]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - arch/x86/mm/pageattr.c
x86/mm/pageattr: Add a PGD pagetable populating function
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / pageattr.c
... / ...
CommitLineData
1/*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5#include <linux/highmem.h>
6#include <linux/bootmem.h>
7#include <linux/module.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/interrupt.h>
11#include <linux/seq_file.h>
12#include <linux/debugfs.h>
13#include <linux/pfn.h>
14#include <linux/percpu.h>
15#include <linux/gfp.h>
16#include <linux/pci.h>
17
18#include <asm/e820.h>
19#include <asm/processor.h>
20#include <asm/tlbflush.h>
21#include <asm/sections.h>
22#include <asm/setup.h>
23#include <asm/uaccess.h>
24#include <asm/pgalloc.h>
25#include <asm/proto.h>
26#include <asm/pat.h>
27
28/*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31struct cpa_data {
32 unsigned long *vaddr;
33 pgd_t *pgd;
34 pgprot_t mask_set;
35 pgprot_t mask_clr;
36 int numpages;
37 int flags;
38 unsigned long pfn;
39 unsigned force_split : 1;
40 int curpage;
41 struct page **pages;
42};
43
44/*
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
49 */
50static DEFINE_SPINLOCK(cpa_lock);
51
52#define CPA_FLUSHTLB 1
53#define CPA_ARRAY 2
54#define CPA_PAGES_ARRAY 4
55
56#ifdef CONFIG_PROC_FS
57static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59void update_page_count(int level, unsigned long pages)
60{
61 /* Protect against CPA */
62 spin_lock(&pgd_lock);
63 direct_pages_count[level] += pages;
64 spin_unlock(&pgd_lock);
65}
66
67static void split_page_count(int level)
68{
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
71}
72
73void arch_report_meminfo(struct seq_file *m)
74{
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80#else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83#endif
84#ifdef CONFIG_X86_64
85 if (direct_gbpages)
86 seq_printf(m, "DirectMap1G: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_1G] << 20);
88#endif
89}
90#else
91static inline void split_page_count(int level) { }
92#endif
93
94#ifdef CONFIG_X86_64
95
96static inline unsigned long highmap_start_pfn(void)
97{
98 return __pa_symbol(_text) >> PAGE_SHIFT;
99}
100
101static inline unsigned long highmap_end_pfn(void)
102{
103 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104}
105
106#endif
107
108#ifdef CONFIG_DEBUG_PAGEALLOC
109# define debug_pagealloc 1
110#else
111# define debug_pagealloc 0
112#endif
113
114static inline int
115within(unsigned long addr, unsigned long start, unsigned long end)
116{
117 return addr >= start && addr < end;
118}
119
120/*
121 * Flushing functions
122 */
123
124/**
125 * clflush_cache_range - flush a cache range with clflush
126 * @vaddr: virtual start address
127 * @size: number of bytes to flush
128 *
129 * clflush is an unordered instruction which needs fencing with mfence
130 * to avoid ordering issues.
131 */
132void clflush_cache_range(void *vaddr, unsigned int size)
133{
134 void *vend = vaddr + size - 1;
135
136 mb();
137
138 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139 clflush(vaddr);
140 /*
141 * Flush any possible final partial cacheline:
142 */
143 clflush(vend);
144
145 mb();
146}
147EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149static void __cpa_flush_all(void *arg)
150{
151 unsigned long cache = (unsigned long)arg;
152
153 /*
154 * Flush all to work around Errata in early athlons regarding
155 * large page flushing.
156 */
157 __flush_tlb_all();
158
159 if (cache && boot_cpu_data.x86 >= 4)
160 wbinvd();
161}
162
163static void cpa_flush_all(unsigned long cache)
164{
165 BUG_ON(irqs_disabled());
166
167 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168}
169
170static void __cpa_flush_range(void *arg)
171{
172 /*
173 * We could optimize that further and do individual per page
174 * tlb invalidates for a low number of pages. Caveat: we must
175 * flush the high aliases on 64bit as well.
176 */
177 __flush_tlb_all();
178}
179
180static void cpa_flush_range(unsigned long start, int numpages, int cache)
181{
182 unsigned int i, level;
183 unsigned long addr;
184
185 BUG_ON(irqs_disabled());
186 WARN_ON(PAGE_ALIGN(start) != start);
187
188 on_each_cpu(__cpa_flush_range, NULL, 1);
189
190 if (!cache)
191 return;
192
193 /*
194 * We only need to flush on one CPU,
195 * clflush is a MESI-coherent instruction that
196 * will cause all other CPUs to flush the same
197 * cachelines:
198 */
199 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200 pte_t *pte = lookup_address(addr, &level);
201
202 /*
203 * Only flush present addresses:
204 */
205 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206 clflush_cache_range((void *) addr, PAGE_SIZE);
207 }
208}
209
210static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211 int in_flags, struct page **pages)
212{
213 unsigned int i, level;
214 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216 BUG_ON(irqs_disabled());
217
218 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220 if (!cache || do_wbinvd)
221 return;
222
223 /*
224 * We only need to flush on one CPU,
225 * clflush is a MESI-coherent instruction that
226 * will cause all other CPUs to flush the same
227 * cachelines:
228 */
229 for (i = 0; i < numpages; i++) {
230 unsigned long addr;
231 pte_t *pte;
232
233 if (in_flags & CPA_PAGES_ARRAY)
234 addr = (unsigned long)page_address(pages[i]);
235 else
236 addr = start[i];
237
238 pte = lookup_address(addr, &level);
239
240 /*
241 * Only flush present addresses:
242 */
243 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244 clflush_cache_range((void *)addr, PAGE_SIZE);
245 }
246}
247
248/*
249 * Certain areas of memory on x86 require very specific protection flags,
250 * for example the BIOS area or kernel text. Callers don't always get this
251 * right (again, ioremap() on BIOS memory is not uncommon) so this function
252 * checks and fixes these known static required protection bits.
