]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - arch/x86/platform/efi/efi_64.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / arch / x86 / platform / efi / efi_64.c
... / ...
CommitLineData
1/*
2 * x86_64 specific EFI support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 2005-2008 Intel Co.
6 * Fenghua Yu <fenghua.yu@intel.com>
7 * Bibo Mao <bibo.mao@intel.com>
8 * Chandramouli Narayanan <mouli@linux.intel.com>
9 * Huang Ying <ying.huang@intel.com>
10 *
11 * Code to convert EFI to E820 map has been implemented in elilo bootloader
12 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13 * is setup appropriately for EFI runtime code.
14 * - mouli 06/14/2007.
15 *
16 */
17
18#define pr_fmt(fmt) "efi: " fmt
19
20#include <linux/kernel.h>
21#include <linux/init.h>
22#include <linux/mm.h>
23#include <linux/types.h>
24#include <linux/spinlock.h>
25#include <linux/bootmem.h>
26#include <linux/ioport.h>
27#include <linux/init.h>
28#include <linux/mc146818rtc.h>
29#include <linux/efi.h>
30#include <linux/uaccess.h>
31#include <linux/io.h>
32#include <linux/reboot.h>
33#include <linux/slab.h>
34#include <linux/ucs2_string.h>
35
36#include <asm/setup.h>
37#include <asm/page.h>
38#include <asm/e820/api.h>
39#include <asm/pgtable.h>
40#include <asm/tlbflush.h>
41#include <asm/proto.h>
42#include <asm/efi.h>
43#include <asm/cacheflush.h>
44#include <asm/fixmap.h>
45#include <asm/realmode.h>
46#include <asm/time.h>
47#include <asm/pgalloc.h>
48
49/*
50 * We allocate runtime services regions top-down, starting from -4G, i.e.
51 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
52 */
53static u64 efi_va = EFI_VA_START;
54
55struct efi_scratch efi_scratch;
56
57static void __init early_code_mapping_set_exec(int executable)
58{
59 efi_memory_desc_t *md;
60
61 if (!(__supported_pte_mask & _PAGE_NX))
62 return;
63
64 /* Make EFI service code area executable */
65 for_each_efi_memory_desc(md) {
66 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67 md->type == EFI_BOOT_SERVICES_CODE)
68 efi_set_executable(md, executable);
69 }
70}
71
72pgd_t * __init efi_call_phys_prolog(void)
73{
74 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
75 pgd_t *save_pgd, *pgd_k, *pgd_efi;
76 p4d_t *p4d, *p4d_k, *p4d_efi;
77 pud_t *pud;
78
79 int pgd;
80 int n_pgds, i, j;
81
82 if (!efi_enabled(EFI_OLD_MEMMAP)) {
83 save_pgd = (pgd_t *)__read_cr3();
84 write_cr3((unsigned long)efi_scratch.efi_pgt);
85 goto out;
86 }
87
88 early_code_mapping_set_exec(1);
89
90 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
91 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
92
93 /*
94 * Build 1:1 identity mapping for efi=old_map usage. Note that
95 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
96 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
97 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
98 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
99 * This means here we can only reuse the PMD tables of the direct mapping.
100 */
101 for (pgd = 0; pgd < n_pgds; pgd++) {
102 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
103 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
104 pgd_efi = pgd_offset_k(addr_pgd);
105 save_pgd[pgd] = *pgd_efi;
106
107 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
108 if (!p4d) {
109 pr_err("Failed to allocate p4d table!\n");
110 goto out;
111 }
112
113 for (i = 0; i < PTRS_PER_P4D; i++) {
114 addr_p4d = addr_pgd + i * P4D_SIZE;
115 p4d_efi = p4d + p4d_index(addr_p4d);
116
117 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
118 if (!pud) {
119 pr_err("Failed to allocate pud table!\n");
120 goto out;
121 }
122
123 for (j = 0; j < PTRS_PER_PUD; j++) {
124 addr_pud = addr_p4d + j * PUD_SIZE;
125
126 if (addr_pud > (max_pfn << PAGE_SHIFT))
127 break;
128
129 vaddr = (unsigned long)__va(addr_pud);
130
131 pgd_k = pgd_offset_k(vaddr);
132 p4d_k = p4d_offset(pgd_k, vaddr);
133 pud[j] = *pud_offset(p4d_k, vaddr);
134 }
135 }
136 pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
137 }
138
139out:
140 __flush_tlb_all();
141
142 return save_pgd;
143}
144
145void __init efi_call_phys_epilog(pgd_t *save_pgd)
146{
147 /*
148 * After the lock is released, the original page table is restored.
