]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - arch/x86/kvm/x86.c
KVM: nSVM: Check for NRIPS support before updating control field
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22#include <linux/kvm_host.h>
23#include "irq.h"
24#include "mmu.h"
25#include "i8254.h"
26#include "tss.h"
27#include "kvm_cache_regs.h"
28#include "x86.h"
29#include "cpuid.h"
30#include "assigned-dev.h"
31
32#include <linux/clocksource.h>
33#include <linux/interrupt.h>
34#include <linux/kvm.h>
35#include <linux/fs.h>
36#include <linux/vmalloc.h>
37#include <linux/module.h>
38#include <linux/mman.h>
39#include <linux/highmem.h>
40#include <linux/iommu.h>
41#include <linux/intel-iommu.h>
42#include <linux/cpufreq.h>
43#include <linux/user-return-notifier.h>
44#include <linux/srcu.h>
45#include <linux/slab.h>
46#include <linux/perf_event.h>
47#include <linux/uaccess.h>
48#include <linux/hash.h>
49#include <linux/pci.h>
50#include <linux/timekeeper_internal.h>
51#include <linux/pvclock_gtod.h>
52#include <trace/events/kvm.h>
53
54#define CREATE_TRACE_POINTS
55#include "trace.h"
56
57#include <asm/debugreg.h>
58#include <asm/msr.h>
59#include <asm/desc.h>
60#include <asm/mtrr.h>
61#include <asm/mce.h>
62#include <asm/i387.h>
63#include <asm/fpu-internal.h> /* Ugh! */
64#include <asm/xcr.h>
65#include <asm/pvclock.h>
66#include <asm/div64.h>
67
68#define MAX_IO_MSRS 256
69#define KVM_MAX_MCE_BANKS 32
70#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72#define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75/* EFER defaults:
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
78 */
79#ifdef CONFIG_X86_64
80static
81u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82#else
83static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84#endif
85
86#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90static void process_nmi(struct kvm_vcpu *vcpu);
91static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93struct kvm_x86_ops *kvm_x86_ops;
94EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96static bool ignore_msrs = 0;
97module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99unsigned int min_timer_period_us = 500;
100module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102static bool __read_mostly kvmclock_periodic_sync = true;
103module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105bool kvm_has_tsc_control;
106EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107u32 kvm_max_guest_tsc_khz;
108EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111static u32 tsc_tolerance_ppm = 250;
112module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114/* lapic timer advance (tscdeadline mode only) in nanoseconds */
115unsigned int lapic_timer_advance_ns = 0;
116module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118static bool backwards_tsc_observed = false;
119
120#define KVM_NR_SHARED_MSRS 16
121
122struct kvm_shared_msrs_global {
123 int nr;
124 u32 msrs[KVM_NR_SHARED_MSRS];
125};
126
127struct kvm_shared_msrs {
128 struct user_return_notifier urn;
129 bool registered;
130 struct kvm_shared_msr_values {
131 u64 host;
132 u64 curr;
133 } values[KVM_NR_SHARED_MSRS];
134};
135
136static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137static struct kvm_shared_msrs __percpu *shared_msrs;
138
139struct kvm_stats_debugfs_item debugfs_entries[] = {
140 { "pf_fixed", VCPU_STAT(pf_fixed) },
141 { "pf_guest", VCPU_STAT(pf_guest) },
142 { "tlb_flush", VCPU_STAT(tlb_flush) },
143 { "invlpg", VCPU_STAT(invlpg) },
144 { "exits", VCPU_STAT(exits) },
145 { "io_exits", VCPU_STAT(io_exits) },
146 { "mmio_exits", VCPU_STAT(mmio_exits) },
147 { "signal_exits", VCPU_STAT(signal_exits) },
148 { "irq_window", VCPU_STAT(irq_window_exits) },
149 { "nmi_window", VCPU_STAT(nmi_window_exits) },
150 { "halt_exits", VCPU_STAT(halt_exits) },
151 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
153 { "hypercalls", VCPU_STAT(hypercalls) },
154 { "request_irq", VCPU_STAT(request_irq_exits) },
155 { "irq_exits", VCPU_STAT(irq_exits) },
156 { "host_state_reload", VCPU_STAT(host_state_reload) },
157 { "efer_reload", VCPU_STAT(efer_reload) },
158 { "fpu_reload", VCPU_STAT(fpu_reload) },
159 { "insn_emulation", VCPU_STAT(insn_emulation) },
160 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
161 { "irq_injections", VCPU_STAT(irq_injections) },
162 { "nmi_injections", VCPU_STAT(nmi_injections) },
163 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
164 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
165 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
166 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
167 { "mmu_flooded", VM_STAT(mmu_flooded) },
168 { "mmu_recycled", VM_STAT(mmu_recycled) },
169 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
170 { "mmu_unsync", VM_STAT(mmu_unsync) },
171 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
172 { "largepages", VM_STAT(lpages) },
173 { NULL }
174};
175
176u64 __read_mostly host_xcr0;
177
178static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
179
180static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
181{
182 int i;
183 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
184 vcpu->arch.apf.gfns[i] = ~0;
185}
186
187static void kvm_on_user_return(struct user_return_notifier *urn)
188{
189 unsigned slot;
190 struct kvm_shared_msrs *locals
191 = container_of(urn, struct kvm_shared_msrs, urn);
192 struct kvm_shared_msr_values *values;
193
194 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
195 values = &locals->values[slot];
196 if (values->host != values->curr) {
197 wrmsrl(shared_msrs_global.msrs[slot], values->host);
198 values->curr = values->host;
199 }
200 }
201 locals->registered = false;
202 user_return_notifier_unregister(urn);
203}
204
205static void shared_msr_update(unsigned slot, u32 msr)
206{
207 u64 value;
208 unsigned int cpu = smp_processor_id();
209 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
210
211 /* only read, and nobody should modify it at this time,
212 * so don't need lock */
213 if (slot >= shared_msrs_global.nr) {
214 printk(KERN_ERR "kvm: invalid MSR slot!");
215 return;
216 }
217 rdmsrl_safe(msr, &value);
218 smsr->values[slot].host = value;
219 smsr->values[slot].curr = value;
220}
221
222void kvm_define_shared_msr(unsigned slot, u32 msr)
223{
224 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
225 if (slot >= shared_msrs_global.nr)
226 shared_msrs_global.nr = slot + 1;
227 shared_msrs_global.msrs[slot] = msr;
228 /* we need ensured the shared_msr_global have been updated */
229 smp_wmb();
230}
231EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
232
233static void kvm_shared_msr_cpu_online(void)
234{
235 unsigned i;
236
237 for (i = 0; i < shared_msrs_global.nr; ++i)
238 shared_msr_update(i, shared_msrs_global.msrs[i]);
239}
240
241int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
242{
243 unsigned int cpu = smp_processor_id();
244 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245 int err;
246
247 if (((value ^ smsr->values[slot].curr) & mask) == 0)
248 return 0;
249 smsr->values[slot].curr = value;
250 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
251 if (err)
252 return 1;
253
254 if (!smsr->registered) {
255 smsr->urn.on_user_return = kvm_on_user_return;
256 user_return_notifier_register(&smsr->urn);
257 smsr->registered = true;
258 }
259 return 0;
260}
261EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
262
263static void drop_user_return_notifiers(void)
264{
265 unsigned int cpu = smp_processor_id();
266 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267
268 if (smsr->registered)
269 kvm_on_user_return(&smsr->urn);
270}
271
272u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
273{
274 return vcpu->arch.apic_base;
275}
276EXPORT_SYMBOL_GPL(kvm_get_apic_base);
277
278int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
279{
280 u64 old_state = vcpu->arch.apic_base &
281 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
282 u64 new_state = msr_info->data &
283 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
284 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
285 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
286
287 if (!msr_info->host_initiated &&
288 ((msr_info->data & reserved_bits) != 0 ||
289 new_state == X2APIC_ENABLE ||
290 (new_state == MSR_IA32_APICBASE_ENABLE &&
291 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
292 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
293 old_state == 0)))
294 return 1;
295
296 kvm_lapic_set_base(vcpu, msr_info->data);
297 return 0;
298}
299EXPORT_SYMBOL_GPL(kvm_set_apic_base);
300
301asmlinkage __visible void kvm_spurious_fault(void)
302{
303 /* Fault while not rebooting. We want the trace. */
304 BUG();
305}
306EXPORT_SYMBOL_GPL(kvm_spurious_fault);
307
308#define EXCPT_BENIGN 0
309#define EXCPT_CONTRIBUTORY 1
310#define EXCPT_PF 2
311
312static int exception_class(int vector)
313{
314 switch (vector) {
315 case PF_VECTOR:
316 return EXCPT_PF;
317 case DE_VECTOR:
318 case TS_VECTOR:
319 case NP_VECTOR:
320 case SS_VECTOR:
321 case GP_VECTOR:
322 return EXCPT_CONTRIBUTORY;
323 default:
324 break;
325 }
326 return EXCPT_BENIGN;
327}
328
329#define EXCPT_FAULT 0
330#define EXCPT_TRAP 1
331#define EXCPT_ABORT 2
332#define EXCPT_INTERRUPT 3
333
334static int exception_type(int vector)
335{
336 unsigned int mask;
337
338 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
339 return EXCPT_INTERRUPT;
340
341 mask = 1 << vector;
342
343 /* #DB is trap, as instruction watchpoints are handled elsewhere */
344 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
345 return EXCPT_TRAP;
346
347 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
348 return EXCPT_ABORT;
349
350 /* Reserved exceptions will result in fault */
351 return EXCPT_FAULT;
352}
353
354static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
355 unsigned nr, bool has_error, u32 error_code,
356 bool reinject)
357{
358 u32 prev_nr;
359 int class1, class2;
360
361 kvm_make_request(KVM_REQ_EVENT, vcpu);
362
363 if (!vcpu->arch.exception.pending) {
364 queue:
365 if (has_error && !is_protmode(vcpu))
366 has_error = false;
367 vcpu->arch.exception.pending = true;
368 vcpu->arch.exception.has_error_code = has_error;
369 vcpu->arch.exception.nr = nr;
370 vcpu->arch.exception.error_code = error_code;
371 vcpu->arch.exception.reinject = reinject;
372 return;
373 }
374
375 /* to check exception */
376 prev_nr = vcpu->arch.exception.nr;
377 if (prev_nr == DF_VECTOR) {
378 /* triple fault -> shutdown */
379 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
380 return;
381 }
382 class1 = exception_class(prev_nr);
383 class2 = exception_class(nr);
384 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
385 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
386 /* generate double fault per SDM Table 5-5 */
387 vcpu->arch.exception.pending = true;
388 vcpu->arch.exception.has_error_code = true;
389 vcpu->arch.exception.nr = DF_VECTOR;
390 vcpu->arch.exception.error_code = 0;
391 } else
392 /* replace previous exception with a new one in a hope
393 that instruction re-execution will regenerate lost
394 exception */
395 goto queue;
396}
397
398void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
399{
400 kvm_multiple_exception(vcpu, nr, false, 0, false);
401}
402EXPORT_SYMBOL_GPL(kvm_queue_exception);
403
404void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
405{
406 kvm_multiple_exception(vcpu, nr, false, 0, true);
407}
408EXPORT_SYMBOL_GPL(kvm_requeue_exception);
409
410void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
411{
412 if (err)
413 kvm_inject_gp(vcpu, 0);
414 else
415 kvm_x86_ops->skip_emulated_instruction(vcpu);
416}
417EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
418
419void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
420{
421 ++vcpu->stat.pf_guest;
422 vcpu->arch.cr2 = fault->address;
423 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
424}
425EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
426
427static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
428{
429 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
430 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
431 else
432 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
433
434 return fault->nested_page_fault;
435}
436
437void kvm_inject_nmi(struct kvm_vcpu *vcpu)
438{
439 atomic_inc(&vcpu->arch.nmi_queued);
440 kvm_make_request(KVM_REQ_NMI, vcpu);
441}
442EXPORT_SYMBOL_GPL(kvm_inject_nmi);
443
444void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
445{
446 kvm_multiple_exception(vcpu, nr, true, error_code, false);
447}
448EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
449
450void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
451{
452 kvm_multiple_exception(vcpu, nr, true, error_code, true);
453}
454EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
455
456/*
457 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
458 * a #GP and return false.
459 */
460bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
461{
462 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
463 return true;
464 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
465 return false;
466}
467EXPORT_SYMBOL_GPL(kvm_require_cpl);
468
469bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
470{
471 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
472 return true;
473
474 kvm_queue_exception(vcpu, UD_VECTOR);
475 return false;
476}
477EXPORT_SYMBOL_GPL(kvm_require_dr);
478
479/*
480 * This function will be used to read from the physical memory of the currently
481 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
482 * can read from guest physical or from the guest's guest physical memory.
483 */
484int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
485 gfn_t ngfn, void *data, int offset, int len,
486 u32 access)
487{
488 struct x86_exception exception;
489 gfn_t real_gfn;
490 gpa_t ngpa;
491
492 ngpa = gfn_to_gpa(ngfn);
493 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
494 if (real_gfn == UNMAPPED_GVA)
495 return -EFAULT;
496
497 real_gfn = gpa_to_gfn(real_gfn);
498
499 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
500}
501EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
502
503static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
504 void *data, int offset, int len, u32 access)
505{
506 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
507 data, offset, len, access);
508}
509
510/*
511 * Load the pae pdptrs. Return true is they are all valid.
512 */
513int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
514{
515 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
516 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
517 int i;
518 int ret;
519 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
520
521 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
522 offset * sizeof(u64), sizeof(pdpte),
523 PFERR_USER_MASK|PFERR_WRITE_MASK);
524 if (ret < 0) {
525 ret = 0;
526 goto out;
527 }
528 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
529 if (is_present_gpte(pdpte[i]) &&
530 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
531 ret = 0;
532 goto out;
533 }
534 }
535 ret = 1;
536
537 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
538 __set_bit(VCPU_EXREG_PDPTR,
539 (unsigned long *)&vcpu->arch.regs_avail);
540 __set_bit(VCPU_EXREG_PDPTR,
541 (unsigned long *)&vcpu->arch.regs_dirty);
542out:
543
544 return ret;
545}
546EXPORT_SYMBOL_GPL(load_pdptrs);
547
548static bool pdptrs_changed(struct kvm_vcpu *vcpu)
549{
550 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
551 bool changed = true;
552 int offset;
553 gfn_t gfn;
554 int r;
555
556 if (is_long_mode(vcpu) || !is_pae(vcpu))
557 return false;
558
559 if (!test_bit(VCPU_EXREG_PDPTR,
560 (unsigned long *)&vcpu->arch.regs_avail))
561 return true;
562
563 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
564 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
565 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
566 PFERR_USER_MASK | PFERR_WRITE_MASK);
567 if (r < 0)
568 goto out;
569 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
570out:
571
572 return changed;
573}
574
575int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
576{
577 unsigned long old_cr0 = kvm_read_cr0(vcpu);
578 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
579
580 cr0 |= X86_CR0_ET;
581
582#ifdef CONFIG_X86_64
583 if (cr0 & 0xffffffff00000000UL)
584 return 1;
585#endif
586
587 cr0 &= ~CR0_RESERVED_BITS;
588
589 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
590 return 1;
591
592 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
593 return 1;
594
595 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
596#ifdef CONFIG_X86_64
597 if ((vcpu->arch.efer & EFER_LME)) {
598 int cs_db, cs_l;
599
600 if (!is_pae(vcpu))
601 return 1;
602 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
603 if (cs_l)
604 return 1;
605 } else
606#endif
607 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
608 kvm_read_cr3(vcpu)))
609 return 1;
610 }
611
612 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
613 return 1;
614
615 kvm_x86_ops->set_cr0(vcpu, cr0);
616
617 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
618 kvm_clear_async_pf_completion_queue(vcpu);
619 kvm_async_pf_hash_reset(vcpu);
620 }
621
622 if ((cr0 ^ old_cr0) & update_bits)
623 kvm_mmu_reset_context(vcpu);
624 return 0;
625}
626EXPORT_SYMBOL_GPL(kvm_set_cr0);
627
628void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
629{
630 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
631}
632EXPORT_SYMBOL_GPL(kvm_lmsw);
633
634static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
635{
636 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
637 !vcpu->guest_xcr0_loaded) {
638 /* kvm_set_xcr() also depends on this */
639 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
640 vcpu->guest_xcr0_loaded = 1;
641 }
642}
643
644static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
645{
646 if (vcpu->guest_xcr0_loaded) {
647 if (vcpu->arch.xcr0 != host_xcr0)
648 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
649 vcpu->guest_xcr0_loaded = 0;
650 }
651}
652
653static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
654{
655 u64 xcr0 = xcr;
656 u64 old_xcr0 = vcpu->arch.xcr0;
657 u64 valid_bits;
658
659 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
660 if (index != XCR_XFEATURE_ENABLED_MASK)
661 return 1;
662 if (!(xcr0 & XSTATE_FP))
663 return 1;
664 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
665 return 1;
666
667 /*
668 * Do not allow the guest to set bits that we do not support
669 * saving. However, xcr0 bit 0 is always set, even if the
670 * emulated CPU does not support XSAVE (see fx_init).
671 */
672 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
673 if (xcr0 & ~valid_bits)
674 return 1;
675
676 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
677 return 1;
678
679 if (xcr0 & XSTATE_AVX512) {
680 if (!(xcr0 & XSTATE_YMM))
681 return 1;
682 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
683 return 1;
684 }
685 kvm_put_guest_xcr0(vcpu);
686 vcpu->arch.xcr0 = xcr0;
687
688 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
689 kvm_update_cpuid(vcpu);
690 return 0;
691}
692
693int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
694{
695 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
696 __kvm_set_xcr(vcpu, index, xcr)) {
697 kvm_inject_gp(vcpu, 0);
698 return 1;
699 }
700 return 0;
701}
702EXPORT_SYMBOL_GPL(kvm_set_xcr);
703
704int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
705{
706 unsigned long old_cr4 = kvm_read_cr4(vcpu);
707 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
708 X86_CR4_SMEP | X86_CR4_SMAP;
709
710 if (cr4 & CR4_RESERVED_BITS)
711 return 1;
712
713 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
714 return 1;
715
716 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
717 return 1;
718
719 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
720 return 1;
721
722 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
723 return 1;
724
725 if (is_long_mode(vcpu)) {
726 if (!(cr4 & X86_CR4_PAE))
727 return 1;
728 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
729 && ((cr4 ^ old_cr4) & pdptr_bits)
730 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
731 kvm_read_cr3(vcpu)))
732 return 1;
733
734 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
735 if (!guest_cpuid_has_pcid(vcpu))
736 return 1;
737
738 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
739 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
740 return 1;
741 }
742
743 if (kvm_x86_ops->set_cr4(vcpu, cr4))
744 return 1;
745
746 if (((cr4 ^ old_cr4) & pdptr_bits) ||
747 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
748 kvm_mmu_reset_context(vcpu);
749
750 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751 kvm_update_cpuid(vcpu);
752
753 return 0;
754}
755EXPORT_SYMBOL_GPL(kvm_set_cr4);
756
757int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758{
759#ifdef CONFIG_X86_64
760 cr3 &= ~CR3_PCID_INVD;
761#endif
762
763 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764 kvm_mmu_sync_roots(vcpu);
765 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766 return 0;
767 }
768
769 if (is_long_mode(vcpu)) {
770 if (cr3 & CR3_L_MODE_RESERVED_BITS)
771 return 1;
772 } else if (is_pae(vcpu) && is_paging(vcpu) &&
773 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774 return 1;
775
776 vcpu->arch.cr3 = cr3;
777 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778 kvm_mmu_new_cr3(vcpu);
779 return 0;
780}
781EXPORT_SYMBOL_GPL(kvm_set_cr3);
782
783int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784{
785 if (cr8 & CR8_RESERVED_BITS)
786 return 1;
787 if (irqchip_in_kernel(vcpu->kvm))
788 kvm_lapic_set_tpr(vcpu, cr8);
789 else
790 vcpu->arch.cr8 = cr8;
791 return 0;
792}
793EXPORT_SYMBOL_GPL(kvm_set_cr8);
794
795unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796{
797 if (irqchip_in_kernel(vcpu->kvm))
798 return kvm_lapic_get_cr8(vcpu);
799 else
800 return vcpu->arch.cr8;
801}
802EXPORT_SYMBOL_GPL(kvm_get_cr8);
803
804static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
805{
806 int i;
807
808 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
809 for (i = 0; i < KVM_NR_DB_REGS; i++)
810 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
811 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
812 }
813}
814
815static void kvm_update_dr6(struct kvm_vcpu *vcpu)
816{
817 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
818 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
819}
820
821static void kvm_update_dr7(struct kvm_vcpu *vcpu)
822{
823 unsigned long dr7;
824
825 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826 dr7 = vcpu->arch.guest_debug_dr7;
827 else
828 dr7 = vcpu->arch.dr7;
829 kvm_x86_ops->set_dr7(vcpu, dr7);
830 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
831 if (dr7 & DR7_BP_EN_MASK)
832 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
833}
834
835static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
836{
837 u64 fixed = DR6_FIXED_1;
838
839 if (!guest_cpuid_has_rtm(vcpu))
840 fixed |= DR6_RTM;
841 return fixed;
842}
843
844static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
845{
846 switch (dr) {
847 case 0 ... 3:
848 vcpu->arch.db[dr] = val;
849 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
850 vcpu->arch.eff_db[dr] = val;
851 break;
852 case 4:
853 /* fall through */
854 case 6:
855 if (val & 0xffffffff00000000ULL)
856 return -1; /* #GP */
857 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
858 kvm_update_dr6(vcpu);
859 break;
860 case 5:
861 /* fall through */
862 default: /* 7 */
863 if (val & 0xffffffff00000000ULL)
864 return -1; /* #GP */
865 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
866 kvm_update_dr7(vcpu);
867 break;
868 }
869
870 return 0;
871}
872
873int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
874{
875 if (__kvm_set_dr(vcpu, dr, val)) {
876 kvm_inject_gp(vcpu, 0);
877 return 1;
878 }
879 return 0;
880}
881EXPORT_SYMBOL_GPL(kvm_set_dr);
882
883int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
884{
885 switch (dr) {
886 case 0 ... 3:
887 *val = vcpu->arch.db[dr];
888 break;
889 case 4:
890 /* fall through */
891 case 6:
892 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
893 *val = vcpu->arch.dr6;
894 else
895 *val = kvm_x86_ops->get_dr6(vcpu);
896 break;
897 case 5:
898 /* fall through */
899 default: /* 7 */
900 *val = vcpu->arch.dr7;
901 break;
902 }
903 return 0;
904}
905EXPORT_SYMBOL_GPL(kvm_get_dr);
906
907bool kvm_rdpmc(struct kvm_vcpu *vcpu)
908{
909 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
910 u64 data;
911 int err;
912
913 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
914 if (err)
915 return err;
916 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
917 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
918 return err;
919}
920EXPORT_SYMBOL_GPL(kvm_rdpmc);
921
922/*
923 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
924 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
925 *
926 * This list is modified at module load time to reflect the
927 * capabilities of the host cpu. This capabilities test skips MSRs that are
928 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
929 * may depend on host virtualization features rather than host cpu features.
930 */
931
932static u32 msrs_to_save[] = {
933 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
934 MSR_STAR,
935#ifdef CONFIG_X86_64
936 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
937#endif
938 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
939 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
940};
941
942static unsigned num_msrs_to_save;
943
944static u32 emulated_msrs[] = {
945 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
946 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
947 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
948 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
949 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
950 MSR_KVM_PV_EOI_EN,
951
952 MSR_IA32_TSC_ADJUST,
953 MSR_IA32_TSCDEADLINE,
954 MSR_IA32_MISC_ENABLE,
955 MSR_IA32_MCG_STATUS,
956 MSR_IA32_MCG_CTL,
957 MSR_IA32_SMBASE,
958};
959
960static unsigned num_emulated_msrs;
961
962bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
963{
964 if (efer & efer_reserved_bits)
965 return false;
966
967 if (efer & EFER_FFXSR) {
968 struct kvm_cpuid_entry2 *feat;
969
970 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
971 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
972 return false;
973 }
974
975 if (efer & EFER_SVME) {
976 struct kvm_cpuid_entry2 *feat;
977
978 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
979 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
980 return false;
981 }
982
983 return true;
984}
985EXPORT_SYMBOL_GPL(kvm_valid_efer);
986
987static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
988{
989 u64 old_efer = vcpu->arch.efer;
990
991 if (!kvm_valid_efer(vcpu, efer))
992 return 1;
993
994 if (is_paging(vcpu)
995 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
996 return 1;
997
998 efer &= ~EFER_LMA;
999 efer |= vcpu->arch.efer & EFER_LMA;
1000
1001 kvm_x86_ops->set_efer(vcpu, efer);
1002
1003 /* Update reserved bits */
1004 if ((efer ^ old_efer) & EFER_NX)
1005 kvm_mmu_reset_context(vcpu);
1006
1007 return 0;
1008}
1009
1010void kvm_enable_efer_bits(u64 mask)
1011{
1012 efer_reserved_bits &= ~mask;
1013}
1014EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1015
1016/*
1017 * Writes msr value into into the appropriate "register".
1018 * Returns 0 on success, non-0 otherwise.
1019 * Assumes vcpu_load() was already called.
1020 */
1021int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1022{
1023 switch (msr->index) {
1024 case MSR_FS_BASE:
1025 case MSR_GS_BASE:
1026 case MSR_KERNEL_GS_BASE:
1027 case MSR_CSTAR:
1028 case MSR_LSTAR:
1029 if (is_noncanonical_address(msr->data))
1030 return 1;
1031 break;
1032 case MSR_IA32_SYSENTER_EIP:
1033 case MSR_IA32_SYSENTER_ESP:
1034 /*
1035 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1036 * non-canonical address is written on Intel but not on
1037 * AMD (which ignores the top 32-bits, because it does
1038 * not implement 64-bit SYSENTER).
1039 *
1040 * 64-bit code should hence be able to write a non-canonical
1041 * value on AMD. Making the address canonical ensures that
1042 * vmentry does not fail on Intel after writing a non-canonical
1043 * value, and that something deterministic happens if the guest
1044 * invokes 64-bit SYSENTER.
1045 */
1046 msr->data = get_canonical(msr->data);
1047 }
1048 return kvm_x86_ops->set_msr(vcpu, msr);
1049}
1050EXPORT_SYMBOL_GPL(kvm_set_msr);
1051
1052/*
1053 * Adapt set_msr() to msr_io()'s calling convention
1054 */
1055static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1056{
1057 struct msr_data msr;
1058 int r;
1059
1060 msr.index = index;
1061 msr.host_initiated = true;
1062 r = kvm_get_msr(vcpu, &msr);
1063 if (r)
1064 return r;
1065
1066 *data = msr.data;
1067 return 0;
1068}
1069
1070static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1071{
1072 struct msr_data msr;
1073
1074 msr.data = *data;
1075 msr.index = index;
1076 msr.host_initiated = true;
1077 return kvm_set_msr(vcpu, &msr);
1078}
1079
1080#ifdef CONFIG_X86_64
1081struct pvclock_gtod_data {
1082 seqcount_t seq;
1083
1084 struct { /* extract of a clocksource struct */
1085 int vclock_mode;
1086 cycle_t cycle_last;
1087 cycle_t mask;
1088 u32 mult;
1089 u32 shift;
1090 } clock;
1091
1092 u64 boot_ns;
1093 u64 nsec_base;
1094};
1095
1096static struct pvclock_gtod_data pvclock_gtod_data;
1097
1098static void update_pvclock_gtod(struct timekeeper *tk)
1099{
1100 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1101 u64 boot_ns;
1102
1103 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1104
1105 write_seqcount_begin(&vdata->seq);
1106
1107 /* copy pvclock gtod data */
1108 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1109 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1110 vdata->clock.mask = tk->tkr_mono.mask;
1111 vdata->clock.mult = tk->tkr_mono.mult;
1112 vdata->clock.shift = tk->tkr_mono.shift;
1113
1114 vdata->boot_ns = boot_ns;
1115 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1116
1117 write_seqcount_end(&vdata->seq);
1118}
1119#endif
1120
1121void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1122{
1123 /*
1124 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1125 * vcpu_enter_guest. This function is only called from
1126 * the physical CPU that is running vcpu.
1127 */
1128 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1129}
1130
1131static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1132{
1133 int version;
1134 int r;
1135 struct pvclock_wall_clock wc;
1136 struct timespec boot;
1137
1138 if (!wall_clock)
1139 return;
1140
1141 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1142 if (r)
1143 return;
1144
1145 if (version & 1)
1146 ++version; /* first time write, random junk */
1147
1148 ++version;
1149
1150 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1151
1152 /*
1153 * The guest calculates current wall clock time by adding
1154 * system time (updated by kvm_guest_time_update below) to the
1155 * wall clock specified here. guest system time equals host
1156 * system time for us, thus we must fill in host boot time here.
