]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - arch/x86/kvm/x86.c
KVM: x86: tag the instructions which are used to write page table
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22#include <linux/kvm_host.h>
23#include "irq.h"
24#include "mmu.h"
25#include "i8254.h"
26#include "tss.h"
27#include "kvm_cache_regs.h"
28#include "x86.h"
29
30#include <linux/clocksource.h>
31#include <linux/interrupt.h>
32#include <linux/kvm.h>
33#include <linux/fs.h>
34#include <linux/vmalloc.h>
35#include <linux/module.h>
36#include <linux/mman.h>
37#include <linux/highmem.h>
38#include <linux/iommu.h>
39#include <linux/intel-iommu.h>
40#include <linux/cpufreq.h>
41#include <linux/user-return-notifier.h>
42#include <linux/srcu.h>
43#include <linux/slab.h>
44#include <linux/perf_event.h>
45#include <linux/uaccess.h>
46#include <linux/hash.h>
47#include <linux/pci.h>
48#include <trace/events/kvm.h>
49
50#define CREATE_TRACE_POINTS
51#include "trace.h"
52
53#include <asm/debugreg.h>
54#include <asm/msr.h>
55#include <asm/desc.h>
56#include <asm/mtrr.h>
57#include <asm/mce.h>
58#include <asm/i387.h>
59#include <asm/xcr.h>
60#include <asm/pvclock.h>
61#include <asm/div64.h>
62
63#define MAX_IO_MSRS 256
64#define KVM_MAX_MCE_BANKS 32
65#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
66
67#define emul_to_vcpu(ctxt) \
68 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
69
70/* EFER defaults:
71 * - enable syscall per default because its emulated by KVM
72 * - enable LME and LMA per default on 64 bit KVM
73 */
74#ifdef CONFIG_X86_64
75static
76u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
77#else
78static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
79#endif
80
81#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83
84static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86 struct kvm_cpuid_entry2 __user *entries);
87static void process_nmi(struct kvm_vcpu *vcpu);
88
89struct kvm_x86_ops *kvm_x86_ops;
90EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92int ignore_msrs = 0;
93module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95bool kvm_has_tsc_control;
96EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97u32 kvm_max_guest_tsc_khz;
98EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100#define KVM_NR_SHARED_MSRS 16
101
102struct kvm_shared_msrs_global {
103 int nr;
104 u32 msrs[KVM_NR_SHARED_MSRS];
105};
106
107struct kvm_shared_msrs {
108 struct user_return_notifier urn;
109 bool registered;
110 struct kvm_shared_msr_values {
111 u64 host;
112 u64 curr;
113 } values[KVM_NR_SHARED_MSRS];
114};
115
116static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
117static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
118
119struct kvm_stats_debugfs_item debugfs_entries[] = {
120 { "pf_fixed", VCPU_STAT(pf_fixed) },
121 { "pf_guest", VCPU_STAT(pf_guest) },
122 { "tlb_flush", VCPU_STAT(tlb_flush) },
123 { "invlpg", VCPU_STAT(invlpg) },
124 { "exits", VCPU_STAT(exits) },
125 { "io_exits", VCPU_STAT(io_exits) },
126 { "mmio_exits", VCPU_STAT(mmio_exits) },
127 { "signal_exits", VCPU_STAT(signal_exits) },
128 { "irq_window", VCPU_STAT(irq_window_exits) },
129 { "nmi_window", VCPU_STAT(nmi_window_exits) },
130 { "halt_exits", VCPU_STAT(halt_exits) },
131 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
132 { "hypercalls", VCPU_STAT(hypercalls) },
133 { "request_irq", VCPU_STAT(request_irq_exits) },
134 { "irq_exits", VCPU_STAT(irq_exits) },
135 { "host_state_reload", VCPU_STAT(host_state_reload) },
136 { "efer_reload", VCPU_STAT(efer_reload) },
137 { "fpu_reload", VCPU_STAT(fpu_reload) },
138 { "insn_emulation", VCPU_STAT(insn_emulation) },
139 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
140 { "irq_injections", VCPU_STAT(irq_injections) },
141 { "nmi_injections", VCPU_STAT(nmi_injections) },
142 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
143 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
144 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
145 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
146 { "mmu_flooded", VM_STAT(mmu_flooded) },
147 { "mmu_recycled", VM_STAT(mmu_recycled) },
148 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
149 { "mmu_unsync", VM_STAT(mmu_unsync) },
150 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
151 { "largepages", VM_STAT(lpages) },
152 { NULL }
153};
154
155u64 __read_mostly host_xcr0;
156
157int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
158
159static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160{
161 int i;
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
164}
165
166static void kvm_on_user_return(struct user_return_notifier *urn)
167{
168 unsigned slot;
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
172
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
178 }
179 }
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
182}
183
184static void shared_msr_update(unsigned slot, u32 msr)
185{
186 struct kvm_shared_msrs *smsr;
187 u64 value;
188
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
194 return;
195 }
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
199}
200
201void kvm_define_shared_msr(unsigned slot, u32 msr)
202{
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
207 smp_wmb();
208}
209EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211static void kvm_shared_msr_cpu_online(void)
212{
213 unsigned i;
214
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
217}
218
219void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220{
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 return;
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
231 }
232}
233EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235static void drop_user_return_notifiers(void *ignore)
236{
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
241}
242
243u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244{
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
247 else
248 return vcpu->arch.apic_base;
249}
250EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253{
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
257 else
258 vcpu->arch.apic_base = data;
259}
260EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262#define EXCPT_BENIGN 0
263#define EXCPT_CONTRIBUTORY 1
264#define EXCPT_PF 2
265
266static int exception_class(int vector)
267{
268 switch (vector) {
269 case PF_VECTOR:
270 return EXCPT_PF;
271 case DE_VECTOR:
272 case TS_VECTOR:
273 case NP_VECTOR:
274 case SS_VECTOR:
275 case GP_VECTOR:
276 return EXCPT_CONTRIBUTORY;
277 default:
278 break;
279 }
280 return EXCPT_BENIGN;
281}
282
283static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
285 bool reinject)
286{
287 u32 prev_nr;
288 int class1, class2;
289
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292 if (!vcpu->arch.exception.pending) {
293 queue:
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
299 return;
300 }
301
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 return;
308 }
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
318 } else
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
321 exception */
322 goto queue;
323}
324
325void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326{
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
328}
329EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332{
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
334}
335EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338{
339 if (err)
340 kvm_inject_gp(vcpu, 0);
341 else
342 kvm_x86_ops->skip_emulated_instruction(vcpu);
343}
344EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345
346void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347{
348 ++vcpu->stat.pf_guest;
349 vcpu->arch.cr2 = fault->address;
350 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351}
352EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
353
354void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355{
356 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358 else
359 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360}
361
362void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363{
364 atomic_inc(&vcpu->arch.nmi_queued);
365 kvm_make_request(KVM_REQ_NMI, vcpu);
366}
367EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368
369void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370{
371 kvm_multiple_exception(vcpu, nr, true, error_code, false);
372}
373EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374
375void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376{
377 kvm_multiple_exception(vcpu, nr, true, error_code, true);
378}
379EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380
381/*
382 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
383 * a #GP and return false.
384 */
385bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386{
387 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388 return true;
389 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390 return false;
391}
392EXPORT_SYMBOL_GPL(kvm_require_cpl);
393
394/*
395 * This function will be used to read from the physical memory of the currently
396 * running guest. The difference to kvm_read_guest_page is that this function
397 * can read from guest physical or from the guest's guest physical memory.
398 */
399int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400 gfn_t ngfn, void *data, int offset, int len,
401 u32 access)
402{
403 gfn_t real_gfn;
404 gpa_t ngpa;
405
406 ngpa = gfn_to_gpa(ngfn);
407 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408 if (real_gfn == UNMAPPED_GVA)
409 return -EFAULT;
410
411 real_gfn = gpa_to_gfn(real_gfn);
412
413 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414}
415EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416
417int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418 void *data, int offset, int len, u32 access)
419{
420 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421 data, offset, len, access);
422}
423
424/*
425 * Load the pae pdptrs. Return true is they are all valid.
426 */
427int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428{
429 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431 int i;
432 int ret;
433 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434
435 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436 offset * sizeof(u64), sizeof(pdpte),
437 PFERR_USER_MASK|PFERR_WRITE_MASK);
438 if (ret < 0) {
439 ret = 0;
440 goto out;
441 }
442 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443 if (is_present_gpte(pdpte[i]) &&
444 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445 ret = 0;
446 goto out;
447 }
448 }
449 ret = 1;
450
451 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452 __set_bit(VCPU_EXREG_PDPTR,
453 (unsigned long *)&vcpu->arch.regs_avail);
454 __set_bit(VCPU_EXREG_PDPTR,
455 (unsigned long *)&vcpu->arch.regs_dirty);
456out:
457
458 return ret;
459}
460EXPORT_SYMBOL_GPL(load_pdptrs);
461
462static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463{
464 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465 bool changed = true;
466 int offset;
467 gfn_t gfn;
468 int r;
469
470 if (is_long_mode(vcpu) || !is_pae(vcpu))
471 return false;
472
473 if (!test_bit(VCPU_EXREG_PDPTR,
474 (unsigned long *)&vcpu->arch.regs_avail))
475 return true;
476
477 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480 PFERR_USER_MASK | PFERR_WRITE_MASK);
481 if (r < 0)
482 goto out;
483 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484out:
485
486 return changed;
487}
488
489int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490{
491 unsigned long old_cr0 = kvm_read_cr0(vcpu);
492 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493 X86_CR0_CD | X86_CR0_NW;
494
495 cr0 |= X86_CR0_ET;
496
497#ifdef CONFIG_X86_64
498 if (cr0 & 0xffffffff00000000UL)
499 return 1;
500#endif
501
502 cr0 &= ~CR0_RESERVED_BITS;
503
504 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505 return 1;
506
507 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508 return 1;
509
510 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511#ifdef CONFIG_X86_64
512 if ((vcpu->arch.efer & EFER_LME)) {
513 int cs_db, cs_l;
514
515 if (!is_pae(vcpu))
516 return 1;
517 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518 if (cs_l)
519 return 1;
520 } else
521#endif
522 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523 kvm_read_cr3(vcpu)))
524 return 1;
525 }
526
527 kvm_x86_ops->set_cr0(vcpu, cr0);
528
529 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
530 kvm_clear_async_pf_completion_queue(vcpu);
531 kvm_async_pf_hash_reset(vcpu);
532 }
533
534 if ((cr0 ^ old_cr0) & update_bits)
535 kvm_mmu_reset_context(vcpu);
536 return 0;
537}
538EXPORT_SYMBOL_GPL(kvm_set_cr0);
539
540void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
541{
542 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
543}
544EXPORT_SYMBOL_GPL(kvm_lmsw);
545
546int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547{
548 u64 xcr0;
549
550 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
551 if (index != XCR_XFEATURE_ENABLED_MASK)
552 return 1;
553 xcr0 = xcr;
554 if (kvm_x86_ops->get_cpl(vcpu) != 0)
555 return 1;
556 if (!(xcr0 & XSTATE_FP))
557 return 1;
558 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
559 return 1;
560 if (xcr0 & ~host_xcr0)
561 return 1;
562 vcpu->arch.xcr0 = xcr0;
563 vcpu->guest_xcr0_loaded = 0;
564 return 0;
565}
566
567int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
568{
569 if (__kvm_set_xcr(vcpu, index, xcr)) {
570 kvm_inject_gp(vcpu, 0);
571 return 1;
572 }
573 return 0;
574}
575EXPORT_SYMBOL_GPL(kvm_set_xcr);
576
577static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
578{
579 struct kvm_cpuid_entry2 *best;
580
581 best = kvm_find_cpuid_entry(vcpu, 1, 0);
582 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583}
584
585static bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
586{
587 struct kvm_cpuid_entry2 *best;
588
589 best = kvm_find_cpuid_entry(vcpu, 7, 0);
590 return best && (best->ebx & bit(X86_FEATURE_SMEP));
591}
592
593static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
594{
595 struct kvm_cpuid_entry2 *best;
596
597 best = kvm_find_cpuid_entry(vcpu, 7, 0);
598 return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
599}
600
601static void update_cpuid(struct kvm_vcpu *vcpu)
602{
603 struct kvm_cpuid_entry2 *best;
604 struct kvm_lapic *apic = vcpu->arch.apic;
605
606 best = kvm_find_cpuid_entry(vcpu, 1, 0);
607 if (!best)
608 return;
609
610 /* Update OSXSAVE bit */
611 if (cpu_has_xsave && best->function == 0x1) {
612 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
613 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
614 best->ecx |= bit(X86_FEATURE_OSXSAVE);
615 }
616
617 if (apic) {
618 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
619 apic->lapic_timer.timer_mode_mask = 3 << 17;
620 else
621 apic->lapic_timer.timer_mode_mask = 1 << 17;
622 }
623}
624
625int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
626{
627 unsigned long old_cr4 = kvm_read_cr4(vcpu);
628 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
629 X86_CR4_PAE | X86_CR4_SMEP;
630 if (cr4 & CR4_RESERVED_BITS)
631 return 1;
632
633 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
634 return 1;
635
636 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
637 return 1;
638
639 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
640 return 1;
641
642 if (is_long_mode(vcpu)) {
643 if (!(cr4 & X86_CR4_PAE))
644 return 1;
645 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
646 && ((cr4 ^ old_cr4) & pdptr_bits)
647 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
648 kvm_read_cr3(vcpu)))
649 return 1;
650
651 if (kvm_x86_ops->set_cr4(vcpu, cr4))
652 return 1;
653
654 if ((cr4 ^ old_cr4) & pdptr_bits)
655 kvm_mmu_reset_context(vcpu);
656
657 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
658 update_cpuid(vcpu);
659
660 return 0;
661}
662EXPORT_SYMBOL_GPL(kvm_set_cr4);
663
664int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
665{
666 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
667 kvm_mmu_sync_roots(vcpu);
668 kvm_mmu_flush_tlb(vcpu);
669 return 0;
670 }
671
672 if (is_long_mode(vcpu)) {
673 if (cr3 & CR3_L_MODE_RESERVED_BITS)
674 return 1;
675 } else {
676 if (is_pae(vcpu)) {
677 if (cr3 & CR3_PAE_RESERVED_BITS)
678 return 1;
679 if (is_paging(vcpu) &&
680 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
681 return 1;
682 }
683 /*
684 * We don't check reserved bits in nonpae mode, because
685 * this isn't enforced, and VMware depends on this.
686 */
687 }
688
689 /*
690 * Does the new cr3 value map to physical memory? (Note, we
691 * catch an invalid cr3 even in real-mode, because it would
692 * cause trouble later on when we turn on paging anyway.)
693 *
694 * A real CPU would silently accept an invalid cr3 and would
695 * attempt to use it - with largely undefined (and often hard
696 * to debug) behavior on the guest side.
697 */
698 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
699 return 1;
700 vcpu->arch.cr3 = cr3;
701 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
702 vcpu->arch.mmu.new_cr3(vcpu);
703 return 0;
704}
705EXPORT_SYMBOL_GPL(kvm_set_cr3);
706
707int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
708{
709 if (cr8 & CR8_RESERVED_BITS)
710 return 1;
711 if (irqchip_in_kernel(vcpu->kvm))
712 kvm_lapic_set_tpr(vcpu, cr8);
713 else
714 vcpu->arch.cr8 = cr8;
715 return 0;
716}
717EXPORT_SYMBOL_GPL(kvm_set_cr8);
718
719unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
720{
721 if (irqchip_in_kernel(vcpu->kvm))
722 return kvm_lapic_get_cr8(vcpu);
723 else
724 return vcpu->arch.cr8;
725}
726EXPORT_SYMBOL_GPL(kvm_get_cr8);
727
728static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
729{
730 switch (dr) {
731 case 0 ... 3:
732 vcpu->arch.db[dr] = val;
733 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
734 vcpu->arch.eff_db[dr] = val;
735 break;
736 case 4:
737 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
738 return 1; /* #UD */
739 /* fall through */
740 case 6:
741 if (val & 0xffffffff00000000ULL)
742 return -1; /* #GP */
743 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
744 break;
745 case 5:
746 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747 return 1; /* #UD */
748 /* fall through */
749 default: /* 7 */
750 if (val & 0xffffffff00000000ULL)
751 return -1; /* #GP */
752 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
753 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
754 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
755 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
756 }
757 break;
758 }
759
760 return 0;
761}
762
763int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
764{
765 int res;
766
767 res = __kvm_set_dr(vcpu, dr, val);
768 if (res > 0)
769 kvm_queue_exception(vcpu, UD_VECTOR);
770 else if (res < 0)
771 kvm_inject_gp(vcpu, 0);
772
773 return res;
774}
775EXPORT_SYMBOL_GPL(kvm_set_dr);
776
777static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
778{
779 switch (dr) {
780 case 0 ... 3:
781 *val = vcpu->arch.db[dr];
782 break;
783 case 4:
784 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
785 return 1;
786 /* fall through */
787 case 6:
788 *val = vcpu->arch.dr6;
789 break;
790 case 5:
791 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
792 return 1;
793 /* fall through */
794 default: /* 7 */
795 *val = vcpu->arch.dr7;
796 break;
797 }
798
799 return 0;
800}
801
802int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
803{
804 if (_kvm_get_dr(vcpu, dr, val)) {
805 kvm_queue_exception(vcpu, UD_VECTOR);
806 return 1;
807 }
808 return 0;
809}
810EXPORT_SYMBOL_GPL(kvm_get_dr);
811
812/*
813 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
814 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
815 *
816 * This list is modified at module load time to reflect the
817 * capabilities of the host cpu. This capabilities test skips MSRs that are
818 * kvm-specific. Those are put in the beginning of the list.
819 */
820
821#define KVM_SAVE_MSRS_BEGIN 9
822static u32 msrs_to_save[] = {
823 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
824 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
825 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
826 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
827 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
828 MSR_STAR,
829#ifdef CONFIG_X86_64
830 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
831#endif
832 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
833};
834
835static unsigned num_msrs_to_save;
836
837static u32 emulated_msrs[] = {
838 MSR_IA32_TSCDEADLINE,
839 MSR_IA32_MISC_ENABLE,
840 MSR_IA32_MCG_STATUS,
841 MSR_IA32_MCG_CTL,
842};
843
844static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
845{
846 u64 old_efer = vcpu->arch.efer;
847
848 if (efer & efer_reserved_bits)
849 return 1;
850
851 if (is_paging(vcpu)
852 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
853 return 1;
854
855 if (efer & EFER_FFXSR) {
856 struct kvm_cpuid_entry2 *feat;
857
858 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
859 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
860 return 1;
861 }
862
863 if (efer & EFER_SVME) {
864 struct kvm_cpuid_entry2 *feat;
865
866 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
867 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
868 return 1;
869 }
870
871 efer &= ~EFER_LMA;
872 efer |= vcpu->arch.efer & EFER_LMA;
873
874 kvm_x86_ops->set_efer(vcpu, efer);
875
876 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
877
878 /* Update reserved bits */
879 if ((efer ^ old_efer) & EFER_NX)
880 kvm_mmu_reset_context(vcpu);
881
882 return 0;
883}
884
885void kvm_enable_efer_bits(u64 mask)
886{
887 efer_reserved_bits &= ~mask;
888}
889EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
890
891
892/*
893 * Writes msr value into into the appropriate "register".
894 * Returns 0 on success, non-0 otherwise.
895 * Assumes vcpu_load() was already called.
896 */
897int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
898{
899 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
900}
901
902/*
903 * Adapt set_msr() to msr_io()'s calling convention
904 */
905static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
906{
907 return kvm_set_msr(vcpu, index, *data);
908}
909
910static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
911{
912 int version;
913 int r;
914 struct pvclock_wall_clock wc;
915 struct timespec boot;
916
917 if (!wall_clock)
918 return;
919
920 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
921 if (r)
922 return;
923
924 if (version & 1)
925 ++version; /* first time write, random junk */
926
927 ++version;
928
929 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
930
931 /*
932 * The guest calculates current wall clock time by adding
933 * system time (updated by kvm_guest_time_update below) to the
934 * wall clock specified here. guest system time equals host
935 * system time for us, thus we must fill in host boot time here.
936 */
937 getboottime(&boot);
938
939 wc.sec = boot.tv_sec;
940 wc.nsec = boot.tv_nsec;
941 wc.version = version;
942
943 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
944
945 version++;
946 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
947}
948
949static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
950{
951 uint32_t quotient, remainder;
952
953 /* Don't try to replace with do_div(), this one calculates
954 * "(dividend << 32) / divisor" */
955 __asm__ ( "divl %4"
956 : "=a" (quotient), "=d" (remainder)
957 : "0" (0), "1" (dividend), "r" (divisor) );
958 return quotient;
959}
960
961static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
962 s8 *pshift, u32 *pmultiplier)
963{
964 uint64_t scaled64;
965 int32_t shift = 0;
966 uint64_t tps64;
967 uint32_t tps32;
968
969 tps64 = base_khz * 1000LL;
970 scaled64 = scaled_khz * 1000LL;
971 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
972 tps64 >>= 1;
973 shift--;
974 }
975
976 tps32 = (uint32_t)tps64;
977 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
978 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
979 scaled64 >>= 1;
980 else
981 tps32 <<= 1;
982 shift++;
983 }
984
985 *pshift = shift;
986 *pmultiplier = div_frac(scaled64, tps32);
987
988 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
989 __func__, base_khz, scaled_khz, shift, *pmultiplier);
990}
991
992static inline u64 get_kernel_ns(void)
993{
994 struct timespec ts;
995
996 WARN_ON(preemptible());
997 ktime_get_ts(&ts);
998 monotonic_to_bootbased(&ts);
999 return timespec_to_ns(&ts);
1000}
1001
1002static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1003unsigned long max_tsc_khz;
1004
1005static inline int kvm_tsc_changes_freq(void)
1006{
1007 int cpu = get_cpu();
1008 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1009 cpufreq_quick_get(cpu) != 0;
1010 put_cpu();
1011 return ret;
1012}
1013
1014u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
1015{
1016 if (vcpu->arch.virtual_tsc_khz)
1017 return vcpu->arch.virtual_tsc_khz;
1018 else
1019 return __this_cpu_read(cpu_tsc_khz);
1020}
1021
1022static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1023{
1024 u64 ret;
1025
1026 WARN_ON(preemptible());
1027 if (kvm_tsc_changes_freq())
1028 printk_once(KERN_WARNING
1029 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1030 ret = nsec * vcpu_tsc_khz(vcpu);
1031 do_div(ret, USEC_PER_SEC);
1032 return ret;
1033}
1034
1035static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1036{
1037 /* Compute a scale to convert nanoseconds in TSC cycles */
1038 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1039 &vcpu->arch.tsc_catchup_shift,
1040 &vcpu->arch.tsc_catchup_mult);
1041}
1042
1043static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1044{
1045 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1046 vcpu->arch.tsc_catchup_mult,
1047 vcpu->arch.tsc_catchup_shift);
1048 tsc += vcpu->arch.last_tsc_write;
1049 return tsc;
1050}
1051
1052void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1053{
1054 struct kvm *kvm = vcpu->kvm;
1055 u64 offset, ns, elapsed;
1056 unsigned long flags;
1057 s64 sdiff;
1058
1059 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1060 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1061 ns = get_kernel_ns();
1062 elapsed = ns - kvm->arch.last_tsc_nsec;
1063 sdiff = data - kvm->arch.last_tsc_write;
1064 if (sdiff < 0)
1065 sdiff = -sdiff;
1066
1067 /*
1068 * Special case: close write to TSC within 5 seconds of
1069 * another CPU is interpreted as an attempt to synchronize
1070 * The 5 seconds is to accommodate host load / swapping as
1071 * well as any reset of TSC during the boot process.