253 */
254static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255 unsigned long pfn)
256{
257 pgprot_t forbidden = __pgprot(0);
258
259 /*
260 * The BIOS area between 640k and 1Mb needs to be executable for
261 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262 */
263#ifdef CONFIG_PCI_BIOS
264 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
265 pgprot_val(forbidden) |= _PAGE_NX;
266#endif
267
268 /*
269 * The kernel text needs to be executable for obvious reasons
270 * Does not cover __inittext since that is gone later on. On
271 * 64bit we do not enforce !NX on the low mapping
272 */
273 if (within(address, (unsigned long)_text, (unsigned long)_etext))
274 pgprot_val(forbidden) |= _PAGE_NX;
275
276 /*
277 * The .rodata section needs to be read-only. Using the pfn
278 * catches all aliases.
279 */
280 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
281 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
282 pgprot_val(forbidden) |= _PAGE_RW;
283
284#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
285 /*
286 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
287 * kernel text mappings for the large page aligned text, rodata sections
288 * will be always read-only. For the kernel identity mappings covering
289 * the holes caused by this alignment can be anything that user asks.
290 *
291 * This will preserve the large page mappings for kernel text/data
292 * at no extra cost.
293 */
294 if (kernel_set_to_readonly &&
295 within(address, (unsigned long)_text,
296 (unsigned long)__end_rodata_hpage_align)) {
297 unsigned int level;
298
299 /*
300 * Don't enforce the !RW mapping for the kernel text mapping,
301 * if the current mapping is already using small page mapping.
302 * No need to work hard to preserve large page mappings in this
303 * case.
304 *
305 * This also fixes the Linux Xen paravirt guest boot failure
306 * (because of unexpected read-only mappings for kernel identity
307 * mappings). In this paravirt guest case, the kernel text
308 * mapping and the kernel identity mapping share the same
309 * page-table pages. Thus we can't really use different
310 * protections for the kernel text and identity mappings. Also,
311 * these shared mappings are made of small page mappings.
312 * Thus this don't enforce !RW mapping for small page kernel
313 * text mapping logic will help Linux Xen parvirt guest boot
314 * as well.
315 */
316 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
317 pgprot_val(forbidden) |= _PAGE_RW;
318 }
319#endif
320
321 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
322
323 return prot;
324}
325
326static pte_t *__lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
327 unsigned int *level)
328{
329 pud_t *pud;
330 pmd_t *pmd;
331
332 *level = PG_LEVEL_NONE;
333
334 if (pgd_none(*pgd))
335 return NULL;
336
337 pud = pud_offset(pgd, address);
338 if (pud_none(*pud))
339 return NULL;
340
341 *level = PG_LEVEL_1G;
342 if (pud_large(*pud) || !pud_present(*pud))
343 return (pte_t *)pud;
344
345 pmd = pmd_offset(pud, address);
346 if (pmd_none(*pmd))
347 return NULL;
348
349 *level = PG_LEVEL_2M;
350 if (pmd_large(*pmd) || !pmd_present(*pmd))
351 return (pte_t *)pmd;
352
353 *level = PG_LEVEL_4K;
354
355 return pte_offset_kernel(pmd, address);
356}
357
358/*
359 * Lookup the page table entry for a virtual address. Return a pointer
360 * to the entry and the level of the mapping.
361 *
362 * Note: We return pud and pmd either when the entry is marked large
363 * or when the present bit is not set. Otherwise we would return a
364 * pointer to a nonexisting mapping.
365 */
366pte_t *lookup_address(unsigned long address, unsigned int *level)
367{
368 return __lookup_address_in_pgd(pgd_offset_k(address), address, level);
369}
370EXPORT_SYMBOL_GPL(lookup_address);
371
372static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
373 unsigned int *level)
374{
375 if (cpa->pgd)
376 return __lookup_address_in_pgd(cpa->pgd + pgd_index(address),
377 address, level);
378
379 return lookup_address(address, level);
380}
381
382/*
383 * This is necessary because __pa() does not work on some
384 * kinds of memory, like vmalloc() or the alloc_remap()
385 * areas on 32-bit NUMA systems. The percpu areas can
386 * end up in this kind of memory, for instance.
387 *
388 * This could be optimized, but it is only intended to be
389 * used at inititalization time, and keeping it
390 * unoptimized should increase the testing coverage for
391 * the more obscure platforms.
