM exit is due to a double fault.
8713 */
8714 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8715 vector != DF_VECTOR && !idtv_info_valid)
8716 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8717 GUEST_INTR_STATE_NMI);
8718 else
8719 vmx->nmi_known_unmasked =
8720 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8721 & GUEST_INTR_STATE_NMI);
8722 } else if (unlikely(vmx->soft_vnmi_blocked))
8723 vmx->vnmi_blocked_time +=
8724 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8725}
8726
8727static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8728 u32 idt_vectoring_info,
8729 int instr_len_field,
8730 int error_code_field)
8731{
8732 u8 vector;
8733 int type;
8734 bool idtv_info_valid;
8735
8736 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8737
8738 vcpu->arch.nmi_injected = false;
8739 kvm_clear_exception_queue(vcpu);
8740 kvm_clear_interrupt_queue(vcpu);
8741
8742 if (!idtv_info_valid)
8743 return;
8744
8745 kvm_make_request(KVM_REQ_EVENT, vcpu);
8746
8747 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8748 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8749
8750 switch (type) {
8751 case INTR_TYPE_NMI_INTR:
8752 vcpu->arch.nmi_injected = true;
8753 /*
8754 * SDM 3: 27.7.1.2 (September 2008)
8755 * Clear bit "block by NMI" before VM entry if a NMI
8756 * delivery faulted.
8757 */
8758 vmx_set_nmi_mask(vcpu, false);
8759 break;
8760 case INTR_TYPE_SOFT_EXCEPTION:
8761 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8762 /* fall through */
8763 case INTR_TYPE_HARD_EXCEPTION:
8764 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8765 u32 err = vmcs_read32(error_code_field);
8766 kvm_requeue_exception_e(vcpu, vector, err);
8767 } else
8768 kvm_requeue_exception(vcpu, vector);
8769 break;
8770 case INTR_TYPE_SOFT_INTR:
8771 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8772 /* fall through */
8773 case INTR_TYPE_EXT_INTR:
8774 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8775 break;
8776 default:
8777 break;
8778 }
8779}
8780
8781static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8782{
8783 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8784 VM_EXIT_INSTRUCTION_LEN,
8785 IDT_VECTORING_ERROR_CODE);
8786}
8787
8788static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8789{
8790 __vmx_complete_interrupts(vcpu,
8791 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8792 VM_ENTRY_INSTRUCTION_LEN,
8793 VM_ENTRY_EXCEPTION_ERROR_CODE);
8794
8795 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8796}
8797
8798static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8799{
8800 int i, nr_msrs;
8801 struct perf_guest_switch_msr *msrs;
8802
8803 msrs = perf_guest_get_msrs(&nr_msrs);
8804
8805 if (!msrs)
8806 return;
8807
8808 for (i = 0; i < nr_msrs; i++)
8809 if (msrs[i].host == msrs[i].guest)
8810 clear_atomic_switch_msr(vmx, msrs[i].msr);
8811 else
8812 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8813 msrs[i].host);
8814}
8815
8816void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8817{
8818 struct vcpu_vmx *vmx = to_vmx(vcpu);
8819 u64 tscl;
8820 u32 delta_tsc;
8821
8822 if (vmx->hv_deadline_tsc == -1)
8823 return;
8824
8825 tscl = rdtsc();
8826 if (vmx->hv_deadline_tsc > tscl)
8827 /* sure to be 32 bit only because checked on set_hv_timer */
8828 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8829 cpu_preemption_timer_multi);
8830 else
8831 delta_tsc = 0;
8832
8833 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8834}
8835
8836static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8837{
8838 struct vcpu_vmx *vmx = to_vmx(vcpu);
8839 unsigned long debugctlmsr, cr4;
8840
8841 /* Record the guest's net vcpu time for enforced NMI injections. */
8842 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8843 vmx->entry_time = ktime_get();
8844
8845 /* Don't enter VMX if guest state is invalid, let the exit handler
8846 start emulation until we arrive back to a valid state */
8847 if (vmx->emulation_required)
8848 return;
8849
8850 if (vmx->ple_window_dirty) {
8851 vmx->ple_window_dirty = false;
8852 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8853 }
8854
8855 if (vmx->nested.sync_shadow_vmcs) {
8856 copy_vmcs12_to_shadow(vmx);
8857 vmx->nested.sync_shadow_vmcs = false;
8858 }
8859
8860 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8861 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8862 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8863 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8864
8865 cr4 = cr4_read_shadow();
8866 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8867 vmcs_writel(HOST_CR4, cr4);
8868 vmx->host_state.vmcs_host_cr4 = cr4;
8869 }
8870
8871 /* When single-stepping over STI and MOV SS, we must clear the
8872 * corresponding interruptibility bits in the guest state. Otherwise
8873 * vmentry fails as it then expects bit 14 (BS) in pending debug
8874 * exceptions being set, but that's not correct for the guest debugging
8875 * case. */
8876 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8877 vmx_set_interrupt_shadow(vcpu, 0);
8878
8879 if (vmx->guest_pkru_valid)
8880 __write_pkru(vmx->guest_pkru);
8881
8882 atomic_switch_perf_msrs(vmx);
8883 debugctlmsr = get_debugctlmsr();
8884
8885 vmx_arm_hv_timer(vcpu);
8886
8887 vmx->__launched = vmx->loaded_vmcs->launched;
8888 asm(
8889 /* Store host registers */
8890 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8891 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8892 "push %%" _ASM_CX " \n\t"
8893 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8894 "je 1f \n\t"
8895 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8896 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8897 "1: \n\t"
8898 /* Reload cr2 if changed */
8899 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8900 "mov %%cr2, %%" _ASM_DX " \n\t"
8901 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8902 "je 2f \n\t"
8903 "mov %%" _ASM_AX", %%cr2 \n\t"
8904 "2: \n\t"
8905 /* Check if vmlaunch of vmresume is needed */
8906 "cmpl $0, %c[launched](%0) \n\t"
8907 /* Load guest registers. Don't clobber flags. */
8908 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8909 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8910 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8911 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8912 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8913 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8914#ifdef CONFIG_X86_64
8915 "mov %c[r8](%0), %%r8 \n\t"
8916 "mov %c[r9](%0), %%r9 \n\t"
8917 "mov %c[r10](%0), %%r10 \n\t"
8918 "mov %c[r11](%0), %%r11 \n\t"
8919 "mov %c[r12](%0), %%r12 \n\t"
8920 "mov %c[r13](%0), %%r13 \n\t"
8921 "mov %c[r14](%0), %%r14 \n\t"
8922 "mov %c[r15](%0), %%r15 \n\t"
8923#endif
8924 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8925
8926 /* Enter guest mode */
8927 "jne 1f \n\t"
8928 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8929 "jmp 2f \n\t"
8930 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8931 "2: "
8932 /* Save guest registers, load host registers, keep flags */
8933 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8934 "pop %0 \n\t"
8935 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8936 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8937 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8938 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8939 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8940 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8941 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8942#ifdef CONFIG_X86_64
8943 "mov %%r8, %c[r8](%0) \n\t"
8944 "mov %%r9, %c[r9](%0) \n\t"
8945 "mov %%r10, %c[r10](%0) \n\t"
8946 "mov %%r11, %c[r11](%0) \n\t"
8947 "mov %%r12, %c[r12](%0) \n\t"
8948 "mov %%r13, %c[r13](%0) \n\t"
8949 "mov %%r14, %c[r14](%0) \n\t"
8950 "mov %%r15, %c[r15](%0) \n\t"
8951#endif
8952 "mov %%cr2, %%" _ASM_AX " \n\t"
8953 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8954
8955 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8956 "setbe %c[fail](%0) \n\t"
8957 ".pushsection .rodata \n\t"
8958 ".global vmx_return \n\t"
8959 "vmx_return: " _ASM_PTR " 2b \n\t"
8960 ".popsection"
8961 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8962 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8963 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8964 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8965 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8966 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8967 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8968 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8969 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8970 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8971 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8972#ifdef CONFIG_X86_64
8973 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8974 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8975 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8976 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8977 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8978 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8979 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8980 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8981#endif
8982 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8983 [wordsize]"i"(sizeof(ulong))
8984 : "cc", "memory"
8985#ifdef CONFIG_X86_64
8986 , "rax", "rbx", "rdi", "rsi"
8987 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8988#else
8989 , "eax", "ebx", "edi", "esi"
8990#endif
8991 );
8992
8993 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8994 if (debugctlmsr)
8995 update_debugctlmsr(debugctlmsr);
8996
8997#ifndef CONFIG_X86_64
8998 /*
8999 * The sysexit path does not restore ds/es, so we must set them to
9000 * a reasonable value ourselves.
9001 *
9002 * We can't defer this to vmx_load_host_state() since that function
9003 * may be executed in interrupt context, which saves and restore segments
9004 * around it, nullifying its effect.
9005 */
9006 loadsegment(ds, __USER_DS);
9007 loadsegment(es, __USER_DS);
9008#endif
9009
9010 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9011 | (1 << VCPU_EXREG_RFLAGS)
9012 | (1 << VCPU_EXREG_PDPTR)
9013 | (1 << VCPU_EXREG_SEGMENTS)
9014 | (1 << VCPU_EXREG_CR3));
9015 vcpu->arch.regs_dirty = 0;
9016
9017 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9018
9019 vmx->loaded_vmcs->launched = 1;
9020
9021 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9022
9023 /*
9024 * eager fpu is enabled if PKEY is supported and CR4 is switched
9025 * back on host, so it is safe to read guest PKRU from current
9026 * XSAVE.