149 */
150 int pgd_idx, i;
151 int nr_pgds;
152 pgd_t *pgd;
153 p4d_t *p4d;
154 pud_t *pud;
155
156 if (!efi_enabled(EFI_OLD_MEMMAP)) {
157 write_cr3((unsigned long)save_pgd);
158 __flush_tlb_all();
159 return;
160 }
161
162 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
163
164 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
165 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
166 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
167
168 if (!(pgd_val(*pgd) & _PAGE_PRESENT))
169 continue;
170
171 for (i = 0; i < PTRS_PER_P4D; i++) {
172 p4d = p4d_offset(pgd,
173 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
174
175 if (!(p4d_val(*p4d) & _PAGE_PRESENT))
176 continue;
177
178 pud = (pud_t *)p4d_page_vaddr(*p4d);
179 pud_free(&init_mm, pud);
180 }
181
182 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
183 p4d_free(&init_mm, p4d);
184 }
185
186 kfree(save_pgd);
187
188 __flush_tlb_all();
189 early_code_mapping_set_exec(0);
190}
191
192static pgd_t *efi_pgd;
193
194/*
195 * We need our own copy of the higher levels of the page tables
196 * because we want to avoid inserting EFI region mappings (EFI_VA_END
197 * to EFI_VA_START) into the standard kernel page tables. Everything
198 * else can be shared, see efi_sync_low_kernel_mappings().
199 *
200 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
201 * allocation.
202 */
203int __init efi_alloc_page_tables(void)
204{
205 pgd_t *pgd;
206 p4d_t *p4d;
207 pud_t *pud;
208 gfp_t gfp_mask;
209
210 if (efi_enabled(EFI_OLD_MEMMAP))
211 return 0;
212
213 gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
214 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
215 if (!efi_pgd)
216 return -ENOMEM;
217
218 pgd = efi_pgd + pgd_index(EFI_VA_END);
219 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
220 if (!p4d) {
221 free_page((unsigned long)efi_pgd);
222 return -ENOMEM;
223 }
224
225 pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
226 if (!pud) {
227 if (CONFIG_PGTABLE_LEVELS > 4)
228 free_page((unsigned long) pgd_page_vaddr(*pgd));
229 free_page((unsigned long)efi_pgd);
230 return -ENOMEM;
231 }
232
233 return 0;
234}
235
236/*
237 * Add low kernel mappings for passing arguments to EFI functions.
238 */
239void efi_sync_low_kernel_mappings(void)
240{
241 unsigned num_entries;
242 pgd_t *pgd_k, *pgd_efi;
243 p4d_t *p4d_k, *p4d_efi;
244 pud_t *pud_k, *pud_efi;
245
246 if (efi_enabled(EFI_OLD_MEMMAP))
247 return;
248
249 /*
250 * We can share all PGD entries apart from the one entry that
251 * covers the EFI runtime mapping space.
252 *
253 * Make sure the EFI runtime region mappings are guaranteed to
254 * only span a single PGD entry and that the entry also maps
255 * other important kernel regions.
256 */
257 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
258 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
259 (EFI_VA_END & PGDIR_MASK));
260
261 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
262 pgd_k = pgd_offset_k(PAGE_OFFSET);
263
264 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
265 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
266
267 /*
268 * As with PGDs, we share all P4D entries apart from the one entry
269 * that covers the EFI runtime mapping space.
270 */
271 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
272 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
273
274 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
275 pgd_k = pgd_offset_k(EFI_VA_END);
276 p4d_efi = p4d_offset(pgd_efi, 0);
277 p4d_k = p4d_offset(pgd_k, 0);
278
279 num_entries = p4d_index(EFI_VA_END);
280 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
281
282 /*
283 * We share all the PUD entries apart from those that map the
284 * EFI regions. Copy around them.