392 */
393phys_addr_t slow_virt_to_phys(void *__virt_addr)
394{
395 unsigned long virt_addr = (unsigned long)__virt_addr;
396 phys_addr_t phys_addr;
397 unsigned long offset;
398 enum pg_level level;
399 unsigned long psize;
400 unsigned long pmask;
401 pte_t *pte;
402
403 pte = lookup_address(virt_addr, &level);
404 BUG_ON(!pte);
405 psize = page_level_size(level);
406 pmask = page_level_mask(level);
407 offset = virt_addr & ~pmask;
408 phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
409 return (phys_addr | offset);
410}
411EXPORT_SYMBOL_GPL(slow_virt_to_phys);
412
413/*
414 * Set the new pmd in all the pgds we know about:
415 */
416static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
417{
418 /* change init_mm */
419 set_pte_atomic(kpte, pte);
420#ifdef CONFIG_X86_32
421 if (!SHARED_KERNEL_PMD) {
422 struct page *page;
423
424 list_for_each_entry(page, &pgd_list, lru) {
425 pgd_t *pgd;
426 pud_t *pud;
427 pmd_t *pmd;
428
429 pgd = (pgd_t *)page_address(page) + pgd_index(address);
430 pud = pud_offset(pgd, address);
431 pmd = pmd_offset(pud, address);
432 set_pte_atomic((pte_t *)pmd, pte);
433 }
434 }
435#endif
436}
437
438static int
439try_preserve_large_page(pte_t *kpte, unsigned long address,
440 struct cpa_data *cpa)
441{
442 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
443 pte_t new_pte, old_pte, *tmp;
444 pgprot_t old_prot, new_prot, req_prot;
445 int i, do_split = 1;
446 enum pg_level level;
447
448 if (cpa->force_split)
449 return 1;
450
451 spin_lock(&pgd_lock);
452 /*
453 * Check for races, another CPU might have split this page
454 * up already:
455 */
456 tmp = lookup_address(address, &level);
457 if (tmp != kpte)
458 goto out_unlock;
459
460 switch (level) {
461 case PG_LEVEL_2M:
462#ifdef CONFIG_X86_64
463 case PG_LEVEL_1G:
464#endif
465 psize = page_level_size(level);
466 pmask = page_level_mask(level);
467 break;
468 default:
469 do_split = -EINVAL;
470 goto out_unlock;
471 }
472
473 /*
474 * Calculate the number of pages, which fit into this large
475 * page starting at address:
476 */
477 nextpage_addr = (address + psize) & pmask;
478 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
479 if (numpages < cpa->numpages)
480 cpa->numpages = numpages;
481
482 /*
483 * We are safe now. Check whether the new pgprot is the same:
484 */
485 old_pte = *kpte;
486 old_prot = req_prot = pte_pgprot(old_pte);
487
488 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
489 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
490
491 /*
492 * Set the PSE and GLOBAL flags only if the PRESENT flag is
493 * set otherwise pmd_present/pmd_huge will return true even on
494 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
495 * for the ancient hardware that doesn't support it.
496 */
497 if (pgprot_val(req_prot) & _PAGE_PRESENT)
498 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
499 else
500 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
501
502 req_prot = canon_pgprot(req_prot);
503
504 /*
505 * old_pte points to the large page base address. So we need
506 * to add the offset of the virtual address:
507 */
508 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
509 cpa->pfn = pfn;
510
511 new_prot = static_protections(req_prot, address, pfn);
512
513 /*
514 * We need to check the full range, whether
515 * static_protection() requires a different pgprot for one of
516 * the pages in the range we try to preserve:
517 */
518 addr = address & pmask;
519 pfn = pte_pfn(old_pte);
520 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
521 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
522
523 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
524 goto out_unlock;
525 }
526
527 /*
528 * If there are no changes, return. maxpages has been updated
529 * above:
530 */
531 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
532 do_split = 0;
533 goto out_unlock;
534 }
535
536 /*
537 * We need to change the attributes. Check, whether we can
538 * change the large page in one go. We request a split, when
539 * the address is not aligned and the number of pages is
540 * smaller than the number of pages in the large page. Note
541 * that we limited the number of possible pages already to
542 * the number of pages in the large page.
543 */
544 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
545 /*
546 * The address is aligned and the number of pages
547 * covers the full page.
548 */
549 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
550 __set_pmd_pte(kpte, address, new_pte);
551 cpa->flags |= CPA_FLUSHTLB;
552 do_split = 0;
553 }
554
555out_unlock:
556 spin_unlock(&pgd_lock);
557
558 return do_split;
559}
560
561static int
562__split_large_page(pte_t *kpte, unsigned long address, struct page *base)
563{
564 pte_t *pbase = (pte_t *)page_address(base);
565 unsigned long pfn, pfninc = 1;
566 unsigned int i, level;
567 pte_t *tmp;
568 pgprot_t ref_prot;
569
570 spin_lock(&pgd_lock);
571 /*
572 * Check for races, another CPU might have split this page
573 * up for us already:
574 */
575 tmp = lookup_address(address, &level);
576 if (tmp != kpte) {
577 spin_unlock(&pgd_lock);
578 return 1;
579 }
580
581 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
582 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
583 /*
584 * If we ever want to utilize the PAT bit, we need to
585 * update this function to make sure it's converted from
586 * bit 12 to bit 7 when we cross from the 2MB level to
587 * the 4K level:
588 */
589 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
590
591#ifdef CONFIG_X86_64
592 if (level == PG_LEVEL_1G) {
593 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
594 /*
595 * Set the PSE flags only if the PRESENT flag is set
596 * otherwise pmd_present/pmd_huge will return true
597 * even on a non present pmd.