9027 */
9028 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9029 vmx->guest_pkru = __read_pkru();
9030 if (vmx->guest_pkru != vmx->host_pkru) {
9031 vmx->guest_pkru_valid = true;
9032 __write_pkru(vmx->host_pkru);
9033 } else
9034 vmx->guest_pkru_valid = false;
9035 }
9036
9037 /*
9038 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9039 * we did not inject a still-pending event to L1 now because of
9040 * nested_run_pending, we need to re-enable this bit.
9041 */
9042 if (vmx->nested.nested_run_pending)
9043 kvm_make_request(KVM_REQ_EVENT, vcpu);
9044
9045 vmx->nested.nested_run_pending = 0;
9046
9047 vmx_complete_atomic_exit(vmx);
9048 vmx_recover_nmi_blocking(vmx);
9049 vmx_complete_interrupts(vmx);
9050}
9051
9052static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
9053{
9054 struct vcpu_vmx *vmx = to_vmx(vcpu);
9055 int cpu;
9056
9057 if (vmx->loaded_vmcs == &vmx->vmcs01)
9058 return;
9059
9060 cpu = get_cpu();
9061 vmx->loaded_vmcs = &vmx->vmcs01;
9062 vmx_vcpu_put(vcpu);
9063 vmx_vcpu_load(vcpu, cpu);
9064 vcpu->cpu = cpu;
9065 put_cpu();
9066}
9067
9068/*
9069 * Ensure that the current vmcs of the logical processor is the
9070 * vmcs01 of the vcpu before calling free_nested().
9071 */
9072static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9073{
9074 struct vcpu_vmx *vmx = to_vmx(vcpu);
9075 int r;
9076
9077 r = vcpu_load(vcpu);
9078 BUG_ON(r);
9079 vmx_load_vmcs01(vcpu);
9080 free_nested(vmx);
9081 vcpu_put(vcpu);
9082}
9083
9084static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9085{
9086 struct vcpu_vmx *vmx = to_vmx(vcpu);
9087
9088 if (enable_pml)
9089 vmx_destroy_pml_buffer(vmx);
9090 free_vpid(vmx->vpid);
9091 leave_guest_mode(vcpu);
9092 vmx_free_vcpu_nested(vcpu);
9093 free_loaded_vmcs(vmx->loaded_vmcs);
9094 kfree(vmx->guest_msrs);
9095 kvm_vcpu_uninit(vcpu);
9096 kmem_cache_free(kvm_vcpu_cache, vmx);
9097}
9098
9099static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9100{
9101 int err;
9102 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9103 int cpu;
9104
9105 if (!vmx)
9106 return ERR_PTR(-ENOMEM);
9107
9108 vmx->vpid = allocate_vpid();
9109
9110 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9111 if (err)
9112 goto free_vcpu;
9113
9114 err = -ENOMEM;
9115
9116 /*
9117 * If PML is turned on, failure on enabling PML just results in failure
9118 * of creating the vcpu, therefore we can simplify PML logic (by
9119 * avoiding dealing with cases, such as enabling PML partially on vcpus
9120 * for the guest, etc.
9121 */
9122 if (enable_pml) {
9123 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9124 if (!vmx->pml_pg)
9125 goto uninit_vcpu;
9126 }
9127
9128 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9129 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9130 > PAGE_SIZE);
9131
9132 if (!vmx->guest_msrs)
9133 goto free_pml;
9134
9135 vmx->loaded_vmcs = &vmx->vmcs01;
9136 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9137 vmx->loaded_vmcs->shadow_vmcs = NULL;
9138 if (!vmx->loaded_vmcs->vmcs)
9139 goto free_msrs;
9140 if (!vmm_exclusive)
9141 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9142 loaded_vmcs_init(vmx->loaded_vmcs);
9143 if (!vmm_exclusive)
9144 kvm_cpu_vmxoff();
9145
9146 cpu = get_cpu();
9147 vmx_vcpu_load(&vmx->vcpu, cpu);
9148 vmx->vcpu.cpu = cpu;
9149 err = vmx_vcpu_setup(vmx);
9150 vmx_vcpu_put(&vmx->vcpu);
9151 put_cpu();
9152 if (err)
9153 goto free_vmcs;
9154 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9155 err = alloc_apic_access_page(kvm);
9156 if (err)
9157 goto free_vmcs;
9158 }
9159
9160 if (enable_ept) {
9161 if (!kvm->arch.ept_identity_map_addr)
9162 kvm->arch.ept_identity_map_addr =
9163 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9164 err = init_rmode_identity_map(kvm);
9165 if (err)
9166 goto free_vmcs;
9167 }
9168
9169 if (nested) {
9170 nested_vmx_setup_ctls_msrs(vmx);
9171 vmx->nested.vpid02 = allocate_vpid();
9172 }
9173
9174 vmx->nested.posted_intr_nv = -1;
9175 vmx->nested.current_vmptr = -1ull;
9176 vmx->nested.current_vmcs12 = NULL;
9177
9178 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9179
9180 return &vmx->vcpu;
9181
9182free_vmcs:
9183 free_vpid(vmx->nested.vpid02);
9184 free_loaded_vmcs(vmx->loaded_vmcs);
9185free_msrs:
9186 kfree(vmx->guest_msrs);
9187free_pml:
9188 vmx_destroy_pml_buffer(vmx);
9189uninit_vcpu:
9190 kvm_vcpu_uninit(&vmx->vcpu);
9191free_vcpu:
9192 free_vpid(vmx->vpid);
9193 kmem_cache_free(kvm_vcpu_cache, vmx);
9194 return ERR_PTR(err);
9195}
9196
9197static void __init vmx_check_processor_compat(void *rtn)
9198{
9199 struct vmcs_config vmcs_conf;
9200
9201 *(int *)rtn = 0;
9202 if (setup_vmcs_config(&vmcs_conf) < 0)
9203 *(int *)rtn = -EIO;
9204 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9205 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9206 smp_processor_id());
9207 *(int *)rtn = -EIO;
9208 }
9209}
9210
9211static int get_ept_level(void)
9212{
9213 return VMX_EPT_DEFAULT_GAW + 1;
9214}
9215
9216static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9217{
9218 u8 cache;
9219 u64 ipat = 0;
9220
9221 /* For VT-d and EPT combination
9222 * 1. MMIO: always map as UC
9223 * 2. EPT with VT-d:
9224 * a. VT-d without snooping control feature: can't guarantee the
9225 * result, try to trust guest.
9226 * b. VT-d with snooping control feature: snooping control feature of
9227 * VT-d engine can guarantee the cache correctness. Just set it
9228 * to WB to keep consistent with host. So the same as item 3.
9229 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9230 * consistent with host MTRR
9231 */
9232 if (is_mmio) {
9233 cache = MTRR_TYPE_UNCACHABLE;
9234 goto exit;
9235 }
9236
9237 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9238 ipat = VMX_EPT_IPAT_BIT;
9239 cache = MTRR_TYPE_WRBACK;
9240 goto exit;
9241 }
9242
9243 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9244 ipat = VMX_EPT_IPAT_BIT;
9245 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9246 cache = MTRR_TYPE_WRBACK;
9247 else
9248 cache = MTRR_TYPE_UNCACHABLE;
9249 goto exit;
9250 }
9251
9252 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9253
9254exit:
9255 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9256}
9257
9258static int vmx_get_lpage_level(void)
9259{
9260 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9261 return PT_DIRECTORY_LEVEL;
9262 else
9263 /* For shadow and EPT supported 1GB page */
9264 return PT_PDPE_LEVEL;
9265}
9266
9267static void vmcs_set_secondary_exec_control(u32 new_ctl)
9268{
9269 /*
9270 * These bits in the secondary execution controls field
9271 * are dynamic, the others are mostly based on the hypervisor
9272 * architecture and the guest's CPUID. Do not touch the
9273 * dynamic bits.
9274 */
9275 u32 mask =
9276 SECONDARY_EXEC_SHADOW_VMCS |
9277 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9278 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9279
9280 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9281
9282 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9283 (new_ctl & ~mask) | (cur_ctl & mask));
9284}
9285
9286static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9287{
9288 struct kvm_cpuid_entry2 *best;
9289 struct vcpu_vmx *vmx = to_vmx(vcpu);
9290 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9291
9292 if (vmx_rdtscp_supported()) {
9293 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9294 if (!rdtscp_enabled)
9295 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9296
9297 if (nested) {
9298 if (rdtscp_enabled)
9299 vmx->nested.nested_vmx_secondary_ctls_high |=
9300 SECONDARY_EXEC_RDTSCP;
9301 else
9302 vmx->nested.nested_vmx_secondary_ctls_high &=
9303 ~SECONDARY_EXEC_RDTSCP;
9304 }
9305 }
9306
9307 /* Exposing INVPCID only when PCID is exposed */
9308 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9309 if (vmx_invpcid_supported() &&
9310 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9311 !guest_cpuid_has_pcid(vcpu))) {
9312 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9313
9314 if (best)
9315 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9316 }
9317
9318 if (cpu_has_secondary_exec_ctrls())
9319 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9320
9321 if (nested_vmx_allowed(vcpu))
9322 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9323 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9324 else
9325 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9326 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9327}
9328
9329static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9330{
9331 if (func == 1 && nested)
9332 entry->ecx |= bit(X86_FEATURE_VMX);
9333}
9334
9335static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9336 struct x86_exception *fault)
9337{
9338 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9339 u32 exit_reason;
9340
9341 if (fault->error_code & PFERR_RSVD_MASK)
9342 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9343 else
9344 exit_reason = EXIT_REASON_EPT_VIOLATION;
9345 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9346 vmcs12->guest_physical_address = fault->address;
9347}
9348
9349/* Callbacks for nested_ept_init_mmu_context: */
9350
9351static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9352{
9353 /* return the page table to be shadowed - in our case, EPT12 */
9354 return get_vmcs12(vcpu)->ept_pointer;
9355}
9356
9357static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9358{
9359 WARN_ON(mmu_is_nested(vcpu));
9360 kvm_init_shadow_ept_mmu(vcpu,
9361 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9362 VMX_EPT_EXECUTE_ONLY_BIT);
9363 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9364 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9365 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9366
9367 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9368}
9369
9370static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9371{
9372 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9373}
9374
9375static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9376 u16 error_code)
9377{
9378 bool inequality, bit;
9379
9380 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9381 inequality =
9382 (error_code & vmcs12->page_fault_error_code_mask) !=
9383 vmcs12->page_fault_error_code_match;
9384 return inequality ^ bit;
9385}
9386
9387static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9388 struct x86_exception *fault)
9389{
9390 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9391
9392 WARN_ON(!is_guest_mode(vcpu));
9393
9394 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9395 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9396 vmcs_read32(VM_EXIT_INTR_INFO),
9397 vmcs_readl(EXIT_QUALIFICATION));
9398 else
9399 kvm_inject_page_fault(vcpu, fault);
9400}
9401
9402static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9403 struct vmcs12 *vmcs12)
9404{
9405 struct vcpu_vmx *vmx = to_vmx(vcpu);
9406 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9407
9408 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9409 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9410 vmcs12->apic_access_addr >> maxphyaddr)
9411 return false;
9412
9413 /*
9414 * Translate L1 physical address to host physical
9415 * address for vmcs02. Keep the page pinned, so this
9416 * physical address remains valid. We keep a reference
9417 * to it so we can release it later.
