]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - arch/x86/mm/fault.c
mm, x86/mm: Untangle address space layout definitions from basic pgtable type definitions
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / fault.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9#include <linux/kdebug.h> /* oops_begin/end, ... */
10#include <linux/extable.h> /* search_exception_tables */
11#include <linux/memblock.h> /* max_low_pfn */
12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
14#include <linux/perf_event.h> /* perf_sw_event */
15#include <linux/hugetlb.h> /* hstate_index_to_shift */
16#include <linux/prefetch.h> /* prefetchw */
17#include <linux/context_tracking.h> /* exception_enter(), ... */
18#include <linux/uaccess.h> /* faulthandler_disabled() */
19#include <linux/efi.h> /* efi_recover_from_page_fault()*/
20#include <linux/mm_types.h>
21
22#include <asm/cpufeature.h> /* boot_cpu_has, ... */
23#include <asm/traps.h> /* dotraplinkage, ... */
24#include <asm/pgalloc.h> /* pgd_*(), ... */
25#include <asm/fixmap.h> /* VSYSCALL_ADDR */
26#include <asm/vsyscall.h> /* emulate_vsyscall */
27#include <asm/vm86.h> /* struct vm86 */
28#include <asm/mmu_context.h> /* vma_pkey() */
29#include <asm/efi.h> /* efi_recover_from_page_fault()*/
30#include <asm/desc.h> /* store_idt(), ... */
31#include <asm/cpu_entry_area.h> /* exception stack */
32#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33
34#define CREATE_TRACE_POINTS
35#include <asm/trace/exceptions.h>
36
37/*
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
40 */
41static nokprobe_inline int
42kmmio_fault(struct pt_regs *regs, unsigned long addr)
43{
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs, addr) == 1)
46 return -1;
47 return 0;
48}
49
50/*
51 * Prefetch quirks:
52 *
53 * 32-bit mode:
54 *
55 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56 * Check that here and ignore it.
57 *
58 * 64-bit mode:
59 *
60 * Sometimes the CPU reports invalid exceptions on prefetch.
61 * Check that here and ignore it.
62 *
63 * Opcode checker based on code by Richard Brunner.
64 */
65static inline int
66check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67 unsigned char opcode, int *prefetch)
68{
69 unsigned char instr_hi = opcode & 0xf0;
70 unsigned char instr_lo = opcode & 0x0f;
71
72 switch (instr_hi) {
73 case 0x20:
74 case 0x30:
75 /*
76 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 * In X86_64 long mode, the CPU will signal invalid
78 * opcode if some of these prefixes are present so
79 * X86_64 will never get here anyway
80 */
81 return ((instr_lo & 7) == 0x6);
82#ifdef CONFIG_X86_64
83 case 0x40:
84 /*
85 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
86 * Need to figure out under what instruction mode the
87 * instruction was issued. Could check the LDT for lm,
88 * but for now it's good enough to assume that long
89 * mode only uses well known segments or kernel.
90 */
91 return (!user_mode(regs) || user_64bit_mode(regs));
92#endif
93 case 0x60:
94 /* 0x64 thru 0x67 are valid prefixes in all modes. */
95 return (instr_lo & 0xC) == 0x4;
96 case 0xF0:
97 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 return !instr_lo || (instr_lo>>1) == 1;
99 case 0x00:
100 /* Prefetch instruction is 0x0F0D or 0x0F18 */
101 if (probe_kernel_address(instr, opcode))
102 return 0;
103
104 *prefetch = (instr_lo == 0xF) &&
105 (opcode == 0x0D || opcode == 0x18);
106 return 0;
107 default:
108 return 0;
109 }
110}
111
112static int
113is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
114{
115 unsigned char *max_instr;
116 unsigned char *instr;
117 int prefetch = 0;
118
119 /*
120 * If it was a exec (instruction fetch) fault on NX page, then
121 * do not ignore the fault:
122 */
123 if (error_code & X86_PF_INSTR)
124 return 0;
125
126 instr = (void *)convert_ip_to_linear(current, regs);
127 max_instr = instr + 15;
128
129 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
130 return 0;
131
132 while (instr < max_instr) {
133 unsigned char opcode;
134
135 if (probe_kernel_address(instr, opcode))
136 break;
137
138 instr++;
139
140 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
141 break;
142 }
143 return prefetch;
144}
145
146DEFINE_SPINLOCK(pgd_lock);
147LIST_HEAD(pgd_list);
148
149#ifdef CONFIG_X86_32
150static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
151{
152 unsigned index = pgd_index(address);
153 pgd_t *pgd_k;
154 p4d_t *p4d, *p4d_k;
155 pud_t *pud, *pud_k;
156 pmd_t *pmd, *pmd_k;
157
158 pgd += index;
159 pgd_k = init_mm.pgd + index;
160
161 if (!pgd_present(*pgd_k))
162 return NULL;
163
164 /*
165 * set_pgd(pgd, *pgd_k); here would be useless on PAE
166 * and redundant with the set_pmd() on non-PAE. As would
167 * set_p4d/set_pud.