598 */
599 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
600 pgprot_val(ref_prot) |= _PAGE_PSE;
601 else
602 pgprot_val(ref_prot) &= ~_PAGE_PSE;
603 }
604#endif
605
606 /*
607 * Set the GLOBAL flags only if the PRESENT flag is set
608 * otherwise pmd/pte_present will return true even on a non
609 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
610 * for the ancient hardware that doesn't support it.
611 */
612 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
613 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
614 else
615 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
616
617 /*
618 * Get the target pfn from the original entry:
619 */
620 pfn = pte_pfn(*kpte);
621 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
622 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
623
624 if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
625 PFN_DOWN(__pa(address)) + 1))
626 split_page_count(level);
627
628 /*
629 * Install the new, split up pagetable.
630 *
631 * We use the standard kernel pagetable protections for the new
632 * pagetable protections, the actual ptes set above control the
633 * primary protection behavior:
634 */
635 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
636
637 /*
638 * Intel Atom errata AAH41 workaround.
639 *
640 * The real fix should be in hw or in a microcode update, but
641 * we also probabilistically try to reduce the window of having
642 * a large TLB mixed with 4K TLBs while instruction fetches are
643 * going on.
644 */
645 __flush_tlb_all();
646 spin_unlock(&pgd_lock);
647
648 return 0;
649}
650
651static int split_large_page(pte_t *kpte, unsigned long address)
652{
653 struct page *base;
654
655 if (!debug_pagealloc)
656 spin_unlock(&cpa_lock);
657 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
658 if (!debug_pagealloc)
659 spin_lock(&cpa_lock);
660 if (!base)
661 return -ENOMEM;
662
663 if (__split_large_page(kpte, address, base))
664 __free_page(base);
665
666 return 0;
667}
668
669#define populate_pud(cpa, addr, pgd, pgprot) (-1)
670
671/*
672 * Restrictions for kernel page table do not necessarily apply when mapping in
673 * an alternate PGD.
674 */
675static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
676{
677 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
678 bool allocd_pgd = false;
679 pgd_t *pgd_entry;
680 pud_t *pud = NULL; /* shut up gcc */
681 int ret;
682
683 pgd_entry = cpa->pgd + pgd_index(addr);
684
685 /*
686 * Allocate a PUD page and hand it down for mapping.
687 */
688 if (pgd_none(*pgd_entry)) {
689 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
690 if (!pud)
691 return -1;
692
693 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
694 allocd_pgd = true;
695 }
696
697 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
698 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
699
700 ret = populate_pud(cpa, addr, pgd_entry, pgprot);
701 if (ret < 0)
702 return ret;
703
704 cpa->numpages = ret;
705 return 0;
706}
707
708static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
709 int primary)
710{
711 /*
712 * Ignore all non primary paths.
713 */
714 if (!primary)
715 return 0;
716
717 /*
718 * Ignore the NULL PTE for kernel identity mapping, as it is expected
719 * to have holes.
720 * Also set numpages to '1' indicating that we processed cpa req for
721 * one virtual address page and its pfn. TBD: numpages can be set based
722 * on the initial value and the level returned by lookup_address().
723 */
724 if (within(vaddr, PAGE_OFFSET,
725 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
726 cpa->numpages = 1;
727 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
728 return 0;
729 } else {
730 WARN(1, KERN_WARNING "CPA: called for zero pte. "
731 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
732 *cpa->vaddr);
733
734 return -EFAULT;
735 }
736}
737
738static int __change_page_attr(struct cpa_data *cpa, int primary)
739{
740 unsigned long address;
741 int do_split, err;
742 unsigned int level;
743 pte_t *kpte, old_pte;
744
745 if (cpa->flags & CPA_PAGES_ARRAY) {
746 struct page *page = cpa->pages[cpa->curpage];
747 if (unlikely(PageHighMem(page)))
748 return 0;
749 address = (unsigned long)page_address(page);
750 } else if (cpa->flags & CPA_ARRAY)
751 address = cpa->vaddr[cpa->curpage];
752 else
753 address = *cpa->vaddr;
754repeat:
755 kpte = lookup_address(address, &level);
756 if (!kpte)
757 return __cpa_process_fault(cpa, address, primary);
758
759 old_pte = *kpte;
760 if (!pte_val(old_pte))
761 return __cpa_process_fault(cpa, address, primary);
762
763 if (level == PG_LEVEL_4K) {
764 pte_t new_pte;
765 pgprot_t new_prot = pte_pgprot(old_pte);
766 unsigned long pfn = pte_pfn(old_pte);
767
768 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
769 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
770
771 new_prot = static_protections(new_prot, address, pfn);
772
773 /*
774 * Set the GLOBAL flags only if the PRESENT flag is
775 * set otherwise pte_present will return true even on
776 * a non present pte. The canon_pgprot will clear
777 * _PAGE_GLOBAL for the ancient hardware that doesn't
778 * support it.