1072 *
1073 * In that case, for a reliable TSC, we can match TSC offsets,
1074 * or make a best guest using elapsed value.
1075 */
1076 if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1077 elapsed < 5ULL * NSEC_PER_SEC) {
1078 if (!check_tsc_unstable()) {
1079 offset = kvm->arch.last_tsc_offset;
1080 pr_debug("kvm: matched tsc offset for %llu\n", data);
1081 } else {
1082 u64 delta = nsec_to_cycles(vcpu, elapsed);
1083 offset += delta;
1084 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1085 }
1086 ns = kvm->arch.last_tsc_nsec;
1087 }
1088 kvm->arch.last_tsc_nsec = ns;
1089 kvm->arch.last_tsc_write = data;
1090 kvm->arch.last_tsc_offset = offset;
1091 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1092 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1093
1094 /* Reset of TSC must disable overshoot protection below */
1095 vcpu->arch.hv_clock.tsc_timestamp = 0;
1096 vcpu->arch.last_tsc_write = data;
1097 vcpu->arch.last_tsc_nsec = ns;
1098}
1099EXPORT_SYMBOL_GPL(kvm_write_tsc);
1100
1101static int kvm_guest_time_update(struct kvm_vcpu *v)
1102{
1103 unsigned long flags;
1104 struct kvm_vcpu_arch *vcpu = &v->arch;
1105 void *shared_kaddr;
1106 unsigned long this_tsc_khz;
1107 s64 kernel_ns, max_kernel_ns;
1108 u64 tsc_timestamp;
1109
1110 /* Keep irq disabled to prevent changes to the clock */
1111 local_irq_save(flags);
1112 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1113 kernel_ns = get_kernel_ns();
1114 this_tsc_khz = vcpu_tsc_khz(v);
1115 if (unlikely(this_tsc_khz == 0)) {
1116 local_irq_restore(flags);
1117 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1118 return 1;
1119 }
1120
1121 /*
1122 * We may have to catch up the TSC to match elapsed wall clock
1123 * time for two reasons, even if kvmclock is used.
1124 * 1) CPU could have been running below the maximum TSC rate
1125 * 2) Broken TSC compensation resets the base at each VCPU
1126 * entry to avoid unknown leaps of TSC even when running
1127 * again on the same CPU. This may cause apparent elapsed
1128 * time to disappear, and the guest to stand still or run
1129 * very slowly.
1130 */
1131 if (vcpu->tsc_catchup) {
1132 u64 tsc = compute_guest_tsc(v, kernel_ns);
1133 if (tsc > tsc_timestamp) {
1134 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1135 tsc_timestamp = tsc;
1136 }
1137 }
1138
1139 local_irq_restore(flags);
1140
1141 if (!vcpu->time_page)
1142 return 0;
1143
1144 /*
1145 * Time as measured by the TSC may go backwards when resetting the base
1146 * tsc_timestamp. The reason for this is that the TSC resolution is
1147 * higher than the resolution of the other clock scales. Thus, many
1148 * possible measurments of the TSC correspond to one measurement of any
1149 * other clock, and so a spread of values is possible. This is not a
1150 * problem for the computation of the nanosecond clock; with TSC rates
1151 * around 1GHZ, there can only be a few cycles which correspond to one
1152 * nanosecond value, and any path through this code will inevitably
1153 * take longer than that. However, with the kernel_ns value itself,
1154 * the precision may be much lower, down to HZ granularity. If the
1155 * first sampling of TSC against kernel_ns ends in the low part of the
1156 * range, and the second in the high end of the range, we can get:
1157 *
1158 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1159 *
1160 * As the sampling errors potentially range in the thousands of cycles,
1161 * it is possible such a time value has already been observed by the
1162 * guest. To protect against this, we must compute the system time as
1163 * observed by the guest and ensure the new system time is greater.
1164 */
1165 max_kernel_ns = 0;
1166 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1167 max_kernel_ns = vcpu->last_guest_tsc -
1168 vcpu->hv_clock.tsc_timestamp;
1169 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1170 vcpu->hv_clock.tsc_to_system_mul,
1171 vcpu->hv_clock.tsc_shift);
1172 max_kernel_ns += vcpu->last_kernel_ns;
1173 }
1174
1175 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1176 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1177 &vcpu->hv_clock.tsc_shift,
1178 &vcpu->hv_clock.tsc_to_system_mul);
1179 vcpu->hw_tsc_khz = this_tsc_khz;
1180 }
1181
1182 if (max_kernel_ns > kernel_ns)
1183 kernel_ns = max_kernel_ns;
1184
1185 /* With all the info we got, fill in the values */
1186 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1187 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1188 vcpu->last_kernel_ns = kernel_ns;
1189 vcpu->last_guest_tsc = tsc_timestamp;
1190 vcpu->hv_clock.flags = 0;
1191
1192 /*
1193 * The interface expects us to write an even number signaling that the
1194 * update is finished. Since the guest won't see the intermediate
1195 * state, we just increase by 2 at the end.
1196 */
1197 vcpu->hv_clock.version += 2;
1198
1199 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1200
1201 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1202 sizeof(vcpu->hv_clock));
1203
1204 kunmap_atomic(shared_kaddr, KM_USER0);
1205
1206 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1207 return 0;
1208}
1209
1210static bool msr_mtrr_valid(unsigned msr)
1211{
1212 switch (msr) {
1213 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1214 case MSR_MTRRfix64K_00000:
1215 case MSR_MTRRfix16K_80000:
1216 case MSR_MTRRfix16K_A0000:
1217 case MSR_MTRRfix4K_C0000:
1218 case MSR_MTRRfix4K_C8000:
1219 case MSR_MTRRfix4K_D0000:
1220 case MSR_MTRRfix4K_D8000:
1221 case MSR_MTRRfix4K_E0000:
1222 case MSR_MTRRfix4K_E8000:
1223 case MSR_MTRRfix4K_F0000:
1224 case MSR_MTRRfix4K_F8000:
1225 case MSR_MTRRdefType:
1226 case MSR_IA32_CR_PAT:
1227 return true;
1228 case 0x2f8:
1229 return true;
1230 }
1231 return false;
1232}
1233
1234static bool valid_pat_type(unsigned t)
1235{
1236 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1237}
1238
1239static bool valid_mtrr_type(unsigned t)
1240{
1241 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1242}
1243
1244static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1245{
1246 int i;
1247
1248 if (!msr_mtrr_valid(msr))
1249 return false;
1250
1251 if (msr == MSR_IA32_CR_PAT) {
1252 for (i = 0; i < 8; i++)
1253 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1254 return false;
1255 return true;
1256 } else if (msr == MSR_MTRRdefType) {
1257 if (data & ~0xcff)
1258 return false;
1259 return valid_mtrr_type(data & 0xff);
1260 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1261 for (i = 0; i < 8 ; i++)
1262 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1263 return false;
1264 return true;
1265 }
1266
1267 /* variable MTRRs */
1268 return valid_mtrr_type(data & 0xff);
1269}
1270
1271static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1272{
1273 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1274
1275 if (!mtrr_valid(vcpu, msr, data))
1276 return 1;
1277
1278 if (msr == MSR_MTRRdefType) {
1279 vcpu->arch.mtrr_state.def_type = data;
1280 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1281 } else if (msr == MSR_MTRRfix64K_00000)
1282 p[0] = data;
1283 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1284 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1285 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1286 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1287 else if (msr == MSR_IA32_CR_PAT)
1288 vcpu->arch.pat = data;
1289 else { /* Variable MTRRs */
1290 int idx, is_mtrr_mask;
1291 u64 *pt;
1292
1293 idx = (msr - 0x200) / 2;
1294 is_mtrr_mask = msr - 0x200 - 2 * idx;
1295 if (!is_mtrr_mask)
1296 pt =
1297 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1298 else
1299 pt =
1300 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1301 *pt = data;
1302 }
1303
1304 kvm_mmu_reset_context(vcpu);
1305 return 0;
1306}
1307
1308static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1309{
1310 u64 mcg_cap = vcpu->arch.mcg_cap;
1311 unsigned bank_num = mcg_cap & 0xff;
1312
1313 switch (msr) {
1314 case MSR_IA32_MCG_STATUS:
1315 vcpu->arch.mcg_status = data;
1316 break;
1317 case MSR_IA32_MCG_CTL:
1318 if (!(mcg_cap & MCG_CTL_P))
1319 return 1;
1320 if (data != 0 && data != ~(u64)0)
1321 return -1;
1322 vcpu->arch.mcg_ctl = data;
1323 break;
1324 default:
1325 if (msr >= MSR_IA32_MC0_CTL &&
1326 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1327 u32 offset = msr - MSR_IA32_MC0_CTL;
1328 /* only 0 or all 1s can be written to IA32_MCi_CTL
1329 * some Linux kernels though clear bit 10 in bank 4 to
1330 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1331 * this to avoid an uncatched #GP in the guest
1332 */
1333 if ((offset & 0x3) == 0 &&
1334 data != 0 && (data | (1 << 10)) != ~(u64)0)
1335 return -1;
1336 vcpu->arch.mce_banks[offset] = data;
1337 break;
1338 }
1339 return 1;
1340 }
1341 return 0;
1342}
1343
1344static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1345{
1346 struct kvm *kvm = vcpu->kvm;
1347 int lm = is_long_mode(vcpu);
1348 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1349 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1350 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1351 : kvm->arch.xen_hvm_config.blob_size_32;
1352 u32 page_num = data & ~PAGE_MASK;
1353 u64 page_addr = data & PAGE_MASK;
1354 u8 *page;
1355 int r;
1356
1357 r = -E2BIG;
1358 if (page_num >= blob_size)
1359 goto out;
1360 r = -ENOMEM;
1361 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1362 if (!page)
1363 goto out;
1364 r = -EFAULT;
1365 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1366 goto out_free;
1367 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1368 goto out_free;
1369 r = 0;
1370out_free:
1371 kfree(page);
1372out:
1373 return r;
1374}
1375
1376static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1377{
1378 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1379}
1380
1381static bool kvm_hv_msr_partition_wide(u32 msr)
1382{
1383 bool r = false;
1384 switch (msr) {
1385 case HV_X64_MSR_GUEST_OS_ID:
1386 case HV_X64_MSR_HYPERCALL:
1387 r = true;
1388 break;
1389 }
1390
1391 return r;
1392}
1393
1394static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1395{
1396 struct kvm *kvm = vcpu->kvm;
1397
1398 switch (msr) {
1399 case HV_X64_MSR_GUEST_OS_ID:
1400 kvm->arch.hv_guest_os_id = data;
1401 /* setting guest os id to zero disables hypercall page */
1402 if (!kvm->arch.hv_guest_os_id)
1403 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1404 break;
1405 case HV_X64_MSR_HYPERCALL: {
1406 u64 gfn;
1407 unsigned long addr;
1408 u8 instructions[4];
1409
1410 /* if guest os id is not set hypercall should remain disabled */
1411 if (!kvm->arch.hv_guest_os_id)
1412 break;
1413 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1414 kvm->arch.hv_hypercall = data;
1415 break;
1416 }
1417 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1418 addr = gfn_to_hva(kvm, gfn);
1419 if (kvm_is_error_hva(addr))
1420 return 1;
1421 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1422 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1423 if (__copy_to_user((void __user *)addr, instructions, 4))
1424 return 1;
1425 kvm->arch.hv_hypercall = data;
1426 break;
1427 }
1428 default:
1429 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1430 "data 0x%llx\n", msr, data);
1431 return 1;
1432 }
1433 return 0;
1434}
1435
1436static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1437{
1438 switch (msr) {
1439 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1440 unsigned long addr;
1441
1442 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1443 vcpu->arch.hv_vapic = data;
1444 break;
1445 }
1446 addr = gfn_to_hva(vcpu->kvm, data >>
1447 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1448 if (kvm_is_error_hva(addr))
1449 return 1;
1450 if (__clear_user((void __user *)addr, PAGE_SIZE))
1451 return 1;
1452 vcpu->arch.hv_vapic = data;
1453 break;
1454 }
1455 case HV_X64_MSR_EOI:
1456 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1457 case HV_X64_MSR_ICR:
1458 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1459 case HV_X64_MSR_TPR:
1460 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1461 default:
1462 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1463 "data 0x%llx\n", msr, data);
1464 return 1;
1465 }
1466
1467 return 0;
1468}
1469
1470static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1471{
1472 gpa_t gpa = data & ~0x3f;
1473
1474 /* Bits 2:5 are resrved, Should be zero */
1475 if (data & 0x3c)
1476 return 1;
1477
1478 vcpu->arch.apf.msr_val = data;
1479
1480 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1481 kvm_clear_async_pf_completion_queue(vcpu);
1482 kvm_async_pf_hash_reset(vcpu);
1483 return 0;
1484 }
1485
1486 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1487 return 1;
1488
1489 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1490 kvm_async_pf_wakeup_all(vcpu);
1491 return 0;
1492}
1493
1494static void kvmclock_reset(struct kvm_vcpu *vcpu)
1495{
1496 if (vcpu->arch.time_page) {
1497 kvm_release_page_dirty(vcpu->arch.time_page);
1498 vcpu->arch.time_page = NULL;
1499 }
1500}
1501
1502static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1503{
1504 u64 delta;
1505
1506 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1507 return;
1508
1509 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1510 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1511 vcpu->arch.st.accum_steal = delta;
1512}
1513
1514static void record_steal_time(struct kvm_vcpu *vcpu)
1515{
1516 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1517 return;
1518
1519 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1520 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1521 return;
1522
1523 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1524 vcpu->arch.st.steal.version += 2;
1525 vcpu->arch.st.accum_steal = 0;
1526
1527 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1528 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1529}
1530
1531int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1532{
1533 switch (msr) {
1534 case MSR_EFER:
1535 return set_efer(vcpu, data);
1536 case MSR_K7_HWCR:
1537 data &= ~(u64)0x40; /* ignore flush filter disable */
1538 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1539 if (data != 0) {
1540 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1541 data);
1542 return 1;
1543 }
1544 break;
1545 case MSR_FAM10H_MMIO_CONF_BASE:
1546 if (data != 0) {
1547 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1548 "0x%llx\n", data);
1549 return 1;
1550 }
1551 break;
1552 case MSR_AMD64_NB_CFG:
1553 break;
1554 case MSR_IA32_DEBUGCTLMSR:
1555 if (!data) {
1556 /* We support the non-activated case already */
1557 break;
1558 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1559 /* Values other than LBR and BTF are vendor-specific,
1560 thus reserved and should throw a #GP */
1561 return 1;
1562 }
1563 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1564 __func__, data);
1565 break;
1566 case MSR_IA32_UCODE_REV:
1567 case MSR_IA32_UCODE_WRITE:
1568 case MSR_VM_HSAVE_PA:
1569 case MSR_AMD64_PATCH_LOADER:
1570 break;
1571 case 0x200 ... 0x2ff:
1572 return set_msr_mtrr(vcpu, msr, data);
1573 case MSR_IA32_APICBASE:
1574 kvm_set_apic_base(vcpu, data);
1575 break;
1576 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1577 return kvm_x2apic_msr_write(vcpu, msr, data);
1578 case MSR_IA32_TSCDEADLINE:
1579 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1580 break;
1581 case MSR_IA32_MISC_ENABLE:
1582 vcpu->arch.ia32_misc_enable_msr = data;
1583 break;
1584 case MSR_KVM_WALL_CLOCK_NEW:
1585 case MSR_KVM_WALL_CLOCK:
1586 vcpu->kvm->arch.wall_clock = data;
1587 kvm_write_wall_clock(vcpu->kvm, data);
1588 break;
1589 case MSR_KVM_SYSTEM_TIME_NEW:
1590 case MSR_KVM_SYSTEM_TIME: {
1591 kvmclock_reset(vcpu);
1592
1593 vcpu->arch.time = data;
1594 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1595
1596 /* we verify if the enable bit is set... */
1597 if (!(data & 1))
1598 break;
1599
1600 /* ...but clean it before doing the actual write */
1601 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1602
1603 vcpu->arch.time_page =
1604 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1605
1606 if (is_error_page(vcpu->arch.time_page)) {
1607 kvm_release_page_clean(vcpu->arch.time_page);
1608 vcpu->arch.time_page = NULL;
1609 }
1610 break;
1611 }
1612 case MSR_KVM_ASYNC_PF_EN:
1613 if (kvm_pv_enable_async_pf(vcpu, data))
1614 return 1;
1615 break;
1616 case MSR_KVM_STEAL_TIME:
1617
1618 if (unlikely(!sched_info_on()))
1619 return 1;
1620
1621 if (data & KVM_STEAL_RESERVED_MASK)
1622 return 1;
1623
1624 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1625 data & KVM_STEAL_VALID_BITS))
1626 return 1;
1627
1628 vcpu->arch.st.msr_val = data;
1629
1630 if (!(data & KVM_MSR_ENABLED))
1631 break;
1632
1633 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1634
1635 preempt_disable();
1636 accumulate_steal_time(vcpu);
1637 preempt_enable();
1638
1639 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1640
1641 break;
1642
1643 case MSR_IA32_MCG_CTL:
1644 case MSR_IA32_MCG_STATUS:
1645 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1646 return set_msr_mce(vcpu, msr, data);
1647
1648 /* Performance counters are not protected by a CPUID bit,
1649 * so we should check all of them in the generic path for the sake of
1650 * cross vendor migration.
1651 * Writing a zero into the event select MSRs disables them,
1652 * which we perfectly emulate ;-). Any other value should be at least
1653 * reported, some guests depend on them.
1654 */
1655 case MSR_P6_EVNTSEL0:
1656 case MSR_P6_EVNTSEL1:
1657 case MSR_K7_EVNTSEL0:
1658 case MSR_K7_EVNTSEL1:
1659 case MSR_K7_EVNTSEL2:
1660 case MSR_K7_EVNTSEL3:
1661 if (data != 0)
1662 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1663 "0x%x data 0x%llx\n", msr, data);
1664 break;
1665 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1666 * so we ignore writes to make it happy.
1667 */
1668 case MSR_P6_PERFCTR0:
1669 case MSR_P6_PERFCTR1:
1670 case MSR_K7_PERFCTR0:
1671 case MSR_K7_PERFCTR1:
1672 case MSR_K7_PERFCTR2:
1673 case MSR_K7_PERFCTR3:
1674 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1675 "0x%x data 0x%llx\n", msr, data);
1676 break;
1677 case MSR_K7_CLK_CTL:
1678 /*
1679 * Ignore all writes to this no longer documented MSR.
1680 * Writes are only relevant for old K7 processors,
1681 * all pre-dating SVM, but a recommended workaround from
1682 * AMD for these chips. It is possible to speicify the
1683 * affected processor models on the command line, hence
1684 * the need to ignore the workaround.
1685 */
1686 break;
1687 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1688 if (kvm_hv_msr_partition_wide(msr)) {
1689 int r;
1690 mutex_lock(&vcpu->kvm->lock);
1691 r = set_msr_hyperv_pw(vcpu, msr, data);
1692 mutex_unlock(&vcpu->kvm->lock);
1693 return r;
1694 } else
1695 return set_msr_hyperv(vcpu, msr, data);
1696 break;
1697 case MSR_IA32_BBL_CR_CTL3:
1698 /* Drop writes to this legacy MSR -- see rdmsr
1699 * counterpart for further detail.
1700 */
1701 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1702 break;
1703 default:
1704 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1705 return xen_hvm_config(vcpu, data);
1706 if (!ignore_msrs) {
1707 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1708 msr, data);
1709 return 1;
1710 } else {
1711 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1712 msr, data);
1713 break;
1714 }
1715 }
1716 return 0;
1717}
1718EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1719
1720
1721/*
1722 * Reads an msr value (of 'msr_index') into 'pdata'.
1723 * Returns 0 on success, non-0 otherwise.
1724 * Assumes vcpu_load() was already called.