168 */
169 p4d = p4d_offset(pgd, address);
170 p4d_k = p4d_offset(pgd_k, address);
171 if (!p4d_present(*p4d_k))
172 return NULL;
173
174 pud = pud_offset(p4d, address);
175 pud_k = pud_offset(p4d_k, address);
176 if (!pud_present(*pud_k))
177 return NULL;
178
179 pmd = pmd_offset(pud, address);
180 pmd_k = pmd_offset(pud_k, address);
181
182 if (pmd_present(*pmd) != pmd_present(*pmd_k))
183 set_pmd(pmd, *pmd_k);
184
185 if (!pmd_present(*pmd_k))
186 return NULL;
187 else
188 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
189
190 return pmd_k;
191}
192
193void vmalloc_sync_all(void)
194{
195 unsigned long address;
196
197 if (SHARED_KERNEL_PMD)
198 return;
199
200 for (address = VMALLOC_START & PMD_MASK;
201 address >= TASK_SIZE_MAX && address < VMALLOC_END;
202 address += PMD_SIZE) {
203 struct page *page;
204
205 spin_lock(&pgd_lock);
206 list_for_each_entry(page, &pgd_list, lru) {
207 spinlock_t *pgt_lock;
208
209 /* the pgt_lock only for Xen */
210 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
211
212 spin_lock(pgt_lock);
213 vmalloc_sync_one(page_address(page), address);
214 spin_unlock(pgt_lock);
215 }
216 spin_unlock(&pgd_lock);
217 }
218}
219
220/*
221 * 32-bit:
222 *
223 * Handle a fault on the vmalloc or module mapping area
224 */
225static noinline int vmalloc_fault(unsigned long address)
226{
227 unsigned long pgd_paddr;
228 pmd_t *pmd_k;
229 pte_t *pte_k;
230
231 /* Make sure we are in vmalloc area: */
232 if (!(address >= VMALLOC_START && address < VMALLOC_END))
233 return -1;
234
235 /*
236 * Synchronize this task's top level page-table
237 * with the 'reference' page table.
238 *
239 * Do _not_ use "current" here. We might be inside
240 * an interrupt in the middle of a task switch..
241 */
242 pgd_paddr = read_cr3_pa();
243 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
244 if (!pmd_k)
245 return -1;
246
247 if (pmd_large(*pmd_k))
248 return 0;
249
250 pte_k = pte_offset_kernel(pmd_k, address);
251 if (!pte_present(*pte_k))
252 return -1;
253
254 return 0;
255}
256NOKPROBE_SYMBOL(vmalloc_fault);
257
258/*
259 * Did it hit the DOS screen memory VA from vm86 mode?
260 */
261static inline void
262check_v8086_mode(struct pt_regs *regs, unsigned long address,
263 struct task_struct *tsk)
264{
265#ifdef CONFIG_VM86
266 unsigned long bit;
267
268 if (!v8086_mode(regs) || !tsk->thread.vm86)
269 return;
270
271 bit = (address - 0xA0000) >> PAGE_SHIFT;
272 if (bit < 32)
273 tsk->thread.vm86->screen_bitmap |= 1 << bit;
274#endif
275}
276
277static bool low_pfn(unsigned long pfn)
278{
279 return pfn < max_low_pfn;
280}
281
282static void dump_pagetable(unsigned long address)
283{
284 pgd_t *base = __va(read_cr3_pa());
285 pgd_t *pgd = &base[pgd_index(address)];
286 p4d_t *p4d;
287 pud_t *pud;
288 pmd_t *pmd;
289 pte_t *pte;
290
291#ifdef CONFIG_X86_PAE
292 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
293 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
294 goto out;
295#define pr_pde pr_cont
296#else
297#define pr_pde pr_info
298#endif
299 p4d = p4d_offset(pgd, address);
300 pud = pud_offset(p4d, address);
301 pmd = pmd_offset(pud, address);
302 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
303#undef pr_pde
304
305 /*
306 * We must not directly access the pte in the highpte
307 * case if the page table is located in highmem.
308 * And let's rather not kmap-atomic the pte, just in case
309 * it's allocated already:
310 */
311 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
312 goto out;
313
314 pte = pte_offset_kernel(pmd, address);
315 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
316out:
317 pr_cont("\n");
318}
319
320#else /* CONFIG_X86_64: */
321
322void vmalloc_sync_all(void)
323{
324 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
325}
326
327/*
328 * 64-bit:
329 *
330 * Handle a fault on the vmalloc area
331 */
332static noinline int vmalloc_fault(unsigned long address)
333{
334 pgd_t *pgd, *pgd_k;
335 p4d_t *p4d, *p4d_k;
336 pud_t *pud;
337 pmd_t *pmd;
338 pte_t *pte;
339
340 /* Make sure we are in vmalloc area: */
341 if (!(address >= VMALLOC_START && address < VMALLOC_END))
342 return -1;
343
344 /*
345 * Copy kernel mappings over when needed. This can also
346 * happen within a race in page table update. In the later
347 * case just flush:
348 */
349 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
350 pgd_k = pgd_offset_k(address);
351 if (pgd_none(*pgd_k))
352 return -1;
353
354 if (pgtable_l5_enabled()) {
355 if (pgd_none(*pgd)) {
356 set_pgd(pgd, *pgd_k);
357 arch_flush_lazy_mmu_mode();
358 } else {
359 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
360 }
361 }
362
363 /* With 4-level paging, copying happens on the p4d level. */
364 p4d = p4d_offset(pgd, address);
365 p4d_k = p4d_offset(pgd_k, address);
366 if (p4d_none(*p4d_k))
367 return -1;
368
369 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
370 set_p4d(p4d, *p4d_k);
371 arch_flush_lazy_mmu_mode();
372 } else {
373 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
374 }
375
376 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
377
378 pud = pud_offset(p4d, address);
379 if (pud_none(*pud))
380 return -1;
381
382 if (pud_large(*pud))
383 return 0;
384
385 pmd = pmd_offset(pud, address);
386 if (pmd_none(*pmd))
387 return -1;
388
389 if (pmd_large(*pmd))
390 return 0;
391
392 pte = pte_offset_kernel(pmd, address);
393 if (!pte_present(*pte))
394 return -1;
395
396 return 0;
397}
398NOKPROBE_SYMBOL(vmalloc_fault);
399
400#ifdef CONFIG_CPU_SUP_AMD
401static const char errata93_warning[] =
402KERN_ERR
403"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
404"******* Working around it, but it may cause SEGVs or burn power.\n"
405"******* Please consider a BIOS update.\n"
406"******* Disabling USB legacy in the BIOS may also help.\n";
407#endif
408
409/*
410 * No vm86 mode in 64-bit mode:
411 */
412static inline void
413check_v8086_mode(struct pt_regs *regs, unsigned long address,
414 struct task_struct *tsk)
415{
416}
417
418static int bad_address(void *p)
419{
420 unsigned long dummy;
421