1157 */
1158 getboottime(&boot);
1159
1160 if (kvm->arch.kvmclock_offset) {
1161 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1162 boot = timespec_sub(boot, ts);
1163 }
1164 wc.sec = boot.tv_sec;
1165 wc.nsec = boot.tv_nsec;
1166 wc.version = version;
1167
1168 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1169
1170 version++;
1171 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1172}
1173
1174static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1175{
1176 uint32_t quotient, remainder;
1177
1178 /* Don't try to replace with do_div(), this one calculates
1179 * "(dividend << 32) / divisor" */
1180 __asm__ ( "divl %4"
1181 : "=a" (quotient), "=d" (remainder)
1182 : "0" (0), "1" (dividend), "r" (divisor) );
1183 return quotient;
1184}
1185
1186static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1187 s8 *pshift, u32 *pmultiplier)
1188{
1189 uint64_t scaled64;
1190 int32_t shift = 0;
1191 uint64_t tps64;
1192 uint32_t tps32;
1193
1194 tps64 = base_khz * 1000LL;
1195 scaled64 = scaled_khz * 1000LL;
1196 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1197 tps64 >>= 1;
1198 shift--;
1199 }
1200
1201 tps32 = (uint32_t)tps64;
1202 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1203 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1204 scaled64 >>= 1;
1205 else
1206 tps32 <<= 1;
1207 shift++;
1208 }
1209
1210 *pshift = shift;
1211 *pmultiplier = div_frac(scaled64, tps32);
1212
1213 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1214 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1215}
1216
1217static inline u64 get_kernel_ns(void)
1218{
1219 return ktime_get_boot_ns();
1220}
1221
1222#ifdef CONFIG_X86_64
1223static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1224#endif
1225
1226static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1227static unsigned long max_tsc_khz;
1228
1229static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1230{
1231 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1232 vcpu->arch.virtual_tsc_shift);
1233}
1234
1235static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1236{
1237 u64 v = (u64)khz * (1000000 + ppm);
1238 do_div(v, 1000000);
1239 return v;
1240}
1241
1242static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1243{
1244 u32 thresh_lo, thresh_hi;
1245 int use_scaling = 0;
1246
1247 /* tsc_khz can be zero if TSC calibration fails */
1248 if (this_tsc_khz == 0)
1249 return;
1250
1251 /* Compute a scale to convert nanoseconds in TSC cycles */
1252 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1253 &vcpu->arch.virtual_tsc_shift,
1254 &vcpu->arch.virtual_tsc_mult);
1255 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1256
1257 /*
1258 * Compute the variation in TSC rate which is acceptable
1259 * within the range of tolerance and decide if the
1260 * rate being applied is within that bounds of the hardware
1261 * rate. If so, no scaling or compensation need be done.
1262 */
1263 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1264 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1265 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1266 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1267 use_scaling = 1;
1268 }
1269 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1270}
1271
1272static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1273{
1274 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1275 vcpu->arch.virtual_tsc_mult,
1276 vcpu->arch.virtual_tsc_shift);
1277 tsc += vcpu->arch.this_tsc_write;
1278 return tsc;
1279}
1280
1281static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1282{
1283#ifdef CONFIG_X86_64
1284 bool vcpus_matched;
1285 struct kvm_arch *ka = &vcpu->kvm->arch;
1286 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287
1288 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1289 atomic_read(&vcpu->kvm->online_vcpus));
1290
1291 /*
1292 * Once the masterclock is enabled, always perform request in
1293 * order to update it.
1294 *
1295 * In order to enable masterclock, the host clocksource must be TSC
1296 * and the vcpus need to have matched TSCs. When that happens,
1297 * perform request to enable masterclock.
1298 */
1299 if (ka->use_master_clock ||
1300 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1301 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1302
1303 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1304 atomic_read(&vcpu->kvm->online_vcpus),
1305 ka->use_master_clock, gtod->clock.vclock_mode);
1306#endif
1307}
1308
1309static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1310{
1311 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1312 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1313}
1314
1315void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1316{
1317 struct kvm *kvm = vcpu->kvm;
1318 u64 offset, ns, elapsed;
1319 unsigned long flags;
1320 s64 usdiff;
1321 bool matched;
1322 bool already_matched;
1323 u64 data = msr->data;
1324
1325 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1326 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1327 ns = get_kernel_ns();
1328 elapsed = ns - kvm->arch.last_tsc_nsec;
1329
1330 if (vcpu->arch.virtual_tsc_khz) {
1331 int faulted = 0;
1332
1333 /* n.b - signed multiplication and division required */
1334 usdiff = data - kvm->arch.last_tsc_write;
1335#ifdef CONFIG_X86_64
1336 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1337#else
1338 /* do_div() only does unsigned */
1339 asm("1: idivl %[divisor]\n"
1340 "2: xor %%edx, %%edx\n"
1341 " movl $0, %[faulted]\n"
1342 "3:\n"
1343 ".section .fixup,\"ax\"\n"
1344 "4: movl $1, %[faulted]\n"
1345 " jmp 3b\n"
1346 ".previous\n"
1347
1348 _ASM_EXTABLE(1b, 4b)
1349
1350 : "=A"(usdiff), [faulted] "=r" (faulted)
1351 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1352
1353#endif
1354 do_div(elapsed, 1000);
1355 usdiff -= elapsed;
1356 if (usdiff < 0)
1357 usdiff = -usdiff;
1358
1359 /* idivl overflow => difference is larger than USEC_PER_SEC */
1360 if (faulted)
1361 usdiff = USEC_PER_SEC;
1362 } else
1363 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1364
1365 /*
1366 * Special case: TSC write with a small delta (1 second) of virtual
1367 * cycle time against real time is interpreted as an attempt to
1368 * synchronize the CPU.
1369 *
1370 * For a reliable TSC, we can match TSC offsets, and for an unstable
1371 * TSC, we add elapsed time in this computation. We could let the
1372 * compensation code attempt to catch up if we fall behind, but
1373 * it's better to try to match offsets from the beginning.
1374 */
1375 if (usdiff < USEC_PER_SEC &&
1376 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1377 if (!check_tsc_unstable()) {
1378 offset = kvm->arch.cur_tsc_offset;
1379 pr_debug("kvm: matched tsc offset for %llu\n", data);
1380 } else {
1381 u64 delta = nsec_to_cycles(vcpu, elapsed);
1382 data += delta;
1383 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1384 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1385 }
1386 matched = true;
1387 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1388 } else {
1389 /*
1390 * We split periods of matched TSC writes into generations.
1391 * For each generation, we track the original measured
1392 * nanosecond time, offset, and write, so if TSCs are in
1393 * sync, we can match exact offset, and if not, we can match
1394 * exact software computation in compute_guest_tsc()
1395 *
1396 * These values are tracked in kvm->arch.cur_xxx variables.
1397 */
1398 kvm->arch.cur_tsc_generation++;
1399 kvm->arch.cur_tsc_nsec = ns;
1400 kvm->arch.cur_tsc_write = data;
1401 kvm->arch.cur_tsc_offset = offset;
1402 matched = false;
1403 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1404 kvm->arch.cur_tsc_generation, data);
1405 }
1406
1407 /*
1408 * We also track th most recent recorded KHZ, write and time to
1409 * allow the matching interval to be extended at each write.
1410 */
1411 kvm->arch.last_tsc_nsec = ns;
1412 kvm->arch.last_tsc_write = data;
1413 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1414
1415 vcpu->arch.last_guest_tsc = data;
1416
1417 /* Keep track of which generation this VCPU has synchronized to */
1418 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1419 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1420 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1421
1422 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1423 update_ia32_tsc_adjust_msr(vcpu, offset);
1424 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1425 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1426
1427 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1428 if (!matched) {
1429 kvm->arch.nr_vcpus_matched_tsc = 0;
1430 } else if (!already_matched) {
1431 kvm->arch.nr_vcpus_matched_tsc++;
1432 }
1433
1434 kvm_track_tsc_matching(vcpu);
1435 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1436}
1437
1438EXPORT_SYMBOL_GPL(kvm_write_tsc);
1439
1440#ifdef CONFIG_X86_64
1441
1442static cycle_t read_tsc(void)
1443{
1444 cycle_t ret;
1445 u64 last;
1446
1447 /*
1448 * Empirically, a fence (of type that depends on the CPU)
1449 * before rdtsc is enough to ensure that rdtsc is ordered
1450 * with respect to loads. The various CPU manuals are unclear
1451 * as to whether rdtsc can be reordered with later loads,
1452 * but no one has ever seen it happen.
1453 */
1454 rdtsc_barrier();
1455 ret = (cycle_t)vget_cycles();
1456
1457 last = pvclock_gtod_data.clock.cycle_last;
1458
1459 if (likely(ret >= last))
1460 return ret;
1461
1462 /*
1463 * GCC likes to generate cmov here, but this branch is extremely
1464 * predictable (it's just a funciton of time and the likely is
1465 * very likely) and there's a data dependence, so force GCC
1466 * to generate a branch instead. I don't barrier() because
1467 * we don't actually need a barrier, and if this function
1468 * ever gets inlined it will generate worse code.
1469 */
1470 asm volatile ("");
1471 return last;
1472}
1473
1474static inline u64 vgettsc(cycle_t *cycle_now)
1475{
1476 long v;
1477 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1478
1479 *cycle_now = read_tsc();
1480
1481 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1482 return v * gtod->clock.mult;
1483}
1484
1485static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1486{
1487 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1488 unsigned long seq;
1489 int mode;
1490 u64 ns;
1491
1492 do {
1493 seq = read_seqcount_begin(&gtod->seq);
1494 mode = gtod->clock.vclock_mode;
1495 ns = gtod->nsec_base;
1496 ns += vgettsc(cycle_now);
1497 ns >>= gtod->clock.shift;
1498 ns += gtod->boot_ns;
1499 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1500 *t = ns;
1501
1502 return mode;
1503}
1504
1505/* returns true if host is using tsc clocksource */
1506static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1507{
1508 /* checked again under seqlock below */
1509 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1510 return false;
1511
1512 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1513}
1514#endif
1515
1516/*
1517 *
1518 * Assuming a stable TSC across physical CPUS, and a stable TSC
1519 * across virtual CPUs, the following condition is possible.
1520 * Each numbered line represents an event visible to both
1521 * CPUs at the next numbered event.
1522 *
1523 * "timespecX" represents host monotonic time. "tscX" represents
1524 * RDTSC value.
1525 *
1526 * VCPU0 on CPU0 | VCPU1 on CPU1
1527 *
1528 * 1. read timespec0,tsc0
1529 * 2. | timespec1 = timespec0 + N
1530 * | tsc1 = tsc0 + M
1531 * 3. transition to guest | transition to guest
1532 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1533 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1534 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1535 *
1536 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1537 *
1538 * - ret0 < ret1
1539 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1540 * ...
1541 * - 0 < N - M => M < N
1542 *
1543 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1544 * always the case (the difference between two distinct xtime instances
1545 * might be smaller then the difference between corresponding TSC reads,
1546 * when updating guest vcpus pvclock areas).
1547 *
1548 * To avoid that problem, do not allow visibility of distinct
1549 * system_timestamp/tsc_timestamp values simultaneously: use a master
1550 * copy of host monotonic time values. Update that master copy
1551 * in lockstep.
1552 *
1553 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1554 *
1555 */
1556
1557static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1558{
1559#ifdef CONFIG_X86_64
1560 struct kvm_arch *ka = &kvm->arch;
1561 int vclock_mode;
1562 bool host_tsc_clocksource, vcpus_matched;
1563
1564 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1565 atomic_read(&kvm->online_vcpus));
1566
1567 /*
1568 * If the host uses TSC clock, then passthrough TSC as stable
1569 * to the guest.
1570 */
1571 host_tsc_clocksource = kvm_get_time_and_clockread(
1572 &ka->master_kernel_ns,
1573 &ka->master_cycle_now);
1574
1575 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1576 && !backwards_tsc_observed
1577 && !ka->boot_vcpu_runs_old_kvmclock;
1578
1579 if (ka->use_master_clock)
1580 atomic_set(&kvm_guest_has_master_clock, 1);
1581
1582 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1583 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1584 vcpus_matched);
1585#endif
1586}
1587
1588static void kvm_gen_update_masterclock(struct kvm *kvm)
1589{
1590#ifdef CONFIG_X86_64
1591 int i;
1592 struct kvm_vcpu *vcpu;
1593 struct kvm_arch *ka = &kvm->arch;
1594
1595 spin_lock(&ka->pvclock_gtod_sync_lock);
1596 kvm_make_mclock_inprogress_request(kvm);
1597 /* no guest entries from this point */
1598 pvclock_update_vm_gtod_copy(kvm);
1599
1600 kvm_for_each_vcpu(i, vcpu, kvm)
1601 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1602
1603 /* guest entries allowed */
1604 kvm_for_each_vcpu(i, vcpu, kvm)
1605 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1606
1607 spin_unlock(&ka->pvclock_gtod_sync_lock);
1608#endif
1609}
1610
1611static int kvm_guest_time_update(struct kvm_vcpu *v)
1612{
1613 unsigned long flags, this_tsc_khz;
1614 struct kvm_vcpu_arch *vcpu = &v->arch;
1615 struct kvm_arch *ka = &v->kvm->arch;
1616 s64 kernel_ns;
1617 u64 tsc_timestamp, host_tsc;
1618 struct pvclock_vcpu_time_info guest_hv_clock;
1619 u8 pvclock_flags;
1620 bool use_master_clock;
1621
1622 kernel_ns = 0;
1623 host_tsc = 0;
1624
1625 /*
1626 * If the host uses TSC clock, then passthrough TSC as stable
1627 * to the guest.
1628 */
1629 spin_lock(&ka->pvclock_gtod_sync_lock);
1630 use_master_clock = ka->use_master_clock;
1631 if (use_master_clock) {
1632 host_tsc = ka->master_cycle_now;
1633 kernel_ns = ka->master_kernel_ns;
1634 }
1635 spin_unlock(&ka->pvclock_gtod_sync_lock);
1636
1637 /* Keep irq disabled to prevent changes to the clock */
1638 local_irq_save(flags);
1639 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1640 if (unlikely(this_tsc_khz == 0)) {
1641 local_irq_restore(flags);
1642 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1643 return 1;
1644 }
1645 if (!use_master_clock) {
1646 host_tsc = native_read_tsc();
1647 kernel_ns = get_kernel_ns();
1648 }
1649
1650 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1651
1652 /*
1653 * We may have to catch up the TSC to match elapsed wall clock
1654 * time for two reasons, even if kvmclock is used.
1655 * 1) CPU could have been running below the maximum TSC rate
1656 * 2) Broken TSC compensation resets the base at each VCPU
1657 * entry to avoid unknown leaps of TSC even when running
1658 * again on the same CPU. This may cause apparent elapsed
1659 * time to disappear, and the guest to stand still or run
1660 * very slowly.
1661 */
1662 if (vcpu->tsc_catchup) {
1663 u64 tsc = compute_guest_tsc(v, kernel_ns);
1664 if (tsc > tsc_timestamp) {
1665 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1666 tsc_timestamp = tsc;
1667 }
1668 }
1669
1670 local_irq_restore(flags);
1671
1672 if (!vcpu->pv_time_enabled)
1673 return 0;
1674
1675 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1676 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1677 &vcpu->hv_clock.tsc_shift,
1678 &vcpu->hv_clock.tsc_to_system_mul);
1679 vcpu->hw_tsc_khz = this_tsc_khz;
1680 }
1681
1682 /* With all the info we got, fill in the values */
1683 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1684 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1685 vcpu->last_guest_tsc = tsc_timestamp;
1686
1687 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1688 &guest_hv_clock, sizeof(guest_hv_clock))))
1689 return 0;
1690
1691 /* This VCPU is paused, but it's legal for a guest to read another
1692 * VCPU's kvmclock, so we really have to follow the specification where
1693 * it says that version is odd if data is being modified, and even after
1694 * it is consistent.
1695 *
1696 * Version field updates must be kept separate. This is because
1697 * kvm_write_guest_cached might use a "rep movs" instruction, and
1698 * writes within a string instruction are weakly ordered. So there
1699 * are three writes overall.
1700 *
1701 * As a small optimization, only write the version field in the first
1702 * and third write. The vcpu->pv_time cache is still valid, because the
1703 * version field is the first in the struct.
1704 */
1705 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1706
1707 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1708 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1709 &vcpu->hv_clock,
1710 sizeof(vcpu->hv_clock.version));
1711
1712 smp_wmb();
1713
1714 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1715 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1716
1717 if (vcpu->pvclock_set_guest_stopped_request) {
1718 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1719 vcpu->pvclock_set_guest_stopped_request = false;
1720 }
1721
1722 pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1723
1724 /* If the host uses TSC clocksource, then it is stable */
1725 if (use_master_clock)
1726 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1727
1728 vcpu->hv_clock.flags = pvclock_flags;
1729
1730 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1731
1732 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1733 &vcpu->hv_clock,
1734 sizeof(vcpu->hv_clock));
1735
1736 smp_wmb();
1737
1738 vcpu->hv_clock.version++;
1739 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1740 &vcpu->hv_clock,
1741 sizeof(vcpu->hv_clock.version));
1742 return 0;
1743}
1744
1745/*
1746 * kvmclock updates which are isolated to a given vcpu, such as
1747 * vcpu->cpu migration, should not allow system_timestamp from
1748 * the rest of the vcpus to remain static. Otherwise ntp frequency
1749 * correction applies to one vcpu's system_timestamp but not
1750 * the others.
1751 *
1752 * So in those cases, request a kvmclock update for all vcpus.
1753 * We need to rate-limit these requests though, as they can
1754 * considerably slow guests that have a large number of vcpus.
1755 * The time for a remote vcpu to update its kvmclock is bound
1756 * by the delay we use to rate-limit the updates.
1757 */
1758
1759#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1760
1761static void kvmclock_update_fn(struct work_struct *work)
1762{
1763 int i;
1764 struct delayed_work *dwork = to_delayed_work(work);
1765 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1766 kvmclock_update_work);
1767 struct kvm *kvm = container_of(ka, struct kvm, arch);
1768 struct kvm_vcpu *vcpu;
1769
1770 kvm_for_each_vcpu(i, vcpu, kvm) {
1771 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1772 kvm_vcpu_kick(vcpu);
1773 }
1774}
1775
1776static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1777{
1778 struct kvm *kvm = v->kvm;
1779
1780 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1781 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1782 KVMCLOCK_UPDATE_DELAY);
1783}
1784
1785#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1786
1787static void kvmclock_sync_fn(struct work_struct *work)
1788{
1789 struct delayed_work *dwork = to_delayed_work(work);
1790 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1791 kvmclock_sync_work);
1792 struct kvm *kvm = container_of(ka, struct kvm, arch);
1793
1794 if (!kvmclock_periodic_sync)
1795 return;
1796
1797 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1798 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1799 KVMCLOCK_SYNC_PERIOD);
1800}
1801
1802static bool msr_mtrr_valid(unsigned msr)
1803{
1804 switch (msr) {
1805 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1806 case MSR_MTRRfix64K_00000:
1807 case MSR_MTRRfix16K_80000:
1808 case MSR_MTRRfix16K_A0000:
1809 case MSR_MTRRfix4K_C0000:
1810 case MSR_MTRRfix4K_C8000:
1811 case MSR_MTRRfix4K_D0000:
1812 case MSR_MTRRfix4K_D8000:
1813 case MSR_MTRRfix4K_E0000:
1814 case MSR_MTRRfix4K_E8000:
1815 case MSR_MTRRfix4K_F0000:
1816 case MSR_MTRRfix4K_F8000:
1817 case MSR_MTRRdefType:
1818 case MSR_IA32_CR_PAT:
1819 return true;
1820 case 0x2f8:
1821 return true;
1822 }
1823 return false;
1824}
1825
1826static bool valid_pat_type(unsigned t)
1827{
1828 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1829}
1830
1831static bool valid_mtrr_type(unsigned t)
1832{
1833 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1834}
1835
1836bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1837{
1838 int i;
1839 u64 mask;
1840
1841 if (!msr_mtrr_valid(msr))
1842 return false;
1843
1844 if (msr == MSR_IA32_CR_PAT) {
1845 for (i = 0; i < 8; i++)
1846 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1847 return false;
1848 return true;
1849 } else if (msr == MSR_MTRRdefType) {
1850 if (data & ~0xcff)
1851 return false;
1852 return valid_mtrr_type(data & 0xff);
1853 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1854 for (i = 0; i < 8 ; i++)
1855 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1856 return false;
1857 return true;
1858 }
1859
1860 /* variable MTRRs */
1861 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1862
1863 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1864 if ((msr & 1) == 0) {
1865 /* MTRR base */
1866 if (!valid_mtrr_type(data & 0xff))
1867 return false;
1868 mask |= 0xf00;
1869 } else
1870 /* MTRR mask */
1871 mask |= 0x7ff;
1872 if (data & mask) {
1873 kvm_inject_gp(vcpu, 0);
1874 return false;
1875 }
1876
1877 return true;
1878}
1879EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1880
1881static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
1882{
1883 struct mtrr_state_type *mtrr_state = &vcpu->arch.mtrr_state;
1884 unsigned char mtrr_enabled = mtrr_state->enabled;
1885 gfn_t start, end, mask;
1886 int index;
1887 bool is_fixed = true;
1888
1889 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
1890 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
1891 return;
1892
1893 if (!(mtrr_enabled & 0x2) && msr != MSR_MTRRdefType)
1894 return;
1895
1896 switch (msr) {
1897 case MSR_MTRRfix64K_00000:
1898 start = 0x0;
1899 end = 0x80000;
1900 break;
1901 case MSR_MTRRfix16K_80000:
1902 start = 0x80000;
1903 end = 0xa0000;
1904 break;
1905 case MSR_MTRRfix16K_A0000:
1906 start = 0xa0000;
1907 end = 0xc0000;
1908 break;
1909 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
1910 index = msr - MSR_MTRRfix4K_C0000;
1911 start = 0xc0000 + index * (32 << 10);
1912 end = start + (32 << 10);
1913 break;
1914 case MSR_MTRRdefType:
1915 is_fixed = false;
1916 start = 0x0;
1917 end = ~0ULL;
1918 break;
1919 default:
1920 /* variable range MTRRs. */
1921 is_fixed = false;
1922 index = (msr - 0x200) / 2;
1923 start = (((u64)mtrr_state->var_ranges[index].base_hi) << 32) +
1924 (mtrr_state->var_ranges[index].base_lo & PAGE_MASK);
1925 mask = (((u64)mtrr_state->var_ranges[index].mask_hi) << 32) +
1926 (mtrr_state->var_ranges[index].mask_lo & PAGE_MASK);
1927 mask |= ~0ULL << cpuid_maxphyaddr(vcpu);
1928
1929 end = ((start & mask) | ~mask) + 1;
1930 }
1931
1932 if (is_fixed && !(mtrr_enabled & 0x1))
1933 return;
1934
1935 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
1936}
1937
1938static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1939{
1940 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1941
1942 if (!kvm_mtrr_valid(vcpu, msr, data))
1943 return 1;
1944
1945 if (msr == MSR_MTRRdefType) {
1946 vcpu->arch.mtrr_state.def_type = data;
1947 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1948 } else if (msr == MSR_MTRRfix64K_00000)
1949 p[0] = data;
1950 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1951 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1952 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1953 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1954 else if (msr == MSR_IA32_CR_PAT)
1955 vcpu->arch.pat = data;
1956 else { /* Variable MTRRs */
1957 int idx, is_mtrr_mask;
1958 u64 *pt;
1959
1960 idx = (msr - 0x200) / 2;
1961 is_mtrr_mask = msr - 0x200 - 2 * idx;
1962 if (!is_mtrr_mask)
1963 pt =
1964 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1965 else
1966 pt =
1967 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1968 *pt = data;
1969 }
1970
1971 update_mtrr(vcpu, msr);
1972 return 0;
1973}
1974
1975static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1976{
1977 u64 mcg_cap = vcpu->arch.mcg_cap;
1978 unsigned bank_num = mcg_cap & 0xff;
1979
1980 switch (msr) {
1981 case MSR_IA32_MCG_STATUS:
1982 vcpu->arch.mcg_status = data;
1983 break;
1984 case MSR_IA32_MCG_CTL:
1985 if (!(mcg_cap & MCG_CTL_P))
1986 return 1;
1987 if (data != 0 && data != ~(u64)0)
1988 return -1;
1989 vcpu->arch.mcg_ctl = data;
1990 break;
1991 default:
1992 if (msr >= MSR_IA32_MC0_CTL &&
1993 msr < MSR_IA32_MCx_CTL(bank_num)) {
1994 u32 offset = msr - MSR_IA32_MC0_CTL;
1995 /* only 0 or all 1s can be written to IA32_MCi_CTL
1996 * some Linux kernels though clear bit 10 in bank 4 to
1997 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1998 * this to avoid an uncatched #GP in the guest
1999 */
2000 if ((offset & 0x3) == 0 &&
2001 data != 0 && (data | (1 << 10)) != ~(u64)0)
2002 return -1;
2003 vcpu->arch.mce_banks[offset] = data;
2004 break;
2005 }
2006 return 1;
2007 }
2008 return 0;
2009}
2010
2011static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2012{
2013 struct kvm *kvm = vcpu->kvm;
2014 int lm = is_long_mode(vcpu);
2015 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2016 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2017 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2018 : kvm->arch.xen_hvm_config.blob_size_32;
2019 u32 page_num = data & ~PAGE_MASK;
2020 u64 page_addr = data & PAGE_MASK;
2021 u8 *page;
2022 int r;
2023
2024 r = -E2BIG;
2025 if (page_num >= blob_size)
2026 goto out;
2027 r = -ENOMEM;
2028 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2029 if (IS_ERR(page)) {
2030 r = PTR_ERR(page);
2031 goto out;
2032 }
2033 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2034 goto out_free;
2035 r = 0;
2036out_free:
2037 kfree(page);
2038out:
2039 return r;
2040}
2041
2042static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
2043{
2044 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
2045}
2046
2047static bool kvm_hv_msr_partition_wide(u32 msr)
2048{
2049 bool r = false;
2050 switch (msr) {
2051 case HV_X64_MSR_GUEST_OS_ID:
2052 case HV_X64_MSR_HYPERCALL:
2053 case HV_X64_MSR_REFERENCE_TSC:
2054 case HV_X64_MSR_TIME_REF_COUNT:
2055 r = true;
2056 break;
2057 }
2058
2059 return r;
2060}
2061
2062static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2063{
2064 struct kvm *kvm = vcpu->kvm;
2065
2066 switch (msr) {
2067 case HV_X64_MSR_GUEST_OS_ID:
2068 kvm->arch.hv_guest_os_id = data;
2069 /* setting guest os id to zero disables hypercall page */
2070 if (!kvm->arch.hv_guest_os_id)
2071 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
2072 break;
2073 case HV_X64_MSR_HYPERCALL: {
2074 u64 gfn;
2075 unsigned long addr;
2076 u8 instructions[4];
2077
2078 /* if guest os id is not set hypercall should remain disabled */
2079 if (!kvm->arch.hv_guest_os_id)
2080 break;
2081 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
2082 kvm->arch.hv_hypercall = data;
2083 break;
2084 }
2085 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2086 addr = gfn_to_hva(kvm, gfn);
2087 if (kvm_is_error_hva(addr))
2088 return 1;
2089 kvm_x86_ops->patch_hypercall(vcpu, instructions);
2090 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
2091 if (__copy_to_user((void __user *)addr, instructions, 4))
2092 return 1;
2093 kvm->arch.hv_hypercall = data;
2094 mark_page_dirty(kvm, gfn);
2095 break;
2096 }
2097 case HV_X64_MSR_REFERENCE_TSC: {
2098 u64 gfn;
2099 HV_REFERENCE_TSC_PAGE tsc_ref;
2100 memset(&tsc_ref, 0, sizeof(tsc_ref));
2101 kvm->arch.hv_tsc_page = data;
2102 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2103 break;
2104 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2105 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2106 &tsc_ref, sizeof(tsc_ref)))
2107 return 1;
2108 mark_page_dirty(kvm, gfn);
2109 break;
2110 }
2111 default:
2112 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2113 "data 0x%llx\n", msr, data);
2114 return 1;
2115 }
2116 return 0;
2117}
2118
2119static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2120{
2121 switch (msr) {
2122 case HV_X64_MSR_APIC_ASSIST_PAGE: {
2123 u64 gfn;
2124 unsigned long addr;
2125
2126 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2127 vcpu->arch.hv_vapic = data;
2128 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2129 return 1;
2130 break;
2131 }
2132 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2133 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
2134 if (kvm_is_error_hva(addr))
2135 return 1;
2136 if (__clear_user((void __user *)addr, PAGE_SIZE))
2137 return 1;
2138 vcpu->arch.hv_vapic = data;
2139 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2140 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2141 return 1;
2142 break;
2143 }
2144 case HV_X64_MSR_EOI:
2145 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2146 case HV_X64_MSR_ICR:
2147 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2148 case HV_X64_MSR_TPR:
2149 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2150 default:
2151 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2152 "data 0x%llx\n", msr, data);
2153 return 1;
2154 }
2155
2156 return 0;
2157}
2158
2159static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2160{
2161 gpa_t gpa = data & ~0x3f;
2162
2163 /* Bits 2:5 are reserved, Should be zero */
2164 if (data & 0x3c)
2165 return 1;
2166
2167 vcpu->arch.apf.msr_val = data;
2168
2169 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2170 kvm_clear_async_pf_completion_queue(vcpu);
2171 kvm_async_pf_hash_reset(vcpu);
2172 return 0;
2173 }
2174
2175 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2176 sizeof(u32)))
2177 return 1;
2178
2179 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2180 kvm_async_pf_wakeup_all(vcpu);
2181 return 0;
2182}
2183
2184static void kvmclock_reset(struct kvm_vcpu *vcpu)
2185{
2186 vcpu->arch.pv_time_enabled = false;
2187}
2188
2189static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2190{
2191 u64 delta;
2192
2193 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2194 return;
2195
2196 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2197 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2198 vcpu->arch.st.accum_steal = delta;
2199}
2200
2201static void record_steal_time(struct kvm_vcpu *vcpu)
2202{
2203 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2204 return;
2205
2206 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2207 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2208 return;
2209
2210 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2211 vcpu->arch.st.steal.version += 2;
2212 vcpu->arch.st.accum_steal = 0;
2213
2214 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2215 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2216}
2217
2218int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2219{
2220 bool pr = false;
2221 u32 msr = msr_info->index;
2222 u64 data = msr_info->data;
2223
2224 switch (msr) {
2225 case MSR_AMD64_NB_CFG:
2226 case MSR_IA32_UCODE_REV:
2227 case MSR_IA32_UCODE_WRITE:
2228 case MSR_VM_HSAVE_PA:
2229 case MSR_AMD64_PATCH_LOADER:
2230 case MSR_AMD64_BU_CFG2:
2231 break;
2232
2233 case MSR_EFER:
2234 return set_efer(vcpu, data);
2235 case MSR_K7_HWCR:
2236 data &= ~(u64)0x40; /* ignore flush filter disable */
2237 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2238 data &= ~(u64)0x8; /* ignore TLB cache disable */
2239 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2240 if (data != 0) {
2241 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2242 data);
2243 return 1;
2244 }
2245 break;
2246 case MSR_FAM10H_MMIO_CONF_BASE:
2247 if (data != 0) {
2248 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2249 "0x%llx\n", data);
2250 return 1;
2251 }
2252 break;
2253 case MSR_IA32_DEBUGCTLMSR:
2254 if (!data) {
2255 /* We support the non-activated case already */
2256 break;
2257 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2258 /* Values other than LBR and BTF are vendor-specific,
2259 thus reserved and should throw a #GP */
2260 return 1;
2261 }
2262 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2263 __func__, data);
2264 break;
2265 case 0x200 ... 0x2ff:
2266 return set_msr_mtrr(vcpu, msr, data);
2267 case MSR_IA32_APICBASE:
2268 return kvm_set_apic_base(vcpu, msr_info);
2269 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2270 return kvm_x2apic_msr_write(vcpu, msr, data);
2271 case MSR_IA32_TSCDEADLINE:
2272 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2273 break;
2274 case MSR_IA32_TSC_ADJUST:
2275 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2276 if (!msr_info->host_initiated) {
2277 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2278 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2279 }
2280 vcpu->arch.ia32_tsc_adjust_msr = data;
2281 }
2282 break;
2283 case MSR_IA32_MISC_ENABLE:
2284 vcpu->arch.ia32_misc_enable_msr = data;
2285 break;
2286 case MSR_IA32_SMBASE:
2287 if (!msr_info->host_initiated)
2288 return 1;
2289 vcpu->arch.smbase = data;
2290 break;
2291 case MSR_KVM_WALL_CLOCK_NEW:
2292 case MSR_KVM_WALL_CLOCK:
2293 vcpu->kvm->arch.wall_clock = data;
2294 kvm_write_wall_clock(vcpu->kvm, data);
2295 break;
2296 case MSR_KVM_SYSTEM_TIME_NEW:
2297 case MSR_KVM_SYSTEM_TIME: {
2298 u64 gpa_offset;
2299 struct kvm_arch *ka = &vcpu->kvm->arch;
2300
2301 kvmclock_reset(vcpu);
2302
2303 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2304 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2305
2306 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2307 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2308 &vcpu->requests);
2309
2310 ka->boot_vcpu_runs_old_kvmclock = tmp;
2311
2312 ka->kvmclock_offset = -get_kernel_ns();
2313 }
2314
2315 vcpu->arch.time = data;
2316 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2317
2318 /* we verify if the enable bit is set... */
2319 if (!(data & 1))
2320 break;
2321
2322 gpa_offset = data & ~(PAGE_MASK | 1);
2323
2324 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2325 &vcpu->arch.pv_time, data & ~1ULL,
2326 sizeof(struct pvclock_vcpu_time_info)))
2327 vcpu->arch.pv_time_enabled = false;
2328 else
2329 vcpu->arch.pv_time_enabled = true;
2330
2331 break;
2332 }
2333 case MSR_KVM_ASYNC_PF_EN:
2334 if (kvm_pv_enable_async_pf(vcpu, data))
2335 return 1;
2336 break;
2337 case MSR_KVM_STEAL_TIME:
2338
2339 if (unlikely(!sched_info_on()))
2340 return 1;
2341
2342 if (data & KVM_STEAL_RESERVED_MASK)
2343 return 1;
2344
2345 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2346 data & KVM_STEAL_VALID_BITS,
2347 sizeof(struct kvm_steal_time)))
2348 return 1;
2349
2350 vcpu->arch.st.msr_val = data;
2351
2352 if (!(data & KVM_MSR_ENABLED))
2353 break;
2354
2355 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2356
2357 preempt_disable();
2358 accumulate_steal_time(vcpu);
2359 preempt_enable();
2360
2361 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2362
2363 break;
2364 case MSR_KVM_PV_EOI_EN:
2365 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2366 return 1;
2367 break;
2368
2369 case MSR_IA32_MCG_CTL:
2370 case MSR_IA32_MCG_STATUS:
2371 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2372 return set_msr_mce(vcpu, msr, data);
2373
2374 /* Performance counters are not protected by a CPUID bit,
2375 * so we should check all of them in the generic path for the sake of
2376 * cross vendor migration.