1725 */
1726int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1727{
1728 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1729}
1730
1731static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1732{
1733 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1734
1735 if (!msr_mtrr_valid(msr))
1736 return 1;
1737
1738 if (msr == MSR_MTRRdefType)
1739 *pdata = vcpu->arch.mtrr_state.def_type +
1740 (vcpu->arch.mtrr_state.enabled << 10);
1741 else if (msr == MSR_MTRRfix64K_00000)
1742 *pdata = p[0];
1743 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1744 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1745 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1746 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1747 else if (msr == MSR_IA32_CR_PAT)
1748 *pdata = vcpu->arch.pat;
1749 else { /* Variable MTRRs */
1750 int idx, is_mtrr_mask;
1751 u64 *pt;
1752
1753 idx = (msr - 0x200) / 2;
1754 is_mtrr_mask = msr - 0x200 - 2 * idx;
1755 if (!is_mtrr_mask)
1756 pt =
1757 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1758 else
1759 pt =
1760 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1761 *pdata = *pt;
1762 }
1763
1764 return 0;
1765}
1766
1767static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1768{
1769 u64 data;
1770 u64 mcg_cap = vcpu->arch.mcg_cap;
1771 unsigned bank_num = mcg_cap & 0xff;
1772
1773 switch (msr) {
1774 case MSR_IA32_P5_MC_ADDR:
1775 case MSR_IA32_P5_MC_TYPE:
1776 data = 0;
1777 break;
1778 case MSR_IA32_MCG_CAP:
1779 data = vcpu->arch.mcg_cap;
1780 break;
1781 case MSR_IA32_MCG_CTL:
1782 if (!(mcg_cap & MCG_CTL_P))
1783 return 1;
1784 data = vcpu->arch.mcg_ctl;
1785 break;
1786 case MSR_IA32_MCG_STATUS:
1787 data = vcpu->arch.mcg_status;
1788 break;
1789 default:
1790 if (msr >= MSR_IA32_MC0_CTL &&
1791 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1792 u32 offset = msr - MSR_IA32_MC0_CTL;
1793 data = vcpu->arch.mce_banks[offset];
1794 break;
1795 }
1796 return 1;
1797 }
1798 *pdata = data;
1799 return 0;
1800}
1801
1802static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1803{
1804 u64 data = 0;
1805 struct kvm *kvm = vcpu->kvm;
1806
1807 switch (msr) {
1808 case HV_X64_MSR_GUEST_OS_ID:
1809 data = kvm->arch.hv_guest_os_id;
1810 break;
1811 case HV_X64_MSR_HYPERCALL:
1812 data = kvm->arch.hv_hypercall;
1813 break;
1814 default:
1815 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1816 return 1;
1817 }
1818
1819 *pdata = data;
1820 return 0;
1821}
1822
1823static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1824{
1825 u64 data = 0;
1826
1827 switch (msr) {
1828 case HV_X64_MSR_VP_INDEX: {
1829 int r;
1830 struct kvm_vcpu *v;
1831 kvm_for_each_vcpu(r, v, vcpu->kvm)
1832 if (v == vcpu)
1833 data = r;
1834 break;
1835 }
1836 case HV_X64_MSR_EOI:
1837 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1838 case HV_X64_MSR_ICR:
1839 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1840 case HV_X64_MSR_TPR:
1841 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1842 case HV_X64_MSR_APIC_ASSIST_PAGE:
1843 data = vcpu->arch.hv_vapic;
1844 break;
1845 default:
1846 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1847 return 1;
1848 }
1849 *pdata = data;
1850 return 0;
1851}
1852
1853int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1854{
1855 u64 data;
1856
1857 switch (msr) {
1858 case MSR_IA32_PLATFORM_ID:
1859 case MSR_IA32_EBL_CR_POWERON:
1860 case MSR_IA32_DEBUGCTLMSR:
1861 case MSR_IA32_LASTBRANCHFROMIP:
1862 case MSR_IA32_LASTBRANCHTOIP:
1863 case MSR_IA32_LASTINTFROMIP:
1864 case MSR_IA32_LASTINTTOIP:
1865 case MSR_K8_SYSCFG:
1866 case MSR_K7_HWCR:
1867 case MSR_VM_HSAVE_PA:
1868 case MSR_P6_PERFCTR0:
1869 case MSR_P6_PERFCTR1:
1870 case MSR_P6_EVNTSEL0:
1871 case MSR_P6_EVNTSEL1:
1872 case MSR_K7_EVNTSEL0:
1873 case MSR_K7_PERFCTR0:
1874 case MSR_K8_INT_PENDING_MSG:
1875 case MSR_AMD64_NB_CFG:
1876 case MSR_FAM10H_MMIO_CONF_BASE:
1877 data = 0;
1878 break;
1879 case MSR_IA32_UCODE_REV:
1880 data = 0x100000000ULL;
1881 break;
1882 case MSR_MTRRcap:
1883 data = 0x500 | KVM_NR_VAR_MTRR;
1884 break;
1885 case 0x200 ... 0x2ff:
1886 return get_msr_mtrr(vcpu, msr, pdata);
1887 case 0xcd: /* fsb frequency */
1888 data = 3;
1889 break;
1890 /*
1891 * MSR_EBC_FREQUENCY_ID
1892 * Conservative value valid for even the basic CPU models.
1893 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1894 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1895 * and 266MHz for model 3, or 4. Set Core Clock
1896 * Frequency to System Bus Frequency Ratio to 1 (bits
1897 * 31:24) even though these are only valid for CPU
1898 * models > 2, however guests may end up dividing or
1899 * multiplying by zero otherwise.
1900 */
1901 case MSR_EBC_FREQUENCY_ID:
1902 data = 1 << 24;
1903 break;
1904 case MSR_IA32_APICBASE:
1905 data = kvm_get_apic_base(vcpu);
1906 break;
1907 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1908 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1909 break;
1910 case MSR_IA32_TSCDEADLINE:
1911 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1912 break;
1913 case MSR_IA32_MISC_ENABLE:
1914 data = vcpu->arch.ia32_misc_enable_msr;
1915 break;
1916 case MSR_IA32_PERF_STATUS:
1917 /* TSC increment by tick */
1918 data = 1000ULL;
1919 /* CPU multiplier */
1920 data |= (((uint64_t)4ULL) << 40);
1921 break;
1922 case MSR_EFER:
1923 data = vcpu->arch.efer;
1924 break;
1925 case MSR_KVM_WALL_CLOCK:
1926 case MSR_KVM_WALL_CLOCK_NEW:
1927 data = vcpu->kvm->arch.wall_clock;
1928 break;
1929 case MSR_KVM_SYSTEM_TIME:
1930 case MSR_KVM_SYSTEM_TIME_NEW:
1931 data = vcpu->arch.time;
1932 break;
1933 case MSR_KVM_ASYNC_PF_EN:
1934 data = vcpu->arch.apf.msr_val;
1935 break;
1936 case MSR_KVM_STEAL_TIME:
1937 data = vcpu->arch.st.msr_val;
1938 break;
1939 case MSR_IA32_P5_MC_ADDR:
1940 case MSR_IA32_P5_MC_TYPE:
1941 case MSR_IA32_MCG_CAP:
1942 case MSR_IA32_MCG_CTL:
1943 case MSR_IA32_MCG_STATUS:
1944 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1945 return get_msr_mce(vcpu, msr, pdata);
1946 case MSR_K7_CLK_CTL:
1947 /*
1948 * Provide expected ramp-up count for K7. All other
1949 * are set to zero, indicating minimum divisors for
1950 * every field.
1951 *
1952 * This prevents guest kernels on AMD host with CPU
1953 * type 6, model 8 and higher from exploding due to
1954 * the rdmsr failing.
1955 */
1956 data = 0x20000000;
1957 break;
1958 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1959 if (kvm_hv_msr_partition_wide(msr)) {
1960 int r;
1961 mutex_lock(&vcpu->kvm->lock);
1962 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1963 mutex_unlock(&vcpu->kvm->lock);
1964 return r;
1965 } else
1966 return get_msr_hyperv(vcpu, msr, pdata);
1967 break;
1968 case MSR_IA32_BBL_CR_CTL3:
1969 /* This legacy MSR exists but isn't fully documented in current
1970 * silicon. It is however accessed by winxp in very narrow
1971 * scenarios where it sets bit #19, itself documented as
1972 * a "reserved" bit. Best effort attempt to source coherent
1973 * read data here should the balance of the register be
1974 * interpreted by the guest:
1975 *
1976 * L2 cache control register 3: 64GB range, 256KB size,
1977 * enabled, latency 0x1, configured
1978 */
1979 data = 0xbe702111;
1980 break;
1981 default:
1982 if (!ignore_msrs) {
1983 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1984 return 1;
1985 } else {
1986 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1987 data = 0;
1988 }
1989 break;
1990 }
1991 *pdata = data;
1992 return 0;
1993}
1994EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1995
1996/*
1997 * Read or write a bunch of msrs. All parameters are kernel addresses.
1998 *
1999 * @return number of msrs set successfully.
2000 */
2001static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2002 struct kvm_msr_entry *entries,
2003 int (*do_msr)(struct kvm_vcpu *vcpu,
2004 unsigned index, u64 *data))
2005{
2006 int i, idx;
2007
2008 idx = srcu_read_lock(&vcpu->kvm->srcu);
2009 for (i = 0; i < msrs->nmsrs; ++i)
2010 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2011 break;
2012 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2013
2014 return i;
2015}
2016
2017/*
2018 * Read or write a bunch of msrs. Parameters are user addresses.
2019 *
2020 * @return number of msrs set successfully.
2021 */
2022static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2023 int (*do_msr)(struct kvm_vcpu *vcpu,
2024 unsigned index, u64 *data),
2025 int writeback)
2026{
2027 struct kvm_msrs msrs;
2028 struct kvm_msr_entry *entries;
2029 int r, n;
2030 unsigned size;
2031
2032 r = -EFAULT;
2033 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2034 goto out;
2035
2036 r = -E2BIG;
2037 if (msrs.nmsrs >= MAX_IO_MSRS)
2038 goto out;
2039
2040 r = -ENOMEM;
2041 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2042 entries = kmalloc(size, GFP_KERNEL);
2043 if (!entries)
2044 goto out;
2045
2046 r = -EFAULT;
2047 if (copy_from_user(entries, user_msrs->entries, size))
2048 goto out_free;
2049
2050 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2051 if (r < 0)
2052 goto out_free;
2053
2054 r = -EFAULT;
2055 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2056 goto out_free;
2057
2058 r = n;
2059
2060out_free:
2061 kfree(entries);
2062out:
2063 return r;
2064}
2065
2066int kvm_dev_ioctl_check_extension(long ext)
2067{
2068 int r;
2069
2070 switch (ext) {
2071 case KVM_CAP_IRQCHIP:
2072 case KVM_CAP_HLT:
2073 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2074 case KVM_CAP_SET_TSS_ADDR:
2075 case KVM_CAP_EXT_CPUID:
2076 case KVM_CAP_CLOCKSOURCE:
2077 case KVM_CAP_PIT:
2078 case KVM_CAP_NOP_IO_DELAY:
2079 case KVM_CAP_MP_STATE:
2080 case KVM_CAP_SYNC_MMU:
2081 case KVM_CAP_USER_NMI:
2082 case KVM_CAP_REINJECT_CONTROL:
2083 case KVM_CAP_IRQ_INJECT_STATUS:
2084 case KVM_CAP_ASSIGN_DEV_IRQ:
2085 case KVM_CAP_IRQFD:
2086 case KVM_CAP_IOEVENTFD:
2087 case KVM_CAP_PIT2:
2088 case KVM_CAP_PIT_STATE2:
2089 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2090 case KVM_CAP_XEN_HVM:
2091 case KVM_CAP_ADJUST_CLOCK:
2092 case KVM_CAP_VCPU_EVENTS:
2093 case KVM_CAP_HYPERV:
2094 case KVM_CAP_HYPERV_VAPIC:
2095 case KVM_CAP_HYPERV_SPIN:
2096 case KVM_CAP_PCI_SEGMENT:
2097 case KVM_CAP_DEBUGREGS:
2098 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2099 case KVM_CAP_XSAVE:
2100 case KVM_CAP_ASYNC_PF:
2101 case KVM_CAP_GET_TSC_KHZ:
2102 r = 1;
2103 break;
2104 case KVM_CAP_COALESCED_MMIO:
2105 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2106 break;
2107 case KVM_CAP_VAPIC:
2108 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2109 break;
2110 case KVM_CAP_NR_VCPUS:
2111 r = KVM_SOFT_MAX_VCPUS;
2112 break;
2113 case KVM_CAP_MAX_VCPUS:
2114 r = KVM_MAX_VCPUS;
2115 break;
2116 case KVM_CAP_NR_MEMSLOTS:
2117 r = KVM_MEMORY_SLOTS;
2118 break;
2119 case KVM_CAP_PV_MMU: /* obsolete */
2120 r = 0;
2121 break;
2122 case KVM_CAP_IOMMU:
2123 r = iommu_present(&pci_bus_type);
2124 break;
2125 case KVM_CAP_MCE:
2126 r = KVM_MAX_MCE_BANKS;
2127 break;
2128 case KVM_CAP_XCRS:
2129 r = cpu_has_xsave;
2130 break;
2131 case KVM_CAP_TSC_CONTROL:
2132 r = kvm_has_tsc_control;
2133 break;
2134 case KVM_CAP_TSC_DEADLINE_TIMER:
2135 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2136 break;
2137 default:
2138 r = 0;
2139 break;
2140 }
2141 return r;
2142
2143}
2144
2145long kvm_arch_dev_ioctl(struct file *filp,
2146 unsigned int ioctl, unsigned long arg)
2147{
2148 void __user *argp = (void __user *)arg;
2149 long r;
2150
2151 switch (ioctl) {
2152 case KVM_GET_MSR_INDEX_LIST: {
2153 struct kvm_msr_list __user *user_msr_list = argp;
2154 struct kvm_msr_list msr_list;
2155 unsigned n;
2156
2157 r = -EFAULT;
2158 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2159 goto out;
2160 n = msr_list.nmsrs;
2161 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2162 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2163 goto out;
2164 r = -E2BIG;
2165 if (n < msr_list.nmsrs)
2166 goto out;
2167 r = -EFAULT;
2168 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2169 num_msrs_to_save * sizeof(u32)))
2170 goto out;
2171 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2172 &emulated_msrs,
2173 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2174 goto out;
2175 r = 0;
2176 break;
2177 }
2178 case KVM_GET_SUPPORTED_CPUID: {
2179 struct kvm_cpuid2 __user *cpuid_arg = argp;
2180 struct kvm_cpuid2 cpuid;
2181
2182 r = -EFAULT;
2183 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2184 goto out;
2185 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2186 cpuid_arg->entries);
2187 if (r)
2188 goto out;
2189
2190 r = -EFAULT;
2191 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2192 goto out;
2193 r = 0;
2194 break;
2195 }
2196 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2197 u64 mce_cap;
2198
2199 mce_cap = KVM_MCE_CAP_SUPPORTED;
2200 r = -EFAULT;
2201 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2202 goto out;
2203 r = 0;
2204 break;
2205 }
2206 default:
2207 r = -EINVAL;
2208 }
2209out:
2210 return r;
2211}
2212
2213static void wbinvd_ipi(void *garbage)
2214{
2215 wbinvd();
2216}
2217
2218static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2219{
2220 return vcpu->kvm->arch.iommu_domain &&
2221 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2222}
2223
2224void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2225{
2226 /* Address WBINVD may be executed by guest */
2227 if (need_emulate_wbinvd(vcpu)) {
2228 if (kvm_x86_ops->has_wbinvd_exit())
2229 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2230 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2231 smp_call_function_single(vcpu->cpu,
2232 wbinvd_ipi, NULL, 1);
2233 }
2234
2235 kvm_x86_ops->vcpu_load(vcpu, cpu);
2236 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2237 /* Make sure TSC doesn't go backwards */
2238 s64 tsc_delta;
2239 u64 tsc;
2240
2241 tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2242 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2243 tsc - vcpu->arch.last_guest_tsc;
2244
2245 if (tsc_delta < 0)
2246 mark_tsc_unstable("KVM discovered backwards TSC");
2247 if (check_tsc_unstable()) {
2248 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2249 vcpu->arch.tsc_catchup = 1;
2250 }
2251 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2252 if (vcpu->cpu != cpu)
2253 kvm_migrate_timers(vcpu);
2254 vcpu->cpu = cpu;
2255 }
2256
2257 accumulate_steal_time(vcpu);
2258 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2259}
2260
2261void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2262{
2263 kvm_x86_ops->vcpu_put(vcpu);
2264 kvm_put_guest_fpu(vcpu);
2265 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2266}
2267
2268static int is_efer_nx(void)
2269{
2270 unsigned long long efer = 0;
2271
2272 rdmsrl_safe(MSR_EFER, &efer);
2273 return efer & EFER_NX;
2274}
2275
2276static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2277{
2278 int i;
2279 struct kvm_cpuid_entry2 *e, *entry;
2280
2281 entry = NULL;
2282 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2283 e = &vcpu->arch.cpuid_entries[i];
2284 if (e->function == 0x80000001) {
2285 entry = e;
2286 break;
2287 }
2288 }
2289 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2290 entry->edx &= ~(1 << 20);
2291 printk(KERN_INFO "kvm: guest NX capability removed\n");
2292 }
2293}
2294
2295/* when an old userspace process fills a new kernel module */
2296static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2297 struct kvm_cpuid *cpuid,
2298 struct kvm_cpuid_entry __user *entries)
2299{
2300 int r, i;
2301 struct kvm_cpuid_entry *cpuid_entries;
2302
2303 r = -E2BIG;
2304 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2305 goto out;
2306 r = -ENOMEM;
2307 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2308 if (!cpuid_entries)
2309 goto out;
2310 r = -EFAULT;
2311 if (copy_from_user(cpuid_entries, entries,
2312 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2313 goto out_free;
2314 for (i = 0; i < cpuid->nent; i++) {
2315 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2316 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2317 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2318 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2319 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2320 vcpu->arch.cpuid_entries[i].index = 0;
2321 vcpu->arch.cpuid_entries[i].flags = 0;
2322 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2323 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2324 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2325 }
2326 vcpu->arch.cpuid_nent = cpuid->nent;
2327 cpuid_fix_nx_cap(vcpu);
2328 r = 0;
2329 kvm_apic_set_version(vcpu);
2330 kvm_x86_ops->cpuid_update(vcpu);
2331 update_cpuid(vcpu);
2332
2333out_free:
2334 vfree(cpuid_entries);
2335out:
2336 return r;
2337}
2338
2339static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2340 struct kvm_cpuid2 *cpuid,
2341 struct kvm_cpuid_entry2 __user *entries)
2342{
2343 int r;
2344
2345 r = -E2BIG;
2346 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2347 goto out;
2348 r = -EFAULT;
2349 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2350 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2351 goto out;
2352 vcpu->arch.cpuid_nent = cpuid->nent;
2353 kvm_apic_set_version(vcpu);
2354 kvm_x86_ops->cpuid_update(vcpu);
2355 update_cpuid(vcpu);
2356 return 0;
2357
2358out:
2359 return r;
2360}
2361
2362static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2363 struct kvm_cpuid2 *cpuid,
2364 struct kvm_cpuid_entry2 __user *entries)
2365{
2366 int r;
2367
2368 r = -E2BIG;
2369 if (cpuid->nent < vcpu->arch.cpuid_nent)
2370 goto out;
2371 r = -EFAULT;
2372 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2373 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2374 goto out;
2375 return 0;
2376
2377out:
2378 cpuid->nent = vcpu->arch.cpuid_nent;
2379 return r;
2380}
2381
2382static void cpuid_mask(u32 *word, int wordnum)
2383{
2384 *word &= boot_cpu_data.x86_capability[wordnum];
2385}
2386
2387static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2388 u32 index)
2389{
2390 entry->function = function;
2391 entry->index = index;
2392 cpuid_count(entry->function, entry->index,
2393 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2394 entry->flags = 0;
2395}
2396
2397static bool supported_xcr0_bit(unsigned bit)
2398{
2399 u64 mask = ((u64)1 << bit);
2400
2401 return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
2402}
2403
2404#define F(x) bit(X86_FEATURE_##x)
2405
2406static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2407 u32 index, int *nent, int maxnent)
2408{
2409 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2410#ifdef CONFIG_X86_64
2411 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2412 ? F(GBPAGES) : 0;
2413 unsigned f_lm = F(LM);
2414#else
2415 unsigned f_gbpages = 0;
2416 unsigned f_lm = 0;
2417#endif
2418 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2419
2420 /* cpuid 1.edx */
2421 const u32 kvm_supported_word0_x86_features =
2422 F(FPU) | F(VME) | F(DE) | F(PSE) |
2423 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2424 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2425 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2426 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2427 0 /* Reserved, DS, ACPI */ | F(MMX) |
2428 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2429 0 /* HTT, TM, Reserved, PBE */;
2430 /* cpuid 0x80000001.edx */
2431 const u32 kvm_supported_word1_x86_features =
2432 F(FPU) | F(VME) | F(DE) | F(PSE) |
2433 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2434 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2435 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2436 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2437 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2438 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2439 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2440 /* cpuid 1.ecx */
2441 const u32 kvm_supported_word4_x86_features =
2442 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2443 0 /* DS-CPL, VMX, SMX, EST */ |
2444 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2445 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2446 0 /* Reserved, DCA */ | F(XMM4_1) |
2447 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2448 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2449 F(F16C) | F(RDRAND);
2450 /* cpuid 0x80000001.ecx */
2451 const u32 kvm_supported_word6_x86_features =
2452 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2453 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2454 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2455 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2456
2457 /* cpuid 0xC0000001.edx */
2458 const u32 kvm_supported_word5_x86_features =
2459 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2460 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2461 F(PMM) | F(PMM_EN);
2462
2463 /* cpuid 7.0.ebx */
2464 const u32 kvm_supported_word9_x86_features =
2465 F(SMEP) | F(FSGSBASE) | F(ERMS);
2466
2467 /* all calls to cpuid_count() should be made on the same cpu */
2468 get_cpu();
2469 do_cpuid_1_ent(entry, function, index);
2470 ++*nent;
2471
2472 switch (function) {
2473 case 0:
2474 entry->eax = min(entry->eax, (u32)0xd);
2475 break;
2476 case 1:
2477 entry->edx &= kvm_supported_word0_x86_features;
2478 cpuid_mask(&entry->edx, 0);
2479 entry->ecx &= kvm_supported_word4_x86_features;
2480 cpuid_mask(&entry->ecx, 4);
2481 /* we support x2apic emulation even if host does not support
2482 * it since we emulate x2apic in software */
2483 entry->ecx |= F(X2APIC);
2484 break;
2485 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2486 * may return different values. This forces us to get_cpu() before
2487 * issuing the first command, and also to emulate this annoying behavior
2488 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2489 case 2: {
2490 int t, times = entry->eax & 0xff;
2491
2492 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2493 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2494 for (t = 1; t < times && *nent < maxnent; ++t) {
2495 do_cpuid_1_ent(&entry[t], function, 0);
2496 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2497 ++*nent;
2498 }
2499 break;
2500 }
2501 /* function 4 has additional index. */
2502 case 4: {
2503 int i, cache_type;
2504
2505 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2506 /* read more entries until cache_type is zero */
2507 for (i = 1; *nent < maxnent; ++i) {
2508 cache_type = entry[i - 1].eax & 0x1f;
2509 if (!cache_type)
2510 break;
2511 do_cpuid_1_ent(&entry[i], function, i);
2512 entry[i].flags |=
2513 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2514 ++*nent;
2515 }
2516 break;
2517 }
2518 case 7: {
2519 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2520 /* Mask ebx against host capbability word 9 */
2521 if (index == 0) {
2522 entry->ebx &= kvm_supported_word9_x86_features;
2523 cpuid_mask(&entry->ebx, 9);
2524 } else
2525 entry->ebx = 0;
2526 entry->eax = 0;
2527 entry->ecx = 0;
2528 entry->edx = 0;
2529 break;
2530 }
2531 case 9:
2532 break;
2533 /* function 0xb has additional index. */
2534 case 0xb: {
2535 int i, level_type;
2536
2537 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2538 /* read more entries until level_type is zero */
2539 for (i = 1; *nent < maxnent; ++i) {
2540 level_type = entry[i - 1].ecx & 0xff00;
2541 if (!level_type)
2542 break;
2543 do_cpuid_1_ent(&entry[i], function, i);
2544 entry[i].flags |=
2545 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2546 ++*nent;
2547 }
2548 break;
2549 }
2550 case 0xd: {
2551 int idx, i;
2552
2553 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2554 for (idx = 1, i = 1; *nent < maxnent && idx < 64; ++idx) {
2555 do_cpuid_1_ent(&entry[i], function, idx);
2556 if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
2557 continue;
2558 entry[i].flags |=
2559 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2560 ++*nent;
2561 ++i;
2562 }
2563 break;
2564 }
2565 case KVM_CPUID_SIGNATURE: {
2566 char signature[12] = "KVMKVMKVM\0\0";
2567 u32 *sigptr = (u32 *)signature;
2568 entry->eax = 0;