422 return probe_kernel_address((unsigned long *)p, dummy);
423}
424
425static void dump_pagetable(unsigned long address)
426{
427 pgd_t *base = __va(read_cr3_pa());
428 pgd_t *pgd = base + pgd_index(address);
429 p4d_t *p4d;
430 pud_t *pud;
431 pmd_t *pmd;
432 pte_t *pte;
433
434 if (bad_address(pgd))
435 goto bad;
436
437 pr_info("PGD %lx ", pgd_val(*pgd));
438
439 if (!pgd_present(*pgd))
440 goto out;
441
442 p4d = p4d_offset(pgd, address);
443 if (bad_address(p4d))
444 goto bad;
445
446 pr_cont("P4D %lx ", p4d_val(*p4d));
447 if (!p4d_present(*p4d) || p4d_large(*p4d))
448 goto out;
449
450 pud = pud_offset(p4d, address);
451 if (bad_address(pud))
452 goto bad;
453
454 pr_cont("PUD %lx ", pud_val(*pud));
455 if (!pud_present(*pud) || pud_large(*pud))
456 goto out;
457
458 pmd = pmd_offset(pud, address);
459 if (bad_address(pmd))
460 goto bad;
461
462 pr_cont("PMD %lx ", pmd_val(*pmd));
463 if (!pmd_present(*pmd) || pmd_large(*pmd))
464 goto out;
465
466 pte = pte_offset_kernel(pmd, address);
467 if (bad_address(pte))
468 goto bad;
469
470 pr_cont("PTE %lx", pte_val(*pte));
471out:
472 pr_cont("\n");
473 return;
474bad:
475 pr_info("BAD\n");
476}
477
478#endif /* CONFIG_X86_64 */
479
480/*
481 * Workaround for K8 erratum #93 & buggy BIOS.
482 *
483 * BIOS SMM functions are required to use a specific workaround
484 * to avoid corruption of the 64bit RIP register on C stepping K8.
485 *
486 * A lot of BIOS that didn't get tested properly miss this.
487 *
488 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
489 * Try to work around it here.
490 *
491 * Note we only handle faults in kernel here.
492 * Does nothing on 32-bit.
493 */
494static int is_errata93(struct pt_regs *regs, unsigned long address)
495{
496#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
497 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
498 || boot_cpu_data.x86 != 0xf)
499 return 0;
500
501 if (address != regs->ip)
502 return 0;
503
504 if ((address >> 32) != 0)
505 return 0;
506
507 address |= 0xffffffffUL << 32;
508 if ((address >= (u64)_stext && address <= (u64)_etext) ||
509 (address >= MODULES_VADDR && address <= MODULES_END)) {
510 printk_once(errata93_warning);
511 regs->ip = address;
512 return 1;
513 }
514#endif
515 return 0;
516}
517
518/*
519 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
520 * to illegal addresses >4GB.
521 *
522 * We catch this in the page fault handler because these addresses
523 * are not reachable. Just detect this case and return. Any code
524 * segment in LDT is compatibility mode.
525 */
526static int is_errata100(struct pt_regs *regs, unsigned long address)
527{
528#ifdef CONFIG_X86_64
529 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
530 return 1;
531#endif
532 return 0;
533}
534
535static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
536{
537#ifdef CONFIG_X86_F00F_BUG
538 unsigned long nr;
539
540 /*
541 * Pentium F0 0F C7 C8 bug workaround:
542 */
543 if (boot_cpu_has_bug(X86_BUG_F00F)) {
544 nr = (address - idt_descr.address) >> 3;
545
546 if (nr == 6) {
547 do_invalid_op(regs, 0);
548 return 1;
549 }
550 }
551#endif
552 return 0;
553}
554
555static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
556{
557 u32 offset = (index >> 3) * sizeof(struct desc_struct);
558 unsigned long addr;
559 struct ldttss_desc desc;
560
561 if (index == 0) {
562 pr_alert("%s: NULL\n", name);
563 return;
564 }
565
566 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
567 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
568 return;
569 }
570
571 if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
572 sizeof(struct ldttss_desc))) {
573 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
574 name, index);
575 return;
576 }
577
578 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
579#ifdef CONFIG_X86_64
580 addr |= ((u64)desc.base3 << 32);
581#endif
582 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
583 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
584}
585
586static void
587show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
588{
589 if (!oops_may_print())
590 return;
591
592 if (error_code & X86_PF_INSTR) {
593 unsigned int level;
594 pgd_t *pgd;
595 pte_t *pte;
596
597 pgd = __va(read_cr3_pa());
598 pgd += pgd_index(address);
599
600 pte = lookup_address_in_pgd(pgd, address, &level);
601
602 if (pte && pte_present(*pte) && !pte_exec(*pte))
603 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
604 from_kuid(&init_user_ns, current_uid()));
605 if (pte && pte_present(*pte) && pte_exec(*pte) &&
606 (pgd_flags(*pgd) & _PAGE_USER) &&
607 (__read_cr4() & X86_CR4_SMEP))
608 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
609 from_kuid(&init_user_ns, current_uid()));
610 }
611
612 if (address < PAGE_SIZE && !user_mode(regs))
613 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
614 (void *)address);
615 else
616 pr_alert("BUG: unable to handle page fault for address: %px\n",
617 (void *)address);
618
619 pr_alert("#PF: %s %s in %s mode\n",
620 (error_code & X86_PF_USER) ? "user" : "supervisor",
621 (error_code & X86_PF_INSTR) ? "instruction fetch" :
622 (error_code & X86_PF_WRITE) ? "write access" :
623 "read access",
624 user_mode(regs) ? "user" : "kernel");
625 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
626 !(error_code & X86_PF_PROT) ? "not-present page" :
627 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
628 (error_code & X86_PF_PK) ? "protection keys violation" :
629 "permissions violation");
630
631 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
632 struct desc_ptr idt, gdt;
633 u16 ldtr, tr;
634
635 /*
636 * This can happen for quite a few reasons. The more obvious
637 * ones are faults accessing the GDT, or LDT. Perhaps
638 * surprisingly, if the CPU tries to deliver a benign or
639 * contributory exception from user code and gets a page fault
640 * during delivery, the page fault can be delivered as though
641 * it originated directly from user code. This could happen
642 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
643 * kernel or IST stack.