2377 * Writing a zero into the event select MSRs disables them,
2378 * which we perfectly emulate ;-). Any other value should be at least
2379 * reported, some guests depend on them.
2380 */
2381 case MSR_K7_EVNTSEL0:
2382 case MSR_K7_EVNTSEL1:
2383 case MSR_K7_EVNTSEL2:
2384 case MSR_K7_EVNTSEL3:
2385 if (data != 0)
2386 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2387 "0x%x data 0x%llx\n", msr, data);
2388 break;
2389 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2390 * so we ignore writes to make it happy.
2391 */
2392 case MSR_K7_PERFCTR0:
2393 case MSR_K7_PERFCTR1:
2394 case MSR_K7_PERFCTR2:
2395 case MSR_K7_PERFCTR3:
2396 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2397 "0x%x data 0x%llx\n", msr, data);
2398 break;
2399 case MSR_P6_PERFCTR0:
2400 case MSR_P6_PERFCTR1:
2401 pr = true;
2402 case MSR_P6_EVNTSEL0:
2403 case MSR_P6_EVNTSEL1:
2404 if (kvm_pmu_msr(vcpu, msr))
2405 return kvm_pmu_set_msr(vcpu, msr_info);
2406
2407 if (pr || data != 0)
2408 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2409 "0x%x data 0x%llx\n", msr, data);
2410 break;
2411 case MSR_K7_CLK_CTL:
2412 /*
2413 * Ignore all writes to this no longer documented MSR.
2414 * Writes are only relevant for old K7 processors,
2415 * all pre-dating SVM, but a recommended workaround from
2416 * AMD for these chips. It is possible to specify the
2417 * affected processor models on the command line, hence
2418 * the need to ignore the workaround.
2419 */
2420 break;
2421 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2422 if (kvm_hv_msr_partition_wide(msr)) {
2423 int r;
2424 mutex_lock(&vcpu->kvm->lock);
2425 r = set_msr_hyperv_pw(vcpu, msr, data);
2426 mutex_unlock(&vcpu->kvm->lock);
2427 return r;
2428 } else
2429 return set_msr_hyperv(vcpu, msr, data);
2430 break;
2431 case MSR_IA32_BBL_CR_CTL3:
2432 /* Drop writes to this legacy MSR -- see rdmsr
2433 * counterpart for further detail.
2434 */
2435 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2436 break;
2437 case MSR_AMD64_OSVW_ID_LENGTH:
2438 if (!guest_cpuid_has_osvw(vcpu))
2439 return 1;
2440 vcpu->arch.osvw.length = data;
2441 break;
2442 case MSR_AMD64_OSVW_STATUS:
2443 if (!guest_cpuid_has_osvw(vcpu))
2444 return 1;
2445 vcpu->arch.osvw.status = data;
2446 break;
2447 default:
2448 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2449 return xen_hvm_config(vcpu, data);
2450 if (kvm_pmu_msr(vcpu, msr))
2451 return kvm_pmu_set_msr(vcpu, msr_info);
2452 if (!ignore_msrs) {
2453 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2454 msr, data);
2455 return 1;
2456 } else {
2457 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2458 msr, data);
2459 break;
2460 }
2461 }
2462 return 0;
2463}
2464EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2465
2466
2467/*
2468 * Reads an msr value (of 'msr_index') into 'pdata'.
2469 * Returns 0 on success, non-0 otherwise.
2470 * Assumes vcpu_load() was already called.
2471 */
2472int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2473{
2474 return kvm_x86_ops->get_msr(vcpu, msr);
2475}
2476EXPORT_SYMBOL_GPL(kvm_get_msr);
2477
2478static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2479{
2480 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2481
2482 if (!msr_mtrr_valid(msr))
2483 return 1;
2484
2485 if (msr == MSR_MTRRdefType)
2486 *pdata = vcpu->arch.mtrr_state.def_type +
2487 (vcpu->arch.mtrr_state.enabled << 10);
2488 else if (msr == MSR_MTRRfix64K_00000)
2489 *pdata = p[0];
2490 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2491 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2492 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2493 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2494 else if (msr == MSR_IA32_CR_PAT)
2495 *pdata = vcpu->arch.pat;
2496 else { /* Variable MTRRs */
2497 int idx, is_mtrr_mask;
2498 u64 *pt;
2499
2500 idx = (msr - 0x200) / 2;
2501 is_mtrr_mask = msr - 0x200 - 2 * idx;
2502 if (!is_mtrr_mask)
2503 pt =
2504 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2505 else
2506 pt =
2507 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2508 *pdata = *pt;
2509 }
2510
2511 return 0;
2512}
2513
2514static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2515{
2516 u64 data;
2517 u64 mcg_cap = vcpu->arch.mcg_cap;
2518 unsigned bank_num = mcg_cap & 0xff;
2519
2520 switch (msr) {
2521 case MSR_IA32_P5_MC_ADDR:
2522 case MSR_IA32_P5_MC_TYPE:
2523 data = 0;
2524 break;
2525 case MSR_IA32_MCG_CAP:
2526 data = vcpu->arch.mcg_cap;
2527 break;
2528 case MSR_IA32_MCG_CTL:
2529 if (!(mcg_cap & MCG_CTL_P))
2530 return 1;
2531 data = vcpu->arch.mcg_ctl;
2532 break;
2533 case MSR_IA32_MCG_STATUS:
2534 data = vcpu->arch.mcg_status;
2535 break;
2536 default:
2537 if (msr >= MSR_IA32_MC0_CTL &&
2538 msr < MSR_IA32_MCx_CTL(bank_num)) {
2539 u32 offset = msr - MSR_IA32_MC0_CTL;
2540 data = vcpu->arch.mce_banks[offset];
2541 break;
2542 }
2543 return 1;
2544 }
2545 *pdata = data;
2546 return 0;
2547}
2548
2549static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2550{
2551 u64 data = 0;
2552 struct kvm *kvm = vcpu->kvm;
2553
2554 switch (msr) {
2555 case HV_X64_MSR_GUEST_OS_ID:
2556 data = kvm->arch.hv_guest_os_id;
2557 break;
2558 case HV_X64_MSR_HYPERCALL:
2559 data = kvm->arch.hv_hypercall;
2560 break;
2561 case HV_X64_MSR_TIME_REF_COUNT: {
2562 data =
2563 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2564 break;
2565 }
2566 case HV_X64_MSR_REFERENCE_TSC:
2567 data = kvm->arch.hv_tsc_page;
2568 break;
2569 default:
2570 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2571 return 1;
2572 }
2573
2574 *pdata = data;
2575 return 0;
2576}
2577
2578static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2579{
2580 u64 data = 0;
2581
2582 switch (msr) {
2583 case HV_X64_MSR_VP_INDEX: {
2584 int r;
2585 struct kvm_vcpu *v;
2586 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2587 if (v == vcpu) {
2588 data = r;
2589 break;
2590 }
2591 }
2592 break;
2593 }
2594 case HV_X64_MSR_EOI:
2595 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2596 case HV_X64_MSR_ICR:
2597 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2598 case HV_X64_MSR_TPR:
2599 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2600 case HV_X64_MSR_APIC_ASSIST_PAGE:
2601 data = vcpu->arch.hv_vapic;
2602 break;
2603 default:
2604 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2605 return 1;
2606 }
2607 *pdata = data;
2608 return 0;
2609}
2610
2611int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2612{
2613 u64 data;
2614
2615 switch (msr_info->index) {
2616 case MSR_IA32_PLATFORM_ID:
2617 case MSR_IA32_EBL_CR_POWERON:
2618 case MSR_IA32_DEBUGCTLMSR:
2619 case MSR_IA32_LASTBRANCHFROMIP:
2620 case MSR_IA32_LASTBRANCHTOIP:
2621 case MSR_IA32_LASTINTFROMIP:
2622 case MSR_IA32_LASTINTTOIP:
2623 case MSR_K8_SYSCFG:
2624 case MSR_K7_HWCR:
2625 case MSR_VM_HSAVE_PA:
2626 case MSR_K7_EVNTSEL0:
2627 case MSR_K7_EVNTSEL1:
2628 case MSR_K7_EVNTSEL2:
2629 case MSR_K7_EVNTSEL3:
2630 case MSR_K7_PERFCTR0:
2631 case MSR_K7_PERFCTR1:
2632 case MSR_K7_PERFCTR2:
2633 case MSR_K7_PERFCTR3:
2634 case MSR_K8_INT_PENDING_MSG:
2635 case MSR_AMD64_NB_CFG:
2636 case MSR_FAM10H_MMIO_CONF_BASE:
2637 case MSR_AMD64_BU_CFG2:
2638 msr_info->data = 0;
2639 break;
2640 case MSR_P6_PERFCTR0:
2641 case MSR_P6_PERFCTR1:
2642 case MSR_P6_EVNTSEL0:
2643 case MSR_P6_EVNTSEL1:
2644 if (kvm_pmu_msr(vcpu, msr_info->index))
2645 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2646 msr_info->data = 0;
2647 break;
2648 case MSR_IA32_UCODE_REV:
2649 msr_info->data = 0x100000000ULL;
2650 break;
2651 case MSR_MTRRcap:
2652 msr_info->data = 0x500 | KVM_NR_VAR_MTRR;
2653 break;
2654 case 0x200 ... 0x2ff:
2655 return get_msr_mtrr(vcpu, msr_info->index, &msr_info->data);
2656 case 0xcd: /* fsb frequency */
2657 msr_info->data = 3;
2658 break;
2659 /*
2660 * MSR_EBC_FREQUENCY_ID
2661 * Conservative value valid for even the basic CPU models.
2662 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2663 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2664 * and 266MHz for model 3, or 4. Set Core Clock
2665 * Frequency to System Bus Frequency Ratio to 1 (bits
2666 * 31:24) even though these are only valid for CPU
2667 * models > 2, however guests may end up dividing or
2668 * multiplying by zero otherwise.
2669 */
2670 case MSR_EBC_FREQUENCY_ID:
2671 msr_info->data = 1 << 24;
2672 break;
2673 case MSR_IA32_APICBASE:
2674 msr_info->data = kvm_get_apic_base(vcpu);
2675 break;
2676 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2677 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2678 break;
2679 case MSR_IA32_TSCDEADLINE:
2680 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2681 break;
2682 case MSR_IA32_TSC_ADJUST:
2683 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2684 break;
2685 case MSR_IA32_MISC_ENABLE:
2686 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2687 break;
2688 case MSR_IA32_SMBASE:
2689 if (!msr_info->host_initiated)
2690 return 1;
2691 msr_info->data = vcpu->arch.smbase;
2692 break;
2693 case MSR_IA32_PERF_STATUS:
2694 /* TSC increment by tick */
2695 msr_info->data = 1000ULL;
2696 /* CPU multiplier */
2697 data |= (((uint64_t)4ULL) << 40);
2698 break;
2699 case MSR_EFER:
2700 msr_info->data = vcpu->arch.efer;
2701 break;
2702 case MSR_KVM_WALL_CLOCK:
2703 case MSR_KVM_WALL_CLOCK_NEW:
2704 msr_info->data = vcpu->kvm->arch.wall_clock;
2705 break;
2706 case MSR_KVM_SYSTEM_TIME:
2707 case MSR_KVM_SYSTEM_TIME_NEW:
2708 msr_info->data = vcpu->arch.time;
2709 break;
2710 case MSR_KVM_ASYNC_PF_EN:
2711 msr_info->data = vcpu->arch.apf.msr_val;
2712 break;
2713 case MSR_KVM_STEAL_TIME:
2714 msr_info->data = vcpu->arch.st.msr_val;
2715 break;
2716 case MSR_KVM_PV_EOI_EN:
2717 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2718 break;
2719 case MSR_IA32_P5_MC_ADDR:
2720 case MSR_IA32_P5_MC_TYPE:
2721 case MSR_IA32_MCG_CAP:
2722 case MSR_IA32_MCG_CTL:
2723 case MSR_IA32_MCG_STATUS:
2724 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2725 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2726 case MSR_K7_CLK_CTL:
2727 /*
2728 * Provide expected ramp-up count for K7. All other
2729 * are set to zero, indicating minimum divisors for
2730 * every field.
2731 *
2732 * This prevents guest kernels on AMD host with CPU
2733 * type 6, model 8 and higher from exploding due to
2734 * the rdmsr failing.
2735 */
2736 msr_info->data = 0x20000000;
2737 break;
2738 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2739 if (kvm_hv_msr_partition_wide(msr_info->index)) {
2740 int r;
2741 mutex_lock(&vcpu->kvm->lock);
2742 r = get_msr_hyperv_pw(vcpu, msr_info->index, &msr_info->data);
2743 mutex_unlock(&vcpu->kvm->lock);
2744 return r;
2745 } else
2746 return get_msr_hyperv(vcpu, msr_info->index, &msr_info->data);
2747 break;
2748 case MSR_IA32_BBL_CR_CTL3:
2749 /* This legacy MSR exists but isn't fully documented in current
2750 * silicon. It is however accessed by winxp in very narrow
2751 * scenarios where it sets bit #19, itself documented as
2752 * a "reserved" bit. Best effort attempt to source coherent
2753 * read data here should the balance of the register be
2754 * interpreted by the guest:
2755 *
2756 * L2 cache control register 3: 64GB range, 256KB size,
2757 * enabled, latency 0x1, configured
2758 */
2759 msr_info->data = 0xbe702111;
2760 break;
2761 case MSR_AMD64_OSVW_ID_LENGTH:
2762 if (!guest_cpuid_has_osvw(vcpu))
2763 return 1;
2764 msr_info->data = vcpu->arch.osvw.length;
2765 break;
2766 case MSR_AMD64_OSVW_STATUS:
2767 if (!guest_cpuid_has_osvw(vcpu))
2768 return 1;
2769 msr_info->data = vcpu->arch.osvw.status;
2770 break;
2771 default:
2772 if (kvm_pmu_msr(vcpu, msr_info->index))
2773 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2774 if (!ignore_msrs) {
2775 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2776 return 1;
2777 } else {
2778 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2779 msr_info->data = 0;
2780 }
2781 break;
2782 }
2783 return 0;
2784}
2785EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2786
2787/*
2788 * Read or write a bunch of msrs. All parameters are kernel addresses.
2789 *
2790 * @return number of msrs set successfully.
2791 */
2792static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2793 struct kvm_msr_entry *entries,
2794 int (*do_msr)(struct kvm_vcpu *vcpu,
2795 unsigned index, u64 *data))
2796{
2797 int i, idx;
2798
2799 idx = srcu_read_lock(&vcpu->kvm->srcu);
2800 for (i = 0; i < msrs->nmsrs; ++i)
2801 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2802 break;
2803 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2804
2805 return i;
2806}
2807
2808/*
2809 * Read or write a bunch of msrs. Parameters are user addresses.
2810 *
2811 * @return number of msrs set successfully.
2812 */
2813static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2814 int (*do_msr)(struct kvm_vcpu *vcpu,
2815 unsigned index, u64 *data),
2816 int writeback)
2817{
2818 struct kvm_msrs msrs;
2819 struct kvm_msr_entry *entries;
2820 int r, n;
2821 unsigned size;
2822
2823 r = -EFAULT;
2824 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2825 goto out;
2826
2827 r = -E2BIG;
2828 if (msrs.nmsrs >= MAX_IO_MSRS)
2829 goto out;
2830
2831 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2832 entries = memdup_user(user_msrs->entries, size);
2833 if (IS_ERR(entries)) {
2834 r = PTR_ERR(entries);
2835 goto out;
2836 }
2837
2838 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2839 if (r < 0)
2840 goto out_free;
2841
2842 r = -EFAULT;
2843 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2844 goto out_free;
2845
2846 r = n;
2847
2848out_free:
2849 kfree(entries);
2850out:
2851 return r;
2852}
2853
2854int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2855{
2856 int r;
2857
2858 switch (ext) {
2859 case KVM_CAP_IRQCHIP:
2860 case KVM_CAP_HLT:
2861 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2862 case KVM_CAP_SET_TSS_ADDR:
2863 case KVM_CAP_EXT_CPUID:
2864 case KVM_CAP_EXT_EMUL_CPUID:
2865 case KVM_CAP_CLOCKSOURCE:
2866 case KVM_CAP_PIT:
2867 case KVM_CAP_NOP_IO_DELAY:
2868 case KVM_CAP_MP_STATE:
2869 case KVM_CAP_SYNC_MMU:
2870 case KVM_CAP_USER_NMI:
2871 case KVM_CAP_REINJECT_CONTROL:
2872 case KVM_CAP_IRQ_INJECT_STATUS:
2873 case KVM_CAP_IOEVENTFD:
2874 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2875 case KVM_CAP_PIT2:
2876 case KVM_CAP_PIT_STATE2:
2877 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2878 case KVM_CAP_XEN_HVM:
2879 case KVM_CAP_ADJUST_CLOCK:
2880 case KVM_CAP_VCPU_EVENTS:
2881 case KVM_CAP_HYPERV:
2882 case KVM_CAP_HYPERV_VAPIC:
2883 case KVM_CAP_HYPERV_SPIN:
2884 case KVM_CAP_PCI_SEGMENT:
2885 case KVM_CAP_DEBUGREGS:
2886 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2887 case KVM_CAP_XSAVE:
2888 case KVM_CAP_ASYNC_PF:
2889 case KVM_CAP_GET_TSC_KHZ:
2890 case KVM_CAP_KVMCLOCK_CTRL:
2891 case KVM_CAP_READONLY_MEM:
2892 case KVM_CAP_HYPERV_TIME:
2893 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2894 case KVM_CAP_TSC_DEADLINE_TIMER:
2895 case KVM_CAP_ENABLE_CAP_VM:
2896 case KVM_CAP_DISABLE_QUIRKS:
2897#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2898 case KVM_CAP_ASSIGN_DEV_IRQ:
2899 case KVM_CAP_PCI_2_3:
2900#endif
2901 r = 1;
2902 break;
2903 case KVM_CAP_X86_SMM:
2904 /* SMBASE is usually relocated above 1M on modern chipsets,
2905 * and SMM handlers might indeed rely on 4G segment limits,
2906 * so do not report SMM to be available if real mode is
2907 * emulated via vm86 mode. Still, do not go to great lengths
2908 * to avoid userspace's usage of the feature, because it is a
2909 * fringe case that is not enabled except via specific settings
2910 * of the module parameters.