285 */
286 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
287 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
288
289 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
290 p4d_k = p4d_offset(pgd_k, EFI_VA_END);
291 pud_efi = pud_offset(p4d_efi, 0);
292 pud_k = pud_offset(p4d_k, 0);
293
294 num_entries = pud_index(EFI_VA_END);
295 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
296
297 pud_efi = pud_offset(p4d_efi, EFI_VA_START);
298 pud_k = pud_offset(p4d_k, EFI_VA_START);
299
300 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
301 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
302}
303
304/*
305 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
306 */
307static inline phys_addr_t
308virt_to_phys_or_null_size(void *va, unsigned long size)
309{
310 bool bad_size;
311
312 if (!va)
313 return 0;
314
315 if (virt_addr_valid(va))
316 return virt_to_phys(va);
317
318 /*
319 * A fully aligned variable on the stack is guaranteed not to
320 * cross a page bounary. Try to catch strings on the stack by
321 * checking that 'size' is a power of two.
322 */
323 bad_size = size > PAGE_SIZE || !is_power_of_2(size);
324
325 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
326
327 return slow_virt_to_phys(va);
328}
329
330#define virt_to_phys_or_null(addr) \
331 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
332
333int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
334{
335 unsigned long pfn, text;
336 struct page *page;
337 unsigned npages;
338 pgd_t *pgd;
339
340 if (efi_enabled(EFI_OLD_MEMMAP))
341 return 0;
342
343 efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
344 pgd = efi_pgd;
345
346 /*
347 * It can happen that the physical address of new_memmap lands in memory
348 * which is not mapped in the EFI page table. Therefore we need to go
349 * and ident-map those pages containing the map before calling
350 * phys_efi_set_virtual_address_map().
351 */
352 pfn = pa_memmap >> PAGE_SHIFT;
353 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
354 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
355 return 1;
356 }
357
358 efi_scratch.use_pgd = true;
359
360 /*
361 * Certain firmware versions are way too sentimential and still believe
362 * they are exclusive and unquestionable owners of the first physical page,
363 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
364 * (but then write-access it later during SetVirtualAddressMap()).
365 *
366 * Create a 1:1 mapping for this page, to avoid triple faults during early
367 * boot with such firmware. We are free to hand this page to the BIOS,
368 * as trim_bios_range() will reserve the first page and isolate it away
369 * from memory allocators anyway.
370 */
371 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
372 pr_err("Failed to create 1:1 mapping for the first page!\n");
373 return 1;
374 }
375
376 /*
377 * When making calls to the firmware everything needs to be 1:1
378 * mapped and addressable with 32-bit pointers. Map the kernel
379 * text and allocate a new stack because we can't rely on the
380 * stack pointer being < 4GB.
381 */
382 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
383 return 0;
384
385 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
386 if (!page)
387 panic("Unable to allocate EFI runtime stack < 4GB\n");
388
389 efi_scratch.phys_stack = virt_to_phys(page_address(page));
390 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
391
392 npages = (_etext - _text) >> PAGE_SHIFT;
393 text = __pa(_text);
394 pfn = text >> PAGE_SHIFT;
395
396 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
397 pr_err("Failed to map kernel text 1:1\n");
398 return 1;
399 }
400
401 return 0;
402}
403
404static void __init __map_region(efi_memory_desc_t *md, u64 va)
405{
406 unsigned long flags = _PAGE_RW;
407 unsigned long pfn;
408 pgd_t *pgd = efi_pgd;
409
410 if (!(md->attribute & EFI_MEMORY_WB))
411 flags |= _PAGE_PCD;
412
413 pfn = md->phys_addr >> PAGE_SHIFT;
414 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
415 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
416 md->phys_addr, va);
417}
418
419void __init efi_map_region(efi_memory_desc_t *md)
420{
421 unsigned long size = md->num_pages << PAGE_SHIFT;
422 u64 pa = md->phys_addr;
423
424 if (efi_enabled(EFI_OLD_MEMMAP))
425 return old_map_region(md);
426
427 /*
428 * Make sure the 1:1 mappings are present as a catch-all for b0rked
429 * firmware which doesn't update all internal pointers after switching
430 * to virtual mode and would otherwise crap on us.
431 */
432 __map_region(md, md->phys_addr);
433
434 /*
435 * Enforce the 1:1 mapping as the default virtual address when
436 * booting in EFI mixed mode, because even though we may be
437 * running a 64-bit kernel, the firmware may only be 32-bit.