644 */
645 store_idt(&idt);
646
647 /* Usable even on Xen PV -- it's just slow. */
648 native_store_gdt(&gdt);
649
650 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
651 idt.address, idt.size, gdt.address, gdt.size);
652
653 store_ldt(ldtr);
654 show_ldttss(&gdt, "LDTR", ldtr);
655
656 store_tr(tr);
657 show_ldttss(&gdt, "TR", tr);
658 }
659
660 dump_pagetable(address);
661}
662
663static noinline void
664pgtable_bad(struct pt_regs *regs, unsigned long error_code,
665 unsigned long address)
666{
667 struct task_struct *tsk;
668 unsigned long flags;
669 int sig;
670
671 flags = oops_begin();
672 tsk = current;
673 sig = SIGKILL;
674
675 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
676 tsk->comm, address);
677 dump_pagetable(address);
678
679 if (__die("Bad pagetable", regs, error_code))
680 sig = 0;
681
682 oops_end(flags, regs, sig);
683}
684
685static void set_signal_archinfo(unsigned long address,
686 unsigned long error_code)
687{
688 struct task_struct *tsk = current;
689
690 /*
691 * To avoid leaking information about the kernel page
692 * table layout, pretend that user-mode accesses to
693 * kernel addresses are always protection faults.
694 *
695 * NB: This means that failed vsyscalls with vsyscall=none
696 * will have the PROT bit. This doesn't leak any
697 * information and does not appear to cause any problems.
698 */
699 if (address >= TASK_SIZE_MAX)
700 error_code |= X86_PF_PROT;
701
702 tsk->thread.trap_nr = X86_TRAP_PF;
703 tsk->thread.error_code = error_code | X86_PF_USER;
704 tsk->thread.cr2 = address;
705}
706
707static noinline void
708no_context(struct pt_regs *regs, unsigned long error_code,
709 unsigned long address, int signal, int si_code)
710{
711 struct task_struct *tsk = current;
712 unsigned long flags;
713 int sig;
714
715 if (user_mode(regs)) {
716 /*
717 * This is an implicit supervisor-mode access from user
718 * mode. Bypass all the kernel-mode recovery code and just
719 * OOPS.
720 */
721 goto oops;
722 }
723
724 /* Are we prepared to handle this kernel fault? */
725 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
726 /*
727 * Any interrupt that takes a fault gets the fixup. This makes
728 * the below recursive fault logic only apply to a faults from
729 * task context.
730 */
731 if (in_interrupt())
732 return;
733
734 /*
735 * Per the above we're !in_interrupt(), aka. task context.
736 *
737 * In this case we need to make sure we're not recursively
738 * faulting through the emulate_vsyscall() logic.
739 */
740 if (current->thread.sig_on_uaccess_err && signal) {
741 set_signal_archinfo(address, error_code);
742
743 /* XXX: hwpoison faults will set the wrong code. */
744 force_sig_fault(signal, si_code, (void __user *)address);
745 }
746
747 /*
748 * Barring that, we can do the fixup and be happy.
749 */
750 return;
751 }
752
753#ifdef CONFIG_VMAP_STACK
754 /*
755 * Stack overflow? During boot, we can fault near the initial
756 * stack in the direct map, but that's not an overflow -- check
757 * that we're in vmalloc space to avoid this.
758 */
759 if (is_vmalloc_addr((void *)address) &&
760 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
761 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
762 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
763 /*
764 * We're likely to be running with very little stack space
765 * left. It's plausible that we'd hit this condition but
766 * double-fault even before we get this far, in which case
767 * we're fine: the double-fault handler will deal with it.
768 *
769 * We don't want to make it all the way into the oops code
770 * and then double-fault, though, because we're likely to
771 * break the console driver and lose most of the stack dump.
772 */
773 asm volatile ("movq %[stack], %%rsp\n\t"
774 "call handle_stack_overflow\n\t"
775 "1: jmp 1b"
776 : ASM_CALL_CONSTRAINT
777 : "D" ("kernel stack overflow (page fault)"),
778 "S" (regs), "d" (address),
779 [stack] "rm" (stack));
780 unreachable();
781 }
782#endif
783
784 /*
785 * 32-bit:
786 *
787 * Valid to do another page fault here, because if this fault
788 * had been triggered by is_prefetch fixup_exception would have
789 * handled it.