2911 */
2912 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2913 break;
2914 case KVM_CAP_COALESCED_MMIO:
2915 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2916 break;
2917 case KVM_CAP_VAPIC:
2918 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2919 break;
2920 case KVM_CAP_NR_VCPUS:
2921 r = KVM_SOFT_MAX_VCPUS;
2922 break;
2923 case KVM_CAP_MAX_VCPUS:
2924 r = KVM_MAX_VCPUS;
2925 break;
2926 case KVM_CAP_NR_MEMSLOTS:
2927 r = KVM_USER_MEM_SLOTS;
2928 break;
2929 case KVM_CAP_PV_MMU: /* obsolete */
2930 r = 0;
2931 break;
2932#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2933 case KVM_CAP_IOMMU:
2934 r = iommu_present(&pci_bus_type);
2935 break;
2936#endif
2937 case KVM_CAP_MCE:
2938 r = KVM_MAX_MCE_BANKS;
2939 break;
2940 case KVM_CAP_XCRS:
2941 r = cpu_has_xsave;
2942 break;
2943 case KVM_CAP_TSC_CONTROL:
2944 r = kvm_has_tsc_control;
2945 break;
2946 default:
2947 r = 0;
2948 break;
2949 }
2950 return r;
2951
2952}
2953
2954long kvm_arch_dev_ioctl(struct file *filp,
2955 unsigned int ioctl, unsigned long arg)
2956{
2957 void __user *argp = (void __user *)arg;
2958 long r;
2959
2960 switch (ioctl) {
2961 case KVM_GET_MSR_INDEX_LIST: {
2962 struct kvm_msr_list __user *user_msr_list = argp;
2963 struct kvm_msr_list msr_list;
2964 unsigned n;
2965
2966 r = -EFAULT;
2967 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2968 goto out;
2969 n = msr_list.nmsrs;
2970 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2971 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2972 goto out;
2973 r = -E2BIG;
2974 if (n < msr_list.nmsrs)
2975 goto out;
2976 r = -EFAULT;
2977 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2978 num_msrs_to_save * sizeof(u32)))
2979 goto out;
2980 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2981 &emulated_msrs,
2982 num_emulated_msrs * sizeof(u32)))
2983 goto out;
2984 r = 0;
2985 break;
2986 }
2987 case KVM_GET_SUPPORTED_CPUID:
2988 case KVM_GET_EMULATED_CPUID: {
2989 struct kvm_cpuid2 __user *cpuid_arg = argp;
2990 struct kvm_cpuid2 cpuid;
2991
2992 r = -EFAULT;
2993 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2994 goto out;
2995
2996 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2997 ioctl);
2998 if (r)
2999 goto out;
3000
3001 r = -EFAULT;
3002 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3003 goto out;
3004 r = 0;
3005 break;
3006 }
3007 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3008 u64 mce_cap;
3009
3010 mce_cap = KVM_MCE_CAP_SUPPORTED;
3011 r = -EFAULT;
3012 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
3013 goto out;
3014 r = 0;
3015 break;
3016 }
3017 default:
3018 r = -EINVAL;
3019 }
3020out:
3021 return r;
3022}
3023
3024static void wbinvd_ipi(void *garbage)
3025{
3026 wbinvd();
3027}
3028
3029static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3030{
3031 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3032}
3033
3034void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3035{
3036 /* Address WBINVD may be executed by guest */
3037 if (need_emulate_wbinvd(vcpu)) {
3038 if (kvm_x86_ops->has_wbinvd_exit())
3039 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3040 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3041 smp_call_function_single(vcpu->cpu,
3042 wbinvd_ipi, NULL, 1);
3043 }
3044
3045 kvm_x86_ops->vcpu_load(vcpu, cpu);
3046
3047 /* Apply any externally detected TSC adjustments (due to suspend) */
3048 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3049 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3050 vcpu->arch.tsc_offset_adjustment = 0;
3051 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3052 }
3053
3054 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
3055 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3056 native_read_tsc() - vcpu->arch.last_host_tsc;
3057 if (tsc_delta < 0)
3058 mark_tsc_unstable("KVM discovered backwards TSC");
3059 if (check_tsc_unstable()) {
3060 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
3061 vcpu->arch.last_guest_tsc);
3062 kvm_x86_ops->write_tsc_offset(vcpu, offset);
3063 vcpu->arch.tsc_catchup = 1;
3064 }
3065 /*
3066 * On a host with synchronized TSC, there is no need to update
3067 * kvmclock on vcpu->cpu migration
3068 */
3069 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3070 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3071 if (vcpu->cpu != cpu)
3072 kvm_migrate_timers(vcpu);
3073 vcpu->cpu = cpu;
3074 }
3075
3076 accumulate_steal_time(vcpu);
3077 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3078}
3079
3080void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3081{
3082 kvm_x86_ops->vcpu_put(vcpu);
3083 kvm_put_guest_fpu(vcpu);
3084 vcpu->arch.last_host_tsc = native_read_tsc();
3085}
3086
3087static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3088 struct kvm_lapic_state *s)
3089{
3090 kvm_x86_ops->sync_pir_to_irr(vcpu);
3091 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
3092
3093 return 0;
3094}
3095
3096static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3097 struct kvm_lapic_state *s)
3098{
3099 kvm_apic_post_state_restore(vcpu, s);
3100 update_cr8_intercept(vcpu);
3101
3102 return 0;
3103}
3104
3105static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3106 struct kvm_interrupt *irq)
3107{
3108 if (irq->irq >= KVM_NR_INTERRUPTS)
3109 return -EINVAL;
3110 if (irqchip_in_kernel(vcpu->kvm))
3111 return -ENXIO;
3112
3113 kvm_queue_interrupt(vcpu, irq->irq, false);
3114 kvm_make_request(KVM_REQ_EVENT, vcpu);
3115
3116 return 0;
3117}
3118
3119static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3120{
3121 kvm_inject_nmi(vcpu);
3122
3123 return 0;
3124}
3125
3126static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3127{
3128 kvm_make_request(KVM_REQ_SMI, vcpu);
3129
3130 return 0;
3131}
3132
3133static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3134 struct kvm_tpr_access_ctl *tac)
3135{
3136 if (tac->flags)
3137 return -EINVAL;
3138 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3139 return 0;
3140}
3141
3142static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3143 u64 mcg_cap)
3144{
3145 int r;
3146 unsigned bank_num = mcg_cap & 0xff, bank;
3147
3148 r = -EINVAL;
3149 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3150 goto out;
3151 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3152 goto out;
3153 r = 0;
3154 vcpu->arch.mcg_cap = mcg_cap;
3155 /* Init IA32_MCG_CTL to all 1s */
3156 if (mcg_cap & MCG_CTL_P)
3157 vcpu->arch.mcg_ctl = ~(u64)0;
3158 /* Init IA32_MCi_CTL to all 1s */
3159 for (bank = 0; bank < bank_num; bank++)
3160 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3161out:
3162 return r;
3163}
3164
3165static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3166 struct kvm_x86_mce *mce)
3167{
3168 u64 mcg_cap = vcpu->arch.mcg_cap;
3169 unsigned bank_num = mcg_cap & 0xff;
3170 u64 *banks = vcpu->arch.mce_banks;
3171
3172 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3173 return -EINVAL;
3174 /*
3175 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3176 * reporting is disabled
3177 */
3178 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3179 vcpu->arch.mcg_ctl != ~(u64)0)
3180 return 0;
3181 banks += 4 * mce->bank;
3182 /*
3183 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3184 * reporting is disabled for the bank
3185 */
3186 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3187 return 0;
3188 if (mce->status & MCI_STATUS_UC) {
3189 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3190 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3191 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3192 return 0;
3193 }
3194 if (banks[1] & MCI_STATUS_VAL)
3195 mce->status |= MCI_STATUS_OVER;
3196 banks[2] = mce->addr;
3197 banks[3] = mce->misc;
3198 vcpu->arch.mcg_status = mce->mcg_status;
3199 banks[1] = mce->status;
3200 kvm_queue_exception(vcpu, MC_VECTOR);
3201 } else if (!(banks[1] & MCI_STATUS_VAL)
3202 || !(banks[1] & MCI_STATUS_UC)) {
3203 if (banks[1] & MCI_STATUS_VAL)
3204 mce->status |= MCI_STATUS_OVER;
3205 banks[2] = mce->addr;
3206 banks[3] = mce->misc;
3207 banks[1] = mce->status;
3208 } else
3209 banks[1] |= MCI_STATUS_OVER;
3210 return 0;
3211}
3212
3213static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3214 struct kvm_vcpu_events *events)
3215{
3216 process_nmi(vcpu);
3217 events->exception.injected =
3218 vcpu->arch.exception.pending &&
3219 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3220 events->exception.nr = vcpu->arch.exception.nr;
3221 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3222 events->exception.pad = 0;
3223 events->exception.error_code = vcpu->arch.exception.error_code;
3224
3225 events->interrupt.injected =
3226 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3227 events->interrupt.nr = vcpu->arch.interrupt.nr;
3228 events->interrupt.soft = 0;
3229 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3230
3231 events->nmi.injected = vcpu->arch.nmi_injected;
3232 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3233 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3234 events->nmi.pad = 0;
3235
3236 events->sipi_vector = 0; /* never valid when reporting to user space */
3237
3238 events->smi.smm = is_smm(vcpu);
3239 events->smi.pending = vcpu->arch.smi_pending;
3240 events->smi.smm_inside_nmi =
3241 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3242 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3243
3244 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3245 | KVM_VCPUEVENT_VALID_SHADOW
3246 | KVM_VCPUEVENT_VALID_SMM);
3247 memset(&events->reserved, 0, sizeof(events->reserved));
3248}
3249
3250static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3251 struct kvm_vcpu_events *events)
3252{
3253 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3254 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3255 | KVM_VCPUEVENT_VALID_SHADOW
3256 | KVM_VCPUEVENT_VALID_SMM))
3257 return -EINVAL;
3258
3259 process_nmi(vcpu);
3260 vcpu->arch.exception.pending = events->exception.injected;
3261 vcpu->arch.exception.nr = events->exception.nr;
3262 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3263 vcpu->arch.exception.error_code = events->exception.error_code;
3264
3265 vcpu->arch.interrupt.pending = events->interrupt.injected;
3266 vcpu->arch.interrupt.nr = events->interrupt.nr;
3267 vcpu->arch.interrupt.soft = events->interrupt.soft;
3268 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3269 kvm_x86_ops->set_interrupt_shadow(vcpu,
3270 events->interrupt.shadow);
3271
3272 vcpu->arch.nmi_injected = events->nmi.injected;
3273 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3274 vcpu->arch.nmi_pending = events->nmi.pending;
3275 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3276
3277 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3278 kvm_vcpu_has_lapic(vcpu))
3279 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3280
3281 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3282 if (events->smi.smm)
3283 vcpu->arch.hflags |= HF_SMM_MASK;
3284 else
3285 vcpu->arch.hflags &= ~HF_SMM_MASK;
3286 vcpu->arch.smi_pending = events->smi.pending;
3287 if (events->smi.smm_inside_nmi)
3288 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3289 else
3290 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3291 if (kvm_vcpu_has_lapic(vcpu)) {
3292 if (events->smi.latched_init)
3293 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3294 else
3295 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3296 }
3297 }
3298
3299 kvm_make_request(KVM_REQ_EVENT, vcpu);
3300
3301 return 0;
3302}
3303
3304static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3305 struct kvm_debugregs *dbgregs)
3306{
3307 unsigned long val;
3308
3309 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3310 kvm_get_dr(vcpu, 6, &val);
3311 dbgregs->dr6 = val;
3312 dbgregs->dr7 = vcpu->arch.dr7;
3313 dbgregs->flags = 0;
3314 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3315}
3316
3317static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3318 struct kvm_debugregs *dbgregs)
3319{
3320 if (dbgregs->flags)
3321 return -EINVAL;
3322
3323 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3324 kvm_update_dr0123(vcpu);
3325 vcpu->arch.dr6 = dbgregs->dr6;
3326 kvm_update_dr6(vcpu);
3327 vcpu->arch.dr7 = dbgregs->dr7;
3328 kvm_update_dr7(vcpu);
3329
3330 return 0;
3331}
3332
3333#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3334
3335static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3336{
3337 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3338 u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3339 u64 valid;
3340
3341 /*
3342 * Copy legacy XSAVE area, to avoid complications with CPUID
3343 * leaves 0 and 1 in the loop below.
3344 */
3345 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3346
3347 /* Set XSTATE_BV */
3348 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3349
3350 /*
3351 * Copy each region from the possibly compacted offset to the
3352 * non-compacted offset.
3353 */
3354 valid = xstate_bv & ~XSTATE_FPSSE;
3355 while (valid) {
3356 u64 feature = valid & -valid;
3357 int index = fls64(feature) - 1;
3358 void *src = get_xsave_addr(xsave, feature);
3359
3360 if (src) {
3361 u32 size, offset, ecx, edx;
3362 cpuid_count(XSTATE_CPUID, index,
3363 &size, &offset, &ecx, &edx);
3364 memcpy(dest + offset, src, size);
3365 }
3366
3367 valid -= feature;
3368 }
3369}
3370
3371static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3372{
3373 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3374 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3375 u64 valid;
3376
3377 /*
3378 * Copy legacy XSAVE area, to avoid complications with CPUID
3379 * leaves 0 and 1 in the loop below.
3380 */
3381 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3382
3383 /* Set XSTATE_BV and possibly XCOMP_BV. */
3384 xsave->xsave_hdr.xstate_bv = xstate_bv;
3385 if (cpu_has_xsaves)
3386 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3387
3388 /*
3389 * Copy each region from the non-compacted offset to the
3390 * possibly compacted offset.
3391 */
3392 valid = xstate_bv & ~XSTATE_FPSSE;
3393 while (valid) {
3394 u64 feature = valid & -valid;
3395 int index = fls64(feature) - 1;
3396 void *dest = get_xsave_addr(xsave, feature);
3397
3398 if (dest) {
3399 u32 size, offset, ecx, edx;
3400 cpuid_count(XSTATE_CPUID, index,
3401 &size, &offset, &ecx, &edx);
3402 memcpy(dest, src + offset, size);
3403 } else
3404 WARN_ON_ONCE(1);
3405
3406 valid -= feature;
3407 }
3408}
3409
3410static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3411 struct kvm_xsave *guest_xsave)
3412{
3413 if (cpu_has_xsave) {
3414 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3415 fill_xsave((u8 *) guest_xsave->region, vcpu);
3416 } else {
3417 memcpy(guest_xsave->region,
3418 &vcpu->arch.guest_fpu.state->fxsave,
3419 sizeof(struct i387_fxsave_struct));
3420 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3421 XSTATE_FPSSE;
3422 }
3423}
3424
3425static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3426 struct kvm_xsave *guest_xsave)
3427{
3428 u64 xstate_bv =
3429 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3430
3431 if (cpu_has_xsave) {
3432 /*
3433 * Here we allow setting states that are not present in
3434 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3435 * with old userspace.
3436 */
3437 if (xstate_bv & ~kvm_supported_xcr0())
3438 return -EINVAL;
3439 load_xsave(vcpu, (u8 *)guest_xsave->region);
3440 } else {
3441 if (xstate_bv & ~XSTATE_FPSSE)
3442 return -EINVAL;
3443 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3444 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3445 }
3446 return 0;
3447}
3448
3449static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3450 struct kvm_xcrs *guest_xcrs)
3451{
3452 if (!cpu_has_xsave) {
3453 guest_xcrs->nr_xcrs = 0;
3454 return;
3455 }
3456
3457 guest_xcrs->nr_xcrs = 1;
3458 guest_xcrs->flags = 0;
3459 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3460 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3461}
3462
3463static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3464 struct kvm_xcrs *guest_xcrs)
3465{
3466 int i, r = 0;
3467
3468 if (!cpu_has_xsave)
3469 return -EINVAL;
3470
3471 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3472 return -EINVAL;
3473
3474 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3475 /* Only support XCR0 currently */
3476 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3477 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3478 guest_xcrs->xcrs[i].value);
3479 break;
3480 }
3481 if (r)
3482 r = -EINVAL;
3483 return r;
3484}
3485
3486/*
3487 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3488 * stopped by the hypervisor. This function will be called from the host only.
3489 * EINVAL is returned when the host attempts to set the flag for a guest that
3490 * does not support pv clocks.
3491 */
3492static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3493{
3494 if (!vcpu->arch.pv_time_enabled)
3495 return -EINVAL;
3496 vcpu->arch.pvclock_set_guest_stopped_request = true;
3497 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3498 return 0;
3499}
3500
3501long kvm_arch_vcpu_ioctl(struct file *filp,
3502 unsigned int ioctl, unsigned long arg)
3503{
3504 struct kvm_vcpu *vcpu = filp->private_data;
3505 void __user *argp = (void __user *)arg;
3506 int r;
3507 union {
3508 struct kvm_lapic_state *lapic;
3509 struct kvm_xsave *xsave;
3510 struct kvm_xcrs *xcrs;
3511 void *buffer;
3512 } u;
3513
3514 u.buffer = NULL;
3515 switch (ioctl) {
3516 case KVM_GET_LAPIC: {
3517 r = -EINVAL;
3518 if (!vcpu->arch.apic)
3519 goto out;
3520 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3521
3522 r = -ENOMEM;
3523 if (!u.lapic)
3524 goto out;
3525 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3526 if (r)
3527 goto out;
3528 r = -EFAULT;
3529 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3530 goto out;
3531 r = 0;
3532 break;
3533 }
3534 case KVM_SET_LAPIC: {
3535 r = -EINVAL;
3536 if (!vcpu->arch.apic)
3537 goto out;
3538 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3539 if (IS_ERR(u.lapic))
3540 return PTR_ERR(u.lapic);
3541
3542 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3543 break;
3544 }
3545 case KVM_INTERRUPT: {
3546 struct kvm_interrupt irq;
3547
3548 r = -EFAULT;
3549 if (copy_from_user(&irq, argp, sizeof irq))
3550 goto out;
3551 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3552 break;
3553 }
3554 case KVM_NMI: {
3555 r = kvm_vcpu_ioctl_nmi(vcpu);
3556 break;
3557 }
3558 case KVM_SMI: {
3559 r = kvm_vcpu_ioctl_smi(vcpu);
3560 break;
3561 }
3562 case KVM_SET_CPUID: {
3563 struct kvm_cpuid __user *cpuid_arg = argp;
3564 struct kvm_cpuid cpuid;
3565
3566 r = -EFAULT;
3567 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3568 goto out;
3569 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3570 break;
3571 }
3572 case KVM_SET_CPUID2: {
3573 struct kvm_cpuid2 __user *cpuid_arg = argp;
3574 struct kvm_cpuid2 cpuid;
3575
3576 r = -EFAULT;
3577 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3578 goto out;
3579 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3580 cpuid_arg->entries);
3581 break;
3582 }
3583 case KVM_GET_CPUID2: {
3584 struct kvm_cpuid2 __user *cpuid_arg = argp;
3585 struct kvm_cpuid2 cpuid;
3586
3587 r = -EFAULT;
3588 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3589 goto out;
3590 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3591 cpuid_arg->entries);
3592 if (r)
3593 goto out;
3594 r = -EFAULT;
3595 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3596 goto out;
3597 r = 0;
3598 break;
3599 }
3600 case KVM_GET_MSRS:
3601 r = msr_io(vcpu, argp, do_get_msr, 1);
3602 break;
3603 case KVM_SET_MSRS:
3604 r = msr_io(vcpu, argp, do_set_msr, 0);
3605 break;
3606 case KVM_TPR_ACCESS_REPORTING: {
3607 struct kvm_tpr_access_ctl tac;
3608
3609 r = -EFAULT;
3610 if (copy_from_user(&tac, argp, sizeof tac))
3611 goto out;
3612 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3613 if (r)
3614 goto out;
3615 r = -EFAULT;
3616 if (copy_to_user(argp, &tac, sizeof tac))
3617 goto out;
3618 r = 0;
3619 break;
3620 };
3621 case KVM_SET_VAPIC_ADDR: {
3622 struct kvm_vapic_addr va;
3623
3624 r = -EINVAL;
3625 if (!irqchip_in_kernel(vcpu->kvm))
3626 goto out;
3627 r = -EFAULT;
3628 if (copy_from_user(&va, argp, sizeof va))
3629 goto out;
3630 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3631 break;
3632 }
3633 case KVM_X86_SETUP_MCE: {
3634 u64 mcg_cap;
3635
3636 r = -EFAULT;
3637 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3638 goto out;
3639 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3640 break;
3641 }
3642 case KVM_X86_SET_MCE: {
3643 struct kvm_x86_mce mce;
3644
3645 r = -EFAULT;
3646 if (copy_from_user(&mce, argp, sizeof mce))
3647 goto out;
3648 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3649 break;
3650 }
3651 case KVM_GET_VCPU_EVENTS: {
3652 struct kvm_vcpu_events events;
3653
3654 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3655
3656 r = -EFAULT;
3657 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3658 break;
3659 r = 0;
3660 break;
3661 }
3662 case KVM_SET_VCPU_EVENTS: {
3663 struct kvm_vcpu_events events;
3664
3665 r = -EFAULT;
3666 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3667 break;
3668
3669 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3670 break;
3671 }
3672 case KVM_GET_DEBUGREGS: {
3673 struct kvm_debugregs dbgregs;
3674
3675 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3676
3677 r = -EFAULT;
3678 if (copy_to_user(argp, &dbgregs,
3679 sizeof(struct kvm_debugregs)))
3680 break;
3681 r = 0;
3682 break;
3683 }
3684 case KVM_SET_DEBUGREGS: {
3685 struct kvm_debugregs dbgregs;
3686
3687 r = -EFAULT;
3688 if (copy_from_user(&dbgregs, argp,
3689 sizeof(struct kvm_debugregs)))
3690 break;
3691
3692 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3693 break;
3694 }
3695 case KVM_GET_XSAVE: {
3696 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3697 r = -ENOMEM;
3698 if (!u.xsave)
3699 break;
3700
3701 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3702
3703 r = -EFAULT;
3704 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3705 break;
3706 r = 0;
3707 break;
3708 }
3709 case KVM_SET_XSAVE: {
3710 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3711 if (IS_ERR(u.xsave))
3712 return PTR_ERR(u.xsave);
3713
3714 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3715 break;
3716 }
3717 case KVM_GET_XCRS: {
3718 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3719 r = -ENOMEM;
3720 if (!u.xcrs)
3721 break;
3722
3723 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3724
3725 r = -EFAULT;
3726 if (copy_to_user(argp, u.xcrs,
3727 sizeof(struct kvm_xcrs)))
3728 break;
3729 r = 0;
3730 break;
3731 }
3732 case KVM_SET_XCRS: {
3733 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3734 if (IS_ERR(u.xcrs))
3735 return PTR_ERR(u.xcrs);
3736
3737 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3738 break;
3739 }
3740 case KVM_SET_TSC_KHZ: {
3741 u32 user_tsc_khz;
3742
3743 r = -EINVAL;
3744 user_tsc_khz = (u32)arg;
3745
3746 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3747 goto out;
3748
3749 if (user_tsc_khz == 0)
3750 user_tsc_khz = tsc_khz;
3751
3752 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3753
3754 r = 0;
3755 goto out;
3756 }
3757 case KVM_GET_TSC_KHZ: {
3758 r = vcpu->arch.virtual_tsc_khz;
3759 goto out;
3760 }
3761 case KVM_KVMCLOCK_CTRL: {
3762 r = kvm_set_guest_paused(vcpu);
3763 goto out;
3764 }
3765 default:
3766 r = -EINVAL;
3767 }
3768out:
3769 kfree(u.buffer);
3770 return r;
3771}
3772
3773int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3774{
3775 return VM_FAULT_SIGBUS;
3776}
3777
3778static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3779{
3780 int ret;
3781
3782 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3783 return -EINVAL;
3784 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3785 return ret;
3786}
3787
3788static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3789 u64 ident_addr)
3790{
3791 kvm->arch.ept_identity_map_addr = ident_addr;
3792 return 0;
3793}
3794
3795static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3796 u32 kvm_nr_mmu_pages)
3797{
3798 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3799 return -EINVAL;
3800
3801 mutex_lock(&kvm->slots_lock);
3802
3803 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3804 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3805
3806 mutex_unlock(&kvm->slots_lock);
3807 return 0;
3808}
3809
3810static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3811{
3812 return kvm->arch.n_max_mmu_pages;
3813}
3814
3815static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3816{
3817 int r;
3818
3819 r = 0;
3820 switch (chip->chip_id) {
3821 case KVM_IRQCHIP_PIC_MASTER:
3822 memcpy(&chip->chip.pic,
3823 &pic_irqchip(kvm)->pics[0],
3824 sizeof(struct kvm_pic_state));
3825 break;
3826 case KVM_IRQCHIP_PIC_SLAVE:
3827 memcpy(&chip->chip.pic,
3828 &pic_irqchip(kvm)->pics[1],
3829 sizeof(struct kvm_pic_state));
3830 break;
3831 case KVM_IRQCHIP_IOAPIC:
3832 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3833 break;
3834 default:
3835 r = -EINVAL;
3836 break;
3837 }
3838 return r;
3839}
3840
3841static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3842{
3843 int r;
3844
3845 r = 0;
3846 switch (chip->chip_id) {
3847 case KVM_IRQCHIP_PIC_MASTER:
3848 spin_lock(&pic_irqchip(kvm)->lock);
3849 memcpy(&pic_irqchip(kvm)->pics[0],
3850 &chip->chip.pic,
3851 sizeof(struct kvm_pic_state));
3852 spin_unlock(&pic_irqchip(kvm)->lock);
3853 break;
3854 case KVM_IRQCHIP_PIC_SLAVE:
3855 spin_lock(&pic_irqchip(kvm)->lock);
3856 memcpy(&pic_irqchip(kvm)->pics[1],
3857 &chip->chip.pic,
3858 sizeof(struct kvm_pic_state));
3859 spin_unlock(&pic_irqchip(kvm)->lock);
3860 break;
3861 case KVM_IRQCHIP_IOAPIC:
3862 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3863 break;
3864 default:
3865 r = -EINVAL;
3866 break;
3867 }
3868 kvm_pic_update_irq(pic_irqchip(kvm));
3869 return r;
3870}
3871
3872static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3873{
3874 int r = 0;
3875
3876 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3877 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3878 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3879 return r;
3880}
3881
3882static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3883{
3884 int r = 0;
3885
3886 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3887 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3888 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3889 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3890 return r;
3891}
3892
3893static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3894{
3895 int r = 0;
3896
3897 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3898 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3899 sizeof(ps->channels));
3900 ps->flags = kvm->arch.vpit->pit_state.flags;
3901 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3902 memset(&ps->reserved, 0, sizeof(ps->reserved));
3903 return r;
3904}
3905
3906static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3907{
3908 int r = 0, start = 0;
3909 u32 prev_legacy, cur_legacy;
3910 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3911 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3912 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3913 if (!prev_legacy && cur_legacy)
3914 start = 1;
3915 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3916 sizeof(kvm->arch.vpit->pit_state.channels));
3917 kvm->arch.vpit->pit_state.flags = ps->flags;
3918 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3919 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3920 return r;
3921}
3922
3923static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3924 struct kvm_reinject_control *control)
3925{
3926 if (!kvm->arch.vpit)
3927 return -ENXIO;
3928 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3929 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3930 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3931 return 0;
3932}
3933
3934/**
3935 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3936 * @kvm: kvm instance
3937 * @log: slot id and address to which we copy the log
3938 *
3939 * Steps 1-4 below provide general overview of dirty page logging. See
3940 * kvm_get_dirty_log_protect() function description for additional details.
3941 *
3942 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3943 * always flush the TLB (step 4) even if previous step failed and the dirty
3944 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3945 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3946 * writes will be marked dirty for next log read.
3947 *
3948 * 1. Take a snapshot of the bit and clear it if needed.
3949 * 2. Write protect the corresponding page.
3950 * 3. Copy the snapshot to the userspace.
3951 * 4. Flush TLB's if needed.
3952 */
3953int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3954{
3955 bool is_dirty = false;
3956 int r;
3957
3958 mutex_lock(&kvm->slots_lock);
3959
3960 /*
3961 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3962 */
3963 if (kvm_x86_ops->flush_log_dirty)
3964 kvm_x86_ops->flush_log_dirty(kvm);
3965
3966 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3967
3968 /*
3969 * All the TLBs can be flushed out of mmu lock, see the comments in
3970 * kvm_mmu_slot_remove_write_access().
3971 */
3972 lockdep_assert_held(&kvm->slots_lock);
3973 if (is_dirty)
3974 kvm_flush_remote_tlbs(kvm);
3975
3976 mutex_unlock(&kvm->slots_lock);
3977 return r;
3978}
3979
3980int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3981 bool line_status)
3982{
3983 if (!irqchip_in_kernel(kvm))
3984 return -ENXIO;
3985
3986 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3987 irq_event->irq, irq_event->level,
3988 line_status);
3989 return 0;
3990}
3991
3992static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3993 struct kvm_enable_cap *cap)
3994{
3995 int r;
3996
3997 if (cap->flags)
3998 return -EINVAL;
3999
4000 switch (cap->cap) {
4001 case KVM_CAP_DISABLE_QUIRKS:
4002 kvm->arch.disabled_quirks = cap->args[0];
4003 r = 0;
4004 break;
4005 default:
4006 r = -EINVAL;
4007 break;
4008 }
4009 return r;
4010}
4011
4012long kvm_arch_vm_ioctl(struct file *filp,
4013 unsigned int ioctl, unsigned long arg)
4014{
4015 struct kvm *kvm = filp->private_data;
4016 void __user *argp = (void __user *)arg;
4017 int r = -ENOTTY;
4018 /*
4019 * This union makes it completely explicit to gcc-3.x
4020 * that these two variables' stack usage should be
4021 * combined, not added together.
4022 */
4023 union {
4024 struct kvm_pit_state ps;
4025 struct kvm_pit_state2 ps2;
4026 struct kvm_pit_config pit_config;
4027 } u;
4028
4029 switch (ioctl) {
4030 case KVM_SET_TSS_ADDR:
4031 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4032 break;
4033 case KVM_SET_IDENTITY_MAP_ADDR: {
4034 u64 ident_addr;
4035
4036 r = -EFAULT;
4037 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4038 goto out;
4039 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4040 break;
4041 }
4042 case KVM_SET_NR_MMU_PAGES:
4043 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4044 break;
4045 case KVM_GET_NR_MMU_PAGES:
4046 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4047 break;
4048 case KVM_CREATE_IRQCHIP: {
4049 struct kvm_pic *vpic;
4050
4051 mutex_lock(&kvm->lock);
4052 r = -EEXIST;
4053 if (kvm->arch.vpic)
4054 goto create_irqchip_unlock;
4055 r = -EINVAL;
4056 if (atomic_read(&kvm->online_vcpus))
4057 goto create_irqchip_unlock;
4058 r = -ENOMEM;
4059 vpic = kvm_create_pic(kvm);
4060 if (vpic) {
4061 r = kvm_ioapic_init(kvm);
4062 if (r) {
4063 mutex_lock(&kvm->slots_lock);
4064 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
4065 &vpic->dev_master);
4066 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
4067 &vpic->dev_slave);
4068 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
4069 &vpic->dev_eclr);
4070 mutex_unlock(&kvm->slots_lock);
4071 kfree(vpic);
4072 goto create_irqchip_unlock;
4073 }
4074 } else
4075 goto create_irqchip_unlock;
4076 smp_wmb();
4077 kvm->arch.vpic = vpic;
4078 smp_wmb();
4079 r = kvm_setup_default_irq_routing(kvm);
4080 if (r) {
4081 mutex_lock(&kvm->slots_lock);
4082 mutex_lock(&kvm->irq_lock);
4083 kvm_ioapic_destroy(kvm);
4084 kvm_destroy_pic(kvm);
4085 mutex_unlock(&kvm->irq_lock);
4086 mutex_unlock(&kvm->slots_lock);
4087 }
4088 create_irqchip_unlock:
4089 mutex_unlock(&kvm->lock);
4090 break;
4091 }
4092 case KVM_CREATE_PIT:
4093 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4094 goto create_pit;
4095 case KVM_CREATE_PIT2:
4096 r = -EFAULT;
4097 if (copy_from_user(&u.pit_config, argp,
4098 sizeof(struct kvm_pit_config)))
4099 goto out;
4100 create_pit:
4101 mutex_lock(&kvm->slots_lock);
4102 r = -EEXIST;
4103 if (kvm->arch.vpit)
4104 goto create_pit_unlock;
4105 r = -ENOMEM;
4106 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4107 if (kvm->arch.vpit)
4108 r = 0;
4109 create_pit_unlock:
4110 mutex_unlock(&kvm->slots_lock);
4111 break;
4112 case KVM_GET_IRQCHIP: {
4113 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4114 struct kvm_irqchip *chip;
4115
4116 chip = memdup_user(argp, sizeof(*chip));
4117 if (IS_ERR(chip)) {
4118 r = PTR_ERR(chip);
4119 goto out;
4120 }
4121
4122 r = -ENXIO;
4123 if (!irqchip_in_kernel(kvm))
4124 goto get_irqchip_out;
4125 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4126 if (r)
4127 goto get_irqchip_out;
4128 r = -EFAULT;
4129 if (copy_to_user(argp, chip, sizeof *chip))
4130 goto get_irqchip_out;
4131 r = 0;
4132 get_irqchip_out:
4133 kfree(chip);
4134 break;
4135 }
4136 case KVM_SET_IRQCHIP: {
4137 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4138 struct kvm_irqchip *chip;
4139
4140 chip = memdup_user(argp, sizeof(*chip));
4141 if (IS_ERR(chip)) {
4142 r = PTR_ERR(chip);
4143 goto out;
4144 }
4145
4146 r = -ENXIO;
4147 if (!irqchip_in_kernel(kvm))
4148 goto set_irqchip_out;
4149 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4150 if (r)
4151 goto set_irqchip_out;
4152 r = 0;
4153 set_irqchip_out:
4154 kfree(chip);
4155 break;
4156 }
4157 case KVM_GET_PIT: {
4158 r = -EFAULT;
4159 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4160 goto out;
4161 r = -ENXIO;
4162 if (!kvm->arch.vpit)
4163 goto out;
4164 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4165 if (r)
4166 goto out;
4167 r = -EFAULT;
4168 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4169 goto out;
4170 r = 0;
4171 break;
4172 }
4173 case KVM_SET_PIT: {
4174 r = -EFAULT;
4175 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4176 goto out;
4177 r = -ENXIO;
4178 if (!kvm->arch.vpit)
4179 goto out;
4180 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4181 break;
4182 }
4183 case KVM_GET_PIT2: {
4184 r = -ENXIO;
4185 if (!kvm->arch.vpit)
4186 goto out;
4187 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4188 if (r)
4189 goto out;
4190 r = -EFAULT;
4191 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4192 goto out;
4193 r = 0;
4194 break;
4195 }
4196 case KVM_SET_PIT2: {
4197 r = -EFAULT;
4198 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4199 goto out;
4200 r = -ENXIO;
4201 if (!kvm->arch.vpit)
4202 goto out;
4203 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4204 break;
4205 }
4206 case KVM_REINJECT_CONTROL: {
4207 struct kvm_reinject_control control;
4208 r = -EFAULT;
4209 if (copy_from_user(&control, argp, sizeof(control)))
4210 goto out;
4211 r = kvm_vm_ioctl_reinject(kvm, &control);
4212 break;
4213 }
4214 case KVM_XEN_HVM_CONFIG: {
4215 r = -EFAULT;
4216 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4217 sizeof(struct kvm_xen_hvm_config)))
4218 goto out;
4219 r = -EINVAL;
4220 if (kvm->arch.xen_hvm_config.flags)
4221 goto out;
4222 r = 0;
4223 break;
4224 }
4225 case KVM_SET_CLOCK: {
4226 struct kvm_clock_data user_ns;
4227 u64 now_ns;
4228 s64 delta;
4229
4230 r = -EFAULT;
4231 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4232 goto out;
4233
4234 r = -EINVAL;
4235 if (user_ns.flags)
4236 goto out;
4237
4238 r = 0;
4239 local_irq_disable();
4240 now_ns = get_kernel_ns();
4241 delta = user_ns.clock - now_ns;
4242 local_irq_enable();
4243 kvm->arch.kvmclock_offset = delta;
4244 kvm_gen_update_masterclock(kvm);
4245 break;
4246 }
4247 case KVM_GET_CLOCK: {
4248 struct kvm_clock_data user_ns;
4249 u64 now_ns;
4250
4251 local_irq_disable();
4252 now_ns = get_kernel_ns();
4253 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4254 local_irq_enable();
4255 user_ns.flags = 0;
4256 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4257
4258 r = -EFAULT;
4259 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4260 goto out;
4261 r = 0;
4262 break;
4263 }
4264 case KVM_ENABLE_CAP: {
4265 struct kvm_enable_cap cap;
4266
4267 r = -EFAULT;
4268 if (copy_from_user(&cap, argp, sizeof(cap)))
4269 goto out;
4270 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4271 break;
4272 }
4273 default:
4274 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4275 }
4276out:
4277 return r;
4278}
4279
4280static void kvm_init_msr_list(void)
4281{
4282 u32 dummy[2];
4283 unsigned i, j;
4284
4285 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4286 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4287 continue;
4288
4289 /*
4290 * Even MSRs that are valid in the host may not be exposed
4291 * to the guests in some cases. We could work around this
4292 * in VMX with the generic MSR save/load machinery, but it
4293 * is not really worthwhile since it will really only
4294 * happen with nested virtualization.