438 */
439 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
440 md->virt_addr = md->phys_addr;
441 return;
442 }
443
444 efi_va -= size;
445
446 /* Is PA 2M-aligned? */
447 if (!(pa & (PMD_SIZE - 1))) {
448 efi_va &= PMD_MASK;
449 } else {
450 u64 pa_offset = pa & (PMD_SIZE - 1);
451 u64 prev_va = efi_va;
452
453 /* get us the same offset within this 2M page */
454 efi_va = (efi_va & PMD_MASK) + pa_offset;
455
456 if (efi_va > prev_va)
457 efi_va -= PMD_SIZE;
458 }
459
460 if (efi_va < EFI_VA_END) {
461 pr_warn(FW_WARN "VA address range overflow!\n");
462 return;
463 }
464
465 /* Do the VA map */
466 __map_region(md, efi_va);
467 md->virt_addr = efi_va;
468}
469
470/*
471 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
472 * md->virt_addr is the original virtual address which had been mapped in kexec
473 * 1st kernel.
474 */
475void __init efi_map_region_fixed(efi_memory_desc_t *md)
476{
477 __map_region(md, md->phys_addr);
478 __map_region(md, md->virt_addr);
479}
480
481void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
482 u32 type, u64 attribute)
483{
484 unsigned long last_map_pfn;
485
486 if (type == EFI_MEMORY_MAPPED_IO)
487 return ioremap(phys_addr, size);
488
489 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
490 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
491 unsigned long top = last_map_pfn << PAGE_SHIFT;
492 efi_ioremap(top, size - (top - phys_addr), type, attribute);
493 }
494
495 if (!(attribute & EFI_MEMORY_WB))
496 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
497
498 return (void __iomem *)__va(phys_addr);
499}
500
501void __init parse_efi_setup(u64 phys_addr, u32 data_len)
502{
503 efi_setup = phys_addr + sizeof(struct setup_data);
504}
505
506static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
507{
508 unsigned long pfn;
509 pgd_t *pgd = efi_pgd;
510 int err1, err2;
511
512 /* Update the 1:1 mapping */
513 pfn = md->phys_addr >> PAGE_SHIFT;
514 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
515 if (err1) {
516 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
517 md->phys_addr, md->virt_addr);
518 }
519
520 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
521 if (err2) {
522 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
523 md->phys_addr, md->virt_addr);
524 }
525
526 return err1 || err2;
527}
528
529static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
530{
531 unsigned long pf = 0;
532
533 if (md->attribute & EFI_MEMORY_XP)
534 pf |= _PAGE_NX;
535
536 if (!(md->attribute & EFI_MEMORY_RO))
537 pf |= _PAGE_RW;
538
539 return efi_update_mappings(md, pf);
540}
541
542void __init efi_runtime_update_mappings(void)
543{
544 efi_memory_desc_t *md;
545
546 if (efi_enabled(EFI_OLD_MEMMAP)) {
547 if (__supported_pte_mask & _PAGE_NX)
548 runtime_code_page_mkexec();
549 return;
550 }
551
552 /*
553 * Use the EFI Memory Attribute Table for mapping permissions if it
554 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
555 */
556 if (efi_enabled(EFI_MEM_ATTR)) {
557 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
558 return;
559 }
560
561 /*
562 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
563 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
564 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
565 * published by the firmware. Even if we find a buggy implementation of
566 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
567 * EFI_PROPERTIES_TABLE, because of the same reason.
568 */
569
570 if (!efi_enabled(EFI_NX_PE_DATA))
571 return;
572
573 for_each_efi_memory_desc(md) {
574 unsigned long pf = 0;
575
576 if (!(md->attribute & EFI_MEMORY_RUNTIME))
577 continue;
578
579 if (!(md->attribute & EFI_MEMORY_WB))
580 pf |= _PAGE_PCD;
581
582 if ((md->attribute & EFI_MEMORY_XP) ||
583 (md->type == EFI_RUNTIME_SERVICES_DATA))
584 pf |= _PAGE_NX;
585
586 if (!(md->attribute & EFI_MEMORY_RO) &&
587 (md->type != EFI_RUNTIME_SERVICES_CODE))
588 pf |= _PAGE_RW;
589
590 efi_update_mappings(md, pf);
591 }
592}
593
594void __init efi_dump_pagetable(void)
595{
596#ifdef CONFIG_EFI_PGT_DUMP
597 if (efi_enabled(EFI_OLD_MEMMAP))
598 ptdump_walk_pgd_level(NULL, swapper_pg_dir);
599 else
600 ptdump_walk_pgd_level(NULL, efi_pgd);
601#endif
602}
603
604#ifdef CONFIG_EFI_MIXED
605extern efi_status_t efi64_thunk(u32, ...);
606
607#define runtime_service32(func) \
608({ \
609 u32 table = (u32)(unsigned long)efi.systab; \
610 u32 *rt, *___f; \
611 \
612 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
613 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
614 *___f; \
615})
616
617/*
618 * Switch to the EFI page tables early so that we can access the 1:1
619 * runtime services mappings which are not mapped in any other page
620 * tables. This function must be called before runtime_service32().