790 *
791 * 64-bit:
792 *
793 * Hall of shame of CPU/BIOS bugs.
794 */
795 if (is_prefetch(regs, error_code, address))
796 return;
797
798 if (is_errata93(regs, address))
799 return;
800
801 /*
802 * Buggy firmware could access regions which might page fault, try to
803 * recover from such faults.
804 */
805 if (IS_ENABLED(CONFIG_EFI))
806 efi_recover_from_page_fault(address);
807
808oops:
809 /*
810 * Oops. The kernel tried to access some bad page. We'll have to
811 * terminate things with extreme prejudice:
812 */
813 flags = oops_begin();
814
815 show_fault_oops(regs, error_code, address);
816
817 if (task_stack_end_corrupted(tsk))
818 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
819
820 sig = SIGKILL;
821 if (__die("Oops", regs, error_code))
822 sig = 0;
823
824 /* Executive summary in case the body of the oops scrolled away */
825 printk(KERN_DEFAULT "CR2: %016lx\n", address);
826
827 oops_end(flags, regs, sig);
828}
829
830/*
831 * Print out info about fatal segfaults, if the show_unhandled_signals
832 * sysctl is set:
833 */
834static inline void
835show_signal_msg(struct pt_regs *regs, unsigned long error_code,
836 unsigned long address, struct task_struct *tsk)
837{
838 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
839
840 if (!unhandled_signal(tsk, SIGSEGV))
841 return;
842
843 if (!printk_ratelimit())
844 return;
845
846 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
847 loglvl, tsk->comm, task_pid_nr(tsk), address,
848 (void *)regs->ip, (void *)regs->sp, error_code);
849
850 print_vma_addr(KERN_CONT " in ", regs->ip);
851
852 printk(KERN_CONT "\n");
853
854 show_opcodes(regs, loglvl);
855}
856
857/*
858 * The (legacy) vsyscall page is the long page in the kernel portion
859 * of the address space that has user-accessible permissions.
860 */
861static bool is_vsyscall_vaddr(unsigned long vaddr)
862{
863 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
864}
865
866static void
867__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
868 unsigned long address, u32 pkey, int si_code)
869{
870 struct task_struct *tsk = current;
871
872 /* User mode accesses just cause a SIGSEGV */
873 if (user_mode(regs) && (error_code & X86_PF_USER)) {
874 /*
875 * It's possible to have interrupts off here:
876 */
877 local_irq_enable();
878
879 /*
880 * Valid to do another page fault here because this one came
881 * from user space:
882 */
883 if (is_prefetch(regs, error_code, address))
884 return;
885
886 if (is_errata100(regs, address))
887 return;
888
889 /*
890 * To avoid leaking information about the kernel page table
891 * layout, pretend that user-mode accesses to kernel addresses
892 * are always protection faults.
893 */
894 if (address >= TASK_SIZE_MAX)
895 error_code |= X86_PF_PROT;
896
897 if (likely(show_unhandled_signals))
898 show_signal_msg(regs, error_code, address, tsk);
899
900 set_signal_archinfo(address, error_code);
901
902 if (si_code == SEGV_PKUERR)
903 force_sig_pkuerr((void __user *)address, pkey);
904
905 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
906
907 return;
908 }
909
910 if (is_f00f_bug(regs, address))
911 return;
912
913 no_context(regs, error_code, address, SIGSEGV, si_code);
914}
915
916static noinline void
917bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
918 unsigned long address)
919{
920 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
921}
922
923static void
924__bad_area(struct pt_regs *regs, unsigned long error_code,
925 unsigned long address, u32 pkey, int si_code)
926{
927 struct mm_struct *mm = current->mm;
928 /*
929 * Something tried to access memory that isn't in our memory map..
930 * Fix it, but check if it's kernel or user first..
931 */
932 up_read(&mm->mmap_sem);
933
934 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
935}
936
937static noinline void
938bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
939{
940 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
941}
942
943static inline bool bad_area_access_from_pkeys(unsigned long error_code,
944 struct vm_area_struct *vma)
945{
946 /* This code is always called on the current mm */
947 bool foreign = false;
948
949 if (!boot_cpu_has(X86_FEATURE_OSPKE))
950 return false;
951 if (error_code & X86_PF_PK)
952 return true;
953 /* this checks permission keys on the VMA: */
954 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
955 (error_code & X86_PF_INSTR), foreign))
956 return true;
957 return false;
958}
959
960static noinline void
961bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
962 unsigned long address, struct vm_area_struct *vma)
963{
964 /*
965 * This OSPKE check is not strictly necessary at runtime.
966 * But, doing it this way allows compiler optimizations
967 * if pkeys are compiled out.
968 */
969 if (bad_area_access_from_pkeys(error_code, vma)) {
970 /*
971 * A protection key fault means that the PKRU value did not allow
972 * access to some PTE. Userspace can figure out what PKRU was
973 * from the XSAVE state. This function captures the pkey from
974 * the vma and passes it to userspace so userspace can discover
975 * which protection key was set on the PTE.
976 *
977 * If we get here, we know that the hardware signaled a X86_PF_PK
978 * fault and that there was a VMA once we got in the fault
979 * handler. It does *not* guarantee that the VMA we find here
980 * was the one that we faulted on.
981 *
982 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
983 * 2. T1 : set PKRU to deny access to pkey=4, touches page
984 * 3. T1 : faults...
985 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
986 * 5. T1 : enters fault handler, takes mmap_sem, etc...
987 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
988 * faulted on a pte with its pkey=4.