4295 */
4296 switch (msrs_to_save[i]) {
4297 case MSR_IA32_BNDCFGS:
4298 if (!kvm_x86_ops->mpx_supported())
4299 continue;
4300 break;
4301 default:
4302 break;
4303 }
4304
4305 if (j < i)
4306 msrs_to_save[j] = msrs_to_save[i];
4307 j++;
4308 }
4309 num_msrs_to_save = j;
4310
4311 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4312 switch (emulated_msrs[i]) {
4313 case MSR_IA32_SMBASE:
4314 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4315 continue;
4316 break;
4317 default:
4318 break;
4319 }
4320
4321 if (j < i)
4322 emulated_msrs[j] = emulated_msrs[i];
4323 j++;
4324 }
4325 num_emulated_msrs = j;
4326}
4327
4328static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4329 const void *v)
4330{
4331 int handled = 0;
4332 int n;
4333
4334 do {
4335 n = min(len, 8);
4336 if (!(vcpu->arch.apic &&
4337 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4338 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4339 break;
4340 handled += n;
4341 addr += n;
4342 len -= n;
4343 v += n;
4344 } while (len);
4345
4346 return handled;
4347}
4348
4349static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4350{
4351 int handled = 0;
4352 int n;
4353
4354 do {
4355 n = min(len, 8);
4356 if (!(vcpu->arch.apic &&
4357 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4358 addr, n, v))
4359 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4360 break;
4361 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4362 handled += n;
4363 addr += n;
4364 len -= n;
4365 v += n;
4366 } while (len);
4367
4368 return handled;
4369}
4370
4371static void kvm_set_segment(struct kvm_vcpu *vcpu,
4372 struct kvm_segment *var, int seg)
4373{
4374 kvm_x86_ops->set_segment(vcpu, var, seg);
4375}
4376
4377void kvm_get_segment(struct kvm_vcpu *vcpu,
4378 struct kvm_segment *var, int seg)
4379{
4380 kvm_x86_ops->get_segment(vcpu, var, seg);
4381}
4382
4383gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4384 struct x86_exception *exception)
4385{
4386 gpa_t t_gpa;
4387
4388 BUG_ON(!mmu_is_nested(vcpu));
4389
4390 /* NPT walks are always user-walks */
4391 access |= PFERR_USER_MASK;
4392 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4393
4394 return t_gpa;
4395}
4396
4397gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4398 struct x86_exception *exception)
4399{
4400 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4401 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4402}
4403
4404 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4405 struct x86_exception *exception)
4406{
4407 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4408 access |= PFERR_FETCH_MASK;
4409 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4410}
4411
4412gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4413 struct x86_exception *exception)
4414{
4415 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4416 access |= PFERR_WRITE_MASK;
4417 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4418}
4419
4420/* uses this to access any guest's mapped memory without checking CPL */
4421gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4422 struct x86_exception *exception)
4423{
4424 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4425}
4426
4427static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4428 struct kvm_vcpu *vcpu, u32 access,
4429 struct x86_exception *exception)
4430{
4431 void *data = val;
4432 int r = X86EMUL_CONTINUE;
4433
4434 while (bytes) {
4435 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4436 exception);
4437 unsigned offset = addr & (PAGE_SIZE-1);
4438 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4439 int ret;
4440
4441 if (gpa == UNMAPPED_GVA)
4442 return X86EMUL_PROPAGATE_FAULT;
4443 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4444 offset, toread);
4445 if (ret < 0) {
4446 r = X86EMUL_IO_NEEDED;
4447 goto out;
4448 }
4449
4450 bytes -= toread;
4451 data += toread;
4452 addr += toread;
4453 }
4454out:
4455 return r;
4456}
4457
4458/* used for instruction fetching */
4459static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4460 gva_t addr, void *val, unsigned int bytes,
4461 struct x86_exception *exception)
4462{
4463 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4464 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4465 unsigned offset;
4466 int ret;
4467
4468 /* Inline kvm_read_guest_virt_helper for speed. */
4469 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4470 exception);
4471 if (unlikely(gpa == UNMAPPED_GVA))
4472 return X86EMUL_PROPAGATE_FAULT;
4473
4474 offset = addr & (PAGE_SIZE-1);
4475 if (WARN_ON(offset + bytes > PAGE_SIZE))
4476 bytes = (unsigned)PAGE_SIZE - offset;
4477 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4478 offset, bytes);
4479 if (unlikely(ret < 0))
4480 return X86EMUL_IO_NEEDED;
4481
4482 return X86EMUL_CONTINUE;
4483}
4484
4485int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4486 gva_t addr, void *val, unsigned int bytes,
4487 struct x86_exception *exception)
4488{
4489 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4490 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4491
4492 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4493 exception);
4494}
4495EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4496
4497static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4498 gva_t addr, void *val, unsigned int bytes,
4499 struct x86_exception *exception)
4500{
4501 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4502 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4503}
4504
4505int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4506 gva_t addr, void *val,
4507 unsigned int bytes,
4508 struct x86_exception *exception)
4509{
4510 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4511 void *data = val;
4512 int r = X86EMUL_CONTINUE;
4513
4514 while (bytes) {
4515 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4516 PFERR_WRITE_MASK,
4517 exception);
4518 unsigned offset = addr & (PAGE_SIZE-1);
4519 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4520 int ret;
4521
4522 if (gpa == UNMAPPED_GVA)
4523 return X86EMUL_PROPAGATE_FAULT;
4524 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4525 if (ret < 0) {
4526 r = X86EMUL_IO_NEEDED;
4527 goto out;
4528 }
4529
4530 bytes -= towrite;
4531 data += towrite;
4532 addr += towrite;
4533 }
4534out:
4535 return r;
4536}
4537EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4538
4539static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4540 gpa_t *gpa, struct x86_exception *exception,
4541 bool write)
4542{
4543 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4544 | (write ? PFERR_WRITE_MASK : 0);
4545
4546 if (vcpu_match_mmio_gva(vcpu, gva)
4547 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4548 vcpu->arch.access, access)) {
4549 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4550 (gva & (PAGE_SIZE - 1));
4551 trace_vcpu_match_mmio(gva, *gpa, write, false);
4552 return 1;
4553 }
4554
4555 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4556
4557 if (*gpa == UNMAPPED_GVA)
4558 return -1;
4559
4560 /* For APIC access vmexit */
4561 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4562 return 1;
4563
4564 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4565 trace_vcpu_match_mmio(gva, *gpa, write, true);
4566 return 1;
4567 }
4568
4569 return 0;
4570}
4571
4572int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4573 const void *val, int bytes)
4574{
4575 int ret;
4576
4577 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4578 if (ret < 0)
4579 return 0;
4580 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4581 return 1;
4582}
4583
4584struct read_write_emulator_ops {
4585 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4586 int bytes);
4587 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4588 void *val, int bytes);
4589 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4590 int bytes, void *val);
4591 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4592 void *val, int bytes);
4593 bool write;
4594};
4595
4596static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4597{
4598 if (vcpu->mmio_read_completed) {
4599 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4600 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4601 vcpu->mmio_read_completed = 0;
4602 return 1;
4603 }
4604
4605 return 0;
4606}
4607
4608static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4609 void *val, int bytes)
4610{
4611 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4612}
4613
4614static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4615 void *val, int bytes)
4616{
4617 return emulator_write_phys(vcpu, gpa, val, bytes);
4618}
4619
4620static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4621{
4622 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4623 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4624}
4625
4626static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4627 void *val, int bytes)
4628{
4629 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4630 return X86EMUL_IO_NEEDED;
4631}
4632
4633static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4634 void *val, int bytes)
4635{
4636 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4637
4638 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4639 return X86EMUL_CONTINUE;
4640}
4641
4642static const struct read_write_emulator_ops read_emultor = {
4643 .read_write_prepare = read_prepare,
4644 .read_write_emulate = read_emulate,
4645 .read_write_mmio = vcpu_mmio_read,
4646 .read_write_exit_mmio = read_exit_mmio,
4647};
4648
4649static const struct read_write_emulator_ops write_emultor = {
4650 .read_write_emulate = write_emulate,
4651 .read_write_mmio = write_mmio,
4652 .read_write_exit_mmio = write_exit_mmio,
4653 .write = true,
4654};
4655
4656static int emulator_read_write_onepage(unsigned long addr, void *val,
4657 unsigned int bytes,
4658 struct x86_exception *exception,
4659 struct kvm_vcpu *vcpu,
4660 const struct read_write_emulator_ops *ops)
4661{
4662 gpa_t gpa;
4663 int handled, ret;
4664 bool write = ops->write;
4665 struct kvm_mmio_fragment *frag;
4666
4667 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4668
4669 if (ret < 0)
4670 return X86EMUL_PROPAGATE_FAULT;
4671
4672 /* For APIC access vmexit */
4673 if (ret)
4674 goto mmio;
4675
4676 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4677 return X86EMUL_CONTINUE;
4678
4679mmio:
4680 /*
4681 * Is this MMIO handled locally?
4682 */
4683 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4684 if (handled == bytes)
4685 return X86EMUL_CONTINUE;
4686
4687 gpa += handled;
4688 bytes -= handled;
4689 val += handled;
4690
4691 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4692 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4693 frag->gpa = gpa;
4694 frag->data = val;
4695 frag->len = bytes;
4696 return X86EMUL_CONTINUE;
4697}
4698
4699static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4700 unsigned long addr,
4701 void *val, unsigned int bytes,
4702 struct x86_exception *exception,
4703 const struct read_write_emulator_ops *ops)
4704{
4705 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4706 gpa_t gpa;
4707 int rc;
4708
4709 if (ops->read_write_prepare &&
4710 ops->read_write_prepare(vcpu, val, bytes))
4711 return X86EMUL_CONTINUE;
4712
4713 vcpu->mmio_nr_fragments = 0;
4714
4715 /* Crossing a page boundary? */
4716 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4717 int now;
4718
4719 now = -addr & ~PAGE_MASK;
4720 rc = emulator_read_write_onepage(addr, val, now, exception,
4721 vcpu, ops);
4722
4723 if (rc != X86EMUL_CONTINUE)
4724 return rc;
4725 addr += now;
4726 if (ctxt->mode != X86EMUL_MODE_PROT64)
4727 addr = (u32)addr;
4728 val += now;
4729 bytes -= now;
4730 }
4731
4732 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4733 vcpu, ops);
4734 if (rc != X86EMUL_CONTINUE)
4735 return rc;
4736
4737 if (!vcpu->mmio_nr_fragments)
4738 return rc;
4739
4740 gpa = vcpu->mmio_fragments[0].gpa;
4741
4742 vcpu->mmio_needed = 1;
4743 vcpu->mmio_cur_fragment = 0;
4744
4745 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4746 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4747 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4748 vcpu->run->mmio.phys_addr = gpa;
4749
4750 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4751}
4752
4753static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4754 unsigned long addr,
4755 void *val,
4756 unsigned int bytes,
4757 struct x86_exception *exception)
4758{
4759 return emulator_read_write(ctxt, addr, val, bytes,
4760 exception, &read_emultor);
4761}
4762
4763static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4764 unsigned long addr,
4765 const void *val,
4766 unsigned int bytes,
4767 struct x86_exception *exception)
4768{
4769 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4770 exception, &write_emultor);
4771}
4772
4773#define CMPXCHG_TYPE(t, ptr, old, new) \
4774 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4775
4776#ifdef CONFIG_X86_64
4777# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4778#else
4779# define CMPXCHG64(ptr, old, new) \
4780 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4781#endif
4782
4783static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4784 unsigned long addr,
4785 const void *old,
4786 const void *new,
4787 unsigned int bytes,
4788 struct x86_exception *exception)
4789{
4790 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4791 gpa_t gpa;
4792 struct page *page;
4793 char *kaddr;
4794 bool exchanged;
4795
4796 /* guests cmpxchg8b have to be emulated atomically */
4797 if (bytes > 8 || (bytes & (bytes - 1)))
4798 goto emul_write;
4799
4800 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4801
4802 if (gpa == UNMAPPED_GVA ||
4803 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4804 goto emul_write;
4805
4806 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4807 goto emul_write;
4808
4809 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4810 if (is_error_page(page))
4811 goto emul_write;
4812
4813 kaddr = kmap_atomic(page);
4814 kaddr += offset_in_page(gpa);
4815 switch (bytes) {
4816 case 1:
4817 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4818 break;
4819 case 2:
4820 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4821 break;
4822 case 4:
4823 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4824 break;
4825 case 8:
4826 exchanged = CMPXCHG64(kaddr, old, new);
4827 break;
4828 default:
4829 BUG();
4830 }
4831 kunmap_atomic(kaddr);
4832 kvm_release_page_dirty(page);
4833
4834 if (!exchanged)
4835 return X86EMUL_CMPXCHG_FAILED;
4836
4837 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4838 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4839
4840 return X86EMUL_CONTINUE;
4841
4842emul_write:
4843 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4844
4845 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4846}
4847
4848static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4849{
4850 /* TODO: String I/O for in kernel device */
4851 int r;
4852
4853 if (vcpu->arch.pio.in)
4854 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4855 vcpu->arch.pio.size, pd);
4856 else
4857 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4858 vcpu->arch.pio.port, vcpu->arch.pio.size,
4859 pd);
4860 return r;
4861}
4862
4863static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4864 unsigned short port, void *val,
4865 unsigned int count, bool in)
4866{
4867 vcpu->arch.pio.port = port;
4868 vcpu->arch.pio.in = in;
4869 vcpu->arch.pio.count = count;
4870 vcpu->arch.pio.size = size;
4871
4872 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4873 vcpu->arch.pio.count = 0;
4874 return 1;
4875 }
4876
4877 vcpu->run->exit_reason = KVM_EXIT_IO;
4878 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4879 vcpu->run->io.size = size;
4880 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4881 vcpu->run->io.count = count;
4882 vcpu->run->io.port = port;
4883
4884 return 0;
4885}
4886
4887static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4888 int size, unsigned short port, void *val,
4889 unsigned int count)
4890{
4891 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4892 int ret;
4893
4894 if (vcpu->arch.pio.count)
4895 goto data_avail;
4896
4897 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4898 if (ret) {
4899data_avail:
4900 memcpy(val, vcpu->arch.pio_data, size * count);
4901 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4902 vcpu->arch.pio.count = 0;
4903 return 1;
4904 }
4905
4906 return 0;
4907}
4908
4909static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4910 int size, unsigned short port,
4911 const void *val, unsigned int count)
4912{
4913 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4914
4915 memcpy(vcpu->arch.pio_data, val, size * count);
4916 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4917 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4918}
4919
4920static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4921{
4922 return kvm_x86_ops->get_segment_base(vcpu, seg);
4923}
4924
4925static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4926{
4927 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4928}
4929
4930int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4931{
4932 if (!need_emulate_wbinvd(vcpu))
4933 return X86EMUL_CONTINUE;
4934
4935 if (kvm_x86_ops->has_wbinvd_exit()) {
4936 int cpu = get_cpu();
4937
4938 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4939 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4940 wbinvd_ipi, NULL, 1);
4941 put_cpu();
4942 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4943 } else
4944 wbinvd();
4945 return X86EMUL_CONTINUE;
4946}
4947
4948int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4949{
4950 kvm_x86_ops->skip_emulated_instruction(vcpu);
4951 return kvm_emulate_wbinvd_noskip(vcpu);
4952}
4953EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4954
4955
4956
4957static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4958{
4959 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4960}
4961
4962static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4963 unsigned long *dest)
4964{
4965 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4966}
4967
4968static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4969 unsigned long value)
4970{
4971
4972 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4973}
4974
4975static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4976{
4977 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4978}
4979
4980static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4981{
4982 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4983 unsigned long value;
4984
4985 switch (cr) {
4986 case 0:
4987 value = kvm_read_cr0(vcpu);
4988 break;
4989 case 2:
4990 value = vcpu->arch.cr2;
4991 break;
4992 case 3:
4993 value = kvm_read_cr3(vcpu);
4994 break;
4995 case 4:
4996 value = kvm_read_cr4(vcpu);
4997 break;
4998 case 8:
4999 value = kvm_get_cr8(vcpu);
5000 break;
5001 default:
5002 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5003 return 0;
5004 }
5005
5006 return value;
5007}
5008
5009static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5010{
5011 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5012 int res = 0;
5013
5014 switch (cr) {
5015 case 0:
5016 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5017 break;
5018 case 2:
5019 vcpu->arch.cr2 = val;
5020 break;
5021 case 3:
5022 res = kvm_set_cr3(vcpu, val);
5023 break;
5024 case 4:
5025 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5026 break;
5027 case 8:
5028 res = kvm_set_cr8(vcpu, val);
5029 break;
5030 default:
5031 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5032 res = -1;
5033 }
5034
5035 return res;
5036}
5037
5038static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5039{
5040 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5041}
5042
5043static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5044{
5045 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5046}
5047
5048static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5049{
5050 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5051}
5052
5053static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5054{
5055 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5056}
5057
5058static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5059{
5060 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5061}
5062
5063static unsigned long emulator_get_cached_segment_base(
5064 struct x86_emulate_ctxt *ctxt, int seg)
5065{
5066 return get_segment_base(emul_to_vcpu(ctxt), seg);
5067}
5068
5069static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5070 struct desc_struct *desc, u32 *base3,
5071 int seg)
5072{
5073 struct kvm_segment var;
5074
5075 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5076 *selector = var.selector;
5077
5078 if (var.unusable) {
5079 memset(desc, 0, sizeof(*desc));
5080 return false;
5081 }
5082
5083 if (var.g)
5084 var.limit >>= 12;
5085 set_desc_limit(desc, var.limit);
5086 set_desc_base(desc, (unsigned long)var.base);
5087#ifdef CONFIG_X86_64
5088 if (base3)
5089 *base3 = var.base >> 32;
5090#endif
5091 desc->type = var.type;
5092 desc->s = var.s;
5093 desc->dpl = var.dpl;
5094 desc->p = var.present;
5095 desc->avl = var.avl;
5096 desc->l = var.l;
5097 desc->d = var.db;
5098 desc->g = var.g;
5099
5100 return true;
5101}
5102
5103static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5104 struct desc_struct *desc, u32 base3,
5105 int seg)
5106{
5107 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5108 struct kvm_segment var;
5109
5110 var.selector = selector;
5111 var.base = get_desc_base(desc);
5112#ifdef CONFIG_X86_64
5113 var.base |= ((u64)base3) << 32;
5114#endif
5115 var.limit = get_desc_limit(desc);
5116 if (desc->g)
5117 var.limit = (var.limit << 12) | 0xfff;
5118 var.type = desc->type;
5119 var.dpl = desc->dpl;
5120 var.db = desc->d;
5121 var.s = desc->s;
5122 var.l = desc->l;
5123 var.g = desc->g;
5124 var.avl = desc->avl;
5125 var.present = desc->p;
5126 var.unusable = !var.present;
5127 var.padding = 0;
5128
5129 kvm_set_segment(vcpu, &var, seg);
5130 return;
5131}
5132
5133static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5134 u32 msr_index, u64 *pdata)
5135{
5136 struct msr_data msr;
5137 int r;
5138
5139 msr.index = msr_index;
5140 msr.host_initiated = false;
5141 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5142 if (r)
5143 return r;
5144
5145 *pdata = msr.data;
5146 return 0;
5147}
5148
5149static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5150 u32 msr_index, u64 data)
5151{
5152 struct msr_data msr;
5153
5154 msr.data = data;
5155 msr.index = msr_index;
5156 msr.host_initiated = false;
5157 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5158}
5159
5160static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5161{
5162 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5163
5164 return vcpu->arch.smbase;
5165}
5166
5167static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5168{
5169 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5170
5171 vcpu->arch.smbase = smbase;
5172}
5173
5174static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5175 u32 pmc)
5176{
5177 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
5178}
5179
5180static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5181 u32 pmc, u64 *pdata)
5182{
5183 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
5184}
5185
5186static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5187{
5188 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5189}
5190
5191static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5192{
5193 preempt_disable();
5194 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5195 /*
5196 * CR0.TS may reference the host fpu state, not the guest fpu state,
5197 * so it may be clear at this point.
5198 */
5199 clts();
5200}
5201
5202static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5203{
5204 preempt_enable();
5205}
5206
5207static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5208 struct x86_instruction_info *info,
5209 enum x86_intercept_stage stage)
5210{
5211 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5212}
5213
5214static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5215 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5216{
5217 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5218}
5219
5220static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5221{
5222 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5223}
5224
5225static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5226{
5227 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5228}
5229
5230static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5231{
5232 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5233}
5234
5235static const struct x86_emulate_ops emulate_ops = {
5236 .read_gpr = emulator_read_gpr,
5237 .write_gpr = emulator_write_gpr,
5238 .read_std = kvm_read_guest_virt_system,
5239 .write_std = kvm_write_guest_virt_system,
5240 .fetch = kvm_fetch_guest_virt,
5241 .read_emulated = emulator_read_emulated,
5242 .write_emulated = emulator_write_emulated,
5243 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5244 .invlpg = emulator_invlpg,
5245 .pio_in_emulated = emulator_pio_in_emulated,
5246 .pio_out_emulated = emulator_pio_out_emulated,
5247 .get_segment = emulator_get_segment,
5248 .set_segment = emulator_set_segment,
5249 .get_cached_segment_base = emulator_get_cached_segment_base,
5250 .get_gdt = emulator_get_gdt,
5251 .get_idt = emulator_get_idt,
5252 .set_gdt = emulator_set_gdt,
5253 .set_idt = emulator_set_idt,
5254 .get_cr = emulator_get_cr,
5255 .set_cr = emulator_set_cr,
5256 .cpl = emulator_get_cpl,
5257 .get_dr = emulator_get_dr,
5258 .set_dr = emulator_set_dr,
5259 .get_smbase = emulator_get_smbase,
5260 .set_smbase = emulator_set_smbase,
5261 .set_msr = emulator_set_msr,
5262 .get_msr = emulator_get_msr,
5263 .check_pmc = emulator_check_pmc,
5264 .read_pmc = emulator_read_pmc,
5265 .halt = emulator_halt,
5266 .wbinvd = emulator_wbinvd,
5267 .fix_hypercall = emulator_fix_hypercall,
5268 .get_fpu = emulator_get_fpu,
5269 .put_fpu = emulator_put_fpu,
5270 .intercept = emulator_intercept,
5271 .get_cpuid = emulator_get_cpuid,
5272 .set_nmi_mask = emulator_set_nmi_mask,
5273};
5274
5275static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5276{
5277 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5278 /*
5279 * an sti; sti; sequence only disable interrupts for the first
5280 * instruction. So, if the last instruction, be it emulated or
5281 * not, left the system with the INT_STI flag enabled, it
5282 * means that the last instruction is an sti. We should not
5283 * leave the flag on in this case. The same goes for mov ss
5284 */
5285 if (int_shadow & mask)
5286 mask = 0;
5287 if (unlikely(int_shadow || mask)) {
5288 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5289 if (!mask)
5290 kvm_make_request(KVM_REQ_EVENT, vcpu);
5291 }
5292}
5293
5294static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5295{
5296 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5297 if (ctxt->exception.vector == PF_VECTOR)
5298 return kvm_propagate_fault(vcpu, &ctxt->exception);
5299
5300 if (ctxt->exception.error_code_valid)
5301 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5302 ctxt->exception.error_code);
5303 else
5304 kvm_queue_exception(vcpu, ctxt->exception.vector);
5305 return false;
5306}
5307
5308static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5309{
5310 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5311 int cs_db, cs_l;
5312
5313 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5314
5315 ctxt->eflags = kvm_get_rflags(vcpu);
5316 ctxt->eip = kvm_rip_read(vcpu);
5317 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5318 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5319 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5320 cs_db ? X86EMUL_MODE_PROT32 :
5321 X86EMUL_MODE_PROT16;
5322 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5323 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5324 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5325 ctxt->emul_flags = vcpu->arch.hflags;
5326
5327 init_decode_cache(ctxt);
5328 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5329}
5330
5331int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5332{
5333 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5334 int ret;
5335
5336 init_emulate_ctxt(vcpu);
5337
5338 ctxt->op_bytes = 2;
5339 ctxt->ad_bytes = 2;
5340 ctxt->_eip = ctxt->eip + inc_eip;
5341 ret = emulate_int_real(ctxt, irq);
5342
5343 if (ret != X86EMUL_CONTINUE)
5344 return EMULATE_FAIL;
5345
5346 ctxt->eip = ctxt->_eip;
5347 kvm_rip_write(vcpu, ctxt->eip);
5348 kvm_set_rflags(vcpu, ctxt->eflags);
5349
5350 if (irq == NMI_VECTOR)
5351 vcpu->arch.nmi_pending = 0;
5352 else
5353 vcpu->arch.interrupt.pending = false;
5354
5355 return EMULATE_DONE;
5356}
5357EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5358
5359static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5360{
5361 int r = EMULATE_DONE;
5362
5363 ++vcpu->stat.insn_emulation_fail;
5364 trace_kvm_emulate_insn_failed(vcpu);
5365 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5366 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5367 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5368 vcpu->run->internal.ndata = 0;
5369 r = EMULATE_FAIL;
5370 }
5371 kvm_queue_exception(vcpu, UD_VECTOR);
5372
5373 return r;
5374}
5375
5376static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5377 bool write_fault_to_shadow_pgtable,
5378 int emulation_type)
5379{
5380 gpa_t gpa = cr2;
5381 pfn_t pfn;
5382
5383 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5384 return false;
5385
5386 if (!vcpu->arch.mmu.direct_map) {
5387 /*
5388 * Write permission should be allowed since only
5389 * write access need to be emulated.