9418 */
9419 if (vmx->nested.apic_access_page) /* shouldn't happen */
9420 nested_release_page(vmx->nested.apic_access_page);
9421 vmx->nested.apic_access_page =
9422 nested_get_page(vcpu, vmcs12->apic_access_addr);
9423 }
9424
9425 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9426 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9427 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9428 return false;
9429
9430 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9431 nested_release_page(vmx->nested.virtual_apic_page);
9432 vmx->nested.virtual_apic_page =
9433 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9434
9435 /*
9436 * Failing the vm entry is _not_ what the processor does
9437 * but it's basically the only possibility we have.
9438 * We could still enter the guest if CR8 load exits are
9439 * enabled, CR8 store exits are enabled, and virtualize APIC
9440 * access is disabled; in this case the processor would never
9441 * use the TPR shadow and we could simply clear the bit from
9442 * the execution control. But such a configuration is useless,
9443 * so let's keep the code simple.
9444 */
9445 if (!vmx->nested.virtual_apic_page)
9446 return false;
9447 }
9448
9449 if (nested_cpu_has_posted_intr(vmcs12)) {
9450 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9451 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9452 return false;
9453
9454 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9455 kunmap(vmx->nested.pi_desc_page);
9456 nested_release_page(vmx->nested.pi_desc_page);
9457 }
9458 vmx->nested.pi_desc_page =
9459 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9460 if (!vmx->nested.pi_desc_page)
9461 return false;
9462
9463 vmx->nested.pi_desc =
9464 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9465 if (!vmx->nested.pi_desc) {
9466 nested_release_page_clean(vmx->nested.pi_desc_page);
9467 return false;
9468 }
9469 vmx->nested.pi_desc =
9470 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9471 (unsigned long)(vmcs12->posted_intr_desc_addr &
9472 (PAGE_SIZE - 1)));
9473 }
9474
9475 return true;
9476}
9477
9478static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9479{
9480 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9481 struct vcpu_vmx *vmx = to_vmx(vcpu);
9482
9483 if (vcpu->arch.virtual_tsc_khz == 0)
9484 return;
9485
9486 /* Make sure short timeouts reliably trigger an immediate vmexit.
9487 * hrtimer_start does not guarantee this. */
9488 if (preemption_timeout <= 1) {
9489 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9490 return;
9491 }
9492
9493 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9494 preemption_timeout *= 1000000;
9495 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9496 hrtimer_start(&vmx->nested.preemption_timer,
9497 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9498}
9499
9500static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9501 struct vmcs12 *vmcs12)
9502{
9503 int maxphyaddr;
9504 u64 addr;
9505
9506 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9507 return 0;
9508
9509 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9510 WARN_ON(1);
9511 return -EINVAL;
9512 }
9513 maxphyaddr = cpuid_maxphyaddr(vcpu);
9514
9515 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9516 ((addr + PAGE_SIZE) >> maxphyaddr))
9517 return -EINVAL;
9518
9519 return 0;
9520}
9521
9522/*
9523 * Merge L0's and L1's MSR bitmap, return false to indicate that
9524 * we do not use the hardware.
9525 */
9526static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9527 struct vmcs12 *vmcs12)
9528{
9529 int msr;
9530 struct page *page;
9531 unsigned long *msr_bitmap_l1;
9532 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9533
9534 /* This shortcut is ok because we support only x2APIC MSRs so far. */
9535 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9536 return false;
9537
9538 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9539 if (!page) {
9540 WARN_ON(1);
9541 return false;
9542 }
9543 msr_bitmap_l1 = (unsigned long *)kmap(page);
9544 if (!msr_bitmap_l1) {
9545 nested_release_page_clean(page);
9546 WARN_ON(1);
9547 return false;
9548 }
9549
9550 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9551
9552 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9553 if (nested_cpu_has_apic_reg_virt(vmcs12))
9554 for (msr = 0x800; msr <= 0x8ff; msr++)
9555 nested_vmx_disable_intercept_for_msr(
9556 msr_bitmap_l1, msr_bitmap_l0,
9557 msr, MSR_TYPE_R);
9558
9559 nested_vmx_disable_intercept_for_msr(
9560 msr_bitmap_l1, msr_bitmap_l0,
9561 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9562 MSR_TYPE_R | MSR_TYPE_W);
9563
9564 if (nested_cpu_has_vid(vmcs12)) {
9565 nested_vmx_disable_intercept_for_msr(
9566 msr_bitmap_l1, msr_bitmap_l0,
9567 APIC_BASE_MSR + (APIC_EOI >> 4),
9568 MSR_TYPE_W);
9569 nested_vmx_disable_intercept_for_msr(
9570 msr_bitmap_l1, msr_bitmap_l0,
9571 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9572 MSR_TYPE_W);
9573 }
9574 }
9575 kunmap(page);
9576 nested_release_page_clean(page);
9577
9578 return true;
9579}
9580
9581static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9582 struct vmcs12 *vmcs12)
9583{
9584 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9585 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9586 !nested_cpu_has_vid(vmcs12) &&
9587 !nested_cpu_has_posted_intr(vmcs12))
9588 return 0;
9589
9590 /*
9591 * If virtualize x2apic mode is enabled,
9592 * virtualize apic access must be disabled.
9593 */
9594 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9595 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9596 return -EINVAL;
9597
9598 /*
9599 * If virtual interrupt delivery is enabled,
9600 * we must exit on external interrupts.
9601 */
9602 if (nested_cpu_has_vid(vmcs12) &&
9603 !nested_exit_on_intr(vcpu))
9604 return -EINVAL;
9605
9606 /*
9607 * bits 15:8 should be zero in posted_intr_nv,
9608 * the descriptor address has been already checked
9609 * in nested_get_vmcs12_pages.
9610 */
9611 if (nested_cpu_has_posted_intr(vmcs12) &&
9612 (!nested_cpu_has_vid(vmcs12) ||
9613 !nested_exit_intr_ack_set(vcpu) ||
9614 vmcs12->posted_intr_nv & 0xff00))
9615 return -EINVAL;
9616
9617 /* tpr shadow is needed by all apicv features. */
9618 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9619 return -EINVAL;
9620
9621 return 0;
9622}
9623
9624static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9625 unsigned long count_field,
9626 unsigned long addr_field)
9627{
9628 int maxphyaddr;
9629 u64 count, addr;
9630
9631 if (vmcs12_read_any(vcpu, count_field, &count) ||
9632 vmcs12_read_any(vcpu, addr_field, &addr)) {
9633 WARN_ON(1);
9634 return -EINVAL;
9635 }
9636 if (count == 0)
9637 return 0;
9638 maxphyaddr = cpuid_maxphyaddr(vcpu);
9639 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9640 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9641 pr_debug_ratelimited(
9642 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9643 addr_field, maxphyaddr, count, addr);
9644 return -EINVAL;
9645 }
9646 return 0;
9647}
9648
9649static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9650 struct vmcs12 *vmcs12)
9651{
9652 if (vmcs12->vm_exit_msr_load_count == 0 &&
9653 vmcs12->vm_exit_msr_store_count == 0 &&
9654 vmcs12->vm_entry_msr_load_count == 0)
9655 return 0; /* Fast path */
9656 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9657 VM_EXIT_MSR_LOAD_ADDR) ||
9658 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9659 VM_EXIT_MSR_STORE_ADDR) ||
9660 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9661 VM_ENTRY_MSR_LOAD_ADDR))
9662 return -EINVAL;
9663 return 0;
9664}
9665
9666static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9667 struct vmx_msr_entry *e)
9668{
9669 /* x2APIC MSR accesses are not allowed */
9670 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9671 return -EINVAL;
9672 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9673 e->index == MSR_IA32_UCODE_REV)
9674 return -EINVAL;
9675 if (e->reserved != 0)
9676 return -EINVAL;
9677 return 0;
9678}
9679
9680static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9681 struct vmx_msr_entry *e)
9682{
9683 if (e->index == MSR_FS_BASE ||
9684 e->index == MSR_GS_BASE ||
9685 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9686 nested_vmx_msr_check_common(vcpu, e))
9687 return -EINVAL;
9688 return 0;
9689}
9690
9691static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9692 struct vmx_msr_entry *e)
9693{
9694 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9695 nested_vmx_msr_check_common(vcpu, e))
9696 return -EINVAL;
9697 return 0;
9698}
9699
9700/*
9701 * Load guest's/host's msr at nested entry/exit.