989 */
990 u32 pkey = vma_pkey(vma);
991
992 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
993 } else {
994 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
995 }
996}
997
998static void
999do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1000 vm_fault_t fault)
1001{
1002 /* Kernel mode? Handle exceptions or die: */
1003 if (!(error_code & X86_PF_USER)) {
1004 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1005 return;
1006 }
1007
1008 /* User-space => ok to do another page fault: */
1009 if (is_prefetch(regs, error_code, address))
1010 return;
1011
1012 set_signal_archinfo(address, error_code);
1013
1014#ifdef CONFIG_MEMORY_FAILURE
1015 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1016 struct task_struct *tsk = current;
1017 unsigned lsb = 0;
1018
1019 pr_err(
1020 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1021 tsk->comm, tsk->pid, address);
1022 if (fault & VM_FAULT_HWPOISON_LARGE)
1023 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1024 if (fault & VM_FAULT_HWPOISON)
1025 lsb = PAGE_SHIFT;
1026 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
1027 return;
1028 }
1029#endif
1030 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1031}
1032
1033static noinline void
1034mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1035 unsigned long address, vm_fault_t fault)
1036{
1037 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1038 no_context(regs, error_code, address, 0, 0);
1039 return;
1040 }
1041
1042 if (fault & VM_FAULT_OOM) {
1043 /* Kernel mode? Handle exceptions or die: */
1044 if (!(error_code & X86_PF_USER)) {
1045 no_context(regs, error_code, address,
1046 SIGSEGV, SEGV_MAPERR);
1047 return;
1048 }
1049
1050 /*
1051 * We ran out of memory, call the OOM killer, and return the
1052 * userspace (which will retry the fault, or kill us if we got
1053 * oom-killed):
1054 */
1055 pagefault_out_of_memory();
1056 } else {
1057 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1058 VM_FAULT_HWPOISON_LARGE))
1059 do_sigbus(regs, error_code, address, fault);
1060 else if (fault & VM_FAULT_SIGSEGV)
1061 bad_area_nosemaphore(regs, error_code, address);
1062 else
1063 BUG();
1064 }
1065}
1066
1067static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1068{
1069 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1070 return 0;
1071
1072 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1073 return 0;
1074
1075 return 1;
1076}
1077
1078/*
1079 * Handle a spurious fault caused by a stale TLB entry.
1080 *
1081 * This allows us to lazily refresh the TLB when increasing the
1082 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1083 * eagerly is very expensive since that implies doing a full
1084 * cross-processor TLB flush, even if no stale TLB entries exist
1085 * on other processors.
1086 *
1087 * Spurious faults may only occur if the TLB contains an entry with
1088 * fewer permission than the page table entry. Non-present (P = 0)
1089 * and reserved bit (R = 1) faults are never spurious.
1090 *
1091 * There are no security implications to leaving a stale TLB when
1092 * increasing the permissions on a page.
1093 *
1094 * Returns non-zero if a spurious fault was handled, zero otherwise.
1095 *
1096 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1097 * (Optional Invalidation).
1098 */
1099static noinline int
1100spurious_kernel_fault(unsigned long error_code, unsigned long address)
1101{
1102 pgd_t *pgd;
1103 p4d_t *p4d;
1104 pud_t *pud;
1105 pmd_t *pmd;
1106 pte_t *pte;
1107 int ret;
1108
1109 /*
1110 * Only writes to RO or instruction fetches from NX may cause
1111 * spurious faults.
1112 *
1113 * These could be from user or supervisor accesses but the TLB
1114 * is only lazily flushed after a kernel mapping protection
1115 * change, so user accesses are not expected to cause spurious
1116 * faults.
1117 */
1118 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1119 error_code != (X86_PF_INSTR | X86_PF_PROT))
1120 return 0;
1121
1122 pgd = init_mm.pgd + pgd_index(address);
1123 if (!pgd_present(*pgd))
1124 return 0;
1125
1126 p4d = p4d_offset(pgd, address);
1127 if (!p4d_present(*p4d))
1128 return 0;
1129
1130 if (p4d_large(*p4d))
1131 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1132
1133 pud = pud_offset(p4d, address);
1134 if (!pud_present(*pud))
1135 return 0;
1136
1137 if (pud_large(*pud))
1138 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1139
1140 pmd = pmd_offset(pud, address);
1141 if (!pmd_present(*pmd))
1142 return 0;
1143
1144 if (pmd_large(*pmd))
1145 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1146
1147 pte = pte_offset_kernel(pmd, address);
1148 if (!pte_present(*pte))
1149 return 0;
1150
1151 ret = spurious_kernel_fault_check(error_code, pte);
1152 if (!ret)
1153 return 0;
1154
1155 /*
1156 * Make sure we have permissions in PMD.
1157 * If not, then there's a bug in the page tables:
1158 */
1159 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1160 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1161
1162 return ret;
1163}
1164NOKPROBE_SYMBOL(spurious_kernel_fault);
1165
1166int show_unhandled_signals = 1;
1167
1168static inline int
1169access_error(unsigned long error_code, struct vm_area_struct *vma)
1170{
1171 /* This is only called for the current mm, so: */
1172 bool foreign = false;
1173
1174 /*
1175 * Read or write was blocked by protection keys. This is
1176 * always an unconditional error and can never result in
1177 * a follow-up action to resolve the fault, like a COW.
1178 */
1179 if (error_code & X86_PF_PK)
1180 return 1;
1181
1182 /*
1183 * Make sure to check the VMA so that we do not perform
1184 * faults just to hit a X86_PF_PK as soon as we fill in a
1185 * page.