5390 */
5391 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5392
5393 /*
5394 * If the mapping is invalid in guest, let cpu retry
5395 * it to generate fault.
5396 */
5397 if (gpa == UNMAPPED_GVA)
5398 return true;
5399 }
5400
5401 /*
5402 * Do not retry the unhandleable instruction if it faults on the
5403 * readonly host memory, otherwise it will goto a infinite loop:
5404 * retry instruction -> write #PF -> emulation fail -> retry
5405 * instruction -> ...
5406 */
5407 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5408
5409 /*
5410 * If the instruction failed on the error pfn, it can not be fixed,
5411 * report the error to userspace.
5412 */
5413 if (is_error_noslot_pfn(pfn))
5414 return false;
5415
5416 kvm_release_pfn_clean(pfn);
5417
5418 /* The instructions are well-emulated on direct mmu. */
5419 if (vcpu->arch.mmu.direct_map) {
5420 unsigned int indirect_shadow_pages;
5421
5422 spin_lock(&vcpu->kvm->mmu_lock);
5423 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5424 spin_unlock(&vcpu->kvm->mmu_lock);
5425
5426 if (indirect_shadow_pages)
5427 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5428
5429 return true;
5430 }
5431
5432 /*
5433 * if emulation was due to access to shadowed page table
5434 * and it failed try to unshadow page and re-enter the
5435 * guest to let CPU execute the instruction.
5436 */
5437 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5438
5439 /*
5440 * If the access faults on its page table, it can not
5441 * be fixed by unprotecting shadow page and it should
5442 * be reported to userspace.
5443 */
5444 return !write_fault_to_shadow_pgtable;
5445}
5446
5447static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5448 unsigned long cr2, int emulation_type)
5449{
5450 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5451 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5452
5453 last_retry_eip = vcpu->arch.last_retry_eip;
5454 last_retry_addr = vcpu->arch.last_retry_addr;
5455
5456 /*
5457 * If the emulation is caused by #PF and it is non-page_table
5458 * writing instruction, it means the VM-EXIT is caused by shadow
5459 * page protected, we can zap the shadow page and retry this
5460 * instruction directly.
5461 *
5462 * Note: if the guest uses a non-page-table modifying instruction
5463 * on the PDE that points to the instruction, then we will unmap
5464 * the instruction and go to an infinite loop. So, we cache the
5465 * last retried eip and the last fault address, if we meet the eip
5466 * and the address again, we can break out of the potential infinite
5467 * loop.
5468 */
5469 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5470
5471 if (!(emulation_type & EMULTYPE_RETRY))
5472 return false;
5473
5474 if (x86_page_table_writing_insn(ctxt))
5475 return false;
5476
5477 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5478 return false;
5479
5480 vcpu->arch.last_retry_eip = ctxt->eip;
5481 vcpu->arch.last_retry_addr = cr2;
5482
5483 if (!vcpu->arch.mmu.direct_map)
5484 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5485
5486 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5487
5488 return true;
5489}
5490
5491static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5492static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5493
5494static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5495{
5496 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5497 /* This is a good place to trace that we are exiting SMM. */
5498 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5499
5500 if (unlikely(vcpu->arch.smi_pending)) {
5501 kvm_make_request(KVM_REQ_SMI, vcpu);
5502 vcpu->arch.smi_pending = 0;
5503 } else {
5504 /* Process a latched INIT, if any. */
5505 kvm_make_request(KVM_REQ_EVENT, vcpu);
5506 }
5507 }
5508
5509 kvm_mmu_reset_context(vcpu);
5510}
5511
5512static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5513{
5514 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5515
5516 vcpu->arch.hflags = emul_flags;
5517
5518 if (changed & HF_SMM_MASK)
5519 kvm_smm_changed(vcpu);
5520}
5521
5522static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5523 unsigned long *db)
5524{
5525 u32 dr6 = 0;
5526 int i;
5527 u32 enable, rwlen;
5528
5529 enable = dr7;
5530 rwlen = dr7 >> 16;
5531 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5532 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5533 dr6 |= (1 << i);
5534 return dr6;
5535}
5536
5537static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5538{
5539 struct kvm_run *kvm_run = vcpu->run;
5540
5541 /*
5542 * rflags is the old, "raw" value of the flags. The new value has
5543 * not been saved yet.
5544 *
5545 * This is correct even for TF set by the guest, because "the
5546 * processor will not generate this exception after the instruction
5547 * that sets the TF flag".
5548 */
5549 if (unlikely(rflags & X86_EFLAGS_TF)) {
5550 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5551 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5552 DR6_RTM;
5553 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5554 kvm_run->debug.arch.exception = DB_VECTOR;
5555 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5556 *r = EMULATE_USER_EXIT;
5557 } else {
5558 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5559 /*
5560 * "Certain debug exceptions may clear bit 0-3. The
5561 * remaining contents of the DR6 register are never
5562 * cleared by the processor".
5563 */
5564 vcpu->arch.dr6 &= ~15;
5565 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5566 kvm_queue_exception(vcpu, DB_VECTOR);
5567 }
5568 }
5569}
5570
5571static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5572{
5573 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5574 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5575 struct kvm_run *kvm_run = vcpu->run;
5576 unsigned long eip = kvm_get_linear_rip(vcpu);
5577 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5578 vcpu->arch.guest_debug_dr7,
5579 vcpu->arch.eff_db);
5580
5581 if (dr6 != 0) {
5582 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5583 kvm_run->debug.arch.pc = eip;
5584 kvm_run->debug.arch.exception = DB_VECTOR;
5585 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5586 *r = EMULATE_USER_EXIT;
5587 return true;
5588 }
5589 }
5590
5591 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5592 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5593 unsigned long eip = kvm_get_linear_rip(vcpu);
5594 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5595 vcpu->arch.dr7,
5596 vcpu->arch.db);
5597
5598 if (dr6 != 0) {
5599 vcpu->arch.dr6 &= ~15;
5600 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5601 kvm_queue_exception(vcpu, DB_VECTOR);
5602 *r = EMULATE_DONE;
5603 return true;
5604 }
5605 }
5606
5607 return false;
5608}
5609
5610int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5611 unsigned long cr2,
5612 int emulation_type,
5613 void *insn,
5614 int insn_len)
5615{
5616 int r;
5617 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5618 bool writeback = true;
5619 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5620
5621 /*
5622 * Clear write_fault_to_shadow_pgtable here to ensure it is
5623 * never reused.
5624 */
5625 vcpu->arch.write_fault_to_shadow_pgtable = false;
5626 kvm_clear_exception_queue(vcpu);
5627
5628 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5629 init_emulate_ctxt(vcpu);
5630
5631 /*
5632 * We will reenter on the same instruction since
5633 * we do not set complete_userspace_io. This does not
5634 * handle watchpoints yet, those would be handled in
5635 * the emulate_ops.
5636 */
5637 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5638 return r;
5639
5640 ctxt->interruptibility = 0;
5641 ctxt->have_exception = false;
5642 ctxt->exception.vector = -1;
5643 ctxt->perm_ok = false;
5644
5645 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5646
5647 r = x86_decode_insn(ctxt, insn, insn_len);
5648
5649 trace_kvm_emulate_insn_start(vcpu);
5650 ++vcpu->stat.insn_emulation;
5651 if (r != EMULATION_OK) {
5652 if (emulation_type & EMULTYPE_TRAP_UD)
5653 return EMULATE_FAIL;
5654 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5655 emulation_type))
5656 return EMULATE_DONE;
5657 if (emulation_type & EMULTYPE_SKIP)
5658 return EMULATE_FAIL;
5659 return handle_emulation_failure(vcpu);
5660 }
5661 }
5662
5663 if (emulation_type & EMULTYPE_SKIP) {
5664 kvm_rip_write(vcpu, ctxt->_eip);
5665 if (ctxt->eflags & X86_EFLAGS_RF)
5666 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5667 return EMULATE_DONE;
5668 }
5669
5670 if (retry_instruction(ctxt, cr2, emulation_type))
5671 return EMULATE_DONE;
5672
5673 /* this is needed for vmware backdoor interface to work since it
5674 changes registers values during IO operation */
5675 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5676 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5677 emulator_invalidate_register_cache(ctxt);
5678 }
5679
5680restart:
5681 r = x86_emulate_insn(ctxt);
5682
5683 if (r == EMULATION_INTERCEPTED)
5684 return EMULATE_DONE;
5685
5686 if (r == EMULATION_FAILED) {
5687 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5688 emulation_type))
5689 return EMULATE_DONE;
5690
5691 return handle_emulation_failure(vcpu);
5692 }
5693
5694 if (ctxt->have_exception) {
5695 r = EMULATE_DONE;
5696 if (inject_emulated_exception(vcpu))
5697 return r;
5698 } else if (vcpu->arch.pio.count) {
5699 if (!vcpu->arch.pio.in) {
5700 /* FIXME: return into emulator if single-stepping. */
5701 vcpu->arch.pio.count = 0;
5702 } else {
5703 writeback = false;
5704 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5705 }
5706 r = EMULATE_USER_EXIT;
5707 } else if (vcpu->mmio_needed) {
5708 if (!vcpu->mmio_is_write)
5709 writeback = false;
5710 r = EMULATE_USER_EXIT;
5711 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5712 } else if (r == EMULATION_RESTART)
5713 goto restart;
5714 else
5715 r = EMULATE_DONE;
5716
5717 if (writeback) {
5718 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5719 toggle_interruptibility(vcpu, ctxt->interruptibility);
5720 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5721 if (vcpu->arch.hflags != ctxt->emul_flags)
5722 kvm_set_hflags(vcpu, ctxt->emul_flags);
5723 kvm_rip_write(vcpu, ctxt->eip);
5724 if (r == EMULATE_DONE)
5725 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5726 if (!ctxt->have_exception ||
5727 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5728 __kvm_set_rflags(vcpu, ctxt->eflags);
5729
5730 /*
5731 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5732 * do nothing, and it will be requested again as soon as
5733 * the shadow expires. But we still need to check here,
5734 * because POPF has no interrupt shadow.
5735 */
5736 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5737 kvm_make_request(KVM_REQ_EVENT, vcpu);
5738 } else
5739 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5740
5741 return r;
5742}
5743EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5744
5745int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5746{
5747 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5748 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5749 size, port, &val, 1);
5750 /* do not return to emulator after return from userspace */
5751 vcpu->arch.pio.count = 0;
5752 return ret;
5753}
5754EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5755
5756static void tsc_bad(void *info)
5757{
5758 __this_cpu_write(cpu_tsc_khz, 0);
5759}
5760
5761static void tsc_khz_changed(void *data)
5762{
5763 struct cpufreq_freqs *freq = data;
5764 unsigned long khz = 0;
5765
5766 if (data)
5767 khz = freq->new;
5768 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5769 khz = cpufreq_quick_get(raw_smp_processor_id());
5770 if (!khz)
5771 khz = tsc_khz;
5772 __this_cpu_write(cpu_tsc_khz, khz);
5773}
5774
5775static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5776 void *data)
5777{
5778 struct cpufreq_freqs *freq = data;
5779 struct kvm *kvm;
5780 struct kvm_vcpu *vcpu;
5781 int i, send_ipi = 0;
5782
5783 /*
5784 * We allow guests to temporarily run on slowing clocks,
5785 * provided we notify them after, or to run on accelerating
5786 * clocks, provided we notify them before. Thus time never
5787 * goes backwards.
5788 *
5789 * However, we have a problem. We can't atomically update
5790 * the frequency of a given CPU from this function; it is
5791 * merely a notifier, which can be called from any CPU.
5792 * Changing the TSC frequency at arbitrary points in time
5793 * requires a recomputation of local variables related to
5794 * the TSC for each VCPU. We must flag these local variables
5795 * to be updated and be sure the update takes place with the
5796 * new frequency before any guests proceed.
5797 *
5798 * Unfortunately, the combination of hotplug CPU and frequency
5799 * change creates an intractable locking scenario; the order
5800 * of when these callouts happen is undefined with respect to
5801 * CPU hotplug, and they can race with each other. As such,
5802 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5803 * undefined; you can actually have a CPU frequency change take
5804 * place in between the computation of X and the setting of the
5805 * variable. To protect against this problem, all updates of
5806 * the per_cpu tsc_khz variable are done in an interrupt
5807 * protected IPI, and all callers wishing to update the value
5808 * must wait for a synchronous IPI to complete (which is trivial
5809 * if the caller is on the CPU already). This establishes the
5810 * necessary total order on variable updates.
5811 *
5812 * Note that because a guest time update may take place
5813 * anytime after the setting of the VCPU's request bit, the
5814 * correct TSC value must be set before the request. However,
5815 * to ensure the update actually makes it to any guest which
5816 * starts running in hardware virtualization between the set
5817 * and the acquisition of the spinlock, we must also ping the
5818 * CPU after setting the request bit.
5819 *
5820 */
5821
5822 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5823 return 0;
5824 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5825 return 0;
5826
5827 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5828
5829 spin_lock(&kvm_lock);
5830 list_for_each_entry(kvm, &vm_list, vm_list) {
5831 kvm_for_each_vcpu(i, vcpu, kvm) {
5832 if (vcpu->cpu != freq->cpu)
5833 continue;
5834 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5835 if (vcpu->cpu != smp_processor_id())
5836 send_ipi = 1;
5837 }
5838 }
5839 spin_unlock(&kvm_lock);
5840
5841 if (freq->old < freq->new && send_ipi) {
5842 /*
5843 * We upscale the frequency. Must make the guest
5844 * doesn't see old kvmclock values while running with
5845 * the new frequency, otherwise we risk the guest sees
5846 * time go backwards.
5847 *
5848 * In case we update the frequency for another cpu
5849 * (which might be in guest context) send an interrupt
5850 * to kick the cpu out of guest context. Next time
5851 * guest context is entered kvmclock will be updated,
5852 * so the guest will not see stale values.
5853 */
5854 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5855 }
5856 return 0;
5857}
5858
5859static struct notifier_block kvmclock_cpufreq_notifier_block = {
5860 .notifier_call = kvmclock_cpufreq_notifier
5861};
5862
5863static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5864 unsigned long action, void *hcpu)
5865{
5866 unsigned int cpu = (unsigned long)hcpu;
5867
5868 switch (action) {
5869 case CPU_ONLINE:
5870 case CPU_DOWN_FAILED:
5871 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5872 break;
5873 case CPU_DOWN_PREPARE:
5874 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5875 break;
5876 }
5877 return NOTIFY_OK;
5878}
5879
5880static struct notifier_block kvmclock_cpu_notifier_block = {
5881 .notifier_call = kvmclock_cpu_notifier,
5882 .priority = -INT_MAX
5883};
5884
5885static void kvm_timer_init(void)
5886{
5887 int cpu;
5888
5889 max_tsc_khz = tsc_khz;
5890
5891 cpu_notifier_register_begin();
5892 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5893#ifdef CONFIG_CPU_FREQ
5894 struct cpufreq_policy policy;
5895 memset(&policy, 0, sizeof(policy));
5896 cpu = get_cpu();
5897 cpufreq_get_policy(&policy, cpu);
5898 if (policy.cpuinfo.max_freq)
5899 max_tsc_khz = policy.cpuinfo.max_freq;
5900 put_cpu();
5901#endif
5902 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5903 CPUFREQ_TRANSITION_NOTIFIER);
5904 }
5905 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5906 for_each_online_cpu(cpu)
5907 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5908
5909 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5910 cpu_notifier_register_done();
5911
5912}
5913
5914static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5915
5916int kvm_is_in_guest(void)
5917{
5918 return __this_cpu_read(current_vcpu) != NULL;
5919}
5920
5921static int kvm_is_user_mode(void)
5922{
5923 int user_mode = 3;
5924
5925 if (__this_cpu_read(current_vcpu))
5926 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5927
5928 return user_mode != 0;
5929}
5930
5931static unsigned long kvm_get_guest_ip(void)
5932{
5933 unsigned long ip = 0;
5934
5935 if (__this_cpu_read(current_vcpu))
5936 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5937
5938 return ip;
5939}
5940
5941static struct perf_guest_info_callbacks kvm_guest_cbs = {
5942 .is_in_guest = kvm_is_in_guest,
5943 .is_user_mode = kvm_is_user_mode,
5944 .get_guest_ip = kvm_get_guest_ip,
5945};
5946
5947void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5948{
5949 __this_cpu_write(current_vcpu, vcpu);
5950}
5951EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5952
5953void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5954{
5955 __this_cpu_write(current_vcpu, NULL);
5956}
5957EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5958
5959static void kvm_set_mmio_spte_mask(void)
5960{
5961 u64 mask;
5962 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5963
5964 /*
5965 * Set the reserved bits and the present bit of an paging-structure
5966 * entry to generate page fault with PFER.RSV = 1.
5967 */
5968 /* Mask the reserved physical address bits. */
5969 mask = rsvd_bits(maxphyaddr, 51);
5970
5971 /* Bit 62 is always reserved for 32bit host. */
5972 mask |= 0x3ull << 62;
5973
5974 /* Set the present bit. */
5975 mask |= 1ull;
5976
5977#ifdef CONFIG_X86_64
5978 /*
5979 * If reserved bit is not supported, clear the present bit to disable
5980 * mmio page fault.
5981 */
5982 if (maxphyaddr == 52)
5983 mask &= ~1ull;
5984#endif
5985
5986 kvm_mmu_set_mmio_spte_mask(mask);
5987}
5988
5989#ifdef CONFIG_X86_64
5990static void pvclock_gtod_update_fn(struct work_struct *work)
5991{
5992 struct kvm *kvm;
5993
5994 struct kvm_vcpu *vcpu;
5995 int i;
5996
5997 spin_lock(&kvm_lock);
5998 list_for_each_entry(kvm, &vm_list, vm_list)
5999 kvm_for_each_vcpu(i, vcpu, kvm)
6000 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6001 atomic_set(&kvm_guest_has_master_clock, 0);
6002 spin_unlock(&kvm_lock);
6003}
6004
6005static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6006
6007/*
6008 * Notification about pvclock gtod data update.
6009 */
6010static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6011 void *priv)
6012{
6013 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6014 struct timekeeper *tk = priv;
6015
6016 update_pvclock_gtod(tk);
6017
6018 /* disable master clock if host does not trust, or does not
6019 * use, TSC clocksource
6020 */
6021 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6022 atomic_read(&kvm_guest_has_master_clock) != 0)
6023 queue_work(system_long_wq, &pvclock_gtod_work);
6024
6025 return 0;
6026}
6027
6028static struct notifier_block pvclock_gtod_notifier = {
6029 .notifier_call = pvclock_gtod_notify,
6030};
6031#endif
6032
6033int kvm_arch_init(void *opaque)
6034{
6035 int r;
6036 struct kvm_x86_ops *ops = opaque;
6037
6038 if (kvm_x86_ops) {
6039 printk(KERN_ERR "kvm: already loaded the other module\n");
6040 r = -EEXIST;
6041 goto out;
6042 }
6043
6044 if (!ops->cpu_has_kvm_support()) {
6045 printk(KERN_ERR "kvm: no hardware support\n");
6046 r = -EOPNOTSUPP;
6047 goto out;
6048 }
6049 if (ops->disabled_by_bios()) {
6050 printk(KERN_ERR "kvm: disabled by bios\n");
6051 r = -EOPNOTSUPP;
6052 goto out;
6053 }
6054
6055 r = -ENOMEM;
6056 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6057 if (!shared_msrs) {
6058 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6059 goto out;
6060 }
6061
6062 r = kvm_mmu_module_init();
6063 if (r)
6064 goto out_free_percpu;
6065
6066 kvm_set_mmio_spte_mask();
6067
6068 kvm_x86_ops = ops;
6069
6070 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6071 PT_DIRTY_MASK, PT64_NX_MASK, 0);
6072
6073 kvm_timer_init();
6074
6075 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6076
6077 if (cpu_has_xsave)
6078 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6079
6080 kvm_lapic_init();
6081#ifdef CONFIG_X86_64
6082 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6083#endif
6084
6085 return 0;
6086
6087out_free_percpu:
6088 free_percpu(shared_msrs);
6089out:
6090 return r;
6091}
6092
6093void kvm_arch_exit(void)
6094{
6095 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6096
6097 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6098 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6099 CPUFREQ_TRANSITION_NOTIFIER);
6100 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
6101#ifdef CONFIG_X86_64
6102 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6103#endif
6104 kvm_x86_ops = NULL;
6105 kvm_mmu_module_exit();
6106 free_percpu(shared_msrs);
6107}
6108
6109int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6110{
6111 ++vcpu->stat.halt_exits;
6112 if (irqchip_in_kernel(vcpu->kvm)) {
6113 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6114 return 1;
6115 } else {
6116 vcpu->run->exit_reason = KVM_EXIT_HLT;
6117 return 0;
6118 }
6119}
6120EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6121
6122int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6123{
6124 kvm_x86_ops->skip_emulated_instruction(vcpu);
6125 return kvm_vcpu_halt(vcpu);
6126}
6127EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6128
6129int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
6130{
6131 u64 param, ingpa, outgpa, ret;
6132 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
6133 bool fast, longmode;
6134
6135 /*
6136 * hypercall generates UD from non zero cpl and real mode
6137 * per HYPER-V spec
6138 */
6139 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
6140 kvm_queue_exception(vcpu, UD_VECTOR);
6141 return 0;
6142 }
6143
6144 longmode = is_64_bit_mode(vcpu);
6145
6146 if (!longmode) {
6147 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
6148 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
6149 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
6150 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
6151 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
6152 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
6153 }
6154#ifdef CONFIG_X86_64
6155 else {
6156 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
6157 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
6158 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
6159 }
6160#endif
6161
6162 code = param & 0xffff;
6163 fast = (param >> 16) & 0x1;
6164 rep_cnt = (param >> 32) & 0xfff;
6165 rep_idx = (param >> 48) & 0xfff;
6166
6167 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
6168
6169 switch (code) {
6170 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
6171 kvm_vcpu_on_spin(vcpu);
6172 break;
6173 default:
6174 res = HV_STATUS_INVALID_HYPERCALL_CODE;
6175 break;
6176 }
6177
6178 ret = res | (((u64)rep_done & 0xfff) << 32);
6179 if (longmode) {
6180 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6181 } else {
6182 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
6183 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
6184 }
6185
6186 return 1;
6187}
6188
6189/*
6190 * kvm_pv_kick_cpu_op: Kick a vcpu.
6191 *
6192 * @apicid - apicid of vcpu to be kicked.
6193 */
6194static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6195{
6196 struct kvm_lapic_irq lapic_irq;
6197
6198 lapic_irq.shorthand = 0;
6199 lapic_irq.dest_mode = 0;
6200 lapic_irq.dest_id = apicid;
6201 lapic_irq.msi_redir_hint = false;
6202
6203 lapic_irq.delivery_mode = APIC_DM_REMRD;
6204 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6205}
6206
6207int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6208{
6209 unsigned long nr, a0, a1, a2, a3, ret;
6210 int op_64_bit, r = 1;
6211
6212 kvm_x86_ops->skip_emulated_instruction(vcpu);
6213
6214 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6215 return kvm_hv_hypercall(vcpu);
6216
6217 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6218 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6219 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6220 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6221 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6222
6223 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6224
6225 op_64_bit = is_64_bit_mode(vcpu);
6226 if (!op_64_bit) {
6227 nr &= 0xFFFFFFFF;
6228 a0 &= 0xFFFFFFFF;
6229 a1 &= 0xFFFFFFFF;
6230 a2 &= 0xFFFFFFFF;
6231 a3 &= 0xFFFFFFFF;
6232 }
6233
6234 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6235 ret = -KVM_EPERM;
6236 goto out;
6237 }
6238
6239 switch (nr) {
6240 case KVM_HC_VAPIC_POLL_IRQ:
6241 ret = 0;
6242 break;
6243 case KVM_HC_KICK_CPU:
6244 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6245 ret = 0;
6246 break;
6247 default:
6248 ret = -KVM_ENOSYS;
6249 break;
6250 }
6251out:
6252 if (!op_64_bit)
6253 ret = (u32)ret;
6254 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6255 ++vcpu->stat.hypercalls;
6256 return r;
6257}
6258EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6259
6260static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6261{
6262 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6263 char instruction[3];
6264 unsigned long rip = kvm_rip_read(vcpu);
6265
6266 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6267
6268 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6269}
6270
6271/*
6272 * Check if userspace requested an interrupt window, and that the
6273 * interrupt window is open.
6274 *
6275 * No need to exit to userspace if we already have an interrupt queued.
6276 */
6277static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6278{
6279 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6280 vcpu->run->request_interrupt_window &&
6281 kvm_arch_interrupt_allowed(vcpu));
6282}
6283
6284static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6285{
6286 struct kvm_run *kvm_run = vcpu->run;
6287
6288 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6289 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6290 kvm_run->cr8 = kvm_get_cr8(vcpu);
6291 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6292 if (irqchip_in_kernel(vcpu->kvm))
6293 kvm_run->ready_for_interrupt_injection = 1;
6294 else
6295 kvm_run->ready_for_interrupt_injection =
6296 kvm_arch_interrupt_allowed(vcpu) &&
6297 !kvm_cpu_has_interrupt(vcpu) &&
6298 !kvm_event_needs_reinjection(vcpu);
6299}
6300
6301static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6302{
6303 int max_irr, tpr;
6304
6305 if (!kvm_x86_ops->update_cr8_intercept)
6306 return;
6307
6308 if (!vcpu->arch.apic)
6309 return;
6310
6311 if (!vcpu->arch.apic->vapic_addr)
6312 max_irr = kvm_lapic_find_highest_irr(vcpu);
6313 else
6314 max_irr = -1;
6315
6316 if (max_irr != -1)
6317 max_irr >>= 4;
6318
6319 tpr = kvm_lapic_get_cr8(vcpu);
6320
6321 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6322}
6323
6324static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6325{
6326 int r;
6327
6328 /* try to reinject previous events if any */
6329 if (vcpu->arch.exception.pending) {
6330 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6331 vcpu->arch.exception.has_error_code,
6332 vcpu->arch.exception.error_code);
6333
6334 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6335 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6336 X86_EFLAGS_RF);
6337
6338 if (vcpu->arch.exception.nr == DB_VECTOR &&
6339 (vcpu->arch.dr7 & DR7_GD)) {
6340 vcpu->arch.dr7 &= ~DR7_GD;
6341 kvm_update_dr7(vcpu);
6342 }
6343
6344 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6345 vcpu->arch.exception.has_error_code,
6346 vcpu->arch.exception.error_code,
6347 vcpu->arch.exception.reinject);
6348 return 0;
6349 }
6350
6351 if (vcpu->arch.nmi_injected) {
6352 kvm_x86_ops->set_nmi(vcpu);
6353 return 0;
6354 }
6355
6356 if (vcpu->arch.interrupt.pending) {
6357 kvm_x86_ops->set_irq(vcpu);
6358 return 0;
6359 }
6360
6361 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6362 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6363 if (r != 0)
6364 return r;
6365 }
6366
6367 /* try to inject new event if pending */
6368 if (vcpu->arch.nmi_pending) {
6369 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6370 --vcpu->arch.nmi_pending;
6371 vcpu->arch.nmi_injected = true;
6372 kvm_x86_ops->set_nmi(vcpu);
6373 }
6374 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6375 /*
6376 * Because interrupts can be injected asynchronously, we are
6377 * calling check_nested_events again here to avoid a race condition.
6378 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6379 * proposal and current concerns. Perhaps we should be setting
6380 * KVM_REQ_EVENT only on certain events and not unconditionally?
6381 */
6382 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6383 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6384 if (r != 0)
6385 return r;
6386 }
6387 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6388 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6389 false);
6390 kvm_x86_ops->set_irq(vcpu);
6391 }
6392 }
6393 return 0;
6394}
6395
6396static void process_nmi(struct kvm_vcpu *vcpu)
6397{
6398 unsigned limit = 2;
6399
6400 /*
6401 * x86 is limited to one NMI running, and one NMI pending after it.
6402 * If an NMI is already in progress, limit further NMIs to just one.
6403 * Otherwise, allow two (and we'll inject the first one immediately).