9702 * return 0 for success, entry index for failure.
9703 */
9704static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9705{
9706 u32 i;
9707 struct vmx_msr_entry e;
9708 struct msr_data msr;
9709
9710 msr.host_initiated = false;
9711 for (i = 0; i < count; i++) {
9712 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9713 &e, sizeof(e))) {
9714 pr_debug_ratelimited(
9715 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9716 __func__, i, gpa + i * sizeof(e));
9717 goto fail;
9718 }
9719 if (nested_vmx_load_msr_check(vcpu, &e)) {
9720 pr_debug_ratelimited(
9721 "%s check failed (%u, 0x%x, 0x%x)\n",
9722 __func__, i, e.index, e.reserved);
9723 goto fail;
9724 }
9725 msr.index = e.index;
9726 msr.data = e.value;
9727 if (kvm_set_msr(vcpu, &msr)) {
9728 pr_debug_ratelimited(
9729 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9730 __func__, i, e.index, e.value);
9731 goto fail;
9732 }
9733 }
9734 return 0;
9735fail:
9736 return i + 1;
9737}
9738
9739static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9740{
9741 u32 i;
9742 struct vmx_msr_entry e;
9743
9744 for (i = 0; i < count; i++) {
9745 struct msr_data msr_info;
9746 if (kvm_vcpu_read_guest(vcpu,
9747 gpa + i * sizeof(e),
9748 &e, 2 * sizeof(u32))) {
9749 pr_debug_ratelimited(
9750 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9751 __func__, i, gpa + i * sizeof(e));
9752 return -EINVAL;
9753 }
9754 if (nested_vmx_store_msr_check(vcpu, &e)) {
9755 pr_debug_ratelimited(
9756 "%s check failed (%u, 0x%x, 0x%x)\n",
9757 __func__, i, e.index, e.reserved);
9758 return -EINVAL;
9759 }
9760 msr_info.host_initiated = false;
9761 msr_info.index = e.index;
9762 if (kvm_get_msr(vcpu, &msr_info)) {
9763 pr_debug_ratelimited(
9764 "%s cannot read MSR (%u, 0x%x)\n",
9765 __func__, i, e.index);
9766 return -EINVAL;
9767 }
9768 if (kvm_vcpu_write_guest(vcpu,
9769 gpa + i * sizeof(e) +
9770 offsetof(struct vmx_msr_entry, value),
9771 &msr_info.data, sizeof(msr_info.data))) {
9772 pr_debug_ratelimited(
9773 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9774 __func__, i, e.index, msr_info.data);
9775 return -EINVAL;
9776 }
9777 }
9778 return 0;
9779}
9780
9781/*
9782 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9783 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9784 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9785 * guest in a way that will both be appropriate to L1's requests, and our
9786 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9787 * function also has additional necessary side-effects, like setting various
9788 * vcpu->arch fields.
9789 */
9790static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9791{
9792 struct vcpu_vmx *vmx = to_vmx(vcpu);
9793 u32 exec_control;
9794
9795 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9796 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9797 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9798 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9799 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9800 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9801 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9802 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9803 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9804 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9805 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9806 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9807 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9808 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9809 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9810 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9811 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9812 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9813 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9814 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9815 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9816 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9817 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9818 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9819 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9820 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9821 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9822 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9823 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9824 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9825 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9826 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9827 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9828 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9829 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9830 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9831
9832 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9833 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9834 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9835 } else {
9836 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9837 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9838 }
9839 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9840 vmcs12->vm_entry_intr_info_field);
9841 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9842 vmcs12->vm_entry_exception_error_code);
9843 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9844 vmcs12->vm_entry_instruction_len);
9845 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9846 vmcs12->guest_interruptibility_info);
9847 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9848 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9849 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9850 vmcs12->guest_pending_dbg_exceptions);
9851 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9852 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9853
9854 if (nested_cpu_has_xsaves(vmcs12))
9855 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9856 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9857
9858 exec_control = vmcs12->pin_based_vm_exec_control;
9859
9860 /* Preemption timer setting is only taken from vmcs01. */
9861 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9862 exec_control |= vmcs_config.pin_based_exec_ctrl;
9863 if (vmx->hv_deadline_tsc == -1)
9864 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9865
9866 /* Posted interrupts setting is only taken from vmcs12. */
9867 if (nested_cpu_has_posted_intr(vmcs12)) {
9868 /*
9869 * Note that we use L0's vector here and in
9870 * vmx_deliver_nested_posted_interrupt.
9871 */
9872 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9873 vmx->nested.pi_pending = false;
9874 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9875 vmcs_write64(POSTED_INTR_DESC_ADDR,
9876 page_to_phys(vmx->nested.pi_desc_page) +
9877 (unsigned long)(vmcs12->posted_intr_desc_addr &
9878 (PAGE_SIZE - 1)));
9879 } else
9880 exec_control &= ~PIN_BASED_POSTED_INTR;
9881
9882 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9883
9884 vmx->nested.preemption_timer_expired = false;
9885 if (nested_cpu_has_preemption_timer(vmcs12))
9886 vmx_start_preemption_timer(vcpu);
9887
9888 /*
9889 * Whether page-faults are trapped is determined by a combination of
9890 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9891 * If enable_ept, L0 doesn't care about page faults and we should
9892 * set all of these to L1's desires. However, if !enable_ept, L0 does
9893 * care about (at least some) page faults, and because it is not easy
9894 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9895 * to exit on each and every L2 page fault. This is done by setting
9896 * MASK=MATCH=0 and (see below) EB.PF=1.
9897 * Note that below we don't need special code to set EB.PF beyond the
9898 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9899 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9900 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9901 *
9902 * A problem with this approach (when !enable_ept) is that L1 may be
9903 * injected with more page faults than it asked for. This could have
9904 * caused problems, but in practice existing hypervisors don't care.
9905 * To fix this, we will need to emulate the PFEC checking (on the L1
9906 * page tables), using walk_addr(), when injecting PFs to L1.
9907 */
9908 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9909 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9910 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9911 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9912
9913 if (cpu_has_secondary_exec_ctrls()) {
9914 exec_control = vmx_secondary_exec_control(vmx);
9915
9916 /* Take the following fields only from vmcs12 */
9917 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9918 SECONDARY_EXEC_RDTSCP |
9919 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9920 SECONDARY_EXEC_APIC_REGISTER_VIRT);
9921 if (nested_cpu_has(vmcs12,
9922 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9923 exec_control |= vmcs12->secondary_vm_exec_control;
9924
9925 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9926 /*
9927 * If translation failed, no matter: This feature asks
9928 * to exit when accessing the given address, and if it
9929 * can never be accessed, this feature won't do
9930 * anything anyway.
9931 */
9932 if (!vmx->nested.apic_access_page)
9933 exec_control &=
9934 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9935 else
9936 vmcs_write64(APIC_ACCESS_ADDR,
9937 page_to_phys(vmx->nested.apic_access_page));
9938 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9939 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9940 exec_control |=
9941 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9942 kvm_vcpu_reload_apic_access_page(vcpu);
9943 }
9944
9945 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9946 vmcs_write64(EOI_EXIT_BITMAP0,
9947 vmcs12->eoi_exit_bitmap0);
9948 vmcs_write64(EOI_EXIT_BITMAP1,
9949 vmcs12->eoi_exit_bitmap1);
9950 vmcs_write64(EOI_EXIT_BITMAP2,
9951 vmcs12->eoi_exit_bitmap2);
9952 vmcs_write64(EOI_EXIT_BITMAP3,
9953 vmcs12->eoi_exit_bitmap3);
9954 vmcs_write16(GUEST_INTR_STATUS,
9955 vmcs12->guest_intr_status);
9956 }
9957
9958 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9959 }
9960
9961
9962 /*
9963 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9964 * Some constant fields are set here by vmx_set_constant_host_state().
9965 * Other fields are different per CPU, and will be set later when
9966 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9967 */
9968 vmx_set_constant_host_state(vmx);
9969
9970 /*
9971 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9972 * entry, but only if the current (host) sp changed from the value
9973 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9974 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9975 * here we just force the write to happen on entry.
9976 */
9977 vmx->host_rsp = 0;
9978
9979 exec_control = vmx_exec_control(vmx); /* L0's desires */
9980 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9981 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9982 exec_control &= ~CPU_BASED_TPR_SHADOW;
9983 exec_control |= vmcs12->cpu_based_vm_exec_control;
9984
9985 if (exec_control & CPU_BASED_TPR_SHADOW) {
9986 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9987 page_to_phys(vmx->nested.virtual_apic_page));
9988 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9989 }
9990
9991 if (cpu_has_vmx_msr_bitmap() &&
9992 exec_control & CPU_BASED_USE_MSR_BITMAPS &&
9993 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9994 ; /* MSR_BITMAP will be set by following vmx_set_efer. */
9995 else
9996 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9997
9998 /*
9999 * Merging of IO bitmap not currently supported.
10000 * Rather, exit every time.
10001 */
10002 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10003 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10004
10005 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10006
10007 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10008 * bitwise-or of what L1 wants to trap for L2, and what we want to
10009 * trap. Note that CR0.TS also needs updating - we do this later.
10010 */
10011 update_exception_bitmap(vcpu);
10012 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10013 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10014
10015 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10016 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10017 * bits are further modified by vmx_set_efer() below.
10018 */
10019 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10020
10021 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10022 * emulated by vmx_set_efer(), below.