2569 entry->ebx = sigptr[0];
2570 entry->ecx = sigptr[1];
2571 entry->edx = sigptr[2];
2572 break;
2573 }
2574 case KVM_CPUID_FEATURES:
2575 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2576 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2577 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2578 (1 << KVM_FEATURE_ASYNC_PF) |
2579 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2580
2581 if (sched_info_on())
2582 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
2583
2584 entry->ebx = 0;
2585 entry->ecx = 0;
2586 entry->edx = 0;
2587 break;
2588 case 0x80000000:
2589 entry->eax = min(entry->eax, 0x8000001a);
2590 break;
2591 case 0x80000001:
2592 entry->edx &= kvm_supported_word1_x86_features;
2593 cpuid_mask(&entry->edx, 1);
2594 entry->ecx &= kvm_supported_word6_x86_features;
2595 cpuid_mask(&entry->ecx, 6);
2596 break;
2597 case 0x80000008: {
2598 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
2599 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
2600 unsigned phys_as = entry->eax & 0xff;
2601
2602 if (!g_phys_as)
2603 g_phys_as = phys_as;
2604 entry->eax = g_phys_as | (virt_as << 8);
2605 entry->ebx = entry->edx = 0;
2606 break;
2607 }
2608 case 0x80000019:
2609 entry->ecx = entry->edx = 0;
2610 break;
2611 case 0x8000001a:
2612 break;
2613 case 0x8000001d:
2614 break;
2615 /*Add support for Centaur's CPUID instruction*/
2616 case 0xC0000000:
2617 /*Just support up to 0xC0000004 now*/
2618 entry->eax = min(entry->eax, 0xC0000004);
2619 break;
2620 case 0xC0000001:
2621 entry->edx &= kvm_supported_word5_x86_features;
2622 cpuid_mask(&entry->edx, 5);
2623 break;
2624 case 3: /* Processor serial number */
2625 case 5: /* MONITOR/MWAIT */
2626 case 6: /* Thermal management */
2627 case 0xA: /* Architectural Performance Monitoring */
2628 case 0x80000007: /* Advanced power management */
2629 case 0xC0000002:
2630 case 0xC0000003:
2631 case 0xC0000004:
2632 default:
2633 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
2634 break;
2635 }
2636
2637 kvm_x86_ops->set_supported_cpuid(function, entry);
2638
2639 put_cpu();
2640}
2641
2642#undef F
2643
2644static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2645 struct kvm_cpuid_entry2 __user *entries)
2646{
2647 struct kvm_cpuid_entry2 *cpuid_entries;
2648 int limit, nent = 0, r = -E2BIG;
2649 u32 func;
2650
2651 if (cpuid->nent < 1)
2652 goto out;
2653 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2654 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2655 r = -ENOMEM;
2656 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2657 if (!cpuid_entries)
2658 goto out;
2659
2660 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2661 limit = cpuid_entries[0].eax;
2662 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2663 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2664 &nent, cpuid->nent);
2665 r = -E2BIG;
2666 if (nent >= cpuid->nent)
2667 goto out_free;
2668
2669 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2670 limit = cpuid_entries[nent - 1].eax;
2671 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2672 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2673 &nent, cpuid->nent);
2674
2675
2676
2677 r = -E2BIG;
2678 if (nent >= cpuid->nent)
2679 goto out_free;
2680
2681 /* Add support for Centaur's CPUID instruction. */
2682 if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2683 do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2684 &nent, cpuid->nent);
2685
2686 r = -E2BIG;
2687 if (nent >= cpuid->nent)
2688 goto out_free;
2689
2690 limit = cpuid_entries[nent - 1].eax;
2691 for (func = 0xC0000001;
2692 func <= limit && nent < cpuid->nent; ++func)
2693 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2694 &nent, cpuid->nent);
2695
2696 r = -E2BIG;
2697 if (nent >= cpuid->nent)
2698 goto out_free;
2699 }
2700
2701 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2702 cpuid->nent);
2703
2704 r = -E2BIG;
2705 if (nent >= cpuid->nent)
2706 goto out_free;
2707
2708 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2709 cpuid->nent);
2710
2711 r = -E2BIG;
2712 if (nent >= cpuid->nent)
2713 goto out_free;
2714
2715 r = -EFAULT;
2716 if (copy_to_user(entries, cpuid_entries,
2717 nent * sizeof(struct kvm_cpuid_entry2)))
2718 goto out_free;
2719 cpuid->nent = nent;
2720 r = 0;
2721
2722out_free:
2723 vfree(cpuid_entries);
2724out:
2725 return r;
2726}
2727
2728static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2729 struct kvm_lapic_state *s)
2730{
2731 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2732
2733 return 0;
2734}
2735
2736static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2737 struct kvm_lapic_state *s)
2738{
2739 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2740 kvm_apic_post_state_restore(vcpu);
2741 update_cr8_intercept(vcpu);
2742
2743 return 0;
2744}
2745
2746static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2747 struct kvm_interrupt *irq)
2748{
2749 if (irq->irq < 0 || irq->irq >= 256)
2750 return -EINVAL;
2751 if (irqchip_in_kernel(vcpu->kvm))
2752 return -ENXIO;
2753
2754 kvm_queue_interrupt(vcpu, irq->irq, false);
2755 kvm_make_request(KVM_REQ_EVENT, vcpu);
2756
2757 return 0;
2758}
2759
2760static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2761{
2762 kvm_inject_nmi(vcpu);
2763
2764 return 0;
2765}
2766
2767static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2768 struct kvm_tpr_access_ctl *tac)
2769{
2770 if (tac->flags)
2771 return -EINVAL;
2772 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2773 return 0;
2774}
2775
2776static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2777 u64 mcg_cap)
2778{
2779 int r;
2780 unsigned bank_num = mcg_cap & 0xff, bank;
2781
2782 r = -EINVAL;
2783 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2784 goto out;
2785 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2786 goto out;
2787 r = 0;
2788 vcpu->arch.mcg_cap = mcg_cap;
2789 /* Init IA32_MCG_CTL to all 1s */
2790 if (mcg_cap & MCG_CTL_P)
2791 vcpu->arch.mcg_ctl = ~(u64)0;
2792 /* Init IA32_MCi_CTL to all 1s */
2793 for (bank = 0; bank < bank_num; bank++)
2794 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2795out:
2796 return r;
2797}
2798
2799static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2800 struct kvm_x86_mce *mce)
2801{
2802 u64 mcg_cap = vcpu->arch.mcg_cap;
2803 unsigned bank_num = mcg_cap & 0xff;
2804 u64 *banks = vcpu->arch.mce_banks;
2805
2806 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2807 return -EINVAL;
2808 /*
2809 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2810 * reporting is disabled
2811 */
2812 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2813 vcpu->arch.mcg_ctl != ~(u64)0)
2814 return 0;
2815 banks += 4 * mce->bank;
2816 /*
2817 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2818 * reporting is disabled for the bank
2819 */
2820 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2821 return 0;
2822 if (mce->status & MCI_STATUS_UC) {
2823 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2824 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2825 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2826 return 0;
2827 }
2828 if (banks[1] & MCI_STATUS_VAL)
2829 mce->status |= MCI_STATUS_OVER;
2830 banks[2] = mce->addr;
2831 banks[3] = mce->misc;
2832 vcpu->arch.mcg_status = mce->mcg_status;
2833 banks[1] = mce->status;
2834 kvm_queue_exception(vcpu, MC_VECTOR);
2835 } else if (!(banks[1] & MCI_STATUS_VAL)
2836 || !(banks[1] & MCI_STATUS_UC)) {
2837 if (banks[1] & MCI_STATUS_VAL)
2838 mce->status |= MCI_STATUS_OVER;
2839 banks[2] = mce->addr;
2840 banks[3] = mce->misc;
2841 banks[1] = mce->status;
2842 } else
2843 banks[1] |= MCI_STATUS_OVER;
2844 return 0;
2845}
2846
2847static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2848 struct kvm_vcpu_events *events)
2849{
2850 process_nmi(vcpu);
2851 events->exception.injected =
2852 vcpu->arch.exception.pending &&
2853 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2854 events->exception.nr = vcpu->arch.exception.nr;
2855 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2856 events->exception.pad = 0;
2857 events->exception.error_code = vcpu->arch.exception.error_code;
2858
2859 events->interrupt.injected =
2860 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2861 events->interrupt.nr = vcpu->arch.interrupt.nr;
2862 events->interrupt.soft = 0;
2863 events->interrupt.shadow =
2864 kvm_x86_ops->get_interrupt_shadow(vcpu,
2865 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2866
2867 events->nmi.injected = vcpu->arch.nmi_injected;
2868 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2869 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2870 events->nmi.pad = 0;
2871
2872 events->sipi_vector = vcpu->arch.sipi_vector;
2873
2874 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2875 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2876 | KVM_VCPUEVENT_VALID_SHADOW);
2877 memset(&events->reserved, 0, sizeof(events->reserved));
2878}
2879
2880static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2881 struct kvm_vcpu_events *events)
2882{
2883 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2884 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2885 | KVM_VCPUEVENT_VALID_SHADOW))
2886 return -EINVAL;
2887
2888 process_nmi(vcpu);
2889 vcpu->arch.exception.pending = events->exception.injected;
2890 vcpu->arch.exception.nr = events->exception.nr;
2891 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2892 vcpu->arch.exception.error_code = events->exception.error_code;
2893
2894 vcpu->arch.interrupt.pending = events->interrupt.injected;
2895 vcpu->arch.interrupt.nr = events->interrupt.nr;
2896 vcpu->arch.interrupt.soft = events->interrupt.soft;
2897 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2898 kvm_x86_ops->set_interrupt_shadow(vcpu,
2899 events->interrupt.shadow);
2900
2901 vcpu->arch.nmi_injected = events->nmi.injected;
2902 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2903 vcpu->arch.nmi_pending = events->nmi.pending;
2904 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2905
2906 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2907 vcpu->arch.sipi_vector = events->sipi_vector;
2908
2909 kvm_make_request(KVM_REQ_EVENT, vcpu);
2910
2911 return 0;
2912}
2913
2914static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2915 struct kvm_debugregs *dbgregs)
2916{
2917 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2918 dbgregs->dr6 = vcpu->arch.dr6;
2919 dbgregs->dr7 = vcpu->arch.dr7;
2920 dbgregs->flags = 0;
2921 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2922}
2923
2924static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2925 struct kvm_debugregs *dbgregs)
2926{
2927 if (dbgregs->flags)
2928 return -EINVAL;
2929
2930 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2931 vcpu->arch.dr6 = dbgregs->dr6;
2932 vcpu->arch.dr7 = dbgregs->dr7;
2933
2934 return 0;
2935}
2936
2937static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2938 struct kvm_xsave *guest_xsave)
2939{
2940 if (cpu_has_xsave)
2941 memcpy(guest_xsave->region,
2942 &vcpu->arch.guest_fpu.state->xsave,
2943 xstate_size);
2944 else {
2945 memcpy(guest_xsave->region,
2946 &vcpu->arch.guest_fpu.state->fxsave,
2947 sizeof(struct i387_fxsave_struct));
2948 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2949 XSTATE_FPSSE;
2950 }
2951}
2952
2953static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2954 struct kvm_xsave *guest_xsave)
2955{
2956 u64 xstate_bv =
2957 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2958
2959 if (cpu_has_xsave)
2960 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2961 guest_xsave->region, xstate_size);
2962 else {
2963 if (xstate_bv & ~XSTATE_FPSSE)
2964 return -EINVAL;
2965 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2966 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2967 }
2968 return 0;
2969}
2970
2971static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2972 struct kvm_xcrs *guest_xcrs)
2973{
2974 if (!cpu_has_xsave) {
2975 guest_xcrs->nr_xcrs = 0;
2976 return;
2977 }
2978
2979 guest_xcrs->nr_xcrs = 1;
2980 guest_xcrs->flags = 0;
2981 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2982 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2983}
2984
2985static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2986 struct kvm_xcrs *guest_xcrs)
2987{
2988 int i, r = 0;
2989
2990 if (!cpu_has_xsave)
2991 return -EINVAL;
2992
2993 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2994 return -EINVAL;
2995
2996 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2997 /* Only support XCR0 currently */
2998 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2999 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3000 guest_xcrs->xcrs[0].value);
3001 break;
3002 }
3003 if (r)
3004 r = -EINVAL;
3005 return r;
3006}
3007
3008long kvm_arch_vcpu_ioctl(struct file *filp,
3009 unsigned int ioctl, unsigned long arg)
3010{
3011 struct kvm_vcpu *vcpu = filp->private_data;
3012 void __user *argp = (void __user *)arg;
3013 int r;
3014 union {
3015 struct kvm_lapic_state *lapic;
3016 struct kvm_xsave *xsave;
3017 struct kvm_xcrs *xcrs;
3018 void *buffer;
3019 } u;
3020
3021 u.buffer = NULL;
3022 switch (ioctl) {
3023 case KVM_GET_LAPIC: {
3024 r = -EINVAL;
3025 if (!vcpu->arch.apic)
3026 goto out;
3027 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3028
3029 r = -ENOMEM;
3030 if (!u.lapic)
3031 goto out;
3032 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3033 if (r)
3034 goto out;
3035 r = -EFAULT;
3036 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3037 goto out;
3038 r = 0;
3039 break;
3040 }
3041 case KVM_SET_LAPIC: {
3042 r = -EINVAL;
3043 if (!vcpu->arch.apic)
3044 goto out;
3045 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3046 r = -ENOMEM;
3047 if (!u.lapic)
3048 goto out;
3049 r = -EFAULT;
3050 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
3051 goto out;
3052 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3053 if (r)
3054 goto out;
3055 r = 0;
3056 break;
3057 }
3058 case KVM_INTERRUPT: {
3059 struct kvm_interrupt irq;
3060
3061 r = -EFAULT;
3062 if (copy_from_user(&irq, argp, sizeof irq))
3063 goto out;
3064 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3065 if (r)
3066 goto out;
3067 r = 0;
3068 break;
3069 }
3070 case KVM_NMI: {
3071 r = kvm_vcpu_ioctl_nmi(vcpu);
3072 if (r)
3073 goto out;
3074 r = 0;
3075 break;
3076 }
3077 case KVM_SET_CPUID: {
3078 struct kvm_cpuid __user *cpuid_arg = argp;
3079 struct kvm_cpuid cpuid;
3080
3081 r = -EFAULT;
3082 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3083 goto out;
3084 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3085 if (r)
3086 goto out;
3087 break;
3088 }
3089 case KVM_SET_CPUID2: {
3090 struct kvm_cpuid2 __user *cpuid_arg = argp;
3091 struct kvm_cpuid2 cpuid;
3092
3093 r = -EFAULT;
3094 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3095 goto out;
3096 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3097 cpuid_arg->entries);
3098 if (r)
3099 goto out;
3100 break;
3101 }
3102 case KVM_GET_CPUID2: {
3103 struct kvm_cpuid2 __user *cpuid_arg = argp;
3104 struct kvm_cpuid2 cpuid;
3105
3106 r = -EFAULT;
3107 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3108 goto out;
3109 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3110 cpuid_arg->entries);
3111 if (r)
3112 goto out;
3113 r = -EFAULT;
3114 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3115 goto out;
3116 r = 0;
3117 break;
3118 }
3119 case KVM_GET_MSRS:
3120 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3121 break;
3122 case KVM_SET_MSRS:
3123 r = msr_io(vcpu, argp, do_set_msr, 0);
3124 break;
3125 case KVM_TPR_ACCESS_REPORTING: {
3126 struct kvm_tpr_access_ctl tac;
3127
3128 r = -EFAULT;
3129 if (copy_from_user(&tac, argp, sizeof tac))
3130 goto out;
3131 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3132 if (r)
3133 goto out;
3134 r = -EFAULT;
3135 if (copy_to_user(argp, &tac, sizeof tac))
3136 goto out;
3137 r = 0;
3138 break;
3139 };
3140 case KVM_SET_VAPIC_ADDR: {
3141 struct kvm_vapic_addr va;
3142
3143 r = -EINVAL;
3144 if (!irqchip_in_kernel(vcpu->kvm))
3145 goto out;
3146 r = -EFAULT;
3147 if (copy_from_user(&va, argp, sizeof va))
3148 goto out;
3149 r = 0;
3150 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3151 break;
3152 }
3153 case KVM_X86_SETUP_MCE: {
3154 u64 mcg_cap;
3155
3156 r = -EFAULT;
3157 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3158 goto out;
3159 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3160 break;
3161 }
3162 case KVM_X86_SET_MCE: {
3163 struct kvm_x86_mce mce;
3164
3165 r = -EFAULT;
3166 if (copy_from_user(&mce, argp, sizeof mce))
3167 goto out;
3168 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3169 break;
3170 }
3171 case KVM_GET_VCPU_EVENTS: {
3172 struct kvm_vcpu_events events;
3173
3174 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3175
3176 r = -EFAULT;
3177 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3178 break;
3179 r = 0;
3180 break;
3181 }
3182 case KVM_SET_VCPU_EVENTS: {
3183 struct kvm_vcpu_events events;
3184
3185 r = -EFAULT;
3186 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3187 break;
3188
3189 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3190 break;
3191 }
3192 case KVM_GET_DEBUGREGS: {
3193 struct kvm_debugregs dbgregs;
3194
3195 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3196
3197 r = -EFAULT;
3198 if (copy_to_user(argp, &dbgregs,
3199 sizeof(struct kvm_debugregs)))
3200 break;
3201 r = 0;
3202 break;
3203 }
3204 case KVM_SET_DEBUGREGS: {
3205 struct kvm_debugregs dbgregs;
3206
3207 r = -EFAULT;
3208 if (copy_from_user(&dbgregs, argp,
3209 sizeof(struct kvm_debugregs)))
3210 break;
3211
3212 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3213 break;
3214 }
3215 case KVM_GET_XSAVE: {
3216 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3217 r = -ENOMEM;
3218 if (!u.xsave)
3219 break;
3220
3221 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3222
3223 r = -EFAULT;
3224 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3225 break;
3226 r = 0;
3227 break;
3228 }
3229 case KVM_SET_XSAVE: {
3230 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3231 r = -ENOMEM;
3232 if (!u.xsave)
3233 break;
3234
3235 r = -EFAULT;
3236 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3237 break;
3238
3239 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3240 break;
3241 }
3242 case KVM_GET_XCRS: {
3243 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3244 r = -ENOMEM;
3245 if (!u.xcrs)
3246 break;
3247
3248 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3249
3250 r = -EFAULT;
3251 if (copy_to_user(argp, u.xcrs,
3252 sizeof(struct kvm_xcrs)))
3253 break;
3254 r = 0;
3255 break;
3256 }
3257 case KVM_SET_XCRS: {
3258 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3259 r = -ENOMEM;
3260 if (!u.xcrs)
3261 break;
3262
3263 r = -EFAULT;
3264 if (copy_from_user(u.xcrs, argp,
3265 sizeof(struct kvm_xcrs)))
3266 break;
3267
3268 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3269 break;
3270 }
3271 case KVM_SET_TSC_KHZ: {
3272 u32 user_tsc_khz;
3273
3274 r = -EINVAL;
3275 if (!kvm_has_tsc_control)
3276 break;
3277
3278 user_tsc_khz = (u32)arg;
3279
3280 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3281 goto out;
3282
3283 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3284
3285 r = 0;
3286 goto out;
3287 }
3288 case KVM_GET_TSC_KHZ: {
3289 r = -EIO;
3290 if (check_tsc_unstable())
3291 goto out;
3292
3293 r = vcpu_tsc_khz(vcpu);
3294
3295 goto out;
3296 }
3297 default:
3298 r = -EINVAL;
3299 }
3300out:
3301 kfree(u.buffer);
3302 return r;
3303}
3304
3305static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3306{
3307 int ret;
3308
3309 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3310 return -1;
3311 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3312 return ret;
3313}
3314
3315static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3316 u64 ident_addr)
3317{
3318 kvm->arch.ept_identity_map_addr = ident_addr;
3319 return 0;
3320}
3321
3322static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3323 u32 kvm_nr_mmu_pages)
3324{
3325 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3326 return -EINVAL;
3327
3328 mutex_lock(&kvm->slots_lock);
3329 spin_lock(&kvm->mmu_lock);
3330
3331 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3332 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3333
3334 spin_unlock(&kvm->mmu_lock);
3335 mutex_unlock(&kvm->slots_lock);
3336 return 0;
3337}
3338
3339static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3340{
3341 return kvm->arch.n_max_mmu_pages;
3342}
3343
3344static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3345{
3346 int r;
3347
3348 r = 0;
3349 switch (chip->chip_id) {
3350 case KVM_IRQCHIP_PIC_MASTER:
3351 memcpy(&chip->chip.pic,
3352 &pic_irqchip(kvm)->pics[0],
3353 sizeof(struct kvm_pic_state));
3354 break;
3355 case KVM_IRQCHIP_PIC_SLAVE:
3356 memcpy(&chip->chip.pic,
3357 &pic_irqchip(kvm)->pics[1],
3358 sizeof(struct kvm_pic_state));
3359 break;
3360 case KVM_IRQCHIP_IOAPIC:
3361 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3362 break;
3363 default:
3364 r = -EINVAL;
3365 break;
3366 }
3367 return r;
3368}
3369
3370static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3371{
3372 int r;
3373
3374 r = 0;
3375 switch (chip->chip_id) {
3376 case KVM_IRQCHIP_PIC_MASTER:
3377 spin_lock(&pic_irqchip(kvm)->lock);
3378 memcpy(&pic_irqchip(kvm)->pics[0],
3379 &chip->chip.pic,
3380 sizeof(struct kvm_pic_state));
3381 spin_unlock(&pic_irqchip(kvm)->lock);
3382 break;
3383 case KVM_IRQCHIP_PIC_SLAVE:
3384 spin_lock(&pic_irqchip(kvm)->lock);
3385 memcpy(&pic_irqchip(kvm)->pics[1],
3386 &chip->chip.pic,
3387 sizeof(struct kvm_pic_state));
3388 spin_unlock(&pic_irqchip(kvm)->lock);
3389 break;
3390 case KVM_IRQCHIP_IOAPIC:
3391 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3392 break;
3393 default:
3394 r = -EINVAL;
3395 break;
3396 }
3397 kvm_pic_update_irq(pic_irqchip(kvm));
3398 return r;
3399}
3400
3401static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3402{
3403 int r = 0;
3404
3405 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3406 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3407 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3408 return r;
3409}
3410
3411static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3412{
3413 int r = 0;
3414
3415 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3416 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3417 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3418 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3419 return r;
3420}
3421
3422static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3423{
3424 int r = 0;
3425
3426 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3427 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3428 sizeof(ps->channels));
3429 ps->flags = kvm->arch.vpit->pit_state.flags;
3430 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3431 memset(&ps->reserved, 0, sizeof(ps->reserved));
3432 return r;
3433}
3434
3435static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3436{
3437 int r = 0, start = 0;
3438 u32 prev_legacy, cur_legacy;
3439 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3440 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3441 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3442 if (!prev_legacy && cur_legacy)
3443 start = 1;
3444 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3445 sizeof(kvm->arch.vpit->pit_state.channels));
3446 kvm->arch.vpit->pit_state.flags = ps->flags;
3447 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3448 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3449 return r;
3450}
3451
3452static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3453 struct kvm_reinject_control *control)
3454{
3455 if (!kvm->arch.vpit)
3456 return -ENXIO;
3457 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3458 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3459 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3460 return 0;
3461}
3462
3463/*
3464 * Get (and clear) the dirty memory log for a memory slot.