6404 */
6405 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6406 limit = 1;
6407
6408 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6409 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6410 kvm_make_request(KVM_REQ_EVENT, vcpu);
6411}
6412
6413#define put_smstate(type, buf, offset, val) \
6414 *(type *)((buf) + (offset) - 0x7e00) = val
6415
6416static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6417{
6418 u32 flags = 0;
6419 flags |= seg->g << 23;
6420 flags |= seg->db << 22;
6421 flags |= seg->l << 21;
6422 flags |= seg->avl << 20;
6423 flags |= seg->present << 15;
6424 flags |= seg->dpl << 13;
6425 flags |= seg->s << 12;
6426 flags |= seg->type << 8;
6427 return flags;
6428}
6429
6430static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6431{
6432 struct kvm_segment seg;
6433 int offset;
6434
6435 kvm_get_segment(vcpu, &seg, n);
6436 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6437
6438 if (n < 3)
6439 offset = 0x7f84 + n * 12;
6440 else
6441 offset = 0x7f2c + (n - 3) * 12;
6442
6443 put_smstate(u32, buf, offset + 8, seg.base);
6444 put_smstate(u32, buf, offset + 4, seg.limit);
6445 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6446}
6447
6448static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6449{
6450 struct kvm_segment seg;
6451 int offset;
6452 u16 flags;
6453
6454 kvm_get_segment(vcpu, &seg, n);
6455 offset = 0x7e00 + n * 16;
6456
6457 flags = process_smi_get_segment_flags(&seg) >> 8;
6458 put_smstate(u16, buf, offset, seg.selector);
6459 put_smstate(u16, buf, offset + 2, flags);
6460 put_smstate(u32, buf, offset + 4, seg.limit);
6461 put_smstate(u64, buf, offset + 8, seg.base);
6462}
6463
6464static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6465{
6466 struct desc_ptr dt;
6467 struct kvm_segment seg;
6468 unsigned long val;
6469 int i;
6470
6471 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6472 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6473 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6474 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6475
6476 for (i = 0; i < 8; i++)
6477 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6478
6479 kvm_get_dr(vcpu, 6, &val);
6480 put_smstate(u32, buf, 0x7fcc, (u32)val);
6481 kvm_get_dr(vcpu, 7, &val);
6482 put_smstate(u32, buf, 0x7fc8, (u32)val);
6483
6484 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6485 put_smstate(u32, buf, 0x7fc4, seg.selector);
6486 put_smstate(u32, buf, 0x7f64, seg.base);
6487 put_smstate(u32, buf, 0x7f60, seg.limit);
6488 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6489
6490 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6491 put_smstate(u32, buf, 0x7fc0, seg.selector);
6492 put_smstate(u32, buf, 0x7f80, seg.base);
6493 put_smstate(u32, buf, 0x7f7c, seg.limit);
6494 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6495
6496 kvm_x86_ops->get_gdt(vcpu, &dt);
6497 put_smstate(u32, buf, 0x7f74, dt.address);
6498 put_smstate(u32, buf, 0x7f70, dt.size);
6499
6500 kvm_x86_ops->get_idt(vcpu, &dt);
6501 put_smstate(u32, buf, 0x7f58, dt.address);
6502 put_smstate(u32, buf, 0x7f54, dt.size);
6503
6504 for (i = 0; i < 6; i++)
6505 process_smi_save_seg_32(vcpu, buf, i);
6506
6507 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6508
6509 /* revision id */
6510 put_smstate(u32, buf, 0x7efc, 0x00020000);
6511 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6512}
6513
6514static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6515{
6516#ifdef CONFIG_X86_64
6517 struct desc_ptr dt;
6518 struct kvm_segment seg;
6519 unsigned long val;
6520 int i;
6521
6522 for (i = 0; i < 16; i++)
6523 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6524
6525 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6526 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6527
6528 kvm_get_dr(vcpu, 6, &val);
6529 put_smstate(u64, buf, 0x7f68, val);
6530 kvm_get_dr(vcpu, 7, &val);
6531 put_smstate(u64, buf, 0x7f60, val);
6532
6533 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6534 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6535 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6536
6537 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6538
6539 /* revision id */
6540 put_smstate(u32, buf, 0x7efc, 0x00020064);
6541
6542 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6543
6544 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6545 put_smstate(u16, buf, 0x7e90, seg.selector);
6546 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6547 put_smstate(u32, buf, 0x7e94, seg.limit);
6548 put_smstate(u64, buf, 0x7e98, seg.base);
6549
6550 kvm_x86_ops->get_idt(vcpu, &dt);
6551 put_smstate(u32, buf, 0x7e84, dt.size);
6552 put_smstate(u64, buf, 0x7e88, dt.address);
6553
6554 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6555 put_smstate(u16, buf, 0x7e70, seg.selector);
6556 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6557 put_smstate(u32, buf, 0x7e74, seg.limit);
6558 put_smstate(u64, buf, 0x7e78, seg.base);
6559
6560 kvm_x86_ops->get_gdt(vcpu, &dt);
6561 put_smstate(u32, buf, 0x7e64, dt.size);
6562 put_smstate(u64, buf, 0x7e68, dt.address);
6563
6564 for (i = 0; i < 6; i++)
6565 process_smi_save_seg_64(vcpu, buf, i);
6566#else
6567 WARN_ON_ONCE(1);
6568#endif
6569}
6570
6571static void process_smi(struct kvm_vcpu *vcpu)
6572{
6573 struct kvm_segment cs, ds;
6574 char buf[512];
6575 u32 cr0;
6576
6577 if (is_smm(vcpu)) {
6578 vcpu->arch.smi_pending = true;
6579 return;
6580 }
6581
6582 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6583 vcpu->arch.hflags |= HF_SMM_MASK;
6584 memset(buf, 0, 512);
6585 if (guest_cpuid_has_longmode(vcpu))
6586 process_smi_save_state_64(vcpu, buf);
6587 else
6588 process_smi_save_state_32(vcpu, buf);
6589
6590 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6591
6592 if (kvm_x86_ops->get_nmi_mask(vcpu))
6593 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6594 else
6595 kvm_x86_ops->set_nmi_mask(vcpu, true);
6596
6597 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6598 kvm_rip_write(vcpu, 0x8000);
6599
6600 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6601 kvm_x86_ops->set_cr0(vcpu, cr0);
6602 vcpu->arch.cr0 = cr0;
6603
6604 kvm_x86_ops->set_cr4(vcpu, 0);
6605
6606 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6607
6608 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6609 cs.base = vcpu->arch.smbase;
6610
6611 ds.selector = 0;
6612 ds.base = 0;
6613
6614 cs.limit = ds.limit = 0xffffffff;
6615 cs.type = ds.type = 0x3;
6616 cs.dpl = ds.dpl = 0;
6617 cs.db = ds.db = 0;
6618 cs.s = ds.s = 1;
6619 cs.l = ds.l = 0;
6620 cs.g = ds.g = 1;
6621 cs.avl = ds.avl = 0;
6622 cs.present = ds.present = 1;
6623 cs.unusable = ds.unusable = 0;
6624 cs.padding = ds.padding = 0;
6625
6626 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6627 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6628 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6629 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6630 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6631 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6632
6633 if (guest_cpuid_has_longmode(vcpu))
6634 kvm_x86_ops->set_efer(vcpu, 0);
6635
6636 kvm_update_cpuid(vcpu);
6637 kvm_mmu_reset_context(vcpu);
6638}
6639
6640static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6641{
6642 u64 eoi_exit_bitmap[4];
6643 u32 tmr[8];
6644
6645 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6646 return;
6647
6648 memset(eoi_exit_bitmap, 0, 32);
6649 memset(tmr, 0, 32);
6650
6651 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6652 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6653 kvm_apic_update_tmr(vcpu, tmr);
6654}
6655
6656static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6657{
6658 ++vcpu->stat.tlb_flush;
6659 kvm_x86_ops->tlb_flush(vcpu);
6660}
6661
6662void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6663{
6664 struct page *page = NULL;
6665
6666 if (!irqchip_in_kernel(vcpu->kvm))
6667 return;
6668
6669 if (!kvm_x86_ops->set_apic_access_page_addr)
6670 return;
6671
6672 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6673 if (is_error_page(page))
6674 return;
6675 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6676
6677 /*
6678 * Do not pin apic access page in memory, the MMU notifier
6679 * will call us again if it is migrated or swapped out.
6680 */
6681 put_page(page);
6682}
6683EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6684
6685void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6686 unsigned long address)
6687{
6688 /*
6689 * The physical address of apic access page is stored in the VMCS.
6690 * Update it when it becomes invalid.
6691 */
6692 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6693 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6694}
6695
6696/*
6697 * Returns 1 to let vcpu_run() continue the guest execution loop without
6698 * exiting to the userspace. Otherwise, the value will be returned to the
6699 * userspace.
6700 */
6701static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6702{
6703 int r;
6704 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6705 vcpu->run->request_interrupt_window;
6706 bool req_immediate_exit = false;
6707
6708 if (vcpu->requests) {
6709 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6710 kvm_mmu_unload(vcpu);
6711 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6712 __kvm_migrate_timers(vcpu);
6713 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6714 kvm_gen_update_masterclock(vcpu->kvm);
6715 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6716 kvm_gen_kvmclock_update(vcpu);
6717 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6718 r = kvm_guest_time_update(vcpu);
6719 if (unlikely(r))
6720 goto out;
6721 }
6722 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6723 kvm_mmu_sync_roots(vcpu);
6724 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6725 kvm_vcpu_flush_tlb(vcpu);
6726 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6727 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6728 r = 0;
6729 goto out;
6730 }
6731 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6732 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6733 r = 0;
6734 goto out;
6735 }
6736 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6737 vcpu->fpu_active = 0;
6738 kvm_x86_ops->fpu_deactivate(vcpu);
6739 }
6740 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6741 /* Page is swapped out. Do synthetic halt */
6742 vcpu->arch.apf.halted = true;
6743 r = 1;
6744 goto out;
6745 }
6746 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6747 record_steal_time(vcpu);
6748 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6749 process_smi(vcpu);
6750 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6751 process_nmi(vcpu);
6752 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6753 kvm_handle_pmu_event(vcpu);
6754 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6755 kvm_deliver_pmi(vcpu);
6756 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6757 vcpu_scan_ioapic(vcpu);
6758 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6759 kvm_vcpu_reload_apic_access_page(vcpu);
6760 }
6761
6762 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6763 kvm_apic_accept_events(vcpu);
6764 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6765 r = 1;
6766 goto out;
6767 }
6768
6769 if (inject_pending_event(vcpu, req_int_win) != 0)
6770 req_immediate_exit = true;
6771 /* enable NMI/IRQ window open exits if needed */
6772 else if (vcpu->arch.nmi_pending)
6773 kvm_x86_ops->enable_nmi_window(vcpu);
6774 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6775 kvm_x86_ops->enable_irq_window(vcpu);
6776
6777 if (kvm_lapic_enabled(vcpu)) {
6778 /*
6779 * Update architecture specific hints for APIC
6780 * virtual interrupt delivery.
6781 */
6782 if (kvm_x86_ops->hwapic_irr_update)
6783 kvm_x86_ops->hwapic_irr_update(vcpu,
6784 kvm_lapic_find_highest_irr(vcpu));
6785 update_cr8_intercept(vcpu);
6786 kvm_lapic_sync_to_vapic(vcpu);
6787 }
6788 }
6789
6790 r = kvm_mmu_reload(vcpu);
6791 if (unlikely(r)) {
6792 goto cancel_injection;
6793 }
6794
6795 preempt_disable();
6796
6797 kvm_x86_ops->prepare_guest_switch(vcpu);
6798 if (vcpu->fpu_active)
6799 kvm_load_guest_fpu(vcpu);
6800 kvm_load_guest_xcr0(vcpu);
6801
6802 vcpu->mode = IN_GUEST_MODE;
6803
6804 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6805
6806 /* We should set ->mode before check ->requests,
6807 * see the comment in make_all_cpus_request.
6808 */
6809 smp_mb__after_srcu_read_unlock();
6810
6811 local_irq_disable();
6812
6813 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6814 || need_resched() || signal_pending(current)) {
6815 vcpu->mode = OUTSIDE_GUEST_MODE;
6816 smp_wmb();
6817 local_irq_enable();
6818 preempt_enable();
6819 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6820 r = 1;
6821 goto cancel_injection;
6822 }
6823
6824 if (req_immediate_exit)
6825 smp_send_reschedule(vcpu->cpu);
6826
6827 __kvm_guest_enter();
6828
6829 if (unlikely(vcpu->arch.switch_db_regs)) {
6830 set_debugreg(0, 7);
6831 set_debugreg(vcpu->arch.eff_db[0], 0);
6832 set_debugreg(vcpu->arch.eff_db[1], 1);
6833 set_debugreg(vcpu->arch.eff_db[2], 2);
6834 set_debugreg(vcpu->arch.eff_db[3], 3);
6835 set_debugreg(vcpu->arch.dr6, 6);
6836 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6837 }
6838
6839 trace_kvm_entry(vcpu->vcpu_id);
6840 wait_lapic_expire(vcpu);
6841 kvm_x86_ops->run(vcpu);
6842
6843 /*
6844 * Do this here before restoring debug registers on the host. And
6845 * since we do this before handling the vmexit, a DR access vmexit
6846 * can (a) read the correct value of the debug registers, (b) set
6847 * KVM_DEBUGREG_WONT_EXIT again.
6848 */
6849 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6850 int i;
6851
6852 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6853 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6854 for (i = 0; i < KVM_NR_DB_REGS; i++)
6855 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6856 }
6857
6858 /*
6859 * If the guest has used debug registers, at least dr7
6860 * will be disabled while returning to the host.
6861 * If we don't have active breakpoints in the host, we don't
6862 * care about the messed up debug address registers. But if
6863 * we have some of them active, restore the old state.
6864 */
6865 if (hw_breakpoint_active())
6866 hw_breakpoint_restore();
6867
6868 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6869 native_read_tsc());
6870
6871 vcpu->mode = OUTSIDE_GUEST_MODE;
6872 smp_wmb();
6873
6874 /* Interrupt is enabled by handle_external_intr() */
6875 kvm_x86_ops->handle_external_intr(vcpu);
6876
6877 ++vcpu->stat.exits;
6878
6879 /*
6880 * We must have an instruction between local_irq_enable() and
6881 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6882 * the interrupt shadow. The stat.exits increment will do nicely.
6883 * But we need to prevent reordering, hence this barrier():
6884 */
6885 barrier();
6886
6887 kvm_guest_exit();
6888
6889 preempt_enable();
6890
6891 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6892
6893 /*
6894 * Profile KVM exit RIPs:
6895 */
6896 if (unlikely(prof_on == KVM_PROFILING)) {
6897 unsigned long rip = kvm_rip_read(vcpu);
6898 profile_hit(KVM_PROFILING, (void *)rip);
6899 }
6900
6901 if (unlikely(vcpu->arch.tsc_always_catchup))
6902 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6903
6904 if (vcpu->arch.apic_attention)
6905 kvm_lapic_sync_from_vapic(vcpu);
6906
6907 r = kvm_x86_ops->handle_exit(vcpu);
6908 return r;
6909
6910cancel_injection:
6911 kvm_x86_ops->cancel_injection(vcpu);
6912 if (unlikely(vcpu->arch.apic_attention))
6913 kvm_lapic_sync_from_vapic(vcpu);
6914out:
6915 return r;
6916}
6917
6918static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6919{
6920 if (!kvm_arch_vcpu_runnable(vcpu)) {
6921 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6922 kvm_vcpu_block(vcpu);
6923 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6924 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6925 return 1;
6926 }
6927
6928 kvm_apic_accept_events(vcpu);
6929 switch(vcpu->arch.mp_state) {
6930 case KVM_MP_STATE_HALTED:
6931 vcpu->arch.pv.pv_unhalted = false;
6932 vcpu->arch.mp_state =
6933 KVM_MP_STATE_RUNNABLE;
6934 case KVM_MP_STATE_RUNNABLE:
6935 vcpu->arch.apf.halted = false;
6936 break;
6937 case KVM_MP_STATE_INIT_RECEIVED:
6938 break;
6939 default:
6940 return -EINTR;
6941 break;
6942 }
6943 return 1;
6944}
6945
6946static int vcpu_run(struct kvm_vcpu *vcpu)
6947{
6948 int r;
6949 struct kvm *kvm = vcpu->kvm;
6950
6951 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6952
6953 for (;;) {
6954 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6955 !vcpu->arch.apf.halted)
6956 r = vcpu_enter_guest(vcpu);
6957 else
6958 r = vcpu_block(kvm, vcpu);
6959 if (r <= 0)
6960 break;
6961
6962 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6963 if (kvm_cpu_has_pending_timer(vcpu))
6964 kvm_inject_pending_timer_irqs(vcpu);
6965
6966 if (dm_request_for_irq_injection(vcpu)) {
6967 r = -EINTR;
6968 vcpu->run->exit_reason = KVM_EXIT_INTR;
6969 ++vcpu->stat.request_irq_exits;
6970 break;
6971 }
6972
6973 kvm_check_async_pf_completion(vcpu);
6974
6975 if (signal_pending(current)) {
6976 r = -EINTR;
6977 vcpu->run->exit_reason = KVM_EXIT_INTR;
6978 ++vcpu->stat.signal_exits;
6979 break;
6980 }
6981 if (need_resched()) {
6982 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6983 cond_resched();
6984 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6985 }
6986 }
6987
6988 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6989
6990 return r;
6991}
6992
6993static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6994{
6995 int r;
6996 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6997 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6998 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6999 if (r != EMULATE_DONE)
7000 return 0;
7001 return 1;
7002}
7003
7004static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7005{
7006 BUG_ON(!vcpu->arch.pio.count);
7007
7008 return complete_emulated_io(vcpu);
7009}
7010
7011/*
7012 * Implements the following, as a state machine:
7013 *
7014 * read:
7015 * for each fragment
7016 * for each mmio piece in the fragment
7017 * write gpa, len
7018 * exit
7019 * copy data
7020 * execute insn
7021 *
7022 * write:
7023 * for each fragment
7024 * for each mmio piece in the fragment
7025 * write gpa, len
7026 * copy data
7027 * exit
7028 */
7029static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7030{
7031 struct kvm_run *run = vcpu->run;
7032 struct kvm_mmio_fragment *frag;
7033 unsigned len;
7034
7035 BUG_ON(!vcpu->mmio_needed);
7036
7037 /* Complete previous fragment */
7038 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7039 len = min(8u, frag->len);
7040 if (!vcpu->mmio_is_write)
7041 memcpy(frag->data, run->mmio.data, len);
7042
7043 if (frag->len <= 8) {
7044 /* Switch to the next fragment. */
7045 frag++;
7046 vcpu->mmio_cur_fragment++;
7047 } else {
7048 /* Go forward to the next mmio piece. */
7049 frag->data += len;
7050 frag->gpa += len;
7051 frag->len -= len;
7052 }
7053
7054 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7055 vcpu->mmio_needed = 0;
7056
7057 /* FIXME: return into emulator if single-stepping. */
7058 if (vcpu->mmio_is_write)
7059 return 1;
7060 vcpu->mmio_read_completed = 1;
7061 return complete_emulated_io(vcpu);
7062 }
7063
7064 run->exit_reason = KVM_EXIT_MMIO;
7065 run->mmio.phys_addr = frag->gpa;
7066 if (vcpu->mmio_is_write)
7067 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7068 run->mmio.len = min(8u, frag->len);
7069 run->mmio.is_write = vcpu->mmio_is_write;
7070 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7071 return 0;
7072}
7073
7074
7075int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7076{
7077 int r;
7078 sigset_t sigsaved;
7079
7080 if (!tsk_used_math(current) && init_fpu(current))
7081 return -ENOMEM;
7082
7083 if (vcpu->sigset_active)
7084 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7085
7086 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7087 kvm_vcpu_block(vcpu);
7088 kvm_apic_accept_events(vcpu);
7089 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7090 r = -EAGAIN;
7091 goto out;
7092 }
7093
7094 /* re-sync apic's tpr */
7095 if (!irqchip_in_kernel(vcpu->kvm)) {
7096 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7097 r = -EINVAL;
7098 goto out;
7099 }
7100 }
7101
7102 if (unlikely(vcpu->arch.complete_userspace_io)) {
7103 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7104 vcpu->arch.complete_userspace_io = NULL;
7105 r = cui(vcpu);
7106 if (r <= 0)
7107 goto out;
7108 } else
7109 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7110
7111 r = vcpu_run(vcpu);
7112
7113out:
7114 post_kvm_run_save(vcpu);
7115 if (vcpu->sigset_active)
7116 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7117
7118 return r;
7119}
7120
7121int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7122{
7123 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7124 /*
7125 * We are here if userspace calls get_regs() in the middle of
7126 * instruction emulation. Registers state needs to be copied
7127 * back from emulation context to vcpu. Userspace shouldn't do
7128 * that usually, but some bad designed PV devices (vmware
7129 * backdoor interface) need this to work
7130 */
7131 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7132 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7133 }
7134 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7135 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7136 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7137 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7138 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7139 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7140 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7141 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7142#ifdef CONFIG_X86_64
7143 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7144 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7145 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7146 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7147 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7148 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7149 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7150 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7151#endif
7152
7153 regs->rip = kvm_rip_read(vcpu);
7154 regs->rflags = kvm_get_rflags(vcpu);
7155
7156 return 0;
7157}
7158
7159int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7160{
7161 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7162 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7163
7164 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7165 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7166 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7167 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7168 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7169 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7170 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7171 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7172#ifdef CONFIG_X86_64
7173 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7174 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7175 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7176 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7177 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7178 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7179 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7180 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7181#endif
7182
7183 kvm_rip_write(vcpu, regs->rip);
7184 kvm_set_rflags(vcpu, regs->rflags);
7185
7186 vcpu->arch.exception.pending = false;
7187
7188 kvm_make_request(KVM_REQ_EVENT, vcpu);
7189
7190 return 0;
7191}
7192
7193void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7194{
7195 struct kvm_segment cs;
7196
7197 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7198 *db = cs.db;
7199 *l = cs.l;
7200}
7201EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7202
7203int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7204 struct kvm_sregs *sregs)
7205{
7206 struct desc_ptr dt;
7207
7208 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7209 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7210 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7211 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7212 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7213 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7214
7215 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7216 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7217
7218 kvm_x86_ops->get_idt(vcpu, &dt);
7219 sregs->idt.limit = dt.size;
7220 sregs->idt.base = dt.address;
7221 kvm_x86_ops->get_gdt(vcpu, &dt);
7222 sregs->gdt.limit = dt.size;
7223 sregs->gdt.base = dt.address;
7224
7225 sregs->cr0 = kvm_read_cr0(vcpu);
7226 sregs->cr2 = vcpu->arch.cr2;
7227 sregs->cr3 = kvm_read_cr3(vcpu);
7228 sregs->cr4 = kvm_read_cr4(vcpu);
7229 sregs->cr8 = kvm_get_cr8(vcpu);
7230 sregs->efer = vcpu->arch.efer;
7231 sregs->apic_base = kvm_get_apic_base(vcpu);
7232
7233 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7234
7235 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7236 set_bit(vcpu->arch.interrupt.nr,
7237 (unsigned long *)sregs->interrupt_bitmap);
7238
7239 return 0;
7240}
7241
7242int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7243 struct kvm_mp_state *mp_state)
7244{
7245 kvm_apic_accept_events(vcpu);
7246 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7247 vcpu->arch.pv.pv_unhalted)
7248 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7249 else
7250 mp_state->mp_state = vcpu->arch.mp_state;
7251
7252 return 0;
7253}
7254
7255int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7256 struct kvm_mp_state *mp_state)
7257{
7258 if (!kvm_vcpu_has_lapic(vcpu) &&
7259 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7260 return -EINVAL;
7261
7262 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7263 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7264 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7265 } else
7266 vcpu->arch.mp_state = mp_state->mp_state;
7267 kvm_make_request(KVM_REQ_EVENT, vcpu);
7268 return 0;
7269}
7270
7271int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7272 int reason, bool has_error_code, u32 error_code)
7273{
7274 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7275 int ret;
7276
7277 init_emulate_ctxt(vcpu);
7278
7279 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7280 has_error_code, error_code);
7281
7282 if (ret)
7283 return EMULATE_FAIL;
7284
7285 kvm_rip_write(vcpu, ctxt->eip);
7286 kvm_set_rflags(vcpu, ctxt->eflags);
7287 kvm_make_request(KVM_REQ_EVENT, vcpu);
7288 return EMULATE_DONE;
7289}
7290EXPORT_SYMBOL_GPL(kvm_task_switch);
7291
7292int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7293 struct kvm_sregs *sregs)
7294{
7295 struct msr_data apic_base_msr;
7296 int mmu_reset_needed = 0;
7297 int pending_vec, max_bits, idx;
7298 struct desc_ptr dt;
7299
7300 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7301 return -EINVAL;
7302
7303 dt.size = sregs->idt.limit;
7304 dt.address = sregs->idt.base;
7305 kvm_x86_ops->set_idt(vcpu, &dt);
7306 dt.size = sregs->gdt.limit;
7307 dt.address = sregs->gdt.base;
7308 kvm_x86_ops->set_gdt(vcpu, &dt);
7309
7310 vcpu->arch.cr2 = sregs->cr2;
7311 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7312 vcpu->arch.cr3 = sregs->cr3;
7313 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7314
7315 kvm_set_cr8(vcpu, sregs->cr8);
7316
7317 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7318 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7319 apic_base_msr.data = sregs->apic_base;
7320 apic_base_msr.host_initiated = true;
7321 kvm_set_apic_base(vcpu, &apic_base_msr);
7322
7323 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7324 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7325 vcpu->arch.cr0 = sregs->cr0;
7326
7327 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7328 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7329 if (sregs->cr4 & X86_CR4_OSXSAVE)
7330 kvm_update_cpuid(vcpu);
7331
7332 idx = srcu_read_lock(&vcpu->kvm->srcu);
7333 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7334 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7335 mmu_reset_needed = 1;
7336 }
7337 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7338
7339 if (mmu_reset_needed)
7340 kvm_mmu_reset_context(vcpu);
7341
7342 max_bits = KVM_NR_INTERRUPTS;
7343 pending_vec = find_first_bit(
7344 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7345 if (pending_vec < max_bits) {
7346 kvm_queue_interrupt(vcpu, pending_vec, false);
7347 pr_debug("Set back pending irq %d\n", pending_vec);
7348 }
7349
7350 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7351 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7352 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7353 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7354 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7355 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7356
7357 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7358 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7359
7360 update_cr8_intercept(vcpu);
7361
7362 /* Older userspace won't unhalt the vcpu on reset. */
7363 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7364 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7365 !is_protmode(vcpu))
7366 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7367
7368 kvm_make_request(KVM_REQ_EVENT, vcpu);
7369
7370 return 0;
7371}
7372
7373int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7374 struct kvm_guest_debug *dbg)
7375{
7376 unsigned long rflags;
7377 int i, r;
7378
7379 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7380 r = -EBUSY;
7381 if (vcpu->arch.exception.pending)
7382 goto out;
7383 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7384 kvm_queue_exception(vcpu, DB_VECTOR);
7385 else
7386 kvm_queue_exception(vcpu, BP_VECTOR);
7387 }
7388
7389 /*
7390 * Read rflags as long as potentially injected trace flags are still
7391 * filtered out.
7392 */
7393 rflags = kvm_get_rflags(vcpu);
7394
7395 vcpu->guest_debug = dbg->control;
7396 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7397 vcpu->guest_debug = 0;
7398
7399 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7400 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7401 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7402 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7403 } else {
7404 for (i = 0; i < KVM_NR_DB_REGS; i++)
7405 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7406 }
7407 kvm_update_dr7(vcpu);
7408
7409 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7410 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7411 get_segment_base(vcpu, VCPU_SREG_CS);
7412
7413 /*
7414 * Trigger an rflags update that will inject or remove the trace
7415 * flags.
7416 */
7417 kvm_set_rflags(vcpu, rflags);
7418
7419 kvm_x86_ops->update_db_bp_intercept(vcpu);
7420
7421 r = 0;
7422
7423out:
7424
7425 return r;
7426}
7427
7428/*
7429 * Translate a guest virtual address to a guest physical address.
7430 */
7431int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7432 struct kvm_translation *tr)
7433{
7434 unsigned long vaddr = tr->linear_address;
7435 gpa_t gpa;
7436 int idx;
7437
7438 idx = srcu_read_lock(&vcpu->kvm->srcu);
7439 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7440 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7441 tr->physical_address = gpa;
7442 tr->valid = gpa != UNMAPPED_GVA;
7443 tr->writeable = 1;
7444 tr->usermode = 0;
7445
7446 return 0;
7447}
7448
7449int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7450{
7451 struct i387_fxsave_struct *fxsave =
7452 &vcpu->arch.guest_fpu.state->fxsave;
7453
7454 memcpy(fpu->fpr, fxsave->st_space, 128);
7455 fpu->fcw = fxsave->cwd;
7456 fpu->fsw = fxsave->swd;
7457 fpu->ftwx = fxsave->twd;
7458 fpu->last_opcode = fxsave->fop;
7459 fpu->last_ip = fxsave->rip;
7460 fpu->last_dp = fxsave->rdp;
7461 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7462
7463 return 0;
7464}
7465
7466int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7467{
7468 struct i387_fxsave_struct *fxsave =
7469 &vcpu->arch.guest_fpu.state->fxsave;
7470
7471 memcpy(fxsave->st_space, fpu->fpr, 128);
7472 fxsave->cwd = fpu->fcw;
7473 fxsave->swd = fpu->fsw;
7474 fxsave->twd = fpu->ftwx;
7475 fxsave->fop = fpu->last_opcode;
7476 fxsave->rip = fpu->last_ip;
7477 fxsave->rdp = fpu->last_dp;
7478 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7479
7480 return 0;
7481}
7482
7483int fx_init(struct kvm_vcpu *vcpu, bool init_event)
7484{
7485 int err;
7486
7487 err = fpu_alloc(&vcpu->arch.guest_fpu);
7488 if (err)
7489 return err;
7490
7491 if (!init_event)
7492 fpu_finit(&vcpu->arch.guest_fpu);
7493
7494 if (cpu_has_xsaves)
7495 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7496 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7497
7498 /*
7499 * Ensure guest xcr0 is valid for loading
7500 */
7501 vcpu->arch.xcr0 = XSTATE_FP;
7502
7503 vcpu->arch.cr0 |= X86_CR0_ET;
7504
7505 return 0;
7506}
7507EXPORT_SYMBOL_GPL(fx_init);
7508
7509static void fx_free(struct kvm_vcpu *vcpu)
7510{
7511 fpu_free(&vcpu->arch.guest_fpu);
7512}
7513
7514void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7515{
7516 if (vcpu->guest_fpu_loaded)
7517 return;
7518
7519 /*
7520 * Restore all possible states in the guest,
7521 * and assume host would use all available bits.