10023 */
10024 vm_entry_controls_init(vmx,
10025 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10026 ~VM_ENTRY_IA32E_MODE) |
10027 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10028
10029 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
10030 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10031 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10032 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
10033 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10034
10035
10036 set_cr4_guest_host_mask(vmx);
10037
10038 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10039 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10040
10041 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10042 vmcs_write64(TSC_OFFSET,
10043 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10044 else
10045 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10046 if (kvm_has_tsc_control)
10047 decache_tsc_multiplier(vmx);
10048
10049 if (enable_vpid) {
10050 /*
10051 * There is no direct mapping between vpid02 and vpid12, the
10052 * vpid02 is per-vCPU for L0 and reused while the value of
10053 * vpid12 is changed w/ one invvpid during nested vmentry.
10054 * The vpid12 is allocated by L1 for L2, so it will not
10055 * influence global bitmap(for vpid01 and vpid02 allocation)
10056 * even if spawn a lot of nested vCPUs.
10057 */
10058 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10059 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10060 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10061 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10062 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10063 }
10064 } else {
10065 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10066 vmx_flush_tlb(vcpu);
10067 }
10068
10069 }
10070
10071 if (nested_cpu_has_ept(vmcs12)) {
10072 kvm_mmu_unload(vcpu);
10073 nested_ept_init_mmu_context(vcpu);
10074 }
10075
10076 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
10077 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10078 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10079 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10080 else
10081 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10082 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10083 vmx_set_efer(vcpu, vcpu->arch.efer);
10084
10085 /*
10086 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
10087 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
10088 * The CR0_READ_SHADOW is what L2 should have expected to read given
10089 * the specifications by L1; It's not enough to take
10090 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10091 * have more bits than L1 expected.
10092 */
10093 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10094 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10095
10096 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10097 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10098
10099 /* shadow page tables on either EPT or shadow page tables */
10100 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
10101 kvm_mmu_reset_context(vcpu);
10102
10103 if (!enable_ept)
10104 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10105
10106 /*
10107 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10108 */
10109 if (enable_ept) {
10110 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10111 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10112 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10113 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10114 }
10115
10116 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10117 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10118}
10119
10120/*
10121 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10122 * for running an L2 nested guest.
10123 */
10124static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10125{
10126 struct vmcs12 *vmcs12;
10127 struct vcpu_vmx *vmx = to_vmx(vcpu);
10128 int cpu;
10129 struct loaded_vmcs *vmcs02;
10130 bool ia32e;
10131 u32 msr_entry_idx;
10132
10133 if (!nested_vmx_check_permission(vcpu) ||
10134 !nested_vmx_check_vmcs12(vcpu))
10135 return 1;
10136
10137 skip_emulated_instruction(vcpu);
10138 vmcs12 = get_vmcs12(vcpu);
10139
10140 if (enable_shadow_vmcs)
10141 copy_shadow_to_vmcs12(vmx);
10142
10143 /*
10144 * The nested entry process starts with enforcing various prerequisites
10145 * on vmcs12 as required by the Intel SDM, and act appropriately when
10146 * they fail: As the SDM explains, some conditions should cause the
10147 * instruction to fail, while others will cause the instruction to seem
10148 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10149 * To speed up the normal (success) code path, we should avoid checking
10150 * for misconfigurations which will anyway be caught by the processor
10151 * when using the merged vmcs02.
10152 */
10153 if (vmcs12->launch_state == launch) {
10154 nested_vmx_failValid(vcpu,
10155 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10156 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10157 return 1;
10158 }
10159
10160 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10161 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
10162 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10163 return 1;
10164 }
10165
10166 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
10167 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10168 return 1;
10169 }
10170
10171 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
10172 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10173 return 1;
10174 }
10175
10176 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10177 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10178 return 1;
10179 }
10180
10181 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10182 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10183 return 1;
10184 }
10185
10186 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10187 vmx->nested.nested_vmx_true_procbased_ctls_low,
10188 vmx->nested.nested_vmx_procbased_ctls_high) ||
10189 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10190 vmx->nested.nested_vmx_secondary_ctls_low,
10191 vmx->nested.nested_vmx_secondary_ctls_high) ||
10192 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10193 vmx->nested.nested_vmx_pinbased_ctls_low,
10194 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10195 !vmx_control_verify(vmcs12->vm_exit_controls,
10196 vmx->nested.nested_vmx_true_exit_ctls_low,
10197 vmx->nested.nested_vmx_exit_ctls_high) ||
10198 !vmx_control_verify(vmcs12->vm_entry_controls,
10199 vmx->nested.nested_vmx_true_entry_ctls_low,
10200 vmx->nested.nested_vmx_entry_ctls_high))
10201 {
10202 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10203 return 1;
10204 }
10205
10206 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
10207 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10208 nested_vmx_failValid(vcpu,
10209 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
10210 return 1;
10211 }
10212
10213 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10214 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10215 nested_vmx_entry_failure(vcpu, vmcs12,
10216 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10217 return 1;
10218 }
10219 if (vmcs12->vmcs_link_pointer != -1ull) {
10220 nested_vmx_entry_failure(vcpu, vmcs12,
10221 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10222 return 1;
10223 }
10224
10225 /*
10226 * If the load IA32_EFER VM-entry control is 1, the following checks
10227 * are performed on the field for the IA32_EFER MSR:
10228 * - Bits reserved in the IA32_EFER MSR must be 0.
10229 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10230 * the IA-32e mode guest VM-exit control. It must also be identical
10231 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10232 * CR0.PG) is 1.
10233 */
10234 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10235 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10236 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10237 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10238 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10239 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10240 nested_vmx_entry_failure(vcpu, vmcs12,
10241 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10242 return 1;
10243 }
10244 }
10245
10246 /*
10247 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10248 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10249 * the values of the LMA and LME bits in the field must each be that of
10250 * the host address-space size VM-exit control.
10251 */
10252 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10253 ia32e = (vmcs12->vm_exit_controls &
10254 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10255 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10256 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10257 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10258 nested_vmx_entry_failure(vcpu, vmcs12,
10259 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10260 return 1;
10261 }
10262 }
10263
10264 /*
10265 * We're finally done with prerequisite checking, and can start with
10266 * the nested entry.
10267 */
10268
10269 vmcs02 = nested_get_current_vmcs02(vmx);
10270 if (!vmcs02)
10271 return -ENOMEM;
10272
10273 enter_guest_mode(vcpu);
10274
10275 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10276 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10277
10278 cpu = get_cpu();
10279 vmx->loaded_vmcs = vmcs02;
10280 vmx_vcpu_put(vcpu);
10281 vmx_vcpu_load(vcpu, cpu);
10282 vcpu->cpu = cpu;
10283 put_cpu();
10284
10285 vmx_segment_cache_clear(vmx);
10286
10287 prepare_vmcs02(vcpu, vmcs12);
10288
10289 msr_entry_idx = nested_vmx_load_msr(vcpu,
10290 vmcs12->vm_entry_msr_load_addr,
10291 vmcs12->vm_entry_msr_load_count);
10292 if (msr_entry_idx) {
10293 leave_guest_mode(vcpu);
10294 vmx_load_vmcs01(vcpu);
10295 nested_vmx_entry_failure(vcpu, vmcs12,
10296 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10297 return 1;
10298 }
10299
10300 vmcs12->launch_state = 1;
10301
10302 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10303 return kvm_vcpu_halt(vcpu);
10304
10305 vmx->nested.nested_run_pending = 1;
10306
10307 /*
10308 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10309 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10310 * returned as far as L1 is concerned. It will only return (and set
10311 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10312 */
10313 return 1;
10314}
10315
10316/*
10317 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10318 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10319 * This function returns the new value we should put in vmcs12.guest_cr0.
10320 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10321 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10322 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10323 * didn't trap the bit, because if L1 did, so would L0).
10324 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10325 * been modified by L2, and L1 knows it. So just leave the old value of
10326 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10327 * isn't relevant, because if L0 traps this bit it can set it to anything.
10328 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10329 * changed these bits, and therefore they need to be updated, but L0
10330 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10331 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10332 */
10333static inline unsigned long
10334vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10335{
10336 return
10337 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10338 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10339 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10340 vcpu->arch.cr0_guest_owned_bits));
10341}
10342
10343static inline unsigned long
10344vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10345{
10346 return
10347 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10348 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10349 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10350 vcpu->arch.cr4_guest_owned_bits));
10351}
10352
10353static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10354 struct vmcs12 *vmcs12)
10355{
10356 u32 idt_vectoring;
10357 unsigned int nr;
10358
10359 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10360 nr = vcpu->arch.exception.nr;
10361 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10362
10363 if (kvm_exception_is_soft(nr)) {
10364 vmcs12->vm_exit_instruction_len =
10365 vcpu->arch.event_exit_inst_len;
10366 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10367 } else
10368 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10369
10370 if (vcpu->arch.exception.has_error_code) {
10371 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10372 vmcs12->idt_vectoring_error_code =
10373 vcpu->arch.exception.error_code;
10374 }
10375
10376 vmcs12->idt_vectoring_info_field = idt_vectoring;
10377 } else if (vcpu->arch.nmi_injected) {
10378 vmcs12->idt_vectoring_info_field =
10379 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10380 } else if (vcpu->arch.interrupt.pending) {
10381 nr = vcpu->arch.interrupt.nr;
10382 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10383
10384 if (vcpu->arch.interrupt.soft) {
10385 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10386 vmcs12->vm_entry_instruction_len =
10387 vcpu->arch.event_exit_inst_len;
10388 } else
10389 idt_vectoring |= INTR_TYPE_EXT_INTR;
10390
10391 vmcs12->idt_vectoring_info_field = idt_vectoring;
10392 }
10393}
10394
10395static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10396{
10397 struct vcpu_vmx *vmx = to_vmx(vcpu);
10398
10399 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10400 vmx->nested.preemption_timer_expired) {
10401 if (vmx->nested.nested_run_pending)
10402 return -EBUSY;
10403 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10404 return 0;
10405 }
10406
10407 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10408 if (vmx->nested.nested_run_pending ||
10409 vcpu->arch.interrupt.pending)
10410 return -EBUSY;
10411 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10412 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10413 INTR_INFO_VALID_MASK, 0);
10414 /*
10415 * The NMI-triggered VM exit counts as injection:
10416 * clear this one and block further NMIs.