3465 */
3466int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3467 struct kvm_dirty_log *log)
3468{
3469 int r, i;
3470 struct kvm_memory_slot *memslot;
3471 unsigned long n;
3472 unsigned long is_dirty = 0;
3473
3474 mutex_lock(&kvm->slots_lock);
3475
3476 r = -EINVAL;
3477 if (log->slot >= KVM_MEMORY_SLOTS)
3478 goto out;
3479
3480 memslot = &kvm->memslots->memslots[log->slot];
3481 r = -ENOENT;
3482 if (!memslot->dirty_bitmap)
3483 goto out;
3484
3485 n = kvm_dirty_bitmap_bytes(memslot);
3486
3487 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3488 is_dirty = memslot->dirty_bitmap[i];
3489
3490 /* If nothing is dirty, don't bother messing with page tables. */
3491 if (is_dirty) {
3492 struct kvm_memslots *slots, *old_slots;
3493 unsigned long *dirty_bitmap;
3494
3495 dirty_bitmap = memslot->dirty_bitmap_head;
3496 if (memslot->dirty_bitmap == dirty_bitmap)
3497 dirty_bitmap += n / sizeof(long);
3498 memset(dirty_bitmap, 0, n);
3499
3500 r = -ENOMEM;
3501 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3502 if (!slots)
3503 goto out;
3504 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3505 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3506 slots->generation++;
3507
3508 old_slots = kvm->memslots;
3509 rcu_assign_pointer(kvm->memslots, slots);
3510 synchronize_srcu_expedited(&kvm->srcu);
3511 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3512 kfree(old_slots);
3513
3514 spin_lock(&kvm->mmu_lock);
3515 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3516 spin_unlock(&kvm->mmu_lock);
3517
3518 r = -EFAULT;
3519 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3520 goto out;
3521 } else {
3522 r = -EFAULT;
3523 if (clear_user(log->dirty_bitmap, n))
3524 goto out;
3525 }
3526
3527 r = 0;
3528out:
3529 mutex_unlock(&kvm->slots_lock);
3530 return r;
3531}
3532
3533long kvm_arch_vm_ioctl(struct file *filp,
3534 unsigned int ioctl, unsigned long arg)
3535{
3536 struct kvm *kvm = filp->private_data;
3537 void __user *argp = (void __user *)arg;
3538 int r = -ENOTTY;
3539 /*
3540 * This union makes it completely explicit to gcc-3.x
3541 * that these two variables' stack usage should be
3542 * combined, not added together.
3543 */
3544 union {
3545 struct kvm_pit_state ps;
3546 struct kvm_pit_state2 ps2;
3547 struct kvm_pit_config pit_config;
3548 } u;
3549
3550 switch (ioctl) {
3551 case KVM_SET_TSS_ADDR:
3552 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3553 if (r < 0)
3554 goto out;
3555 break;
3556 case KVM_SET_IDENTITY_MAP_ADDR: {
3557 u64 ident_addr;
3558
3559 r = -EFAULT;
3560 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3561 goto out;
3562 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3563 if (r < 0)
3564 goto out;
3565 break;
3566 }
3567 case KVM_SET_NR_MMU_PAGES:
3568 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3569 if (r)
3570 goto out;
3571 break;
3572 case KVM_GET_NR_MMU_PAGES:
3573 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3574 break;
3575 case KVM_CREATE_IRQCHIP: {
3576 struct kvm_pic *vpic;
3577
3578 mutex_lock(&kvm->lock);
3579 r = -EEXIST;
3580 if (kvm->arch.vpic)
3581 goto create_irqchip_unlock;
3582 r = -ENOMEM;
3583 vpic = kvm_create_pic(kvm);
3584 if (vpic) {
3585 r = kvm_ioapic_init(kvm);
3586 if (r) {
3587 mutex_lock(&kvm->slots_lock);
3588 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3589 &vpic->dev_master);
3590 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3591 &vpic->dev_slave);
3592 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3593 &vpic->dev_eclr);
3594 mutex_unlock(&kvm->slots_lock);
3595 kfree(vpic);
3596 goto create_irqchip_unlock;
3597 }
3598 } else
3599 goto create_irqchip_unlock;
3600 smp_wmb();
3601 kvm->arch.vpic = vpic;
3602 smp_wmb();
3603 r = kvm_setup_default_irq_routing(kvm);
3604 if (r) {
3605 mutex_lock(&kvm->slots_lock);
3606 mutex_lock(&kvm->irq_lock);
3607 kvm_ioapic_destroy(kvm);
3608 kvm_destroy_pic(kvm);
3609 mutex_unlock(&kvm->irq_lock);
3610 mutex_unlock(&kvm->slots_lock);
3611 }
3612 create_irqchip_unlock:
3613 mutex_unlock(&kvm->lock);
3614 break;
3615 }
3616 case KVM_CREATE_PIT:
3617 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3618 goto create_pit;
3619 case KVM_CREATE_PIT2:
3620 r = -EFAULT;
3621 if (copy_from_user(&u.pit_config, argp,
3622 sizeof(struct kvm_pit_config)))
3623 goto out;
3624 create_pit:
3625 mutex_lock(&kvm->slots_lock);
3626 r = -EEXIST;
3627 if (kvm->arch.vpit)
3628 goto create_pit_unlock;
3629 r = -ENOMEM;
3630 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3631 if (kvm->arch.vpit)
3632 r = 0;
3633 create_pit_unlock:
3634 mutex_unlock(&kvm->slots_lock);
3635 break;
3636 case KVM_IRQ_LINE_STATUS:
3637 case KVM_IRQ_LINE: {
3638 struct kvm_irq_level irq_event;
3639
3640 r = -EFAULT;
3641 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3642 goto out;
3643 r = -ENXIO;
3644 if (irqchip_in_kernel(kvm)) {
3645 __s32 status;
3646 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3647 irq_event.irq, irq_event.level);
3648 if (ioctl == KVM_IRQ_LINE_STATUS) {
3649 r = -EFAULT;
3650 irq_event.status = status;
3651 if (copy_to_user(argp, &irq_event,
3652 sizeof irq_event))
3653 goto out;
3654 }
3655 r = 0;
3656 }
3657 break;
3658 }
3659 case KVM_GET_IRQCHIP: {
3660 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3661 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3662
3663 r = -ENOMEM;
3664 if (!chip)
3665 goto out;
3666 r = -EFAULT;
3667 if (copy_from_user(chip, argp, sizeof *chip))
3668 goto get_irqchip_out;
3669 r = -ENXIO;
3670 if (!irqchip_in_kernel(kvm))
3671 goto get_irqchip_out;
3672 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3673 if (r)
3674 goto get_irqchip_out;
3675 r = -EFAULT;
3676 if (copy_to_user(argp, chip, sizeof *chip))
3677 goto get_irqchip_out;
3678 r = 0;
3679 get_irqchip_out:
3680 kfree(chip);
3681 if (r)
3682 goto out;
3683 break;
3684 }
3685 case KVM_SET_IRQCHIP: {
3686 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3687 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3688
3689 r = -ENOMEM;
3690 if (!chip)
3691 goto out;
3692 r = -EFAULT;
3693 if (copy_from_user(chip, argp, sizeof *chip))
3694 goto set_irqchip_out;
3695 r = -ENXIO;
3696 if (!irqchip_in_kernel(kvm))
3697 goto set_irqchip_out;
3698 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3699 if (r)
3700 goto set_irqchip_out;
3701 r = 0;
3702 set_irqchip_out:
3703 kfree(chip);
3704 if (r)
3705 goto out;
3706 break;
3707 }
3708 case KVM_GET_PIT: {
3709 r = -EFAULT;
3710 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3711 goto out;
3712 r = -ENXIO;
3713 if (!kvm->arch.vpit)
3714 goto out;
3715 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3716 if (r)
3717 goto out;
3718 r = -EFAULT;
3719 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3720 goto out;
3721 r = 0;
3722 break;
3723 }
3724 case KVM_SET_PIT: {
3725 r = -EFAULT;
3726 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3727 goto out;
3728 r = -ENXIO;
3729 if (!kvm->arch.vpit)
3730 goto out;
3731 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3732 if (r)
3733 goto out;
3734 r = 0;
3735 break;
3736 }
3737 case KVM_GET_PIT2: {
3738 r = -ENXIO;
3739 if (!kvm->arch.vpit)
3740 goto out;
3741 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3742 if (r)
3743 goto out;
3744 r = -EFAULT;
3745 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3746 goto out;
3747 r = 0;
3748 break;
3749 }
3750 case KVM_SET_PIT2: {
3751 r = -EFAULT;
3752 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3753 goto out;
3754 r = -ENXIO;
3755 if (!kvm->arch.vpit)
3756 goto out;
3757 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3758 if (r)
3759 goto out;
3760 r = 0;
3761 break;
3762 }
3763 case KVM_REINJECT_CONTROL: {
3764 struct kvm_reinject_control control;
3765 r = -EFAULT;
3766 if (copy_from_user(&control, argp, sizeof(control)))
3767 goto out;
3768 r = kvm_vm_ioctl_reinject(kvm, &control);
3769 if (r)
3770 goto out;
3771 r = 0;
3772 break;
3773 }
3774 case KVM_XEN_HVM_CONFIG: {
3775 r = -EFAULT;
3776 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3777 sizeof(struct kvm_xen_hvm_config)))
3778 goto out;
3779 r = -EINVAL;
3780 if (kvm->arch.xen_hvm_config.flags)
3781 goto out;
3782 r = 0;
3783 break;
3784 }
3785 case KVM_SET_CLOCK: {
3786 struct kvm_clock_data user_ns;
3787 u64 now_ns;
3788 s64 delta;
3789
3790 r = -EFAULT;
3791 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3792 goto out;
3793
3794 r = -EINVAL;
3795 if (user_ns.flags)
3796 goto out;
3797
3798 r = 0;
3799 local_irq_disable();
3800 now_ns = get_kernel_ns();
3801 delta = user_ns.clock - now_ns;
3802 local_irq_enable();
3803 kvm->arch.kvmclock_offset = delta;
3804 break;
3805 }
3806 case KVM_GET_CLOCK: {
3807 struct kvm_clock_data user_ns;
3808 u64 now_ns;
3809
3810 local_irq_disable();
3811 now_ns = get_kernel_ns();
3812 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3813 local_irq_enable();
3814 user_ns.flags = 0;
3815 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3816
3817 r = -EFAULT;
3818 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3819 goto out;
3820 r = 0;
3821 break;
3822 }
3823
3824 default:
3825 ;
3826 }
3827out:
3828 return r;
3829}
3830
3831static void kvm_init_msr_list(void)
3832{
3833 u32 dummy[2];
3834 unsigned i, j;
3835
3836 /* skip the first msrs in the list. KVM-specific */
3837 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3838 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3839 continue;
3840 if (j < i)
3841 msrs_to_save[j] = msrs_to_save[i];
3842 j++;
3843 }
3844 num_msrs_to_save = j;
3845}
3846
3847static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3848 const void *v)
3849{
3850 int handled = 0;
3851 int n;
3852
3853 do {
3854 n = min(len, 8);
3855 if (!(vcpu->arch.apic &&
3856 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3857 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3858 break;
3859 handled += n;
3860 addr += n;
3861 len -= n;
3862 v += n;
3863 } while (len);
3864
3865 return handled;
3866}
3867
3868static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3869{
3870 int handled = 0;
3871 int n;
3872
3873 do {
3874 n = min(len, 8);
3875 if (!(vcpu->arch.apic &&
3876 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3877 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3878 break;
3879 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3880 handled += n;
3881 addr += n;
3882 len -= n;
3883 v += n;
3884 } while (len);
3885
3886 return handled;
3887}
3888
3889static void kvm_set_segment(struct kvm_vcpu *vcpu,
3890 struct kvm_segment *var, int seg)
3891{
3892 kvm_x86_ops->set_segment(vcpu, var, seg);
3893}
3894
3895void kvm_get_segment(struct kvm_vcpu *vcpu,
3896 struct kvm_segment *var, int seg)
3897{
3898 kvm_x86_ops->get_segment(vcpu, var, seg);
3899}
3900
3901static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3902{
3903 return gpa;
3904}
3905
3906static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3907{
3908 gpa_t t_gpa;
3909 struct x86_exception exception;
3910
3911 BUG_ON(!mmu_is_nested(vcpu));
3912
3913 /* NPT walks are always user-walks */
3914 access |= PFERR_USER_MASK;
3915 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3916
3917 return t_gpa;
3918}
3919
3920gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3921 struct x86_exception *exception)
3922{
3923 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3924 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3925}
3926
3927 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3928 struct x86_exception *exception)
3929{
3930 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3931 access |= PFERR_FETCH_MASK;
3932 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3933}
3934
3935gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3936 struct x86_exception *exception)
3937{
3938 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3939 access |= PFERR_WRITE_MASK;
3940 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3941}
3942
3943/* uses this to access any guest's mapped memory without checking CPL */
3944gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3945 struct x86_exception *exception)
3946{
3947 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3948}
3949
3950static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3951 struct kvm_vcpu *vcpu, u32 access,
3952 struct x86_exception *exception)
3953{
3954 void *data = val;
3955 int r = X86EMUL_CONTINUE;
3956
3957 while (bytes) {
3958 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3959 exception);
3960 unsigned offset = addr & (PAGE_SIZE-1);
3961 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3962 int ret;
3963
3964 if (gpa == UNMAPPED_GVA)
3965 return X86EMUL_PROPAGATE_FAULT;
3966 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3967 if (ret < 0) {
3968 r = X86EMUL_IO_NEEDED;
3969 goto out;
3970 }
3971
3972 bytes -= toread;
3973 data += toread;
3974 addr += toread;
3975 }
3976out:
3977 return r;
3978}
3979
3980/* used for instruction fetching */
3981static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3982 gva_t addr, void *val, unsigned int bytes,
3983 struct x86_exception *exception)
3984{
3985 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3986 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3987
3988 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3989 access | PFERR_FETCH_MASK,
3990 exception);
3991}
3992
3993int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3994 gva_t addr, void *val, unsigned int bytes,
3995 struct x86_exception *exception)
3996{
3997 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3998 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3999
4000 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4001 exception);
4002}
4003EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4004
4005static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4006 gva_t addr, void *val, unsigned int bytes,
4007 struct x86_exception *exception)
4008{
4009 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4010 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4011}
4012
4013int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4014 gva_t addr, void *val,
4015 unsigned int bytes,
4016 struct x86_exception *exception)
4017{
4018 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4019 void *data = val;
4020 int r = X86EMUL_CONTINUE;
4021
4022 while (bytes) {
4023 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4024 PFERR_WRITE_MASK,
4025 exception);
4026 unsigned offset = addr & (PAGE_SIZE-1);
4027 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4028 int ret;
4029
4030 if (gpa == UNMAPPED_GVA)
4031 return X86EMUL_PROPAGATE_FAULT;
4032 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4033 if (ret < 0) {
4034 r = X86EMUL_IO_NEEDED;
4035 goto out;
4036 }
4037
4038 bytes -= towrite;
4039 data += towrite;
4040 addr += towrite;
4041 }
4042out:
4043 return r;
4044}
4045EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4046
4047static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4048 gpa_t *gpa, struct x86_exception *exception,
4049 bool write)
4050{
4051 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4052
4053 if (vcpu_match_mmio_gva(vcpu, gva) &&
4054 check_write_user_access(vcpu, write, access,
4055 vcpu->arch.access)) {
4056 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4057 (gva & (PAGE_SIZE - 1));
4058 trace_vcpu_match_mmio(gva, *gpa, write, false);
4059 return 1;
4060 }
4061
4062 if (write)
4063 access |= PFERR_WRITE_MASK;
4064
4065 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4066
4067 if (*gpa == UNMAPPED_GVA)
4068 return -1;
4069
4070 /* For APIC access vmexit */
4071 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4072 return 1;
4073
4074 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4075 trace_vcpu_match_mmio(gva, *gpa, write, true);
4076 return 1;
4077 }
4078
4079 return 0;
4080}
4081
4082int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4083 const void *val, int bytes)
4084{
4085 int ret;
4086
4087 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4088 if (ret < 0)
4089 return 0;
4090 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
4091 return 1;
4092}
4093
4094struct read_write_emulator_ops {
4095 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4096 int bytes);
4097 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4098 void *val, int bytes);
4099 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4100 int bytes, void *val);
4101 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4102 void *val, int bytes);
4103 bool write;
4104};
4105
4106static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4107{
4108 if (vcpu->mmio_read_completed) {
4109 memcpy(val, vcpu->mmio_data, bytes);
4110 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4111 vcpu->mmio_phys_addr, *(u64 *)val);
4112 vcpu->mmio_read_completed = 0;
4113 return 1;
4114 }
4115
4116 return 0;
4117}
4118
4119static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4120 void *val, int bytes)
4121{
4122 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4123}
4124
4125static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4126 void *val, int bytes)
4127{
4128 return emulator_write_phys(vcpu, gpa, val, bytes);
4129}
4130
4131static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4132{
4133 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4134 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4135}
4136
4137static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4138 void *val, int bytes)
4139{
4140 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4141 return X86EMUL_IO_NEEDED;
4142}
4143
4144static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4145 void *val, int bytes)
4146{
4147 memcpy(vcpu->mmio_data, val, bytes);
4148 memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
4149 return X86EMUL_CONTINUE;
4150}
4151
4152static struct read_write_emulator_ops read_emultor = {
4153 .read_write_prepare = read_prepare,
4154 .read_write_emulate = read_emulate,
4155 .read_write_mmio = vcpu_mmio_read,
4156 .read_write_exit_mmio = read_exit_mmio,
4157};
4158
4159static struct read_write_emulator_ops write_emultor = {
4160 .read_write_emulate = write_emulate,
4161 .read_write_mmio = write_mmio,
4162 .read_write_exit_mmio = write_exit_mmio,
4163 .write = true,
4164};
4165
4166static int emulator_read_write_onepage(unsigned long addr, void *val,
4167 unsigned int bytes,
4168 struct x86_exception *exception,
4169 struct kvm_vcpu *vcpu,
4170 struct read_write_emulator_ops *ops)
4171{
4172 gpa_t gpa;
4173 int handled, ret;
4174 bool write = ops->write;
4175
4176 if (ops->read_write_prepare &&
4177 ops->read_write_prepare(vcpu, val, bytes))
4178 return X86EMUL_CONTINUE;
4179
4180 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4181
4182 if (ret < 0)
4183 return X86EMUL_PROPAGATE_FAULT;
4184
4185 /* For APIC access vmexit */
4186 if (ret)
4187 goto mmio;
4188
4189 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4190 return X86EMUL_CONTINUE;
4191
4192mmio:
4193 /*
4194 * Is this MMIO handled locally?