779 */
780 if (pgprot_val(new_prot) & _PAGE_PRESENT)
781 pgprot_val(new_prot) |= _PAGE_GLOBAL;
782 else
783 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
784
785 /*
786 * We need to keep the pfn from the existing PTE,
787 * after all we're only going to change it's attributes
788 * not the memory it points to
789 */
790 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
791 cpa->pfn = pfn;
792 /*
793 * Do we really change anything ?
794 */
795 if (pte_val(old_pte) != pte_val(new_pte)) {
796 set_pte_atomic(kpte, new_pte);
797 cpa->flags |= CPA_FLUSHTLB;
798 }
799 cpa->numpages = 1;
800 return 0;
801 }
802
803 /*
804 * Check, whether we can keep the large page intact
805 * and just change the pte:
806 */
807 do_split = try_preserve_large_page(kpte, address, cpa);
808 /*
809 * When the range fits into the existing large page,
810 * return. cp->numpages and cpa->tlbflush have been updated in
811 * try_large_page:
812 */
813 if (do_split <= 0)
814 return do_split;
815
816 /*
817 * We have to split the large page:
818 */
819 err = split_large_page(kpte, address);
820 if (!err) {
821 /*
822 * Do a global flush tlb after splitting the large page
823 * and before we do the actual change page attribute in the PTE.
824 *
825 * With out this, we violate the TLB application note, that says
826 * "The TLBs may contain both ordinary and large-page
827 * translations for a 4-KByte range of linear addresses. This
828 * may occur if software modifies the paging structures so that
829 * the page size used for the address range changes. If the two
830 * translations differ with respect to page frame or attributes
831 * (e.g., permissions), processor behavior is undefined and may
832 * be implementation-specific."
833 *
834 * We do this global tlb flush inside the cpa_lock, so that we
835 * don't allow any other cpu, with stale tlb entries change the
836 * page attribute in parallel, that also falls into the
837 * just split large page entry.
838 */
839 flush_tlb_all();
840 goto repeat;
841 }
842
843 return err;
844}
845
846static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
847
848static int cpa_process_alias(struct cpa_data *cpa)
849{
850 struct cpa_data alias_cpa;
851 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
852 unsigned long vaddr;
853 int ret;
854
855 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
856 return 0;
857
858 /*
859 * No need to redo, when the primary call touched the direct
860 * mapping already:
861 */
862 if (cpa->flags & CPA_PAGES_ARRAY) {
863 struct page *page = cpa->pages[cpa->curpage];
864 if (unlikely(PageHighMem(page)))
865 return 0;
866 vaddr = (unsigned long)page_address(page);
867 } else if (cpa->flags & CPA_ARRAY)
868 vaddr = cpa->vaddr[cpa->curpage];
869 else
870 vaddr = *cpa->vaddr;
871
872 if (!(within(vaddr, PAGE_OFFSET,
873 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
874
875 alias_cpa = *cpa;
876 alias_cpa.vaddr = &laddr;
877 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
878
879 ret = __change_page_attr_set_clr(&alias_cpa, 0);
880 if (ret)
881 return ret;
882 }
883
884#ifdef CONFIG_X86_64
885 /*
886 * If the primary call didn't touch the high mapping already
887 * and the physical address is inside the kernel map, we need
888 * to touch the high mapped kernel as well:
889 */
890 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
891 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
892 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
893 __START_KERNEL_map - phys_base;
894 alias_cpa = *cpa;
895 alias_cpa.vaddr = &temp_cpa_vaddr;
896 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
897
898 /*
899 * The high mapping range is imprecise, so ignore the
900 * return value.
901 */
902 __change_page_attr_set_clr(&alias_cpa, 0);
903 }
904#endif
905
906 return 0;
907}
908
909static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
910{
911 int ret, numpages = cpa->numpages;
912
913 while (numpages) {
914 /*
915 * Store the remaining nr of pages for the large page
916 * preservation check.
917 */
918 cpa->numpages = numpages;
919 /* for array changes, we can't use large page */
920 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
921 cpa->numpages = 1;
922
923 if (!debug_pagealloc)
924 spin_lock(&cpa_lock);
925 ret = __change_page_attr(cpa, checkalias);
926 if (!debug_pagealloc)
927 spin_unlock(&cpa_lock);
928 if (ret)
929 return ret;
930
931 if (checkalias) {
932 ret = cpa_process_alias(cpa);
933 if (ret)
934 return ret;
935 }
936
937 /*
938 * Adjust the number of pages with the result of the
939 * CPA operation. Either a large page has been
940 * preserved or a single page update happened.