10417 */
10418 vcpu->arch.nmi_pending = 0;
10419 vmx_set_nmi_mask(vcpu, true);
10420 return 0;
10421 }
10422
10423 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10424 nested_exit_on_intr(vcpu)) {
10425 if (vmx->nested.nested_run_pending)
10426 return -EBUSY;
10427 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10428 return 0;
10429 }
10430
10431 return vmx_complete_nested_posted_interrupt(vcpu);
10432}
10433
10434static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10435{
10436 ktime_t remaining =
10437 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10438 u64 value;
10439
10440 if (ktime_to_ns(remaining) <= 0)
10441 return 0;
10442
10443 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10444 do_div(value, 1000000);
10445 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10446}
10447
10448/*
10449 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10450 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10451 * and this function updates it to reflect the changes to the guest state while
10452 * L2 was running (and perhaps made some exits which were handled directly by L0
10453 * without going back to L1), and to reflect the exit reason.
10454 * Note that we do not have to copy here all VMCS fields, just those that
10455 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10456 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10457 * which already writes to vmcs12 directly.
10458 */
10459static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10460 u32 exit_reason, u32 exit_intr_info,
10461 unsigned long exit_qualification)
10462{
10463 /* update guest state fields: */
10464 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10465 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10466
10467 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10468 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10469 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10470
10471 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10472 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10473 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10474 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10475 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10476 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10477 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10478 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10479 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10480 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10481 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10482 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10483 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10484 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10485 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10486 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10487 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10488 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10489 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10490 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10491 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10492 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10493 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10494 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10495 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10496 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10497 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10498 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10499 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10500 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10501 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10502 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10503 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10504 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10505 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10506 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10507
10508 vmcs12->guest_interruptibility_info =
10509 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10510 vmcs12->guest_pending_dbg_exceptions =
10511 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10512 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10513 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10514 else
10515 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10516
10517 if (nested_cpu_has_preemption_timer(vmcs12)) {
10518 if (vmcs12->vm_exit_controls &
10519 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10520 vmcs12->vmx_preemption_timer_value =
10521 vmx_get_preemption_timer_value(vcpu);
10522 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10523 }
10524
10525 /*
10526 * In some cases (usually, nested EPT), L2 is allowed to change its
10527 * own CR3 without exiting. If it has changed it, we must keep it.
10528 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10529 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10530 *
10531 * Additionally, restore L2's PDPTR to vmcs12.
10532 */
10533 if (enable_ept) {
10534 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10535 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10536 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10537 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10538 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10539 }
10540
10541 if (nested_cpu_has_ept(vmcs12))
10542 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10543
10544 if (nested_cpu_has_vid(vmcs12))
10545 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10546
10547 vmcs12->vm_entry_controls =
10548 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10549 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10550
10551 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10552 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10553 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10554 }
10555
10556 /* TODO: These cannot have changed unless we have MSR bitmaps and
10557 * the relevant bit asks not to trap the change */
10558 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10559 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10560 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10561 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10562 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10563 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10564 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10565 if (kvm_mpx_supported())
10566 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10567 if (nested_cpu_has_xsaves(vmcs12))
10568 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10569
10570 /* update exit information fields: */
10571
10572 vmcs12->vm_exit_reason = exit_reason;
10573 vmcs12->exit_qualification = exit_qualification;
10574
10575 vmcs12->vm_exit_intr_info = exit_intr_info;
10576 if ((vmcs12->vm_exit_intr_info &
10577 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10578 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10579 vmcs12->vm_exit_intr_error_code =
10580 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10581 vmcs12->idt_vectoring_info_field = 0;
10582 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10583 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10584
10585 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10586 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10587 * instead of reading the real value. */
10588 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10589
10590 /*
10591 * Transfer the event that L0 or L1 may wanted to inject into
10592 * L2 to IDT_VECTORING_INFO_FIELD.
10593 */
10594 vmcs12_save_pending_event(vcpu, vmcs12);
10595 }
10596
10597 /*
10598 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10599 * preserved above and would only end up incorrectly in L1.
10600 */
10601 vcpu->arch.nmi_injected = false;
10602 kvm_clear_exception_queue(vcpu);
10603 kvm_clear_interrupt_queue(vcpu);
10604}
10605
10606/*
10607 * A part of what we need to when the nested L2 guest exits and we want to
10608 * run its L1 parent, is to reset L1's guest state to the host state specified
10609 * in vmcs12.
10610 * This function is to be called not only on normal nested exit, but also on
10611 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10612 * Failures During or After Loading Guest State").
10613 * This function should be called when the active VMCS is L1's (vmcs01).
10614 */
10615static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10616 struct vmcs12 *vmcs12)
10617{
10618 struct kvm_segment seg;
10619
10620 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10621 vcpu->arch.efer = vmcs12->host_ia32_efer;
10622 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10623 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10624 else
10625 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10626 vmx_set_efer(vcpu, vcpu->arch.efer);
10627
10628 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10629 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10630 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10631 /*
10632 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10633 * actually changed, because it depends on the current state of
10634 * fpu_active (which may have changed).
10635 * Note that vmx_set_cr0 refers to efer set above.
10636 */
10637 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10638 /*
10639 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10640 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10641 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10642 */
10643 update_exception_bitmap(vcpu);
10644 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10645 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10646
10647 /*
10648 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10649 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10650 */
10651 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10652 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10653
10654 nested_ept_uninit_mmu_context(vcpu);
10655
10656 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10657 kvm_mmu_reset_context(vcpu);
10658
10659 if (!enable_ept)
10660 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10661
10662 if (enable_vpid) {
10663 /*
10664 * Trivially support vpid by letting L2s share their parent
10665 * L1's vpid. TODO: move to a more elaborate solution, giving
10666 * each L2 its own vpid and exposing the vpid feature to L1.
10667 */
10668 vmx_flush_tlb(vcpu);
10669 }
10670
10671
10672 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10673 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10674 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10675 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10676 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10677
10678 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10679 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10680 vmcs_write64(GUEST_BNDCFGS, 0);
10681
10682 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10683 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10684 vcpu->arch.pat = vmcs12->host_ia32_pat;
10685 }
10686 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10687 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10688 vmcs12->host_ia32_perf_global_ctrl);
10689
10690 /* Set L1 segment info according to Intel SDM
10691 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10692 seg = (struct kvm_segment) {
10693 .base = 0,
10694 .limit = 0xFFFFFFFF,
10695 .selector = vmcs12->host_cs_selector,
10696 .type = 11,
10697 .present = 1,
10698 .s = 1,
10699 .g = 1
10700 };
10701 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10702 seg.l = 1;
10703 else
10704 seg.db = 1;
10705 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10706 seg = (struct kvm_segment) {
10707 .base = 0,
10708 .limit = 0xFFFFFFFF,
10709 .type = 3,
10710 .present = 1,
10711 .s = 1,
10712 .db = 1,
10713 .g = 1
10714 };
10715 seg.selector = vmcs12->host_ds_selector;
10716 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10717 seg.selector = vmcs12->host_es_selector;
10718 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10719 seg.selector = vmcs12->host_ss_selector;
10720 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10721 seg.selector = vmcs12->host_fs_selector;
10722 seg.base = vmcs12->host_fs_base;
10723 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10724 seg.selector = vmcs12->host_gs_selector;
10725 seg.base = vmcs12->host_gs_base;
10726 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10727 seg = (struct kvm_segment) {
10728 .base = vmcs12->host_tr_base,
10729 .limit = 0x67,
10730 .selector = vmcs12->host_tr_selector,
10731 .type = 11,
10732 .present = 1
10733 };
10734 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10735
10736 kvm_set_dr(vcpu, 7, 0x400);
10737 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10738
10739 if (cpu_has_vmx_msr_bitmap())
10740 vmx_set_msr_bitmap(vcpu);
10741
10742 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10743 vmcs12->vm_exit_msr_load_count))
10744 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10745}
10746
10747/*
10748 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10749 * and modify vmcs12 to make it see what it would expect to see there if
10750 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10751 */
10752static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10753 u32 exit_intr_info,
10754 unsigned long exit_qualification)
10755{
10756 struct vcpu_vmx *vmx = to_vmx(vcpu);
10757 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10758
10759 /* trying to cancel vmlaunch/vmresume is a bug */
10760 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10761
10762 leave_guest_mode(vcpu);
10763 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10764 exit_qualification);
10765
10766 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10767 vmcs12->vm_exit_msr_store_count))
10768 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10769
10770 vmx_load_vmcs01(vcpu);
10771
10772 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10773 && nested_exit_intr_ack_set(vcpu)) {
10774 int irq = kvm_cpu_get_interrupt(vcpu);
10775 WARN_ON(irq < 0);
10776 vmcs12->vm_exit_intr_info = irq |
10777 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10778 }
10779
10780 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10781 vmcs12->exit_qualification,
10782 vmcs12->idt_vectoring_info_field,
10783 vmcs12->vm_exit_intr_info,
10784 vmcs12->vm_exit_intr_error_code,
10785 KVM_ISA_VMX);
10786
10787 vm_entry_controls_reset_shadow(vmx);
10788 vm_exit_controls_reset_shadow(vmx);
10789 vmx_segment_cache_clear(vmx);
10790
10791 /* if no vmcs02 cache requested, remove the one we used */
10792 if (VMCS02_POOL_SIZE == 0)
10793 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10794
10795 load_vmcs12_host_state(vcpu, vmcs12);
10796
10797 /* Update any VMCS fields that might have changed while L2 ran */
10798 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10799 if (vmx->hv_deadline_tsc == -1)
10800 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10801 PIN_BASED_VMX_PREEMPTION_TIMER);
10802 else
10803 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10804 PIN_BASED_VMX_PREEMPTION_TIMER);
10805 if (kvm_has_tsc_control)
10806 decache_tsc_multiplier(vmx);
10807
10808 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10809 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10810 vmx_set_virtual_x2apic_mode(vcpu,
10811 vcpu->arch.apic_base & X2APIC_ENABLE);
10812 }
10813
10814 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10815 vmx->host_rsp = 0;
10816
10817 /* Unpin physical memory we referred to in vmcs02 */
10818 if (vmx->nested.apic_access_page) {
10819 nested_release_page(vmx->nested.apic_access_page);
10820 vmx->nested.apic_access_page = NULL;
10821 }
10822 if (vmx->nested.virtual_apic_page) {
10823 nested_release_page(vmx->nested.virtual_apic_page);
10824 vmx->nested.virtual_apic_page = NULL;
10825 }
10826 if (vmx->nested.pi_desc_page) {
10827 kunmap(vmx->nested.pi_desc_page);
10828 nested_release_page(vmx->nested.pi_desc_page);
10829 vmx->nested.pi_desc_page = NULL;
10830 vmx->nested.pi_desc = NULL;
10831 }
10832
10833 /*
10834 * We are now running in L2, mmu_notifier will force to reload the
10835 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10836 */
10837 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
10838
10839 /*
10840 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10841 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10842 * success or failure flag accordingly.