4195 */
4196 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4197 if (handled == bytes)
4198 return X86EMUL_CONTINUE;
4199
4200 gpa += handled;
4201 bytes -= handled;
4202 val += handled;
4203
4204 vcpu->mmio_needed = 1;
4205 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4206 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4207 vcpu->mmio_size = bytes;
4208 vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4209 vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
4210 vcpu->mmio_index = 0;
4211
4212 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4213}
4214
4215int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4216 void *val, unsigned int bytes,
4217 struct x86_exception *exception,
4218 struct read_write_emulator_ops *ops)
4219{
4220 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4221
4222 /* Crossing a page boundary? */
4223 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4224 int rc, now;
4225
4226 now = -addr & ~PAGE_MASK;
4227 rc = emulator_read_write_onepage(addr, val, now, exception,
4228 vcpu, ops);
4229
4230 if (rc != X86EMUL_CONTINUE)
4231 return rc;
4232 addr += now;
4233 val += now;
4234 bytes -= now;
4235 }
4236
4237 return emulator_read_write_onepage(addr, val, bytes, exception,
4238 vcpu, ops);
4239}
4240
4241static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4242 unsigned long addr,
4243 void *val,
4244 unsigned int bytes,
4245 struct x86_exception *exception)
4246{
4247 return emulator_read_write(ctxt, addr, val, bytes,
4248 exception, &read_emultor);
4249}
4250
4251int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4252 unsigned long addr,
4253 const void *val,
4254 unsigned int bytes,
4255 struct x86_exception *exception)
4256{
4257 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4258 exception, &write_emultor);
4259}
4260
4261#define CMPXCHG_TYPE(t, ptr, old, new) \
4262 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4263
4264#ifdef CONFIG_X86_64
4265# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4266#else
4267# define CMPXCHG64(ptr, old, new) \
4268 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4269#endif
4270
4271static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4272 unsigned long addr,
4273 const void *old,
4274 const void *new,
4275 unsigned int bytes,
4276 struct x86_exception *exception)
4277{
4278 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279 gpa_t gpa;
4280 struct page *page;
4281 char *kaddr;
4282 bool exchanged;
4283
4284 /* guests cmpxchg8b have to be emulated atomically */
4285 if (bytes > 8 || (bytes & (bytes - 1)))
4286 goto emul_write;
4287
4288 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4289
4290 if (gpa == UNMAPPED_GVA ||
4291 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4292 goto emul_write;
4293
4294 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4295 goto emul_write;
4296
4297 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4298 if (is_error_page(page)) {
4299 kvm_release_page_clean(page);
4300 goto emul_write;
4301 }
4302
4303 kaddr = kmap_atomic(page, KM_USER0);
4304 kaddr += offset_in_page(gpa);
4305 switch (bytes) {
4306 case 1:
4307 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4308 break;
4309 case 2:
4310 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4311 break;
4312 case 4:
4313 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4314 break;
4315 case 8:
4316 exchanged = CMPXCHG64(kaddr, old, new);
4317 break;
4318 default:
4319 BUG();
4320 }
4321 kunmap_atomic(kaddr, KM_USER0);
4322 kvm_release_page_dirty(page);
4323
4324 if (!exchanged)
4325 return X86EMUL_CMPXCHG_FAILED;
4326
4327 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4328
4329 return X86EMUL_CONTINUE;
4330
4331emul_write:
4332 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4333
4334 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4335}
4336
4337static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4338{
4339 /* TODO: String I/O for in kernel device */
4340 int r;
4341
4342 if (vcpu->arch.pio.in)
4343 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4344 vcpu->arch.pio.size, pd);
4345 else
4346 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4347 vcpu->arch.pio.port, vcpu->arch.pio.size,
4348 pd);
4349 return r;
4350}
4351
4352
4353static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4354 int size, unsigned short port, void *val,
4355 unsigned int count)
4356{
4357 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4358
4359 if (vcpu->arch.pio.count)
4360 goto data_avail;
4361
4362 trace_kvm_pio(0, port, size, count);
4363
4364 vcpu->arch.pio.port = port;
4365 vcpu->arch.pio.in = 1;
4366 vcpu->arch.pio.count = count;
4367 vcpu->arch.pio.size = size;
4368
4369 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4370 data_avail:
4371 memcpy(val, vcpu->arch.pio_data, size * count);
4372 vcpu->arch.pio.count = 0;
4373 return 1;
4374 }
4375
4376 vcpu->run->exit_reason = KVM_EXIT_IO;
4377 vcpu->run->io.direction = KVM_EXIT_IO_IN;
4378 vcpu->run->io.size = size;
4379 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4380 vcpu->run->io.count = count;
4381 vcpu->run->io.port = port;
4382
4383 return 0;
4384}
4385
4386static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4387 int size, unsigned short port,
4388 const void *val, unsigned int count)
4389{
4390 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4391
4392 trace_kvm_pio(1, port, size, count);
4393
4394 vcpu->arch.pio.port = port;
4395 vcpu->arch.pio.in = 0;
4396 vcpu->arch.pio.count = count;
4397 vcpu->arch.pio.size = size;
4398
4399 memcpy(vcpu->arch.pio_data, val, size * count);
4400
4401 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4402 vcpu->arch.pio.count = 0;
4403 return 1;
4404 }
4405
4406 vcpu->run->exit_reason = KVM_EXIT_IO;
4407 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4408 vcpu->run->io.size = size;
4409 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4410 vcpu->run->io.count = count;
4411 vcpu->run->io.port = port;
4412
4413 return 0;
4414}
4415
4416static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4417{
4418 return kvm_x86_ops->get_segment_base(vcpu, seg);
4419}
4420
4421static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4422{
4423 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4424}
4425
4426int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4427{
4428 if (!need_emulate_wbinvd(vcpu))
4429 return X86EMUL_CONTINUE;
4430
4431 if (kvm_x86_ops->has_wbinvd_exit()) {
4432 int cpu = get_cpu();
4433
4434 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4435 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4436 wbinvd_ipi, NULL, 1);
4437 put_cpu();
4438 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4439 } else
4440 wbinvd();
4441 return X86EMUL_CONTINUE;
4442}
4443EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4444
4445static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4446{
4447 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4448}
4449
4450int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4451{
4452 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4453}
4454
4455int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4456{
4457
4458 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4459}
4460
4461static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4462{
4463 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4464}
4465
4466static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4467{
4468 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4469 unsigned long value;
4470
4471 switch (cr) {
4472 case 0:
4473 value = kvm_read_cr0(vcpu);
4474 break;
4475 case 2:
4476 value = vcpu->arch.cr2;
4477 break;
4478 case 3:
4479 value = kvm_read_cr3(vcpu);
4480 break;
4481 case 4:
4482 value = kvm_read_cr4(vcpu);
4483 break;
4484 case 8:
4485 value = kvm_get_cr8(vcpu);
4486 break;
4487 default:
4488 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4489 return 0;
4490 }
4491
4492 return value;
4493}
4494
4495static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4496{
4497 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4498 int res = 0;
4499
4500 switch (cr) {
4501 case 0:
4502 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4503 break;
4504 case 2:
4505 vcpu->arch.cr2 = val;
4506 break;
4507 case 3:
4508 res = kvm_set_cr3(vcpu, val);
4509 break;
4510 case 4:
4511 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4512 break;
4513 case 8:
4514 res = kvm_set_cr8(vcpu, val);
4515 break;
4516 default:
4517 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4518 res = -1;
4519 }
4520
4521 return res;
4522}
4523
4524static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4525{
4526 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4527}
4528
4529static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4530{
4531 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4532}
4533
4534static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4535{
4536 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4537}
4538
4539static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4540{
4541 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4542}
4543
4544static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4545{
4546 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4547}
4548
4549static unsigned long emulator_get_cached_segment_base(
4550 struct x86_emulate_ctxt *ctxt, int seg)
4551{
4552 return get_segment_base(emul_to_vcpu(ctxt), seg);
4553}
4554
4555static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4556 struct desc_struct *desc, u32 *base3,
4557 int seg)
4558{
4559 struct kvm_segment var;
4560
4561 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4562 *selector = var.selector;
4563
4564 if (var.unusable)
4565 return false;
4566
4567 if (var.g)
4568 var.limit >>= 12;
4569 set_desc_limit(desc, var.limit);
4570 set_desc_base(desc, (unsigned long)var.base);
4571#ifdef CONFIG_X86_64
4572 if (base3)
4573 *base3 = var.base >> 32;
4574#endif
4575 desc->type = var.type;
4576 desc->s = var.s;
4577 desc->dpl = var.dpl;
4578 desc->p = var.present;
4579 desc->avl = var.avl;
4580 desc->l = var.l;
4581 desc->d = var.db;
4582 desc->g = var.g;
4583
4584 return true;
4585}
4586
4587static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4588 struct desc_struct *desc, u32 base3,
4589 int seg)
4590{
4591 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4592 struct kvm_segment var;
4593
4594 var.selector = selector;
4595 var.base = get_desc_base(desc);
4596#ifdef CONFIG_X86_64
4597 var.base |= ((u64)base3) << 32;
4598#endif
4599 var.limit = get_desc_limit(desc);
4600 if (desc->g)
4601 var.limit = (var.limit << 12) | 0xfff;
4602 var.type = desc->type;
4603 var.present = desc->p;
4604 var.dpl = desc->dpl;
4605 var.db = desc->d;
4606 var.s = desc->s;
4607 var.l = desc->l;
4608 var.g = desc->g;
4609 var.avl = desc->avl;
4610 var.present = desc->p;
4611 var.unusable = !var.present;
4612 var.padding = 0;
4613
4614 kvm_set_segment(vcpu, &var, seg);
4615 return;
4616}
4617
4618static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4619 u32 msr_index, u64 *pdata)
4620{
4621 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4622}
4623
4624static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4625 u32 msr_index, u64 data)
4626{
4627 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4628}
4629
4630static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4631{
4632 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4633}
4634
4635static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4636{
4637 preempt_disable();
4638 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4639 /*
4640 * CR0.TS may reference the host fpu state, not the guest fpu state,
4641 * so it may be clear at this point.
4642 */
4643 clts();
4644}
4645
4646static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4647{
4648 preempt_enable();
4649}
4650
4651static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4652 struct x86_instruction_info *info,
4653 enum x86_intercept_stage stage)
4654{
4655 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4656}
4657
4658static struct x86_emulate_ops emulate_ops = {
4659 .read_std = kvm_read_guest_virt_system,
4660 .write_std = kvm_write_guest_virt_system,
4661 .fetch = kvm_fetch_guest_virt,
4662 .read_emulated = emulator_read_emulated,
4663 .write_emulated = emulator_write_emulated,
4664 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4665 .invlpg = emulator_invlpg,
4666 .pio_in_emulated = emulator_pio_in_emulated,
4667 .pio_out_emulated = emulator_pio_out_emulated,
4668 .get_segment = emulator_get_segment,
4669 .set_segment = emulator_set_segment,
4670 .get_cached_segment_base = emulator_get_cached_segment_base,
4671 .get_gdt = emulator_get_gdt,
4672 .get_idt = emulator_get_idt,
4673 .set_gdt = emulator_set_gdt,
4674 .set_idt = emulator_set_idt,
4675 .get_cr = emulator_get_cr,
4676 .set_cr = emulator_set_cr,
4677 .cpl = emulator_get_cpl,
4678 .get_dr = emulator_get_dr,
4679 .set_dr = emulator_set_dr,
4680 .set_msr = emulator_set_msr,
4681 .get_msr = emulator_get_msr,
4682 .halt = emulator_halt,
4683 .wbinvd = emulator_wbinvd,
4684 .fix_hypercall = emulator_fix_hypercall,
4685 .get_fpu = emulator_get_fpu,
4686 .put_fpu = emulator_put_fpu,
4687 .intercept = emulator_intercept,
4688};
4689
4690static void cache_all_regs(struct kvm_vcpu *vcpu)
4691{
4692 kvm_register_read(vcpu, VCPU_REGS_RAX);
4693 kvm_register_read(vcpu, VCPU_REGS_RSP);
4694 kvm_register_read(vcpu, VCPU_REGS_RIP);
4695 vcpu->arch.regs_dirty = ~0;
4696}
4697
4698static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4699{
4700 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4701 /*
4702 * an sti; sti; sequence only disable interrupts for the first
4703 * instruction. So, if the last instruction, be it emulated or
4704 * not, left the system with the INT_STI flag enabled, it
4705 * means that the last instruction is an sti. We should not
4706 * leave the flag on in this case. The same goes for mov ss
4707 */
4708 if (!(int_shadow & mask))
4709 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4710}
4711
4712static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4713{
4714 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4715 if (ctxt->exception.vector == PF_VECTOR)
4716 kvm_propagate_fault(vcpu, &ctxt->exception);
4717 else if (ctxt->exception.error_code_valid)
4718 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4719 ctxt->exception.error_code);
4720 else
4721 kvm_queue_exception(vcpu, ctxt->exception.vector);
4722}
4723
4724static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4725 const unsigned long *regs)
4726{
4727 memset(&ctxt->twobyte, 0,
4728 (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4729 memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4730
4731 ctxt->fetch.start = 0;
4732 ctxt->fetch.end = 0;
4733 ctxt->io_read.pos = 0;
4734 ctxt->io_read.end = 0;
4735 ctxt->mem_read.pos = 0;
4736 ctxt->mem_read.end = 0;
4737}
4738
4739static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4740{
4741 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4742 int cs_db, cs_l;
4743
4744 /*
4745 * TODO: fix emulate.c to use guest_read/write_register
4746 * instead of direct ->regs accesses, can save hundred cycles
4747 * on Intel for instructions that don't read/change RSP, for
4748 * for example.
4749 */
4750 cache_all_regs(vcpu);
4751
4752 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4753
4754 ctxt->eflags = kvm_get_rflags(vcpu);
4755 ctxt->eip = kvm_rip_read(vcpu);
4756 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4757 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4758 cs_l ? X86EMUL_MODE_PROT64 :
4759 cs_db ? X86EMUL_MODE_PROT32 :
4760 X86EMUL_MODE_PROT16;
4761 ctxt->guest_mode = is_guest_mode(vcpu);
4762
4763 init_decode_cache(ctxt, vcpu->arch.regs);
4764 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4765}
4766
4767int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4768{
4769 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4770 int ret;
4771
4772 init_emulate_ctxt(vcpu);
4773
4774 ctxt->op_bytes = 2;
4775 ctxt->ad_bytes = 2;
4776 ctxt->_eip = ctxt->eip + inc_eip;
4777 ret = emulate_int_real(ctxt, irq);
4778
4779 if (ret != X86EMUL_CONTINUE)
4780 return EMULATE_FAIL;
4781
4782 ctxt->eip = ctxt->_eip;
4783 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4784 kvm_rip_write(vcpu, ctxt->eip);
4785 kvm_set_rflags(vcpu, ctxt->eflags);
4786
4787 if (irq == NMI_VECTOR)
4788 vcpu->arch.nmi_pending = 0;
4789 else
4790 vcpu->arch.interrupt.pending = false;
4791
4792 return EMULATE_DONE;
4793}
4794EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4795
4796static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4797{
4798 int r = EMULATE_DONE;
4799
4800 ++vcpu->stat.insn_emulation_fail;
4801 trace_kvm_emulate_insn_failed(vcpu);
4802 if (!is_guest_mode(vcpu)) {
4803 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4804 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4805 vcpu->run->internal.ndata = 0;
4806 r = EMULATE_FAIL;
4807 }
4808 kvm_queue_exception(vcpu, UD_VECTOR);
4809
4810 return r;
4811}
4812
4813static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4814{
4815 gpa_t gpa;
4816
4817 if (tdp_enabled)
4818 return false;
4819
4820 /*
4821 * if emulation was due to access to shadowed page table
4822 * and it failed try to unshadow page and re-entetr the
4823 * guest to let CPU execute the instruction.
4824 */
4825 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4826 return true;
4827
4828 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4829
4830 if (gpa == UNMAPPED_GVA)
4831 return true; /* let cpu generate fault */
4832
4833 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4834 return true;
4835
4836 return false;
4837}
4838
4839int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4840 unsigned long cr2,
4841 int emulation_type,
4842 void *insn,
4843 int insn_len)
4844{
4845 int r;
4846 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4847 bool writeback = true;
4848
4849 kvm_clear_exception_queue(vcpu);
4850
4851 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4852 init_emulate_ctxt(vcpu);
4853 ctxt->interruptibility = 0;
4854 ctxt->have_exception = false;
4855 ctxt->perm_ok = false;
4856
4857 ctxt->only_vendor_specific_insn
4858 = emulation_type & EMULTYPE_TRAP_UD;
4859
4860 r = x86_decode_insn(ctxt, insn, insn_len);
4861
4862 trace_kvm_emulate_insn_start(vcpu);
4863 ++vcpu->stat.insn_emulation;
4864 if (r != EMULATION_OK) {
4865 if (emulation_type & EMULTYPE_TRAP_UD)
4866 return EMULATE_FAIL;
4867 if (reexecute_instruction(vcpu, cr2))
4868 return EMULATE_DONE;
4869 if (emulation_type & EMULTYPE_SKIP)
4870 return EMULATE_FAIL;
4871 return handle_emulation_failure(vcpu);
4872 }
4873 }
4874
4875 if (emulation_type & EMULTYPE_SKIP) {
4876 kvm_rip_write(vcpu, ctxt->_eip);
4877 return EMULATE_DONE;
4878 }
4879
4880 /* this is needed for vmware backdoor interface to work since it
4881 changes registers values during IO operation */
4882 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4883 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4884 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4885 }
4886
4887restart:
4888 r = x86_emulate_insn(ctxt);
4889
4890 if (r == EMULATION_INTERCEPTED)
4891 return EMULATE_DONE;
4892
4893 if (r == EMULATION_FAILED) {
4894 if (reexecute_instruction(vcpu, cr2))
4895 return EMULATE_DONE;
4896
4897 return handle_emulation_failure(vcpu);
4898 }
4899
4900 if (ctxt->have_exception) {
4901 inject_emulated_exception(vcpu);
4902 r = EMULATE_DONE;
4903 } else if (vcpu->arch.pio.count) {
4904 if (!vcpu->arch.pio.in)
4905 vcpu->arch.pio.count = 0;
4906 else
4907 writeback = false;
4908 r = EMULATE_DO_MMIO;
4909 } else if (vcpu->mmio_needed) {
4910 if (!vcpu->mmio_is_write)
4911 writeback = false;
4912 r = EMULATE_DO_MMIO;
4913 } else if (r == EMULATION_RESTART)
4914 goto restart;
4915 else
4916 r = EMULATE_DONE;
4917
4918 if (writeback) {
4919 toggle_interruptibility(vcpu, ctxt->interruptibility);
4920 kvm_set_rflags(vcpu, ctxt->eflags);
4921 kvm_make_request(KVM_REQ_EVENT, vcpu);
4922 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4923 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4924 kvm_rip_write(vcpu, ctxt->eip);
4925 } else
4926 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4927
4928 return r;
4929}
4930EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4931
4932int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4933{
4934 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4935 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4936 size, port, &val, 1);
4937 /* do not return to emulator after return from userspace */
4938 vcpu->arch.pio.count = 0;
4939 return ret;
4940}
4941EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4942
4943static void tsc_bad(void *info)
4944{
4945 __this_cpu_write(cpu_tsc_khz, 0);
4946}
4947
4948static void tsc_khz_changed(void *data)
4949{
4950 struct cpufreq_freqs *freq = data;
4951 unsigned long khz = 0;
4952
4953 if (data)
4954 khz = freq->new;
4955 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4956 khz = cpufreq_quick_get(raw_smp_processor_id());
4957 if (!khz)
4958 khz = tsc_khz;
4959 __this_cpu_write(cpu_tsc_khz, khz);
4960}
4961
4962static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4963 void *data)
4964{
4965 struct cpufreq_freqs *freq = data;
4966 struct kvm *kvm;
4967 struct kvm_vcpu *vcpu;
4968 int i, send_ipi = 0;
4969
4970 /*
4971 * We allow guests to temporarily run on slowing clocks,
4972 * provided we notify them after, or to run on accelerating
4973 * clocks, provided we notify them before. Thus time never
4974 * goes backwards.
4975 *
4976 * However, we have a problem. We can't atomically update
4977 * the frequency of a given CPU from this function; it is
4978 * merely a notifier, which can be called from any CPU.
4979 * Changing the TSC frequency at arbitrary points in time
4980 * requires a recomputation of local variables related to
4981 * the TSC for each VCPU. We must flag these local variables
4982 * to be updated and be sure the update takes place with the
4983 * new frequency before any guests proceed.
4984 *
4985 * Unfortunately, the combination of hotplug CPU and frequency
4986 * change creates an intractable locking scenario; the order
4987 * of when these callouts happen is undefined with respect to
4988 * CPU hotplug, and they can race with each other. As such,
4989 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4990 * undefined; you can actually have a CPU frequency change take
4991 * place in between the computation of X and the setting of the
4992 * variable. To protect against this problem, all updates of
4993 * the per_cpu tsc_khz variable are done in an interrupt
4994 * protected IPI, and all callers wishing to update the value
4995 * must wait for a synchronous IPI to complete (which is trivial
4996 * if the caller is on the CPU already). This establishes the
4997 * necessary total order on variable updates.
4998 *
4999 * Note that because a guest time update may take place
5000 * anytime after the setting of the VCPU's request bit, the
5001 * correct TSC value must be set before the request. However,
5002 * to ensure the update actually makes it to any guest which
5003 * starts running in hardware virtualization between the set
5004 * and the acquisition of the spinlock, we must also ping the
5005 * CPU after setting the request bit.
5006 *
5007 */
5008
5009 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5010 return 0;
5011 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5012 return 0;
5013
5014 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5015
5016 raw_spin_lock(&kvm_lock);
5017 list_for_each_entry(kvm, &vm_list, vm_list) {
5018 kvm_for_each_vcpu(i, vcpu, kvm) {
5019 if (vcpu->cpu != freq->cpu)
5020 continue;
5021 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5022 if (vcpu->cpu != smp_processor_id())
5023 send_ipi = 1;
5024 }
5025 }
5026 raw_spin_unlock(&kvm_lock);
5027
5028 if (freq->old < freq->new && send_ipi) {
5029 /*
5030 * We upscale the frequency. Must make the guest
5031 * doesn't see old kvmclock values while running with
5032 * the new frequency, otherwise we risk the guest sees
5033 * time go backwards.
5034 *
5035 * In case we update the frequency for another cpu
5036 * (which might be in guest context) send an interrupt
5037 * to kick the cpu out of guest context. Next time
5038 * guest context is entered kvmclock will be updated,
5039 * so the guest will not see stale values.
5040 */
5041 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5042 }
5043 return 0;
5044}
5045
5046static struct notifier_block kvmclock_cpufreq_notifier_block = {
5047 .notifier_call = kvmclock_cpufreq_notifier
5048};
5049
5050static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5051 unsigned long action, void *hcpu)
5052{
5053 unsigned int cpu = (unsigned long)hcpu;
5054
5055 switch (action) {
5056 case CPU_ONLINE:
5057 case CPU_DOWN_FAILED:
5058 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5059 break;
5060 case CPU_DOWN_PREPARE:
5061 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5062 break;
5063 }
5064 return NOTIFY_OK;
5065}
5066
5067static struct notifier_block kvmclock_cpu_notifier_block = {
5068 .notifier_call = kvmclock_cpu_notifier,
5069 .priority = -INT_MAX
5070};
5071
5072static void kvm_timer_init(void)
5073{
5074 int cpu;
5075
5076 max_tsc_khz = tsc_khz;
5077 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5078 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5079#ifdef CONFIG_CPU_FREQ
5080 struct cpufreq_policy policy;
5081 memset(&policy, 0, sizeof(policy));
5082 cpu = get_cpu();
5083 cpufreq_get_policy(&policy, cpu);
5084 if (policy.cpuinfo.max_freq)
5085 max_tsc_khz = policy.cpuinfo.max_freq;
5086 put_cpu();
5087#endif
5088 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5089 CPUFREQ_TRANSITION_NOTIFIER);
5090 }
5091 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5092 for_each_online_cpu(cpu)
5093 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5094}
5095
5096static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5097
5098static int kvm_is_in_guest(void)
5099{
5100 return percpu_read(current_vcpu) != NULL;
5101}
5102
5103static int kvm_is_user_mode(void)
5104{
5105 int user_mode = 3;
5106
5107 if (percpu_read(current_vcpu))
5108 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
5109
5110 return user_mode != 0;
5111}
5112
5113static unsigned long kvm_get_guest_ip(void)
5114{
5115 unsigned long ip = 0;
5116
5117 if (percpu_read(current_vcpu))
5118 ip = kvm_rip_read(percpu_read(current_vcpu));
5119
5120 return ip;
5121}
5122
5123static struct perf_guest_info_callbacks kvm_guest_cbs = {
5124 .is_in_guest = kvm_is_in_guest,
5125 .is_user_mode = kvm_is_user_mode,
5126 .get_guest_ip = kvm_get_guest_ip,
5127};
5128
5129void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5130{
5131 percpu_write(current_vcpu, vcpu);
5132}
5133EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5134
5135void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5136{
5137 percpu_write(current_vcpu, NULL);
5138}
5139EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5140
5141static void kvm_set_mmio_spte_mask(void)
5142{
5143 u64 mask;
5144 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5145
5146 /*
5147 * Set the reserved bits and the present bit of an paging-structure
5148 * entry to generate page fault with PFER.RSV = 1.
5149 */
5150 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5151 mask |= 1ull;
5152
5153#ifdef CONFIG_X86_64
5154 /*
5155 * If reserved bit is not supported, clear the present bit to disable
5156 * mmio page fault.