941 */
942 BUG_ON(cpa->numpages > numpages);
943 numpages -= cpa->numpages;
944 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
945 cpa->curpage++;
946 else
947 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
948
949 }
950 return 0;
951}
952
953static inline int cache_attr(pgprot_t attr)
954{
955 return pgprot_val(attr) &
956 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
957}
958
959static int change_page_attr_set_clr(unsigned long *addr, int numpages,
960 pgprot_t mask_set, pgprot_t mask_clr,
961 int force_split, int in_flag,
962 struct page **pages)
963{
964 struct cpa_data cpa;
965 int ret, cache, checkalias;
966 unsigned long baddr = 0;
967
968 /*
969 * Check, if we are requested to change a not supported
970 * feature:
971 */
972 mask_set = canon_pgprot(mask_set);
973 mask_clr = canon_pgprot(mask_clr);
974 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
975 return 0;
976
977 /* Ensure we are PAGE_SIZE aligned */
978 if (in_flag & CPA_ARRAY) {
979 int i;
980 for (i = 0; i < numpages; i++) {
981 if (addr[i] & ~PAGE_MASK) {
982 addr[i] &= PAGE_MASK;
983 WARN_ON_ONCE(1);
984 }
985 }
986 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
987 /*
988 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
989 * No need to cehck in that case
990 */
991 if (*addr & ~PAGE_MASK) {
992 *addr &= PAGE_MASK;
993 /*
994 * People should not be passing in unaligned addresses:
995 */
996 WARN_ON_ONCE(1);
997 }
998 /*
999 * Save address for cache flush. *addr is modified in the call
1000 * to __change_page_attr_set_clr() below.
1001 */
1002 baddr = *addr;
1003 }
1004
1005 /* Must avoid aliasing mappings in the highmem code */
1006 kmap_flush_unused();
1007
1008 vm_unmap_aliases();
1009
1010 cpa.vaddr = addr;
1011 cpa.pages = pages;
1012 cpa.numpages = numpages;
1013 cpa.mask_set = mask_set;
1014 cpa.mask_clr = mask_clr;
1015 cpa.flags = 0;
1016 cpa.curpage = 0;
1017 cpa.force_split = force_split;
1018
1019 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1020 cpa.flags |= in_flag;
1021
1022 /* No alias checking for _NX bit modifications */
1023 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1024
1025 ret = __change_page_attr_set_clr(&cpa, checkalias);
1026
1027 /*
1028 * Check whether we really changed something:
1029 */
1030 if (!(cpa.flags & CPA_FLUSHTLB))
1031 goto out;
1032
1033 /*
1034 * No need to flush, when we did not set any of the caching
1035 * attributes:
1036 */
1037 cache = cache_attr(mask_set);
1038
1039 /*
1040 * On success we use clflush, when the CPU supports it to
1041 * avoid the wbindv. If the CPU does not support it and in the
1042 * error case we fall back to cpa_flush_all (which uses
1043 * wbindv):
1044 */
1045 if (!ret && cpu_has_clflush) {
1046 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1047 cpa_flush_array(addr, numpages, cache,
1048 cpa.flags, pages);
1049 } else
1050 cpa_flush_range(baddr, numpages, cache);
1051 } else
1052 cpa_flush_all(cache);
1053
1054out:
1055 return ret;
1056}
1057
1058static inline int change_page_attr_set(unsigned long *addr, int numpages,
1059 pgprot_t mask, int array)
1060{
1061 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1062 (array ? CPA_ARRAY : 0), NULL);
1063}
1064
1065static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1066 pgprot_t mask, int array)
1067{
1068 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1069 (array ? CPA_ARRAY : 0), NULL);
1070}
1071
1072static inline int cpa_set_pages_array(struct page **pages, int numpages,
1073 pgprot_t mask)
1074{
1075 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1076 CPA_PAGES_ARRAY, pages);
1077}
1078
1079static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1080 pgprot_t mask)
1081{
1082 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1083 CPA_PAGES_ARRAY, pages);
1084}
1085
1086int _set_memory_uc(unsigned long addr, int numpages)
1087{
1088 /*
1089 * for now UC MINUS. see comments in ioremap_nocache()
1090 */
1091 return change_page_attr_set(&addr, numpages,
1092 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1093}
1094
1095int set_memory_uc(unsigned long addr, int numpages)
1096{
1097 int ret;
1098
1099 /*
1100 * for now UC MINUS. see comments in ioremap_nocache()
1101 */
1102 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1103 _PAGE_CACHE_UC_MINUS, NULL);
1104 if (ret)
1105 goto out_err;
1106
1107 ret = _set_memory_uc(addr, numpages);
1108 if (ret)
1109 goto out_free;
1110
1111 return 0;
1112
1113out_free:
1114 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1115out_err:
1116 return ret;
1117}
1118EXPORT_SYMBOL(set_memory_uc);
1119
1120static int _set_memory_array(unsigned long *addr, int addrinarray,
1121 unsigned long new_type)
1122{
1123 int i, j;
1124 int ret;
1125
1126 /*
1127 * for now UC MINUS. see comments in ioremap_nocache()
1128 */
1129 for (i = 0; i < addrinarray; i++) {