10843 */
10844 if (unlikely(vmx->fail)) {
10845 vmx->fail = 0;
10846 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10847 } else
10848 nested_vmx_succeed(vcpu);
10849 if (enable_shadow_vmcs)
10850 vmx->nested.sync_shadow_vmcs = true;
10851
10852 /* in case we halted in L2 */
10853 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10854}
10855
10856/*
10857 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10858 */
10859static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10860{
10861 if (is_guest_mode(vcpu))
10862 nested_vmx_vmexit(vcpu, -1, 0, 0);
10863 free_nested(to_vmx(vcpu));
10864}
10865
10866/*
10867 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10868 * 23.7 "VM-entry failures during or after loading guest state" (this also
10869 * lists the acceptable exit-reason and exit-qualification parameters).
10870 * It should only be called before L2 actually succeeded to run, and when
10871 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10872 */
10873static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10874 struct vmcs12 *vmcs12,
10875 u32 reason, unsigned long qualification)
10876{
10877 load_vmcs12_host_state(vcpu, vmcs12);
10878 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10879 vmcs12->exit_qualification = qualification;
10880 nested_vmx_succeed(vcpu);
10881 if (enable_shadow_vmcs)
10882 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10883}
10884
10885static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10886 struct x86_instruction_info *info,
10887 enum x86_intercept_stage stage)
10888{
10889 return X86EMUL_CONTINUE;
10890}
10891
10892#ifdef CONFIG_X86_64
10893/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
10894static inline int u64_shl_div_u64(u64 a, unsigned int shift,
10895 u64 divisor, u64 *result)
10896{
10897 u64 low = a << shift, high = a >> (64 - shift);
10898
10899 /* To avoid the overflow on divq */
10900 if (high >= divisor)
10901 return 1;
10902
10903 /* Low hold the result, high hold rem which is discarded */
10904 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
10905 "rm" (divisor), "0" (low), "1" (high));
10906 *result = low;
10907
10908 return 0;
10909}
10910
10911static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
10912{
10913 struct vcpu_vmx *vmx = to_vmx(vcpu);
10914 u64 tscl = rdtsc();
10915 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
10916 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
10917
10918 /* Convert to host delta tsc if tsc scaling is enabled */
10919 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
10920 u64_shl_div_u64(delta_tsc,
10921 kvm_tsc_scaling_ratio_frac_bits,
10922 vcpu->arch.tsc_scaling_ratio,
10923 &delta_tsc))
10924 return -ERANGE;
10925
10926 /*
10927 * If the delta tsc can't fit in the 32 bit after the multi shift,
10928 * we can't use the preemption timer.
10929 * It's possible that it fits on later vmentries, but checking
10930 * on every vmentry is costly so we just use an hrtimer.
10931 */
10932 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
10933 return -ERANGE;
10934
10935 vmx->hv_deadline_tsc = tscl + delta_tsc;
10936 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10937 PIN_BASED_VMX_PREEMPTION_TIMER);
10938 return 0;
10939}
10940
10941static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
10942{
10943 struct vcpu_vmx *vmx = to_vmx(vcpu);
10944 vmx->hv_deadline_tsc = -1;
10945 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10946 PIN_BASED_VMX_PREEMPTION_TIMER);
10947}
10948#endif
10949
10950static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10951{
10952 if (ple_gap)
10953 shrink_ple_window(vcpu);
10954}
10955
10956static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10957 struct kvm_memory_slot *slot)
10958{
10959 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10960 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10961}
10962
10963static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10964 struct kvm_memory_slot *slot)
10965{
10966 kvm_mmu_slot_set_dirty(kvm, slot);
10967}
10968
10969static void vmx_flush_log_dirty(struct kvm *kvm)
10970{
10971 kvm_flush_pml_buffers(kvm);
10972}
10973
10974static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10975 struct kvm_memory_slot *memslot,
10976 gfn_t offset, unsigned long mask)
10977{
10978 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10979}
10980
10981/*
10982 * This routine does the following things for vCPU which is going
10983 * to be blocked if VT-d PI is enabled.
10984 * - Store the vCPU to the wakeup list, so when interrupts happen
10985 * we can find the right vCPU to wake up.
10986 * - Change the Posted-interrupt descriptor as below:
10987 * 'NDST' <-- vcpu->pre_pcpu
10988 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10989 * - If 'ON' is set during this process, which means at least one
10990 * interrupt is posted for this vCPU, we cannot block it, in
10991 * this case, return 1, otherwise, return 0.
10992 *
10993 */
10994static int pi_pre_block(struct kvm_vcpu *vcpu)
10995{
10996 unsigned long flags;
10997 unsigned int dest;
10998 struct pi_desc old, new;
10999 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11000
11001 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11002 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11003 !kvm_vcpu_apicv_active(vcpu))
11004 return 0;
11005
11006 vcpu->pre_pcpu = vcpu->cpu;
11007 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11008 vcpu->pre_pcpu), flags);
11009 list_add_tail(&vcpu->blocked_vcpu_list,
11010 &per_cpu(blocked_vcpu_on_cpu,
11011 vcpu->pre_pcpu));
11012 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11013 vcpu->pre_pcpu), flags);
11014
11015 do {
11016 old.control = new.control = pi_desc->control;
11017
11018 /*
11019 * We should not block the vCPU if
11020 * an interrupt is posted for it.
11021 */
11022 if (pi_test_on(pi_desc) == 1) {
11023 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11024 vcpu->pre_pcpu), flags);
11025 list_del(&vcpu->blocked_vcpu_list);
11026 spin_unlock_irqrestore(
11027 &per_cpu(blocked_vcpu_on_cpu_lock,
11028 vcpu->pre_pcpu), flags);
11029 vcpu->pre_pcpu = -1;
11030
11031 return 1;
11032 }
11033
11034 WARN((pi_desc->sn == 1),
11035 "Warning: SN field of posted-interrupts "
11036 "is set before blocking\n");
11037
11038 /*
11039 * Since vCPU can be preempted during this process,
11040 * vcpu->cpu could be different with pre_pcpu, we
11041 * need to set pre_pcpu as the destination of wakeup
11042 * notification event, then we can find the right vCPU
11043 * to wakeup in wakeup handler if interrupts happen
11044 * when the vCPU is in blocked state.