5157 */
5158 if (maxphyaddr == 52)
5159 mask &= ~1ull;
5160#endif
5161
5162 kvm_mmu_set_mmio_spte_mask(mask);
5163}
5164
5165int kvm_arch_init(void *opaque)
5166{
5167 int r;
5168 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5169
5170 if (kvm_x86_ops) {
5171 printk(KERN_ERR "kvm: already loaded the other module\n");
5172 r = -EEXIST;
5173 goto out;
5174 }
5175
5176 if (!ops->cpu_has_kvm_support()) {
5177 printk(KERN_ERR "kvm: no hardware support\n");
5178 r = -EOPNOTSUPP;
5179 goto out;
5180 }
5181 if (ops->disabled_by_bios()) {
5182 printk(KERN_ERR "kvm: disabled by bios\n");
5183 r = -EOPNOTSUPP;
5184 goto out;
5185 }
5186
5187 r = kvm_mmu_module_init();
5188 if (r)
5189 goto out;
5190
5191 kvm_set_mmio_spte_mask();
5192 kvm_init_msr_list();
5193
5194 kvm_x86_ops = ops;
5195 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5196 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5197
5198 kvm_timer_init();
5199
5200 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5201
5202 if (cpu_has_xsave)
5203 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5204
5205 return 0;
5206
5207out:
5208 return r;
5209}
5210
5211void kvm_arch_exit(void)
5212{
5213 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5214
5215 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5216 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5217 CPUFREQ_TRANSITION_NOTIFIER);
5218 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5219 kvm_x86_ops = NULL;
5220 kvm_mmu_module_exit();
5221}
5222
5223int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5224{
5225 ++vcpu->stat.halt_exits;
5226 if (irqchip_in_kernel(vcpu->kvm)) {
5227 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5228 return 1;
5229 } else {
5230 vcpu->run->exit_reason = KVM_EXIT_HLT;
5231 return 0;
5232 }
5233}
5234EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5235
5236static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
5237 unsigned long a1)
5238{
5239 if (is_long_mode(vcpu))
5240 return a0;
5241 else
5242 return a0 | ((gpa_t)a1 << 32);
5243}
5244
5245int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5246{
5247 u64 param, ingpa, outgpa, ret;
5248 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5249 bool fast, longmode;
5250 int cs_db, cs_l;
5251
5252 /*
5253 * hypercall generates UD from non zero cpl and real mode
5254 * per HYPER-V spec
5255 */
5256 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5257 kvm_queue_exception(vcpu, UD_VECTOR);
5258 return 0;
5259 }
5260
5261 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5262 longmode = is_long_mode(vcpu) && cs_l == 1;
5263
5264 if (!longmode) {
5265 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5266 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5267 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5268 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5269 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5270 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5271 }
5272#ifdef CONFIG_X86_64
5273 else {
5274 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5275 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5276 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5277 }
5278#endif
5279
5280 code = param & 0xffff;
5281 fast = (param >> 16) & 0x1;
5282 rep_cnt = (param >> 32) & 0xfff;
5283 rep_idx = (param >> 48) & 0xfff;
5284
5285 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5286
5287 switch (code) {
5288 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5289 kvm_vcpu_on_spin(vcpu);
5290 break;
5291 default:
5292 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5293 break;
5294 }
5295
5296 ret = res | (((u64)rep_done & 0xfff) << 32);
5297 if (longmode) {
5298 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5299 } else {
5300 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5301 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5302 }
5303
5304 return 1;
5305}
5306
5307int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5308{
5309 unsigned long nr, a0, a1, a2, a3, ret;
5310 int r = 1;
5311
5312 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5313 return kvm_hv_hypercall(vcpu);
5314
5315 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5316 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5317 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5318 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5319 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5320
5321 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5322
5323 if (!is_long_mode(vcpu)) {
5324 nr &= 0xFFFFFFFF;
5325 a0 &= 0xFFFFFFFF;
5326 a1 &= 0xFFFFFFFF;
5327 a2 &= 0xFFFFFFFF;
5328 a3 &= 0xFFFFFFFF;
5329 }
5330
5331 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5332 ret = -KVM_EPERM;
5333 goto out;
5334 }
5335
5336 switch (nr) {
5337 case KVM_HC_VAPIC_POLL_IRQ:
5338 ret = 0;
5339 break;
5340 case KVM_HC_MMU_OP:
5341 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5342 break;
5343 default:
5344 ret = -KVM_ENOSYS;
5345 break;
5346 }
5347out:
5348 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5349 ++vcpu->stat.hypercalls;
5350 return r;
5351}
5352EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5353
5354int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5355{
5356 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5357 char instruction[3];
5358 unsigned long rip = kvm_rip_read(vcpu);
5359
5360 /*
5361 * Blow out the MMU to ensure that no other VCPU has an active mapping
5362 * to ensure that the updated hypercall appears atomically across all
5363 * VCPUs.
5364 */
5365 kvm_mmu_zap_all(vcpu->kvm);
5366
5367 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5368
5369 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5370}
5371
5372static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5373{
5374 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5375 int j, nent = vcpu->arch.cpuid_nent;
5376
5377 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5378 /* when no next entry is found, the current entry[i] is reselected */
5379 for (j = i + 1; ; j = (j + 1) % nent) {
5380 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5381 if (ej->function == e->function) {
5382 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5383 return j;
5384 }
5385 }
5386 return 0; /* silence gcc, even though control never reaches here */
5387}
5388
5389/* find an entry with matching function, matching index (if needed), and that
5390 * should be read next (if it's stateful) */
5391static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5392 u32 function, u32 index)
5393{
5394 if (e->function != function)
5395 return 0;
5396 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5397 return 0;
5398 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5399 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5400 return 0;
5401 return 1;
5402}
5403
5404struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5405 u32 function, u32 index)
5406{
5407 int i;
5408 struct kvm_cpuid_entry2 *best = NULL;
5409
5410 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5411 struct kvm_cpuid_entry2 *e;
5412
5413 e = &vcpu->arch.cpuid_entries[i];
5414 if (is_matching_cpuid_entry(e, function, index)) {
5415 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5416 move_to_next_stateful_cpuid_entry(vcpu, i);
5417 best = e;
5418 break;
5419 }
5420 }
5421 return best;
5422}
5423EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5424
5425int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5426{
5427 struct kvm_cpuid_entry2 *best;
5428
5429 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5430 if (!best || best->eax < 0x80000008)
5431 goto not_found;
5432 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5433 if (best)
5434 return best->eax & 0xff;
5435not_found:
5436 return 36;
5437}
5438
5439/*
5440 * If no match is found, check whether we exceed the vCPU's limit
5441 * and return the content of the highest valid _standard_ leaf instead.
5442 * This is to satisfy the CPUID specification.
5443 */
5444static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5445 u32 function, u32 index)
5446{
5447 struct kvm_cpuid_entry2 *maxlevel;
5448
5449 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5450 if (!maxlevel || maxlevel->eax >= function)
5451 return NULL;
5452 if (function & 0x80000000) {
5453 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5454 if (!maxlevel)
5455 return NULL;
5456 }
5457 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5458}
5459
5460void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5461{
5462 u32 function, index;
5463 struct kvm_cpuid_entry2 *best;
5464
5465 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5466 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5467 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5468 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5469 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5470 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5471 best = kvm_find_cpuid_entry(vcpu, function, index);
5472
5473 if (!best)
5474 best = check_cpuid_limit(vcpu, function, index);
5475
5476 if (best) {
5477 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5478 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5479 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5480 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5481 }
5482 kvm_x86_ops->skip_emulated_instruction(vcpu);
5483 trace_kvm_cpuid(function,
5484 kvm_register_read(vcpu, VCPU_REGS_RAX),
5485 kvm_register_read(vcpu, VCPU_REGS_RBX),
5486 kvm_register_read(vcpu, VCPU_REGS_RCX),
5487 kvm_register_read(vcpu, VCPU_REGS_RDX));
5488}
5489EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5490
5491/*
5492 * Check if userspace requested an interrupt window, and that the
5493 * interrupt window is open.
5494 *
5495 * No need to exit to userspace if we already have an interrupt queued.
5496 */
5497static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5498{
5499 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5500 vcpu->run->request_interrupt_window &&
5501 kvm_arch_interrupt_allowed(vcpu));
5502}
5503
5504static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5505{
5506 struct kvm_run *kvm_run = vcpu->run;
5507
5508 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5509 kvm_run->cr8 = kvm_get_cr8(vcpu);
5510 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5511 if (irqchip_in_kernel(vcpu->kvm))
5512 kvm_run->ready_for_interrupt_injection = 1;
5513 else
5514 kvm_run->ready_for_interrupt_injection =
5515 kvm_arch_interrupt_allowed(vcpu) &&
5516 !kvm_cpu_has_interrupt(vcpu) &&
5517 !kvm_event_needs_reinjection(vcpu);
5518}
5519
5520static void vapic_enter(struct kvm_vcpu *vcpu)
5521{
5522 struct kvm_lapic *apic = vcpu->arch.apic;
5523 struct page *page;
5524
5525 if (!apic || !apic->vapic_addr)
5526 return;
5527
5528 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5529
5530 vcpu->arch.apic->vapic_page = page;
5531}
5532
5533static void vapic_exit(struct kvm_vcpu *vcpu)
5534{
5535 struct kvm_lapic *apic = vcpu->arch.apic;
5536 int idx;
5537
5538 if (!apic || !apic->vapic_addr)
5539 return;
5540
5541 idx = srcu_read_lock(&vcpu->kvm->srcu);
5542 kvm_release_page_dirty(apic->vapic_page);
5543 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5544 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5545}
5546
5547static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5548{
5549 int max_irr, tpr;
5550
5551 if (!kvm_x86_ops->update_cr8_intercept)
5552 return;
5553
5554 if (!vcpu->arch.apic)
5555 return;
5556
5557 if (!vcpu->arch.apic->vapic_addr)
5558 max_irr = kvm_lapic_find_highest_irr(vcpu);
5559 else
5560 max_irr = -1;
5561
5562 if (max_irr != -1)
5563 max_irr >>= 4;
5564
5565 tpr = kvm_lapic_get_cr8(vcpu);
5566
5567 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5568}
5569
5570static void inject_pending_event(struct kvm_vcpu *vcpu)
5571{
5572 /* try to reinject previous events if any */
5573 if (vcpu->arch.exception.pending) {
5574 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5575 vcpu->arch.exception.has_error_code,
5576 vcpu->arch.exception.error_code);
5577 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5578 vcpu->arch.exception.has_error_code,
5579 vcpu->arch.exception.error_code,
5580 vcpu->arch.exception.reinject);
5581 return;
5582 }
5583
5584 if (vcpu->arch.nmi_injected) {
5585 kvm_x86_ops->set_nmi(vcpu);
5586 return;
5587 }
5588
5589 if (vcpu->arch.interrupt.pending) {
5590 kvm_x86_ops->set_irq(vcpu);
5591 return;
5592 }
5593
5594 /* try to inject new event if pending */
5595 if (vcpu->arch.nmi_pending) {
5596 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5597 --vcpu->arch.nmi_pending;
5598 vcpu->arch.nmi_injected = true;
5599 kvm_x86_ops->set_nmi(vcpu);
5600 }
5601 } else if (kvm_cpu_has_interrupt(vcpu)) {
5602 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5603 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5604 false);
5605 kvm_x86_ops->set_irq(vcpu);
5606 }
5607 }
5608}
5609
5610static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5611{
5612 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5613 !vcpu->guest_xcr0_loaded) {
5614 /* kvm_set_xcr() also depends on this */
5615 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5616 vcpu->guest_xcr0_loaded = 1;
5617 }
5618}
5619
5620static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5621{
5622 if (vcpu->guest_xcr0_loaded) {
5623 if (vcpu->arch.xcr0 != host_xcr0)
5624 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5625 vcpu->guest_xcr0_loaded = 0;
5626 }
5627}
5628
5629static void process_nmi(struct kvm_vcpu *vcpu)
5630{
5631 unsigned limit = 2;
5632
5633 /*
5634 * x86 is limited to one NMI running, and one NMI pending after it.
5635 * If an NMI is already in progress, limit further NMIs to just one.
5636 * Otherwise, allow two (and we'll inject the first one immediately).
5637 */
5638 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5639 limit = 1;
5640
5641 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5642 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5643 kvm_make_request(KVM_REQ_EVENT, vcpu);
5644}
5645
5646static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5647{
5648 int r;
5649 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5650 vcpu->run->request_interrupt_window;
5651 bool req_immediate_exit = 0;
5652
5653 if (vcpu->requests) {
5654 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5655 kvm_mmu_unload(vcpu);
5656 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5657 __kvm_migrate_timers(vcpu);
5658 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5659 r = kvm_guest_time_update(vcpu);
5660 if (unlikely(r))
5661 goto out;
5662 }
5663 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5664 kvm_mmu_sync_roots(vcpu);
5665 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5666 kvm_x86_ops->tlb_flush(vcpu);
5667 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5668 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5669 r = 0;
5670 goto out;
5671 }
5672 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5673 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5674 r = 0;
5675 goto out;
5676 }
5677 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5678 vcpu->fpu_active = 0;
5679 kvm_x86_ops->fpu_deactivate(vcpu);
5680 }
5681 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5682 /* Page is swapped out. Do synthetic halt */
5683 vcpu->arch.apf.halted = true;
5684 r = 1;
5685 goto out;
5686 }
5687 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5688 record_steal_time(vcpu);
5689 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5690 process_nmi(vcpu);
5691 req_immediate_exit =
5692 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5693 }
5694
5695 r = kvm_mmu_reload(vcpu);
5696 if (unlikely(r))
5697 goto out;
5698
5699 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5700 inject_pending_event(vcpu);
5701
5702 /* enable NMI/IRQ window open exits if needed */
5703 if (vcpu->arch.nmi_pending)
5704 kvm_x86_ops->enable_nmi_window(vcpu);
5705 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5706 kvm_x86_ops->enable_irq_window(vcpu);
5707
5708 if (kvm_lapic_enabled(vcpu)) {
5709 update_cr8_intercept(vcpu);
5710 kvm_lapic_sync_to_vapic(vcpu);
5711 }
5712 }
5713
5714 preempt_disable();
5715
5716 kvm_x86_ops->prepare_guest_switch(vcpu);
5717 if (vcpu->fpu_active)
5718 kvm_load_guest_fpu(vcpu);
5719 kvm_load_guest_xcr0(vcpu);
5720
5721 vcpu->mode = IN_GUEST_MODE;
5722
5723 /* We should set ->mode before check ->requests,
5724 * see the comment in make_all_cpus_request.
5725 */
5726 smp_mb();
5727
5728 local_irq_disable();
5729
5730 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5731 || need_resched() || signal_pending(current)) {
5732 vcpu->mode = OUTSIDE_GUEST_MODE;
5733 smp_wmb();
5734 local_irq_enable();
5735 preempt_enable();
5736 kvm_x86_ops->cancel_injection(vcpu);
5737 r = 1;
5738 goto out;
5739 }
5740
5741 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5742
5743 if (req_immediate_exit)
5744 smp_send_reschedule(vcpu->cpu);
5745
5746 kvm_guest_enter();
5747
5748 if (unlikely(vcpu->arch.switch_db_regs)) {
5749 set_debugreg(0, 7);
5750 set_debugreg(vcpu->arch.eff_db[0], 0);
5751 set_debugreg(vcpu->arch.eff_db[1], 1);
5752 set_debugreg(vcpu->arch.eff_db[2], 2);
5753 set_debugreg(vcpu->arch.eff_db[3], 3);
5754 }
5755
5756 trace_kvm_entry(vcpu->vcpu_id);
5757 kvm_x86_ops->run(vcpu);
5758
5759 /*
5760 * If the guest has used debug registers, at least dr7
5761 * will be disabled while returning to the host.
5762 * If we don't have active breakpoints in the host, we don't
5763 * care about the messed up debug address registers. But if
5764 * we have some of them active, restore the old state.
5765 */
5766 if (hw_breakpoint_active())
5767 hw_breakpoint_restore();
5768
5769 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5770
5771 vcpu->mode = OUTSIDE_GUEST_MODE;
5772 smp_wmb();
5773 local_irq_enable();
5774
5775 ++vcpu->stat.exits;
5776
5777 /*
5778 * We must have an instruction between local_irq_enable() and
5779 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5780 * the interrupt shadow. The stat.exits increment will do nicely.
5781 * But we need to prevent reordering, hence this barrier():
5782 */
5783 barrier();
5784
5785 kvm_guest_exit();
5786
5787 preempt_enable();
5788
5789 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5790
5791 /*
5792 * Profile KVM exit RIPs:
5793 */
5794 if (unlikely(prof_on == KVM_PROFILING)) {
5795 unsigned long rip = kvm_rip_read(vcpu);
5796 profile_hit(KVM_PROFILING, (void *)rip);
5797 }
5798
5799
5800 kvm_lapic_sync_from_vapic(vcpu);
5801
5802 r = kvm_x86_ops->handle_exit(vcpu);
5803out:
5804 return r;
5805}
5806
5807
5808static int __vcpu_run(struct kvm_vcpu *vcpu)
5809{
5810 int r;
5811 struct kvm *kvm = vcpu->kvm;
5812
5813 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5814 pr_debug("vcpu %d received sipi with vector # %x\n",
5815 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5816 kvm_lapic_reset(vcpu);
5817 r = kvm_arch_vcpu_reset(vcpu);
5818 if (r)
5819 return r;
5820 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5821 }
5822
5823 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5824 vapic_enter(vcpu);
5825
5826 r = 1;
5827 while (r > 0) {
5828 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5829 !vcpu->arch.apf.halted)
5830 r = vcpu_enter_guest(vcpu);
5831 else {
5832 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5833 kvm_vcpu_block(vcpu);
5834 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5835 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5836 {
5837 switch(vcpu->arch.mp_state) {
5838 case KVM_MP_STATE_HALTED:
5839 vcpu->arch.mp_state =
5840 KVM_MP_STATE_RUNNABLE;
5841 case KVM_MP_STATE_RUNNABLE:
5842 vcpu->arch.apf.halted = false;
5843 break;
5844 case KVM_MP_STATE_SIPI_RECEIVED:
5845 default:
5846 r = -EINTR;
5847 break;
5848 }
5849 }
5850 }
5851
5852 if (r <= 0)
5853 break;
5854
5855 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5856 if (kvm_cpu_has_pending_timer(vcpu))
5857 kvm_inject_pending_timer_irqs(vcpu);
5858
5859 if (dm_request_for_irq_injection(vcpu)) {
5860 r = -EINTR;
5861 vcpu->run->exit_reason = KVM_EXIT_INTR;
5862 ++vcpu->stat.request_irq_exits;
5863 }
5864
5865 kvm_check_async_pf_completion(vcpu);
5866
5867 if (signal_pending(current)) {
5868 r = -EINTR;
5869 vcpu->run->exit_reason = KVM_EXIT_INTR;
5870 ++vcpu->stat.signal_exits;
5871 }
5872 if (need_resched()) {
5873 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5874 kvm_resched(vcpu);
5875 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5876 }
5877 }
5878
5879 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5880
5881 vapic_exit(vcpu);
5882
5883 return r;
5884}
5885
5886static int complete_mmio(struct kvm_vcpu *vcpu)
5887{
5888 struct kvm_run *run = vcpu->run;
5889 int r;
5890
5891 if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5892 return 1;
5893
5894 if (vcpu->mmio_needed) {
5895 vcpu->mmio_needed = 0;
5896 if (!vcpu->mmio_is_write)
5897 memcpy(vcpu->mmio_data + vcpu->mmio_index,
5898 run->mmio.data, 8);
5899 vcpu->mmio_index += 8;
5900 if (vcpu->mmio_index < vcpu->mmio_size) {
5901 run->exit_reason = KVM_EXIT_MMIO;
5902 run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5903 memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5904 run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5905 run->mmio.is_write = vcpu->mmio_is_write;
5906 vcpu->mmio_needed = 1;
5907 return 0;
5908 }
5909 if (vcpu->mmio_is_write)
5910 return 1;
5911 vcpu->mmio_read_completed = 1;
5912 }
5913 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5914 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5915 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5916 if (r != EMULATE_DONE)
5917 return 0;
5918 return 1;
5919}
5920
5921int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5922{
5923 int r;
5924 sigset_t sigsaved;
5925
5926 if (!tsk_used_math(current) && init_fpu(current))
5927 return -ENOMEM;
5928
5929 if (vcpu->sigset_active)
5930 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5931
5932 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5933 kvm_vcpu_block(vcpu);
5934 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5935 r = -EAGAIN;
5936 goto out;
5937 }
5938
5939 /* re-sync apic's tpr */
5940 if (!irqchip_in_kernel(vcpu->kvm)) {
5941 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5942 r = -EINVAL;
5943 goto out;
5944 }
5945 }
5946
5947 r = complete_mmio(vcpu);
5948 if (r <= 0)
5949 goto out;
5950
5951 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5952 kvm_register_write(vcpu, VCPU_REGS_RAX,
5953 kvm_run->hypercall.ret);
5954
5955 r = __vcpu_run(vcpu);
5956
5957out:
5958 post_kvm_run_save(vcpu);
5959 if (vcpu->sigset_active)
5960 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5961
5962 return r;
5963}
5964
5965int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5966{
5967 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5968 /*
5969 * We are here if userspace calls get_regs() in the middle of
5970 * instruction emulation. Registers state needs to be copied
5971 * back from emulation context to vcpu. Usrapace shouldn't do
5972 * that usually, but some bad designed PV devices (vmware
5973 * backdoor interface) need this to work
5974 */
5975 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5976 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5977 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5978 }
5979 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5980 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5981 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5982 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5983 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5984 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5985 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5986 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5987#ifdef CONFIG_X86_64
5988 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5989 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5990 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5991 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5992 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5993 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5994 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5995 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5996#endif
5997
5998 regs->rip = kvm_rip_read(vcpu);
5999 regs->rflags = kvm_get_rflags(vcpu);
6000
6001 return 0;
6002}
6003
6004int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6005{
6006 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6007 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6008
6009 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6010 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6011 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6012 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6013 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6014 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6015 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6016 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6017#ifdef CONFIG_X86_64
6018 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6019 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6020 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6021 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6022 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6023 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6024 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6025 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6026#endif
6027
6028 kvm_rip_write(vcpu, regs->rip);
6029 kvm_set_rflags(vcpu, regs->rflags);
6030
6031 vcpu->arch.exception.pending = false;
6032
6033 kvm_make_request(KVM_REQ_EVENT, vcpu);
6034
6035 return 0;
6036}
6037
6038void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6039{
6040 struct kvm_segment cs;
6041
6042 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6043 *db = cs.db;
6044 *l = cs.l;
6045}
6046EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6047
6048int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6049 struct kvm_sregs *sregs)
6050{
6051 struct desc_ptr dt;
6052
6053 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6054 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6055 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6056 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6057 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6058 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6059
6060 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6061 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6062
6063 kvm_x86_ops->get_idt(vcpu, &dt);
6064 sregs->idt.limit = dt.size;
6065 sregs->idt.base = dt.address;
6066 kvm_x86_ops->get_gdt(vcpu, &dt);
6067 sregs->gdt.limit = dt.size;
6068 sregs->gdt.base = dt.address;
6069
6070 sregs->cr0 = kvm_read_cr0(vcpu);
6071 sregs->cr2 = vcpu->arch.cr2;
6072 sregs->cr3 = kvm_read_cr3(vcpu);
6073 sregs->cr4 = kvm_read_cr4(vcpu);
6074 sregs->cr8 = kvm_get_cr8(vcpu);
6075 sregs->efer = vcpu->arch.efer;
6076 sregs->apic_base = kvm_get_apic_base(vcpu);
6077
6078 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6079
6080 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6081 set_bit(vcpu->arch.interrupt.nr,
6082 (unsigned long *)sregs->interrupt_bitmap);
6083
6084 return 0;
6085}
6086
6087int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6088 struct kvm_mp_state *mp_state)
6089{
6090 mp_state->mp_state = vcpu->arch.mp_state;
6091 return 0;
6092}
6093
6094int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6095 struct kvm_mp_state *mp_state)
6096{
6097 vcpu->arch.mp_state = mp_state->mp_state;
6098 kvm_make_request(KVM_REQ_EVENT, vcpu);
6099 return 0;
6100}
6101
6102int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
6103 bool has_error_code, u32 error_code)
6104{
6105 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6106 int ret;
6107
6108 init_emulate_ctxt(vcpu);
6109
6110 ret = emulator_task_switch(ctxt, tss_selector, reason,
6111 has_error_code, error_code);
6112
6113 if (ret)
6114 return EMULATE_FAIL;
6115
6116 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
6117 kvm_rip_write(vcpu, ctxt->eip);
6118 kvm_set_rflags(vcpu, ctxt->eflags);
6119 kvm_make_request(KVM_REQ_EVENT, vcpu);
6120 return EMULATE_DONE;
6121}
6122EXPORT_SYMBOL_GPL(kvm_task_switch);
6123
6124int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6125 struct kvm_sregs *sregs)
6126{
6127 int mmu_reset_needed = 0;
6128 int pending_vec, max_bits, idx;
6129 struct desc_ptr dt;
6130
6131 dt.size = sregs->idt.limit;
6132 dt.address = sregs->idt.base;
6133 kvm_x86_ops->set_idt(vcpu, &dt);
6134 dt.size = sregs->gdt.limit;
6135 dt.address = sregs->gdt.base;
6136 kvm_x86_ops->set_gdt(vcpu, &dt);
6137
6138 vcpu->arch.cr2 = sregs->cr2;
6139 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6140 vcpu->arch.cr3 = sregs->cr3;
6141 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6142
6143 kvm_set_cr8(vcpu, sregs->cr8);
6144
6145 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6146 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6147 kvm_set_apic_base(vcpu, sregs->apic_base);
6148
6149 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6150 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6151 vcpu->arch.cr0 = sregs->cr0;
6152
6153 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6154 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6155 if (sregs->cr4 & X86_CR4_OSXSAVE)
6156 update_cpuid(vcpu);
6157
6158 idx = srcu_read_lock(&vcpu->kvm->srcu);
6159 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6160 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6161 mmu_reset_needed = 1;
6162 }
6163 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6164
6165 if (mmu_reset_needed)
6166 kvm_mmu_reset_context(vcpu);
6167
6168 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
6169 pending_vec = find_first_bit(
6170 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6171 if (pending_vec < max_bits) {
6172 kvm_queue_interrupt(vcpu, pending_vec, false);
6173 pr_debug("Set back pending irq %d\n", pending_vec);
6174 }
6175
6176 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6177 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6178 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6179 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6180 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6181 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6182
6183 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6184 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6185
6186 update_cr8_intercept(vcpu);
6187
6188 /* Older userspace won't unhalt the vcpu on reset. */
6189 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6190 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6191 !is_protmode(vcpu))
6192 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6193
6194 kvm_make_request(KVM_REQ_EVENT, vcpu);
6195
6196 return 0;
6197}
6198
6199int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6200 struct kvm_guest_debug *dbg)
6201{
6202 unsigned long rflags;
6203 int i, r;
6204
6205 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6206 r = -EBUSY;
6207 if (vcpu->arch.exception.pending)
6208 goto out;
6209 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6210 kvm_queue_exception(vcpu, DB_VECTOR);
6211 else
6212 kvm_queue_exception(vcpu, BP_VECTOR);
6213 }
6214
6215 /*
6216 * Read rflags as long as potentially injected trace flags are still
6217 * filtered out.