1130 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1131 new_type, NULL);
1132 if (ret)
1133 goto out_free;
1134 }
1135
1136 ret = change_page_attr_set(addr, addrinarray,
1137 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1138
1139 if (!ret && new_type == _PAGE_CACHE_WC)
1140 ret = change_page_attr_set_clr(addr, addrinarray,
1141 __pgprot(_PAGE_CACHE_WC),
1142 __pgprot(_PAGE_CACHE_MASK),
1143 0, CPA_ARRAY, NULL);
1144 if (ret)
1145 goto out_free;
1146
1147 return 0;
1148
1149out_free:
1150 for (j = 0; j < i; j++)
1151 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1152
1153 return ret;
1154}
1155
1156int set_memory_array_uc(unsigned long *addr, int addrinarray)
1157{
1158 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1159}
1160EXPORT_SYMBOL(set_memory_array_uc);
1161
1162int set_memory_array_wc(unsigned long *addr, int addrinarray)
1163{
1164 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1165}
1166EXPORT_SYMBOL(set_memory_array_wc);
1167
1168int _set_memory_wc(unsigned long addr, int numpages)
1169{
1170 int ret;
1171 unsigned long addr_copy = addr;
1172
1173 ret = change_page_attr_set(&addr, numpages,
1174 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1175 if (!ret) {
1176 ret = change_page_attr_set_clr(&addr_copy, numpages,
1177 __pgprot(_PAGE_CACHE_WC),
1178 __pgprot(_PAGE_CACHE_MASK),
1179 0, 0, NULL);
1180 }
1181 return ret;
1182}
1183
1184int set_memory_wc(unsigned long addr, int numpages)
1185{
1186 int ret;
1187
1188 if (!pat_enabled)
1189 return set_memory_uc(addr, numpages);
1190
1191 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1192 _PAGE_CACHE_WC, NULL);
1193 if (ret)
1194 goto out_err;
1195
1196 ret = _set_memory_wc(addr, numpages);
1197 if (ret)
1198 goto out_free;
1199
1200 return 0;
1201
1202out_free:
1203 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1204out_err:
1205 return ret;
1206}
1207EXPORT_SYMBOL(set_memory_wc);
1208
1209int _set_memory_wb(unsigned long addr, int numpages)
1210{
1211 return change_page_attr_clear(&addr, numpages,
1212 __pgprot(_PAGE_CACHE_MASK), 0);
1213}
1214
1215int set_memory_wb(unsigned long addr, int numpages)
1216{
1217 int ret;
1218
1219 ret = _set_memory_wb(addr, numpages);
1220 if (ret)
1221 return ret;
1222
1223 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1224 return 0;
1225}
1226EXPORT_SYMBOL(set_memory_wb);
1227
1228int set_memory_array_wb(unsigned long *addr, int addrinarray)
1229{
1230 int i;
1231 int ret;
1232
1233 ret = change_page_attr_clear(addr, addrinarray,
1234 __pgprot(_PAGE_CACHE_MASK), 1);
1235 if (ret)
1236 return ret;
1237
1238 for (i = 0; i < addrinarray; i++)
1239 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1240
1241 return 0;
1242}
1243EXPORT_SYMBOL(set_memory_array_wb);
1244
1245int set_memory_x(unsigned long addr, int numpages)
1246{
1247 if (!(__supported_pte_mask & _PAGE_NX))
1248 return 0;
1249
1250 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1251}
1252EXPORT_SYMBOL(set_memory_x);
1253
1254int set_memory_nx(unsigned long addr, int numpages)
1255{
1256 if (!(__supported_pte_mask & _PAGE_NX))
1257 return 0;
1258
1259 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1260}
1261EXPORT_SYMBOL(set_memory_nx);
1262
1263int set_memory_ro(unsigned long addr, int numpages)
1264{
1265 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1266}
1267EXPORT_SYMBOL_GPL(set_memory_ro);
1268
1269int set_memory_rw(unsigned long addr, int numpages)
1270{
1271 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1272}
1273EXPORT_SYMBOL_GPL(set_memory_rw);
1274
1275int set_memory_np(unsigned long addr, int numpages)
1276{
1277 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1278}
1279
1280int set_memory_4k(unsigned long addr, int numpages)
1281{
1282 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1283 __pgprot(0), 1, 0, NULL);
1284}
1285
1286int set_pages_uc(struct page *page, int numpages)
1287{
1288 unsigned long addr = (unsigned long)page_address(page);
1289
1290 return set_memory_uc(addr, numpages);
1291}
1292EXPORT_SYMBOL(set_pages_uc);
1293
1294static int _set_pages_array(struct page **pages, int addrinarray,
1295 unsigned long new_type)
1296{
1297 unsigned long start;
1298 unsigned long end;
1299 int i;
1300 int free_idx;
1301 int ret;
1302
1303 for (i = 0; i < addrinarray; i++) {
1304 if (PageHighMem(pages[i]))
1305 continue;
1306 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1307 end = start + PAGE_SIZE;
1308 if (reserve_memtype(start, end, new_type, NULL))
1309 goto err_out;
1310 }
1311
1312 ret = cpa_set_pages_array(pages, addrinarray,
1313 __pgprot(_PAGE_CACHE_UC_MINUS));
1314 if (!ret && new_type == _PAGE_CACHE_WC)
1315 ret = change_page_attr_set_clr(NULL, addrinarray,
1316 __pgprot(_PAGE_CACHE_WC),
1317 __pgprot(_PAGE_CACHE_MASK),
1318 0, CPA_PAGES_ARRAY, pages);
1319 if (ret)
1320 goto err_out;
1321 return 0; /* Success */
1322err_out:
1323 free_idx = i;