1186 */
1187 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1188 (error_code & X86_PF_INSTR), foreign))
1189 return 1;
1190
1191 if (error_code & X86_PF_WRITE) {
1192 /* write, present and write, not present: */
1193 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1194 return 1;
1195 return 0;
1196 }
1197
1198 /* read, present: */
1199 if (unlikely(error_code & X86_PF_PROT))
1200 return 1;
1201
1202 /* read, not present: */
1203 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1204 return 1;
1205
1206 return 0;
1207}
1208
1209static int fault_in_kernel_space(unsigned long address)
1210{
1211 /*
1212 * On 64-bit systems, the vsyscall page is at an address above
1213 * TASK_SIZE_MAX, but is not considered part of the kernel
1214 * address space.
1215 */
1216 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1217 return false;
1218
1219 return address >= TASK_SIZE_MAX;
1220}
1221
1222/*
1223 * Called for all faults where 'address' is part of the kernel address
1224 * space. Might get called for faults that originate from *code* that
1225 * ran in userspace or the kernel.
1226 */
1227static void
1228do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1229 unsigned long address)
1230{
1231 /*
1232 * Protection keys exceptions only happen on user pages. We
1233 * have no user pages in the kernel portion of the address
1234 * space, so do not expect them here.
1235 */
1236 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1237
1238 /*
1239 * We can fault-in kernel-space virtual memory on-demand. The
1240 * 'reference' page table is init_mm.pgd.
1241 *
1242 * NOTE! We MUST NOT take any locks for this case. We may
1243 * be in an interrupt or a critical region, and should
1244 * only copy the information from the master page table,
1245 * nothing more.
1246 *
1247 * Before doing this on-demand faulting, ensure that the
1248 * fault is not any of the following:
1249 * 1. A fault on a PTE with a reserved bit set.
1250 * 2. A fault caused by a user-mode access. (Do not demand-
1251 * fault kernel memory due to user-mode accesses).
1252 * 3. A fault caused by a page-level protection violation.
1253 * (A demand fault would be on a non-present page which
1254 * would have X86_PF_PROT==0).
1255 */
1256 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1257 if (vmalloc_fault(address) >= 0)
1258 return;
1259 }
1260
1261 /* Was the fault spurious, caused by lazy TLB invalidation? */
1262 if (spurious_kernel_fault(hw_error_code, address))
1263 return;
1264
1265 /* kprobes don't want to hook the spurious faults: */
1266 if (kprobe_page_fault(regs, X86_TRAP_PF))
1267 return;
1268
1269 /*
1270 * Note, despite being a "bad area", there are quite a few
1271 * acceptable reasons to get here, such as erratum fixups
1272 * and handling kernel code that can fault, like get_user().
1273 *
1274 * Don't take the mm semaphore here. If we fixup a prefetch
1275 * fault we could otherwise deadlock:
1276 */
1277 bad_area_nosemaphore(regs, hw_error_code, address);
1278}
1279NOKPROBE_SYMBOL(do_kern_addr_fault);
1280
1281/* Handle faults in the user portion of the address space */
1282static inline
1283void do_user_addr_fault(struct pt_regs *regs,
1284 unsigned long hw_error_code,
1285 unsigned long address)
1286{
1287 struct vm_area_struct *vma;
1288 struct task_struct *tsk;
1289 struct mm_struct *mm;
1290 vm_fault_t fault, major = 0;
1291 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1292
1293 tsk = current;
1294 mm = tsk->mm;
1295
1296 /* kprobes don't want to hook the spurious faults: */
1297 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1298 return;
1299
1300 /*
1301 * Reserved bits are never expected to be set on
1302 * entries in the user portion of the page tables.
1303 */
1304 if (unlikely(hw_error_code & X86_PF_RSVD))
1305 pgtable_bad(regs, hw_error_code, address);
1306
1307 /*
1308 * If SMAP is on, check for invalid kernel (supervisor) access to user
1309 * pages in the user address space. The odd case here is WRUSS,
1310 * which, according to the preliminary documentation, does not respect
1311 * SMAP and will have the USER bit set so, in all cases, SMAP
1312 * enforcement appears to be consistent with the USER bit.
1313 */
1314 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1315 !(hw_error_code & X86_PF_USER) &&
1316 !(regs->flags & X86_EFLAGS_AC)))
1317 {
1318 bad_area_nosemaphore(regs, hw_error_code, address);
1319 return;
1320 }
1321
1322 /*
1323 * If we're in an interrupt, have no user context or are running
1324 * in a region with pagefaults disabled then we must not take the fault
1325 */
1326 if (unlikely(faulthandler_disabled() || !mm)) {
1327 bad_area_nosemaphore(regs, hw_error_code, address);
1328 return;
1329 }
1330
1331 /*
1332 * It's safe to allow irq's after cr2 has been saved and the
1333 * vmalloc fault has been handled.
1334 *
1335 * User-mode registers count as a user access even for any
1336 * potential system fault or CPU buglet:
1337 */
1338 if (user_mode(regs)) {
1339 local_irq_enable();
1340 flags |= FAULT_FLAG_USER;
1341 } else {
1342 if (regs->flags & X86_EFLAGS_IF)
1343 local_irq_enable();
1344 }
1345
1346 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1347
1348 if (hw_error_code & X86_PF_WRITE)
1349 flags |= FAULT_FLAG_WRITE;
1350 if (hw_error_code & X86_PF_INSTR)
1351 flags |= FAULT_FLAG_INSTRUCTION;
1352
1353#ifdef CONFIG_X86_64
1354 /*
1355 * Faults in the vsyscall page might need emulation. The
1356 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1357 * considered to be part of the user address space.