6218 */
6219 rflags = kvm_get_rflags(vcpu);
6220
6221 vcpu->guest_debug = dbg->control;
6222 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6223 vcpu->guest_debug = 0;
6224
6225 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6226 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6227 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6228 vcpu->arch.switch_db_regs =
6229 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
6230 } else {
6231 for (i = 0; i < KVM_NR_DB_REGS; i++)
6232 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6233 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
6234 }
6235
6236 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6237 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6238 get_segment_base(vcpu, VCPU_SREG_CS);
6239
6240 /*
6241 * Trigger an rflags update that will inject or remove the trace
6242 * flags.
6243 */
6244 kvm_set_rflags(vcpu, rflags);
6245
6246 kvm_x86_ops->set_guest_debug(vcpu, dbg);
6247
6248 r = 0;
6249
6250out:
6251
6252 return r;
6253}
6254
6255/*
6256 * Translate a guest virtual address to a guest physical address.
6257 */
6258int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6259 struct kvm_translation *tr)
6260{
6261 unsigned long vaddr = tr->linear_address;
6262 gpa_t gpa;
6263 int idx;
6264
6265 idx = srcu_read_lock(&vcpu->kvm->srcu);
6266 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6267 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6268 tr->physical_address = gpa;
6269 tr->valid = gpa != UNMAPPED_GVA;
6270 tr->writeable = 1;
6271 tr->usermode = 0;
6272
6273 return 0;
6274}
6275
6276int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6277{
6278 struct i387_fxsave_struct *fxsave =
6279 &vcpu->arch.guest_fpu.state->fxsave;
6280
6281 memcpy(fpu->fpr, fxsave->st_space, 128);
6282 fpu->fcw = fxsave->cwd;
6283 fpu->fsw = fxsave->swd;
6284 fpu->ftwx = fxsave->twd;
6285 fpu->last_opcode = fxsave->fop;
6286 fpu->last_ip = fxsave->rip;
6287 fpu->last_dp = fxsave->rdp;
6288 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6289
6290 return 0;
6291}
6292
6293int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6294{
6295 struct i387_fxsave_struct *fxsave =
6296 &vcpu->arch.guest_fpu.state->fxsave;
6297
6298 memcpy(fxsave->st_space, fpu->fpr, 128);
6299 fxsave->cwd = fpu->fcw;
6300 fxsave->swd = fpu->fsw;
6301 fxsave->twd = fpu->ftwx;
6302 fxsave->fop = fpu->last_opcode;
6303 fxsave->rip = fpu->last_ip;
6304 fxsave->rdp = fpu->last_dp;
6305 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6306
6307 return 0;
6308}
6309
6310int fx_init(struct kvm_vcpu *vcpu)
6311{
6312 int err;
6313
6314 err = fpu_alloc(&vcpu->arch.guest_fpu);
6315 if (err)
6316 return err;
6317
6318 fpu_finit(&vcpu->arch.guest_fpu);
6319
6320 /*
6321 * Ensure guest xcr0 is valid for loading
6322 */
6323 vcpu->arch.xcr0 = XSTATE_FP;
6324
6325 vcpu->arch.cr0 |= X86_CR0_ET;
6326
6327 return 0;
6328}
6329EXPORT_SYMBOL_GPL(fx_init);
6330
6331static void fx_free(struct kvm_vcpu *vcpu)
6332{
6333 fpu_free(&vcpu->arch.guest_fpu);
6334}
6335
6336void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6337{
6338 if (vcpu->guest_fpu_loaded)
6339 return;
6340
6341 /*
6342 * Restore all possible states in the guest,
6343 * and assume host would use all available bits.
6344 * Guest xcr0 would be loaded later.
6345 */
6346 kvm_put_guest_xcr0(vcpu);
6347 vcpu->guest_fpu_loaded = 1;
6348 unlazy_fpu(current);
6349 fpu_restore_checking(&vcpu->arch.guest_fpu);
6350 trace_kvm_fpu(1);
6351}
6352
6353void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6354{
6355 kvm_put_guest_xcr0(vcpu);
6356
6357 if (!vcpu->guest_fpu_loaded)
6358 return;
6359
6360 vcpu->guest_fpu_loaded = 0;
6361 fpu_save_init(&vcpu->arch.guest_fpu);
6362 ++vcpu->stat.fpu_reload;
6363 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6364 trace_kvm_fpu(0);
6365}
6366
6367void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6368{
6369 kvmclock_reset(vcpu);
6370
6371 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6372 fx_free(vcpu);
6373 kvm_x86_ops->vcpu_free(vcpu);
6374}
6375
6376struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6377 unsigned int id)
6378{
6379 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6380 printk_once(KERN_WARNING
6381 "kvm: SMP vm created on host with unstable TSC; "
6382 "guest TSC will not be reliable\n");
6383 return kvm_x86_ops->vcpu_create(kvm, id);
6384}
6385
6386int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6387{
6388 int r;
6389
6390 vcpu->arch.mtrr_state.have_fixed = 1;
6391 vcpu_load(vcpu);
6392 r = kvm_arch_vcpu_reset(vcpu);
6393 if (r == 0)
6394 r = kvm_mmu_setup(vcpu);
6395 vcpu_put(vcpu);
6396
6397 return r;
6398}
6399
6400void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6401{
6402 vcpu->arch.apf.msr_val = 0;
6403
6404 vcpu_load(vcpu);
6405 kvm_mmu_unload(vcpu);
6406 vcpu_put(vcpu);
6407
6408 fx_free(vcpu);
6409 kvm_x86_ops->vcpu_free(vcpu);
6410}
6411
6412int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6413{
6414 atomic_set(&vcpu->arch.nmi_queued, 0);
6415 vcpu->arch.nmi_pending = 0;
6416 vcpu->arch.nmi_injected = false;
6417
6418 vcpu->arch.switch_db_regs = 0;
6419 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6420 vcpu->arch.dr6 = DR6_FIXED_1;
6421 vcpu->arch.dr7 = DR7_FIXED_1;
6422
6423 kvm_make_request(KVM_REQ_EVENT, vcpu);
6424 vcpu->arch.apf.msr_val = 0;
6425 vcpu->arch.st.msr_val = 0;
6426
6427 kvmclock_reset(vcpu);
6428
6429 kvm_clear_async_pf_completion_queue(vcpu);
6430 kvm_async_pf_hash_reset(vcpu);
6431 vcpu->arch.apf.halted = false;
6432
6433 return kvm_x86_ops->vcpu_reset(vcpu);
6434}
6435
6436int kvm_arch_hardware_enable(void *garbage)
6437{
6438 struct kvm *kvm;
6439 struct kvm_vcpu *vcpu;
6440 int i;
6441
6442 kvm_shared_msr_cpu_online();
6443 list_for_each_entry(kvm, &vm_list, vm_list)
6444 kvm_for_each_vcpu(i, vcpu, kvm)
6445 if (vcpu->cpu == smp_processor_id())
6446 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6447 return kvm_x86_ops->hardware_enable(garbage);
6448}
6449
6450void kvm_arch_hardware_disable(void *garbage)
6451{
6452 kvm_x86_ops->hardware_disable(garbage);
6453 drop_user_return_notifiers(garbage);
6454}
6455
6456int kvm_arch_hardware_setup(void)
6457{
6458 return kvm_x86_ops->hardware_setup();
6459}
6460
6461void kvm_arch_hardware_unsetup(void)
6462{
6463 kvm_x86_ops->hardware_unsetup();
6464}
6465
6466void kvm_arch_check_processor_compat(void *rtn)
6467{
6468 kvm_x86_ops->check_processor_compatibility(rtn);
6469}
6470
6471int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6472{
6473 struct page *page;
6474 struct kvm *kvm;
6475 int r;
6476
6477 BUG_ON(vcpu->kvm == NULL);
6478 kvm = vcpu->kvm;
6479
6480 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6481 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6482 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6483 vcpu->arch.mmu.translate_gpa = translate_gpa;
6484 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6485 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6486 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6487 else
6488 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6489
6490 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6491 if (!page) {
6492 r = -ENOMEM;
6493 goto fail;
6494 }
6495 vcpu->arch.pio_data = page_address(page);
6496
6497 kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6498
6499 r = kvm_mmu_create(vcpu);
6500 if (r < 0)
6501 goto fail_free_pio_data;
6502
6503 if (irqchip_in_kernel(kvm)) {
6504 r = kvm_create_lapic(vcpu);
6505 if (r < 0)
6506 goto fail_mmu_destroy;
6507 }
6508
6509 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6510 GFP_KERNEL);
6511 if (!vcpu->arch.mce_banks) {
6512 r = -ENOMEM;
6513 goto fail_free_lapic;
6514 }
6515 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6516
6517 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6518 goto fail_free_mce_banks;
6519
6520 kvm_async_pf_hash_reset(vcpu);
6521
6522 return 0;
6523fail_free_mce_banks:
6524 kfree(vcpu->arch.mce_banks);
6525fail_free_lapic:
6526 kvm_free_lapic(vcpu);
6527fail_mmu_destroy:
6528 kvm_mmu_destroy(vcpu);
6529fail_free_pio_data:
6530 free_page((unsigned long)vcpu->arch.pio_data);
6531fail:
6532 return r;
6533}
6534
6535void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6536{
6537 int idx;
6538
6539 kfree(vcpu->arch.mce_banks);
6540 kvm_free_lapic(vcpu);
6541 idx = srcu_read_lock(&vcpu->kvm->srcu);
6542 kvm_mmu_destroy(vcpu);
6543 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6544 free_page((unsigned long)vcpu->arch.pio_data);
6545}
6546
6547int kvm_arch_init_vm(struct kvm *kvm)
6548{
6549 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6550 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6551
6552 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6553 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6554
6555 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6556
6557 return 0;
6558}
6559
6560static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6561{
6562 vcpu_load(vcpu);
6563 kvm_mmu_unload(vcpu);
6564 vcpu_put(vcpu);
6565}
6566
6567static void kvm_free_vcpus(struct kvm *kvm)
6568{
6569 unsigned int i;
6570 struct kvm_vcpu *vcpu;
6571
6572 /*
6573 * Unpin any mmu pages first.
6574 */
6575 kvm_for_each_vcpu(i, vcpu, kvm) {
6576 kvm_clear_async_pf_completion_queue(vcpu);
6577 kvm_unload_vcpu_mmu(vcpu);
6578 }
6579 kvm_for_each_vcpu(i, vcpu, kvm)
6580 kvm_arch_vcpu_free(vcpu);
6581
6582 mutex_lock(&kvm->lock);
6583 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6584 kvm->vcpus[i] = NULL;
6585
6586 atomic_set(&kvm->online_vcpus, 0);
6587 mutex_unlock(&kvm->lock);
6588}
6589
6590void kvm_arch_sync_events(struct kvm *kvm)
6591{
6592 kvm_free_all_assigned_devices(kvm);
6593 kvm_free_pit(kvm);
6594}
6595
6596void kvm_arch_destroy_vm(struct kvm *kvm)
6597{
6598 kvm_iommu_unmap_guest(kvm);
6599 kfree(kvm->arch.vpic);
6600 kfree(kvm->arch.vioapic);
6601 kvm_free_vcpus(kvm);
6602 if (kvm->arch.apic_access_page)
6603 put_page(kvm->arch.apic_access_page);
6604 if (kvm->arch.ept_identity_pagetable)
6605 put_page(kvm->arch.ept_identity_pagetable);
6606}
6607
6608int kvm_arch_prepare_memory_region(struct kvm *kvm,
6609 struct kvm_memory_slot *memslot,
6610 struct kvm_memory_slot old,
6611 struct kvm_userspace_memory_region *mem,
6612 int user_alloc)
6613{
6614 int npages = memslot->npages;
6615 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6616
6617 /* Prevent internal slot pages from being moved by fork()/COW. */
6618 if (memslot->id >= KVM_MEMORY_SLOTS)
6619 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6620
6621 /*To keep backward compatibility with older userspace,
6622 *x86 needs to hanlde !user_alloc case.
6623 */
6624 if (!user_alloc) {
6625 if (npages && !old.rmap) {
6626 unsigned long userspace_addr;
6627
6628 down_write(&current->mm->mmap_sem);
6629 userspace_addr = do_mmap(NULL, 0,
6630 npages * PAGE_SIZE,
6631 PROT_READ | PROT_WRITE,
6632 map_flags,
6633 0);
6634 up_write(&current->mm->mmap_sem);
6635
6636 if (IS_ERR((void *)userspace_addr))
6637 return PTR_ERR((void *)userspace_addr);
6638
6639 memslot->userspace_addr = userspace_addr;
6640 }
6641 }
6642
6643
6644 return 0;
6645}
6646
6647void kvm_arch_commit_memory_region(struct kvm *kvm,
6648 struct kvm_userspace_memory_region *mem,
6649 struct kvm_memory_slot old,
6650 int user_alloc)
6651{
6652
6653 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6654
6655 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6656 int ret;
6657
6658 down_write(&current->mm->mmap_sem);
6659 ret = do_munmap(current->mm, old.userspace_addr,
6660 old.npages * PAGE_SIZE);
6661 up_write(&current->mm->mmap_sem);
6662 if (ret < 0)
6663 printk(KERN_WARNING
6664 "kvm_vm_ioctl_set_memory_region: "
6665 "failed to munmap memory\n");
6666 }
6667
6668 if (!kvm->arch.n_requested_mmu_pages)
6669 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6670
6671 spin_lock(&kvm->mmu_lock);
6672 if (nr_mmu_pages)
6673 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6674 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6675 spin_unlock(&kvm->mmu_lock);
6676}
6677
6678void kvm_arch_flush_shadow(struct kvm *kvm)
6679{
6680 kvm_mmu_zap_all(kvm);
6681 kvm_reload_remote_mmus(kvm);
6682}
6683
6684int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6685{
6686 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6687 !vcpu->arch.apf.halted)
6688 || !list_empty_careful(&vcpu->async_pf.done)
6689 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6690 || atomic_read(&vcpu->arch.nmi_queued) ||
6691 (kvm_arch_interrupt_allowed(vcpu) &&
6692 kvm_cpu_has_interrupt(vcpu));
6693}
6694
6695void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6696{
6697 int me;
6698 int cpu = vcpu->cpu;
6699
6700 if (waitqueue_active(&vcpu->wq)) {
6701 wake_up_interruptible(&vcpu->wq);
6702 ++vcpu->stat.halt_wakeup;
6703 }
6704
6705 me = get_cpu();
6706 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6707 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6708 smp_send_reschedule(cpu);
6709 put_cpu();
6710}
6711
6712int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6713{
6714 return kvm_x86_ops->interrupt_allowed(vcpu);
6715}
6716
6717bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6718{
6719 unsigned long current_rip = kvm_rip_read(vcpu) +
6720 get_segment_base(vcpu, VCPU_SREG_CS);
6721
6722 return current_rip == linear_rip;
6723}
6724EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6725
6726unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6727{
6728 unsigned long rflags;
6729
6730 rflags = kvm_x86_ops->get_rflags(vcpu);
6731 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6732 rflags &= ~X86_EFLAGS_TF;
6733 return rflags;
6734}
6735EXPORT_SYMBOL_GPL(kvm_get_rflags);
6736
6737void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6738{
6739 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6740 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6741 rflags |= X86_EFLAGS_TF;
6742 kvm_x86_ops->set_rflags(vcpu, rflags);
6743 kvm_make_request(KVM_REQ_EVENT, vcpu);
6744}
6745EXPORT_SYMBOL_GPL(kvm_set_rflags);
6746
6747void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6748{
6749 int r;
6750
6751 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6752 is_error_page(work->page))
6753 return;
6754
6755 r = kvm_mmu_reload(vcpu);
6756 if (unlikely(r))
6757 return;
6758
6759 if (!vcpu->arch.mmu.direct_map &&
6760 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6761 return;
6762
6763 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6764}
6765
6766static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6767{
6768 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6769}
6770
6771static inline u32 kvm_async_pf_next_probe(u32 key)
6772{
6773 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6774}
6775
6776static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6777{
6778 u32 key = kvm_async_pf_hash_fn(gfn);
6779
6780 while (vcpu->arch.apf.gfns[key] != ~0)
6781 key = kvm_async_pf_next_probe(key);
6782
6783 vcpu->arch.apf.gfns[key] = gfn;
6784}
6785
6786static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6787{
6788 int i;
6789 u32 key = kvm_async_pf_hash_fn(gfn);
6790
6791 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6792 (vcpu->arch.apf.gfns[key] != gfn &&
6793 vcpu->arch.apf.gfns[key] != ~0); i++)
6794 key = kvm_async_pf_next_probe(key);
6795
6796 return key;
6797}
6798
6799bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6800{
6801 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6802}
6803
6804static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6805{
6806 u32 i, j, k;
6807
6808 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6809 while (true) {
6810 vcpu->arch.apf.gfns[i] = ~0;
6811 do {
6812 j = kvm_async_pf_next_probe(j);
6813 if (vcpu->arch.apf.gfns[j] == ~0)
6814 return;
6815 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6816 /*
6817 * k lies cyclically in ]i,j]
6818 * | i.k.j |
6819 * |....j i.k.| or |.k..j i...|
6820 */
6821 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6822 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6823 i = j;
6824 }
6825}
6826
6827static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6828{
6829
6830 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6831 sizeof(val));
6832}
6833
6834void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6835 struct kvm_async_pf *work)
6836{
6837 struct x86_exception fault;
6838
6839 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6840 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6841
6842 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6843 (vcpu->arch.apf.send_user_only &&
6844 kvm_x86_ops->get_cpl(vcpu) == 0))
6845 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6846 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6847 fault.vector = PF_VECTOR;
6848 fault.error_code_valid = true;
6849 fault.error_code = 0;
6850 fault.nested_page_fault = false;
6851 fault.address = work->arch.token;
6852 kvm_inject_page_fault(vcpu, &fault);
6853 }
6854}
6855
6856void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6857 struct kvm_async_pf *work)
6858{
6859 struct x86_exception fault;
6860
6861 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6862 if (is_error_page(work->page))
6863 work->arch.token = ~0; /* broadcast wakeup */
6864 else
6865 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6866
6867 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6868 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6869 fault.vector = PF_VECTOR;
6870 fault.error_code_valid = true;
6871 fault.error_code = 0;
6872 fault.nested_page_fault = false;
6873 fault.address = work->arch.token;
6874 kvm_inject_page_fault(vcpu, &fault);
6875 }
6876 vcpu->arch.apf.halted = false;
6877}
6878
6879bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6880{
6881 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6882 return true;
6883 else
6884 return !kvm_event_needs_reinjection(vcpu) &&
6885 kvm_x86_ops->interrupt_allowed(vcpu);
6886}
6887
6888EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6889EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6890EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6891EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6892EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6893EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6894EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6895EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6896EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6897EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6898EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6899EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);