1324 for (i = 0; i < free_idx; i++) {
1325 if (PageHighMem(pages[i]))
1326 continue;
1327 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1328 end = start + PAGE_SIZE;
1329 free_memtype(start, end);
1330 }
1331 return -EINVAL;
1332}
1333
1334int set_pages_array_uc(struct page **pages, int addrinarray)
1335{
1336 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1337}
1338EXPORT_SYMBOL(set_pages_array_uc);
1339
1340int set_pages_array_wc(struct page **pages, int addrinarray)
1341{
1342 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1343}
1344EXPORT_SYMBOL(set_pages_array_wc);
1345
1346int set_pages_wb(struct page *page, int numpages)
1347{
1348 unsigned long addr = (unsigned long)page_address(page);
1349
1350 return set_memory_wb(addr, numpages);
1351}
1352EXPORT_SYMBOL(set_pages_wb);
1353
1354int set_pages_array_wb(struct page **pages, int addrinarray)
1355{
1356 int retval;
1357 unsigned long start;
1358 unsigned long end;
1359 int i;
1360
1361 retval = cpa_clear_pages_array(pages, addrinarray,
1362 __pgprot(_PAGE_CACHE_MASK));
1363 if (retval)
1364 return retval;
1365
1366 for (i = 0; i < addrinarray; i++) {
1367 if (PageHighMem(pages[i]))
1368 continue;
1369 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1370 end = start + PAGE_SIZE;
1371 free_memtype(start, end);
1372 }
1373
1374 return 0;
1375}
1376EXPORT_SYMBOL(set_pages_array_wb);
1377
1378int set_pages_x(struct page *page, int numpages)
1379{
1380 unsigned long addr = (unsigned long)page_address(page);
1381
1382 return set_memory_x(addr, numpages);
1383}
1384EXPORT_SYMBOL(set_pages_x);
1385
1386int set_pages_nx(struct page *page, int numpages)
1387{
1388 unsigned long addr = (unsigned long)page_address(page);
1389
1390 return set_memory_nx(addr, numpages);
1391}
1392EXPORT_SYMBOL(set_pages_nx);
1393
1394int set_pages_ro(struct page *page, int numpages)
1395{
1396 unsigned long addr = (unsigned long)page_address(page);
1397
1398 return set_memory_ro(addr, numpages);
1399}
1400
1401int set_pages_rw(struct page *page, int numpages)
1402{
1403 unsigned long addr = (unsigned long)page_address(page);
1404
1405 return set_memory_rw(addr, numpages);
1406}
1407
1408#ifdef CONFIG_DEBUG_PAGEALLOC
1409
1410static int __set_pages_p(struct page *page, int numpages)
1411{
1412 unsigned long tempaddr = (unsigned long) page_address(page);
1413 struct cpa_data cpa = { .vaddr = &tempaddr,
1414 .numpages = numpages,
1415 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1416 .mask_clr = __pgprot(0),
1417 .flags = 0};
1418
1419 /*
1420 * No alias checking needed for setting present flag. otherwise,
1421 * we may need to break large pages for 64-bit kernel text
1422 * mappings (this adds to complexity if we want to do this from
1423 * atomic context especially). Let's keep it simple!
1424 */
1425 return __change_page_attr_set_clr(&cpa, 0);
1426}
1427
1428static int __set_pages_np(struct page *page, int numpages)
1429{
1430 unsigned long tempaddr = (unsigned long) page_address(page);
1431 struct cpa_data cpa = { .vaddr = &tempaddr,
1432 .numpages = numpages,
1433 .mask_set = __pgprot(0),
1434 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1435 .flags = 0};
1436
1437 /*
1438 * No alias checking needed for setting not present flag. otherwise,
1439 * we may need to break large pages for 64-bit kernel text
1440 * mappings (this adds to complexity if we want to do this from
1441 * atomic context especially). Let's keep it simple!
1442 */
1443 return __change_page_attr_set_clr(&cpa, 0);
1444}
1445
1446void kernel_map_pages(struct page *page, int numpages, int enable)
1447{
1448 if (PageHighMem(page))
1449 return;
1450 if (!enable) {
1451 debug_check_no_locks_freed(page_address(page),
1452 numpages * PAGE_SIZE);
1453 }
1454
1455 /*
1456 * The return value is ignored as the calls cannot fail.
1457 * Large pages for identity mappings are not used at boot time
1458 * and hence no memory allocations during large page split.
1459 */
1460 if (enable)
1461 __set_pages_p(page, numpages);
1462 else
1463 __set_pages_np(page, numpages);
1464
1465 /*
1466 * We should perform an IPI and flush all tlbs,
1467 * but that can deadlock->flush only current cpu:
1468 */
1469 __flush_tlb_all();
1470
1471 arch_flush_lazy_mmu_mode();
1472}
1473
1474#ifdef CONFIG_HIBERNATION
1475
1476bool kernel_page_present(struct page *page)
1477{
1478 unsigned int level;
1479 pte_t *pte;
1480
1481 if (PageHighMem(page))
1482 return false;
1483
1484 pte = lookup_address((unsigned long)page_address(page), &level);
1485 return (pte_val(*pte) & _PAGE_PRESENT);
1486}
1487
1488#endif /* CONFIG_HIBERNATION */
1489
1490#endif /* CONFIG_DEBUG_PAGEALLOC */
1491
1492/*
1493 * The testcases use internal knowledge of the implementation that shouldn't
1494 * be exposed to the rest of the kernel. Include these directly here.
1495 */
1496#ifdef CONFIG_CPA_DEBUG
1497#include "pageattr-test.c"
1498#endif