1358 *
1359 * The vsyscall page does not have a "real" VMA, so do this
1360 * emulation before we go searching for VMAs.
1361 *
1362 * PKRU never rejects instruction fetches, so we don't need
1363 * to consider the PF_PK bit.
1364 */
1365 if (is_vsyscall_vaddr(address)) {
1366 if (emulate_vsyscall(hw_error_code, regs, address))
1367 return;
1368 }
1369#endif
1370
1371 /*
1372 * Kernel-mode access to the user address space should only occur
1373 * on well-defined single instructions listed in the exception
1374 * tables. But, an erroneous kernel fault occurring outside one of
1375 * those areas which also holds mmap_sem might deadlock attempting
1376 * to validate the fault against the address space.
1377 *
1378 * Only do the expensive exception table search when we might be at
1379 * risk of a deadlock. This happens if we
1380 * 1. Failed to acquire mmap_sem, and
1381 * 2. The access did not originate in userspace.
1382 */
1383 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1384 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1385 /*
1386 * Fault from code in kernel from
1387 * which we do not expect faults.
1388 */
1389 bad_area_nosemaphore(regs, hw_error_code, address);
1390 return;
1391 }
1392retry:
1393 down_read(&mm->mmap_sem);
1394 } else {
1395 /*
1396 * The above down_read_trylock() might have succeeded in
1397 * which case we'll have missed the might_sleep() from
1398 * down_read():
1399 */
1400 might_sleep();
1401 }
1402
1403 vma = find_vma(mm, address);
1404 if (unlikely(!vma)) {
1405 bad_area(regs, hw_error_code, address);
1406 return;
1407 }
1408 if (likely(vma->vm_start <= address))
1409 goto good_area;
1410 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1411 bad_area(regs, hw_error_code, address);
1412 return;
1413 }
1414 if (unlikely(expand_stack(vma, address))) {
1415 bad_area(regs, hw_error_code, address);
1416 return;
1417 }
1418
1419 /*
1420 * Ok, we have a good vm_area for this memory access, so
1421 * we can handle it..
1422 */
1423good_area:
1424 if (unlikely(access_error(hw_error_code, vma))) {
1425 bad_area_access_error(regs, hw_error_code, address, vma);
1426 return;
1427 }
1428
1429 /*
1430 * If for any reason at all we couldn't handle the fault,
1431 * make sure we exit gracefully rather than endlessly redo
1432 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1433 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1434 *
1435 * Note that handle_userfault() may also release and reacquire mmap_sem
1436 * (and not return with VM_FAULT_RETRY), when returning to userland to
1437 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1438 * (potentially after handling any pending signal during the return to
1439 * userland). The return to userland is identified whenever
1440 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1441 */
1442 fault = handle_mm_fault(vma, address, flags);
1443 major |= fault & VM_FAULT_MAJOR;
1444
1445 /*
1446 * If we need to retry the mmap_sem has already been released,
1447 * and if there is a fatal signal pending there is no guarantee
1448 * that we made any progress. Handle this case first.
1449 */
1450 if (unlikely(fault & VM_FAULT_RETRY)) {
1451 /* Retry at most once */
1452 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1453 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1454 flags |= FAULT_FLAG_TRIED;
1455 if (!fatal_signal_pending(tsk))
1456 goto retry;
1457 }
1458
1459 /* User mode? Just return to handle the fatal exception */
1460 if (flags & FAULT_FLAG_USER)
1461 return;
1462
1463 /* Not returning to user mode? Handle exceptions or die: */
1464 no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
1465 return;
1466 }
1467
1468 up_read(&mm->mmap_sem);
1469 if (unlikely(fault & VM_FAULT_ERROR)) {
1470 mm_fault_error(regs, hw_error_code, address, fault);
1471 return;
1472 }
1473
1474 /*
1475 * Major/minor page fault accounting. If any of the events
1476 * returned VM_FAULT_MAJOR, we account it as a major fault.
1477 */
1478 if (major) {
1479 tsk->maj_flt++;
1480 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1481 } else {
1482 tsk->min_flt++;
1483 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1484 }
1485
1486 check_v8086_mode(regs, address, tsk);
1487}
1488NOKPROBE_SYMBOL(do_user_addr_fault);
1489
1490/*
1491 * Explicitly marked noinline such that the function tracer sees this as the
1492 * page_fault entry point.
1493 */
1494static noinline void
1495__do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1496 unsigned long address)
1497{
1498 prefetchw(&current->mm->mmap_sem);
1499
1500 if (unlikely(kmmio_fault(regs, address)))
1501 return;
1502
1503 /* Was the fault on kernel-controlled part of the address space? */
1504 if (unlikely(fault_in_kernel_space(address)))
1505 do_kern_addr_fault(regs, hw_error_code, address);
1506 else
1507 do_user_addr_fault(regs, hw_error_code, address);
1508}
1509NOKPROBE_SYMBOL(__do_page_fault);
1510
1511static __always_inline void
1512trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1513 unsigned long address)
1514{
1515 if (!trace_pagefault_enabled())
1516 return;
1517
1518 if (user_mode(regs))
1519 trace_page_fault_user(address, regs, error_code);
1520 else
1521 trace_page_fault_kernel(address, regs, error_code);
1522}
1523
1524dotraplinkage void
1525do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address)
1526{
1527 enum ctx_state prev_state;
1528
1529 prev_state = exception_enter();
1530 trace_page_fault_entries(regs, error_code, address);
1531 __do_page_fault(regs, error_code, address);
1532 exception_exit(prev_state);
1533}
1534NOKPROBE_SYMBOL(do_page_fault);