11045 */
11046 dest = cpu_physical_id(vcpu->pre_pcpu);
11047
11048 if (x2apic_enabled())
11049 new.ndst = dest;
11050 else
11051 new.ndst = (dest << 8) & 0xFF00;
11052
11053 /* set 'NV' to 'wakeup vector' */
11054 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11055 } while (cmpxchg(&pi_desc->control, old.control,
11056 new.control) != old.control);
11057
11058 return 0;
11059}
11060
11061static int vmx_pre_block(struct kvm_vcpu *vcpu)
11062{
11063 if (pi_pre_block(vcpu))
11064 return 1;
11065
11066 if (kvm_lapic_hv_timer_in_use(vcpu))
11067 kvm_lapic_switch_to_sw_timer(vcpu);
11068
11069 return 0;
11070}
11071
11072static void pi_post_block(struct kvm_vcpu *vcpu)
11073{
11074 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11075 struct pi_desc old, new;
11076 unsigned int dest;
11077 unsigned long flags;
11078
11079 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11080 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11081 !kvm_vcpu_apicv_active(vcpu))
11082 return;
11083
11084 do {
11085 old.control = new.control = pi_desc->control;
11086
11087 dest = cpu_physical_id(vcpu->cpu);
11088
11089 if (x2apic_enabled())
11090 new.ndst = dest;
11091 else
11092 new.ndst = (dest << 8) & 0xFF00;
11093
11094 /* Allow posting non-urgent interrupts */
11095 new.sn = 0;
11096
11097 /* set 'NV' to 'notification vector' */
11098 new.nv = POSTED_INTR_VECTOR;
11099 } while (cmpxchg(&pi_desc->control, old.control,
11100 new.control) != old.control);
11101
11102 if(vcpu->pre_pcpu != -1) {
11103 spin_lock_irqsave(
11104 &per_cpu(blocked_vcpu_on_cpu_lock,
11105 vcpu->pre_pcpu), flags);
11106 list_del(&vcpu->blocked_vcpu_list);
11107 spin_unlock_irqrestore(
11108 &per_cpu(blocked_vcpu_on_cpu_lock,
11109 vcpu->pre_pcpu), flags);
11110 vcpu->pre_pcpu = -1;
11111 }
11112}
11113
11114static void vmx_post_block(struct kvm_vcpu *vcpu)
11115{
11116 if (kvm_x86_ops->set_hv_timer)
11117 kvm_lapic_switch_to_hv_timer(vcpu);
11118
11119 pi_post_block(vcpu);
11120}
11121
11122/*
11123 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11124 *
11125 * @kvm: kvm
11126 * @host_irq: host irq of the interrupt
11127 * @guest_irq: gsi of the interrupt
11128 * @set: set or unset PI
11129 * returns 0 on success, < 0 on failure
11130 */
11131static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11132 uint32_t guest_irq, bool set)
11133{
11134 struct kvm_kernel_irq_routing_entry *e;
11135 struct kvm_irq_routing_table *irq_rt;
11136 struct kvm_lapic_irq irq;
11137 struct kvm_vcpu *vcpu;
11138 struct vcpu_data vcpu_info;
11139 int idx, ret = -EINVAL;
11140
11141 if (!kvm_arch_has_assigned_device(kvm) ||
11142 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11143 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11144 return 0;
11145
11146 idx = srcu_read_lock(&kvm->irq_srcu);
11147 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11148 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11149
11150 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11151 if (e->type != KVM_IRQ_ROUTING_MSI)
11152 continue;
11153 /*
11154 * VT-d PI cannot support posting multicast/broadcast
11155 * interrupts to a vCPU, we still use interrupt remapping
11156 * for these kind of interrupts.
11157 *
11158 * For lowest-priority interrupts, we only support
11159 * those with single CPU as the destination, e.g. user
11160 * configures the interrupts via /proc/irq or uses
11161 * irqbalance to make the interrupts single-CPU.
11162 *
11163 * We will support full lowest-priority interrupt later.
11164 */
11165
11166 kvm_set_msi_irq(kvm, e, &irq);
11167 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11168 /*
11169 * Make sure the IRTE is in remapped mode if
11170 * we don't handle it in posted mode.
11171 */
11172 ret = irq_set_vcpu_affinity(host_irq, NULL);
11173 if (ret < 0) {
11174 printk(KERN_INFO
11175 "failed to back to remapped mode, irq: %u\n",
11176 host_irq);
11177 goto out;
11178 }
11179
11180 continue;
11181 }
11182
11183 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11184 vcpu_info.vector = irq.vector;
11185
11186 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11187 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11188
11189 if (set)
11190 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11191 else {
11192 /* suppress notification event before unposting */
11193 pi_set_sn(vcpu_to_pi_desc(vcpu));
11194 ret = irq_set_vcpu_affinity(host_irq, NULL);
11195 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11196 }
11197
11198 if (ret < 0) {
11199 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11200 __func__);
11201 goto out;
11202 }
11203 }
11204
11205 ret = 0;
11206out:
11207 srcu_read_unlock(&kvm->irq_srcu, idx);
11208 return ret;
11209}
11210
11211static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11212{
11213 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11214 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11215 FEATURE_CONTROL_LMCE;
11216 else
11217 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11218 ~FEATURE_CONTROL_LMCE;
11219}
11220
11221static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11222 .cpu_has_kvm_support = cpu_has_kvm_support,
11223 .disabled_by_bios = vmx_disabled_by_bios,
11224 .hardware_setup = hardware_setup,
11225 .hardware_unsetup = hardware_unsetup,
11226 .check_processor_compatibility = vmx_check_processor_compat,
11227 .hardware_enable = hardware_enable,
11228 .hardware_disable = hardware_disable,
11229 .cpu_has_accelerated_tpr = report_flexpriority,
11230 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11231
11232 .vcpu_create = vmx_create_vcpu,
11233 .vcpu_free = vmx_free_vcpu,
11234 .vcpu_reset = vmx_vcpu_reset,
11235
11236 .prepare_guest_switch = vmx_save_host_state,
11237 .vcpu_load = vmx_vcpu_load,
11238 .vcpu_put = vmx_vcpu_put,
11239
11240 .update_bp_intercept = update_exception_bitmap,
11241 .get_msr = vmx_get_msr,
11242 .set_msr = vmx_set_msr,
11243 .get_segment_base = vmx_get_segment_base,
11244 .get_segment = vmx_get_segment,
11245 .set_segment = vmx_set_segment,
11246 .get_cpl = vmx_get_cpl,
11247 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11248 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11249 .decache_cr3 = vmx_decache_cr3,
11250 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11251 .set_cr0 = vmx_set_cr0,
11252 .set_cr3 = vmx_set_cr3,
11253 .set_cr4 = vmx_set_cr4,
11254 .set_efer = vmx_set_efer,
11255 .get_idt = vmx_get_idt,
11256 .set_idt = vmx_set_idt,
11257 .get_gdt = vmx_get_gdt,
11258 .set_gdt = vmx_set_gdt,
11259 .get_dr6 = vmx_get_dr6,
11260 .set_dr6 = vmx_set_dr6,
11261 .set_dr7 = vmx_set_dr7,
11262 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11263 .cache_reg = vmx_cache_reg,
11264 .get_rflags = vmx_get_rflags,
11265 .set_rflags = vmx_set_rflags,
11266
11267 .get_pkru = vmx_get_pkru,
11268
11269 .fpu_activate = vmx_fpu_activate,
11270 .fpu_deactivate = vmx_fpu_deactivate,
11271
11272 .tlb_flush = vmx_flush_tlb,
11273
11274 .run = vmx_vcpu_run,
11275 .handle_exit = vmx_handle_exit,
11276 .skip_emulated_instruction = skip_emulated_instruction,
11277 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11278 .get_interrupt_shadow = vmx_get_interrupt_shadow,
11279 .patch_hypercall = vmx_patch_hypercall,
11280 .set_irq = vmx_inject_irq,
11281 .set_nmi = vmx_inject_nmi,
11282 .queue_exception = vmx_queue_exception,
11283 .cancel_injection = vmx_cancel_injection,
11284 .interrupt_allowed = vmx_interrupt_allowed,
11285 .nmi_allowed = vmx_nmi_allowed,
11286 .get_nmi_mask = vmx_get_nmi_mask,
11287 .set_nmi_mask = vmx_set_nmi_mask,
11288 .enable_nmi_window = enable_nmi_window,
11289 .enable_irq_window = enable_irq_window,
11290 .update_cr8_intercept = update_cr8_intercept,
11291 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11292 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11293 .get_enable_apicv = vmx_get_enable_apicv,
11294 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11295 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11296 .hwapic_irr_update = vmx_hwapic_irr_update,
11297 .hwapic_isr_update = vmx_hwapic_isr_update,
11298 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11299 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11300
11301 .set_tss_addr = vmx_set_tss_addr,
11302 .get_tdp_level = get_ept_level,
11303 .get_mt_mask = vmx_get_mt_mask,
11304
11305 .get_exit_info = vmx_get_exit_info,
11306
11307 .get_lpage_level = vmx_get_lpage_level,
11308
11309 .cpuid_update = vmx_cpuid_update,
11310
11311 .rdtscp_supported = vmx_rdtscp_supported,
11312 .invpcid_supported = vmx_invpcid_supported,
11313
11314 .set_supported_cpuid = vmx_set_supported_cpuid,
11315
11316 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11317
11318 .write_tsc_offset = vmx_write_tsc_offset,
11319
11320 .set_tdp_cr3 = vmx_set_cr3,
11321
11322 .check_intercept = vmx_check_intercept,
11323 .handle_external_intr = vmx_handle_external_intr,
11324 .mpx_supported = vmx_mpx_supported,
11325 .xsaves_supported = vmx_xsaves_supported,
11326
11327 .check_nested_events = vmx_check_nested_events,
11328
11329 .sched_in = vmx_sched_in,
11330
11331 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11332 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11333 .flush_log_dirty = vmx_flush_log_dirty,
11334 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11335
11336 .pre_block = vmx_pre_block,
11337 .post_block = vmx_post_block,
11338
11339 .pmu_ops = &intel_pmu_ops,
11340
11341 .update_pi_irte = vmx_update_pi_irte,
11342
11343#ifdef CONFIG_X86_64
11344 .set_hv_timer = vmx_set_hv_timer,
11345 .cancel_hv_timer = vmx_cancel_hv_timer,
11346#endif
11347
11348 .setup_mce = vmx_setup_mce,
11349};
11350
11351static int __init vmx_init(void)
11352{
11353 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11354 __alignof__(struct vcpu_vmx), THIS_MODULE);
11355 if (r)
11356 return r;
11357
11358#ifdef CONFIG_KEXEC_CORE
11359 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11360 crash_vmclear_local_loaded_vmcss);
11361#endif
11362
11363 return 0;
11364}
11365
11366static void __exit vmx_exit(void)
11367{
11368#ifdef CONFIG_KEXEC_CORE
11369 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11370 synchronize_rcu();
11371#endif
11372
11373 kvm_exit();
11374}
11375
11376module_init(vmx_init)
11377module_exit(vmx_exit)