7522 * Guest xcr0 would be loaded later.
7523 */
7524 kvm_put_guest_xcr0(vcpu);
7525 vcpu->guest_fpu_loaded = 1;
7526 __kernel_fpu_begin();
7527 fpu_restore_checking(&vcpu->arch.guest_fpu);
7528 trace_kvm_fpu(1);
7529}
7530
7531void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7532{
7533 kvm_put_guest_xcr0(vcpu);
7534
7535 if (!vcpu->guest_fpu_loaded) {
7536 vcpu->fpu_counter = 0;
7537 return;
7538 }
7539
7540 vcpu->guest_fpu_loaded = 0;
7541 fpu_save_init(&vcpu->arch.guest_fpu);
7542 __kernel_fpu_end();
7543 ++vcpu->stat.fpu_reload;
7544 /*
7545 * If using eager FPU mode, or if the guest is a frequent user
7546 * of the FPU, just leave the FPU active for next time.
7547 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7548 * the FPU in bursts will revert to loading it on demand.
7549 */
7550 if (!vcpu->arch.eager_fpu) {
7551 if (++vcpu->fpu_counter < 5)
7552 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7553 }
7554 trace_kvm_fpu(0);
7555}
7556
7557void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7558{
7559 kvmclock_reset(vcpu);
7560
7561 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7562 fx_free(vcpu);
7563 kvm_x86_ops->vcpu_free(vcpu);
7564}
7565
7566struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7567 unsigned int id)
7568{
7569 struct kvm_vcpu *vcpu;
7570
7571 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7572 printk_once(KERN_WARNING
7573 "kvm: SMP vm created on host with unstable TSC; "
7574 "guest TSC will not be reliable\n");
7575
7576 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7577
7578 /*
7579 * Activate fpu unconditionally in case the guest needs eager FPU. It will be
7580 * deactivated soon if it doesn't.
7581 */
7582 kvm_x86_ops->fpu_activate(vcpu);
7583 return vcpu;
7584}
7585
7586int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7587{
7588 int r;
7589
7590 vcpu->arch.mtrr_state.have_fixed = 1;
7591 r = vcpu_load(vcpu);
7592 if (r)
7593 return r;
7594 kvm_vcpu_reset(vcpu, false);
7595 kvm_mmu_setup(vcpu);
7596 vcpu_put(vcpu);
7597
7598 return r;
7599}
7600
7601void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7602{
7603 struct msr_data msr;
7604 struct kvm *kvm = vcpu->kvm;
7605
7606 if (vcpu_load(vcpu))
7607 return;
7608 msr.data = 0x0;
7609 msr.index = MSR_IA32_TSC;
7610 msr.host_initiated = true;
7611 kvm_write_tsc(vcpu, &msr);
7612 vcpu_put(vcpu);
7613
7614 if (!kvmclock_periodic_sync)
7615 return;
7616
7617 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7618 KVMCLOCK_SYNC_PERIOD);
7619}
7620
7621void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7622{
7623 int r;
7624 vcpu->arch.apf.msr_val = 0;
7625
7626 r = vcpu_load(vcpu);
7627 BUG_ON(r);
7628 kvm_mmu_unload(vcpu);
7629 vcpu_put(vcpu);
7630
7631 fx_free(vcpu);
7632 kvm_x86_ops->vcpu_free(vcpu);
7633}
7634
7635void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7636{
7637 vcpu->arch.hflags = 0;
7638
7639 atomic_set(&vcpu->arch.nmi_queued, 0);
7640 vcpu->arch.nmi_pending = 0;
7641 vcpu->arch.nmi_injected = false;
7642 kvm_clear_interrupt_queue(vcpu);
7643 kvm_clear_exception_queue(vcpu);
7644
7645 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7646 kvm_update_dr0123(vcpu);
7647 vcpu->arch.dr6 = DR6_INIT;
7648 kvm_update_dr6(vcpu);
7649 vcpu->arch.dr7 = DR7_FIXED_1;
7650 kvm_update_dr7(vcpu);
7651
7652 vcpu->arch.cr2 = 0;
7653
7654 kvm_make_request(KVM_REQ_EVENT, vcpu);
7655 vcpu->arch.apf.msr_val = 0;
7656 vcpu->arch.st.msr_val = 0;
7657
7658 kvmclock_reset(vcpu);
7659
7660 kvm_clear_async_pf_completion_queue(vcpu);
7661 kvm_async_pf_hash_reset(vcpu);
7662 vcpu->arch.apf.halted = false;
7663
7664 if (!init_event) {
7665 kvm_pmu_reset(vcpu);
7666 vcpu->arch.smbase = 0x30000;
7667 }
7668
7669 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7670 vcpu->arch.regs_avail = ~0;
7671 vcpu->arch.regs_dirty = ~0;
7672
7673 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7674}
7675
7676void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7677{
7678 struct kvm_segment cs;
7679
7680 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7681 cs.selector = vector << 8;
7682 cs.base = vector << 12;
7683 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7684 kvm_rip_write(vcpu, 0);
7685}
7686
7687int kvm_arch_hardware_enable(void)
7688{
7689 struct kvm *kvm;
7690 struct kvm_vcpu *vcpu;
7691 int i;
7692 int ret;
7693 u64 local_tsc;
7694 u64 max_tsc = 0;
7695 bool stable, backwards_tsc = false;
7696
7697 kvm_shared_msr_cpu_online();
7698 ret = kvm_x86_ops->hardware_enable();
7699 if (ret != 0)
7700 return ret;
7701
7702 local_tsc = native_read_tsc();
7703 stable = !check_tsc_unstable();
7704 list_for_each_entry(kvm, &vm_list, vm_list) {
7705 kvm_for_each_vcpu(i, vcpu, kvm) {
7706 if (!stable && vcpu->cpu == smp_processor_id())
7707 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7708 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7709 backwards_tsc = true;
7710 if (vcpu->arch.last_host_tsc > max_tsc)
7711 max_tsc = vcpu->arch.last_host_tsc;
7712 }
7713 }
7714 }
7715
7716 /*
7717 * Sometimes, even reliable TSCs go backwards. This happens on
7718 * platforms that reset TSC during suspend or hibernate actions, but
7719 * maintain synchronization. We must compensate. Fortunately, we can
7720 * detect that condition here, which happens early in CPU bringup,
7721 * before any KVM threads can be running. Unfortunately, we can't
7722 * bring the TSCs fully up to date with real time, as we aren't yet far
7723 * enough into CPU bringup that we know how much real time has actually
7724 * elapsed; our helper function, get_kernel_ns() will be using boot
7725 * variables that haven't been updated yet.
7726 *
7727 * So we simply find the maximum observed TSC above, then record the
7728 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7729 * the adjustment will be applied. Note that we accumulate
7730 * adjustments, in case multiple suspend cycles happen before some VCPU
7731 * gets a chance to run again. In the event that no KVM threads get a
7732 * chance to run, we will miss the entire elapsed period, as we'll have
7733 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7734 * loose cycle time. This isn't too big a deal, since the loss will be
7735 * uniform across all VCPUs (not to mention the scenario is extremely
7736 * unlikely). It is possible that a second hibernate recovery happens
7737 * much faster than a first, causing the observed TSC here to be
7738 * smaller; this would require additional padding adjustment, which is
7739 * why we set last_host_tsc to the local tsc observed here.
7740 *
7741 * N.B. - this code below runs only on platforms with reliable TSC,
7742 * as that is the only way backwards_tsc is set above. Also note
7743 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7744 * have the same delta_cyc adjustment applied if backwards_tsc
7745 * is detected. Note further, this adjustment is only done once,
7746 * as we reset last_host_tsc on all VCPUs to stop this from being
7747 * called multiple times (one for each physical CPU bringup).
7748 *
7749 * Platforms with unreliable TSCs don't have to deal with this, they
7750 * will be compensated by the logic in vcpu_load, which sets the TSC to
7751 * catchup mode. This will catchup all VCPUs to real time, but cannot
7752 * guarantee that they stay in perfect synchronization.
7753 */
7754 if (backwards_tsc) {
7755 u64 delta_cyc = max_tsc - local_tsc;
7756 backwards_tsc_observed = true;
7757 list_for_each_entry(kvm, &vm_list, vm_list) {
7758 kvm_for_each_vcpu(i, vcpu, kvm) {
7759 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7760 vcpu->arch.last_host_tsc = local_tsc;
7761 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7762 }
7763
7764 /*
7765 * We have to disable TSC offset matching.. if you were
7766 * booting a VM while issuing an S4 host suspend....
7767 * you may have some problem. Solving this issue is
7768 * left as an exercise to the reader.
7769 */
7770 kvm->arch.last_tsc_nsec = 0;
7771 kvm->arch.last_tsc_write = 0;
7772 }
7773
7774 }
7775 return 0;
7776}
7777
7778void kvm_arch_hardware_disable(void)
7779{
7780 kvm_x86_ops->hardware_disable();
7781 drop_user_return_notifiers();
7782}
7783
7784int kvm_arch_hardware_setup(void)
7785{
7786 int r;
7787
7788 r = kvm_x86_ops->hardware_setup();
7789 if (r != 0)
7790 return r;
7791
7792 kvm_init_msr_list();
7793 return 0;
7794}
7795
7796void kvm_arch_hardware_unsetup(void)
7797{
7798 kvm_x86_ops->hardware_unsetup();
7799}
7800
7801void kvm_arch_check_processor_compat(void *rtn)
7802{
7803 kvm_x86_ops->check_processor_compatibility(rtn);
7804}
7805
7806bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7807{
7808 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7809}
7810
7811struct static_key kvm_no_apic_vcpu __read_mostly;
7812
7813int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7814{
7815 struct page *page;
7816 struct kvm *kvm;
7817 int r;
7818
7819 BUG_ON(vcpu->kvm == NULL);
7820 kvm = vcpu->kvm;
7821
7822 vcpu->arch.pv.pv_unhalted = false;
7823 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7824 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7825 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7826 else
7827 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7828
7829 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7830 if (!page) {
7831 r = -ENOMEM;
7832 goto fail;
7833 }
7834 vcpu->arch.pio_data = page_address(page);
7835
7836 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7837
7838 r = kvm_mmu_create(vcpu);
7839 if (r < 0)
7840 goto fail_free_pio_data;
7841
7842 if (irqchip_in_kernel(kvm)) {
7843 r = kvm_create_lapic(vcpu);
7844 if (r < 0)
7845 goto fail_mmu_destroy;
7846 } else
7847 static_key_slow_inc(&kvm_no_apic_vcpu);
7848
7849 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7850 GFP_KERNEL);
7851 if (!vcpu->arch.mce_banks) {
7852 r = -ENOMEM;
7853 goto fail_free_lapic;
7854 }
7855 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7856
7857 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7858 r = -ENOMEM;
7859 goto fail_free_mce_banks;
7860 }
7861
7862 r = fx_init(vcpu, false);
7863 if (r)
7864 goto fail_free_wbinvd_dirty_mask;
7865
7866 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7867 vcpu->arch.pv_time_enabled = false;
7868
7869 vcpu->arch.guest_supported_xcr0 = 0;
7870 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7871
7872 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7873
7874 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7875
7876 kvm_async_pf_hash_reset(vcpu);
7877 kvm_pmu_init(vcpu);
7878
7879 return 0;
7880fail_free_wbinvd_dirty_mask:
7881 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7882fail_free_mce_banks:
7883 kfree(vcpu->arch.mce_banks);
7884fail_free_lapic:
7885 kvm_free_lapic(vcpu);
7886fail_mmu_destroy:
7887 kvm_mmu_destroy(vcpu);
7888fail_free_pio_data:
7889 free_page((unsigned long)vcpu->arch.pio_data);
7890fail:
7891 return r;
7892}
7893
7894void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7895{
7896 int idx;
7897
7898 kvm_pmu_destroy(vcpu);
7899 kfree(vcpu->arch.mce_banks);
7900 kvm_free_lapic(vcpu);
7901 idx = srcu_read_lock(&vcpu->kvm->srcu);
7902 kvm_mmu_destroy(vcpu);
7903 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7904 free_page((unsigned long)vcpu->arch.pio_data);
7905 if (!irqchip_in_kernel(vcpu->kvm))
7906 static_key_slow_dec(&kvm_no_apic_vcpu);
7907}
7908
7909void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7910{
7911 kvm_x86_ops->sched_in(vcpu, cpu);
7912}
7913
7914int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7915{
7916 if (type)
7917 return -EINVAL;
7918
7919 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7920 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7921 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7922 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7923 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7924
7925 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7926 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7927 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7928 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7929 &kvm->arch.irq_sources_bitmap);
7930
7931 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7932 mutex_init(&kvm->arch.apic_map_lock);
7933 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7934
7935 pvclock_update_vm_gtod_copy(kvm);
7936
7937 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7938 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7939
7940 return 0;
7941}
7942
7943static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7944{
7945 int r;
7946 r = vcpu_load(vcpu);
7947 BUG_ON(r);
7948 kvm_mmu_unload(vcpu);
7949 vcpu_put(vcpu);
7950}
7951
7952static void kvm_free_vcpus(struct kvm *kvm)
7953{
7954 unsigned int i;
7955 struct kvm_vcpu *vcpu;
7956
7957 /*
7958 * Unpin any mmu pages first.
7959 */
7960 kvm_for_each_vcpu(i, vcpu, kvm) {
7961 kvm_clear_async_pf_completion_queue(vcpu);
7962 kvm_unload_vcpu_mmu(vcpu);
7963 }
7964 kvm_for_each_vcpu(i, vcpu, kvm)
7965 kvm_arch_vcpu_free(vcpu);
7966
7967 mutex_lock(&kvm->lock);
7968 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7969 kvm->vcpus[i] = NULL;
7970
7971 atomic_set(&kvm->online_vcpus, 0);
7972 mutex_unlock(&kvm->lock);
7973}
7974
7975void kvm_arch_sync_events(struct kvm *kvm)
7976{
7977 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7978 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7979 kvm_free_all_assigned_devices(kvm);
7980 kvm_free_pit(kvm);
7981}
7982
7983int __x86_set_memory_region(struct kvm *kvm,
7984 const struct kvm_userspace_memory_region *mem)
7985{
7986 int i, r;
7987
7988 /* Called with kvm->slots_lock held. */
7989 BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7990
7991 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7992 struct kvm_userspace_memory_region m = *mem;
7993
7994 m.slot |= i << 16;
7995 r = __kvm_set_memory_region(kvm, &m);
7996 if (r < 0)
7997 return r;
7998 }
7999
8000 return 0;
8001}
8002EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8003
8004int x86_set_memory_region(struct kvm *kvm,
8005 const struct kvm_userspace_memory_region *mem)
8006{
8007 int r;
8008
8009 mutex_lock(&kvm->slots_lock);
8010 r = __x86_set_memory_region(kvm, mem);
8011 mutex_unlock(&kvm->slots_lock);
8012
8013 return r;
8014}
8015EXPORT_SYMBOL_GPL(x86_set_memory_region);
8016
8017void kvm_arch_destroy_vm(struct kvm *kvm)
8018{
8019 if (current->mm == kvm->mm) {
8020 /*
8021 * Free memory regions allocated on behalf of userspace,
8022 * unless the the memory map has changed due to process exit
8023 * or fd copying.
8024 */
8025 struct kvm_userspace_memory_region mem;
8026 memset(&mem, 0, sizeof(mem));
8027 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
8028 x86_set_memory_region(kvm, &mem);
8029
8030 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
8031 x86_set_memory_region(kvm, &mem);
8032
8033 mem.slot = TSS_PRIVATE_MEMSLOT;
8034 x86_set_memory_region(kvm, &mem);
8035 }
8036 kvm_iommu_unmap_guest(kvm);
8037 kfree(kvm->arch.vpic);
8038 kfree(kvm->arch.vioapic);
8039 kvm_free_vcpus(kvm);
8040 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8041}
8042
8043void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8044 struct kvm_memory_slot *dont)
8045{
8046 int i;
8047
8048 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8049 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8050 kvfree(free->arch.rmap[i]);
8051 free->arch.rmap[i] = NULL;
8052 }
8053 if (i == 0)
8054 continue;
8055
8056 if (!dont || free->arch.lpage_info[i - 1] !=
8057 dont->arch.lpage_info[i - 1]) {
8058 kvfree(free->arch.lpage_info[i - 1]);
8059 free->arch.lpage_info[i - 1] = NULL;
8060 }
8061 }
8062}
8063
8064int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8065 unsigned long npages)
8066{
8067 int i;
8068
8069 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8070 unsigned long ugfn;
8071 int lpages;
8072 int level = i + 1;
8073
8074 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8075 slot->base_gfn, level) + 1;
8076
8077 slot->arch.rmap[i] =
8078 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8079 if (!slot->arch.rmap[i])
8080 goto out_free;
8081 if (i == 0)
8082 continue;
8083
8084 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
8085 sizeof(*slot->arch.lpage_info[i - 1]));
8086 if (!slot->arch.lpage_info[i - 1])
8087 goto out_free;
8088
8089 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8090 slot->arch.lpage_info[i - 1][0].write_count = 1;
8091 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8092 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
8093 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8094 /*
8095 * If the gfn and userspace address are not aligned wrt each
8096 * other, or if explicitly asked to, disable large page
8097 * support for this slot
8098 */
8099 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8100 !kvm_largepages_enabled()) {
8101 unsigned long j;
8102
8103 for (j = 0; j < lpages; ++j)
8104 slot->arch.lpage_info[i - 1][j].write_count = 1;
8105 }
8106 }
8107
8108 return 0;
8109
8110out_free:
8111 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8112 kvfree(slot->arch.rmap[i]);
8113 slot->arch.rmap[i] = NULL;
8114 if (i == 0)
8115 continue;
8116
8117 kvfree(slot->arch.lpage_info[i - 1]);
8118 slot->arch.lpage_info[i - 1] = NULL;
8119 }
8120 return -ENOMEM;
8121}
8122
8123void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8124{
8125 /*
8126 * memslots->generation has been incremented.
8127 * mmio generation may have reached its maximum value.
8128 */
8129 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8130}
8131
8132int kvm_arch_prepare_memory_region(struct kvm *kvm,
8133 struct kvm_memory_slot *memslot,
8134 const struct kvm_userspace_memory_region *mem,
8135 enum kvm_mr_change change)
8136{
8137 /*
8138 * Only private memory slots need to be mapped here since
8139 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
8140 */
8141 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
8142 unsigned long userspace_addr;
8143
8144 /*
8145 * MAP_SHARED to prevent internal slot pages from being moved
8146 * by fork()/COW.
8147 */
8148 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
8149 PROT_READ | PROT_WRITE,
8150 MAP_SHARED | MAP_ANONYMOUS, 0);
8151
8152 if (IS_ERR((void *)userspace_addr))
8153 return PTR_ERR((void *)userspace_addr);
8154
8155 memslot->userspace_addr = userspace_addr;
8156 }
8157
8158 return 0;
8159}
8160
8161static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8162 struct kvm_memory_slot *new)
8163{
8164 /* Still write protect RO slot */
8165 if (new->flags & KVM_MEM_READONLY) {
8166 kvm_mmu_slot_remove_write_access(kvm, new);
8167 return;
8168 }
8169
8170 /*
8171 * Call kvm_x86_ops dirty logging hooks when they are valid.
8172 *
8173 * kvm_x86_ops->slot_disable_log_dirty is called when:
8174 *
8175 * - KVM_MR_CREATE with dirty logging is disabled
8176 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8177 *
8178 * The reason is, in case of PML, we need to set D-bit for any slots
8179 * with dirty logging disabled in order to eliminate unnecessary GPA
8180 * logging in PML buffer (and potential PML buffer full VMEXT). This
8181 * guarantees leaving PML enabled during guest's lifetime won't have
8182 * any additonal overhead from PML when guest is running with dirty
8183 * logging disabled for memory slots.
8184 *
8185 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8186 * to dirty logging mode.
8187 *
8188 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8189 *
8190 * In case of write protect:
8191 *
8192 * Write protect all pages for dirty logging.
8193 *
8194 * All the sptes including the large sptes which point to this
8195 * slot are set to readonly. We can not create any new large
8196 * spte on this slot until the end of the logging.
8197 *
8198 * See the comments in fast_page_fault().
8199 */
8200 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8201 if (kvm_x86_ops->slot_enable_log_dirty)
8202 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8203 else
8204 kvm_mmu_slot_remove_write_access(kvm, new);
8205 } else {
8206 if (kvm_x86_ops->slot_disable_log_dirty)
8207 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8208 }
8209}
8210
8211void kvm_arch_commit_memory_region(struct kvm *kvm,
8212 const struct kvm_userspace_memory_region *mem,
8213 const struct kvm_memory_slot *old,
8214 const struct kvm_memory_slot *new,
8215 enum kvm_mr_change change)
8216{
8217 int nr_mmu_pages = 0;
8218
8219 if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
8220 int ret;
8221
8222 ret = vm_munmap(old->userspace_addr,
8223 old->npages * PAGE_SIZE);
8224 if (ret < 0)
8225 printk(KERN_WARNING
8226 "kvm_vm_ioctl_set_memory_region: "
8227 "failed to munmap memory\n");
8228 }
8229
8230 if (!kvm->arch.n_requested_mmu_pages)
8231 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8232
8233 if (nr_mmu_pages)
8234 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8235
8236 /*
8237 * Dirty logging tracks sptes in 4k granularity, meaning that large
8238 * sptes have to be split. If live migration is successful, the guest
8239 * in the source machine will be destroyed and large sptes will be
8240 * created in the destination. However, if the guest continues to run
8241 * in the source machine (for example if live migration fails), small
8242 * sptes will remain around and cause bad performance.
8243 *
8244 * Scan sptes if dirty logging has been stopped, dropping those
8245 * which can be collapsed into a single large-page spte. Later
8246 * page faults will create the large-page sptes.
8247 */
8248 if ((change != KVM_MR_DELETE) &&
8249 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8250 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8251 kvm_mmu_zap_collapsible_sptes(kvm, new);
8252
8253 /*
8254 * Set up write protection and/or dirty logging for the new slot.
8255 *
8256 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8257 * been zapped so no dirty logging staff is needed for old slot. For
8258 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8259 * new and it's also covered when dealing with the new slot.
8260 *
8261 * FIXME: const-ify all uses of struct kvm_memory_slot.
8262 */
8263 if (change != KVM_MR_DELETE)
8264 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8265}
8266
8267void kvm_arch_flush_shadow_all(struct kvm *kvm)
8268{
8269 kvm_mmu_invalidate_zap_all_pages(kvm);
8270}
8271
8272void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8273 struct kvm_memory_slot *slot)
8274{
8275 kvm_mmu_invalidate_zap_all_pages(kvm);
8276}
8277
8278int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8279{
8280 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8281 kvm_x86_ops->check_nested_events(vcpu, false);
8282
8283 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8284 !vcpu->arch.apf.halted)
8285 || !list_empty_careful(&vcpu->async_pf.done)
8286 || kvm_apic_has_events(vcpu)
8287 || vcpu->arch.pv.pv_unhalted
8288 || atomic_read(&vcpu->arch.nmi_queued) ||
8289 (kvm_arch_interrupt_allowed(vcpu) &&
8290 kvm_cpu_has_interrupt(vcpu));
8291}
8292
8293int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8294{
8295 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8296}
8297
8298int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8299{
8300 return kvm_x86_ops->interrupt_allowed(vcpu);
8301}
8302
8303unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8304{
8305 if (is_64_bit_mode(vcpu))
8306 return kvm_rip_read(vcpu);
8307 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8308 kvm_rip_read(vcpu));
8309}
8310EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8311
8312bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8313{
8314 return kvm_get_linear_rip(vcpu) == linear_rip;
8315}
8316EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8317
8318unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8319{
8320 unsigned long rflags;
8321
8322 rflags = kvm_x86_ops->get_rflags(vcpu);
8323 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8324 rflags &= ~X86_EFLAGS_TF;
8325 return rflags;
8326}
8327EXPORT_SYMBOL_GPL(kvm_get_rflags);
8328
8329static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8330{
8331 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8332 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8333 rflags |= X86_EFLAGS_TF;
8334 kvm_x86_ops->set_rflags(vcpu, rflags);
8335}
8336
8337void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8338{
8339 __kvm_set_rflags(vcpu, rflags);
8340 kvm_make_request(KVM_REQ_EVENT, vcpu);
8341}
8342EXPORT_SYMBOL_GPL(kvm_set_rflags);
8343
8344void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8345{
8346 int r;
8347
8348 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8349 work->wakeup_all)
8350 return;
8351
8352 r = kvm_mmu_reload(vcpu);
8353 if (unlikely(r))
8354 return;
8355
8356 if (!vcpu->arch.mmu.direct_map &&
8357 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8358 return;
8359
8360 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8361}
8362
8363static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8364{
8365 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8366}
8367
8368static inline u32 kvm_async_pf_next_probe(u32 key)
8369{
8370 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8371}
8372
8373static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8374{
8375 u32 key = kvm_async_pf_hash_fn(gfn);
8376
8377 while (vcpu->arch.apf.gfns[key] != ~0)
8378 key = kvm_async_pf_next_probe(key);
8379
8380 vcpu->arch.apf.gfns[key] = gfn;
8381}
8382
8383static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8384{
8385 int i;
8386 u32 key = kvm_async_pf_hash_fn(gfn);
8387
8388 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8389 (vcpu->arch.apf.gfns[key] != gfn &&
8390 vcpu->arch.apf.gfns[key] != ~0); i++)
8391 key = kvm_async_pf_next_probe(key);
8392
8393 return key;
8394}
8395
8396bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8397{
8398 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8399}
8400
8401static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8402{
8403 u32 i, j, k;
8404
8405 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8406 while (true) {
8407 vcpu->arch.apf.gfns[i] = ~0;
8408 do {
8409 j = kvm_async_pf_next_probe(j);
8410 if (vcpu->arch.apf.gfns[j] == ~0)
8411 return;
8412 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8413 /*
8414 * k lies cyclically in ]i,j]
8415 * | i.k.j |
8416 * |....j i.k.| or |.k..j i...|
8417 */
8418 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8419 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8420 i = j;
8421 }
8422}
8423
8424static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8425{
8426
8427 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8428 sizeof(val));
8429}
8430
8431void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8432 struct kvm_async_pf *work)
8433{
8434 struct x86_exception fault;
8435
8436 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8437 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8438
8439 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8440 (vcpu->arch.apf.send_user_only &&
8441 kvm_x86_ops->get_cpl(vcpu) == 0))
8442 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8443 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8444 fault.vector = PF_VECTOR;
8445 fault.error_code_valid = true;
8446 fault.error_code = 0;
8447 fault.nested_page_fault = false;
8448 fault.address = work->arch.token;
8449 kvm_inject_page_fault(vcpu, &fault);
8450 }
8451}
8452
8453void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8454 struct kvm_async_pf *work)
8455{
8456 struct x86_exception fault;
8457
8458 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8459 if (work->wakeup_all)
8460 work->arch.token = ~0; /* broadcast wakeup */
8461 else
8462 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8463
8464 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8465 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8466 fault.vector = PF_VECTOR;
8467 fault.error_code_valid = true;
8468 fault.error_code = 0;
8469 fault.nested_page_fault = false;
8470 fault.address = work->arch.token;
8471 kvm_inject_page_fault(vcpu, &fault);
8472 }
8473 vcpu->arch.apf.halted = false;
8474 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8475}
8476
8477bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8478{
8479 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8480 return true;
8481 else
8482 return !kvm_event_needs_reinjection(vcpu) &&
8483 kvm_x86_ops->interrupt_allowed(vcpu);
8484}
8485
8486void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8487{
8488 atomic_inc(&kvm->arch.noncoherent_dma_count);
8489}
8490EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8491
8492void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8493{
8494 atomic_dec(&kvm->arch.noncoherent_dma_count);
8495}
8496EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8497
8498bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8499{
8500 return atomic_read(&kvm->arch.noncoherent_dma_count);
8501}
8502EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8503
8504EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8505EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8506EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8507EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8508EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8509EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8510EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8511EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8512EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8513EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8514EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8515EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8516EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8517EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8518EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);