621 *
622 * Also, disable interrupts because the IDT points to 64-bit handlers,
623 * which aren't going to function correctly when we switch to 32-bit.
624 */
625#define efi_thunk(f, ...) \
626({ \
627 efi_status_t __s; \
628 unsigned long __flags; \
629 u32 __func; \
630 \
631 local_irq_save(__flags); \
632 arch_efi_call_virt_setup(); \
633 \
634 __func = runtime_service32(f); \
635 __s = efi64_thunk(__func, __VA_ARGS__); \
636 \
637 arch_efi_call_virt_teardown(); \
638 local_irq_restore(__flags); \
639 \
640 __s; \
641})
642
643efi_status_t efi_thunk_set_virtual_address_map(
644 void *phys_set_virtual_address_map,
645 unsigned long memory_map_size,
646 unsigned long descriptor_size,
647 u32 descriptor_version,
648 efi_memory_desc_t *virtual_map)
649{
650 efi_status_t status;
651 unsigned long flags;
652 u32 func;
653
654 efi_sync_low_kernel_mappings();
655 local_irq_save(flags);
656
657 efi_scratch.prev_cr3 = __read_cr3();
658 write_cr3((unsigned long)efi_scratch.efi_pgt);
659 __flush_tlb_all();
660
661 func = (u32)(unsigned long)phys_set_virtual_address_map;
662 status = efi64_thunk(func, memory_map_size, descriptor_size,
663 descriptor_version, virtual_map);
664
665 write_cr3(efi_scratch.prev_cr3);
666 __flush_tlb_all();
667 local_irq_restore(flags);
668
669 return status;
670}
671
672static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
673{
674 efi_status_t status;
675 u32 phys_tm, phys_tc;
676
677 spin_lock(&rtc_lock);
678
679 phys_tm = virt_to_phys_or_null(tm);
680 phys_tc = virt_to_phys_or_null(tc);
681
682 status = efi_thunk(get_time, phys_tm, phys_tc);
683
684 spin_unlock(&rtc_lock);
685
686 return status;
687}
688
689static efi_status_t efi_thunk_set_time(efi_time_t *tm)
690{
691 efi_status_t status;
692 u32 phys_tm;
693
694 spin_lock(&rtc_lock);
695
696 phys_tm = virt_to_phys_or_null(tm);
697
698 status = efi_thunk(set_time, phys_tm);
699
700 spin_unlock(&rtc_lock);
701
702 return status;
703}
704
705static efi_status_t
706efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
707 efi_time_t *tm)
708{
709 efi_status_t status;
710 u32 phys_enabled, phys_pending, phys_tm;
711
712 spin_lock(&rtc_lock);
713
714 phys_enabled = virt_to_phys_or_null(enabled);
715 phys_pending = virt_to_phys_or_null(pending);
716 phys_tm = virt_to_phys_or_null(tm);
717
718 status = efi_thunk(get_wakeup_time, phys_enabled,
719 phys_pending, phys_tm);
720
721 spin_unlock(&rtc_lock);
722
723 return status;
724}
725
726static efi_status_t
727efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
728{
729 efi_status_t status;
730 u32 phys_tm;
731
732 spin_lock(&rtc_lock);
733
734 phys_tm = virt_to_phys_or_null(tm);
735
736 status = efi_thunk(set_wakeup_time, enabled, phys_tm);
737
738 spin_unlock(&rtc_lock);
739
740 return status;
741}
742
743static unsigned long efi_name_size(efi_char16_t *name)
744{
745 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
746}
747
748static efi_status_t
749efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
750 u32 *attr, unsigned long *data_size, void *data)
751{
752 efi_status_t status;
753 u32 phys_name, phys_vendor, phys_attr;
754 u32 phys_data_size, phys_data;
755
756 phys_data_size = virt_to_phys_or_null(data_size);
757 phys_vendor = virt_to_phys_or_null(vendor);
758 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
759 phys_attr = virt_to_phys_or_null(attr);
760 phys_data = virt_to_phys_or_null_size(data, *data_size);
761
762 status = efi_thunk(get_variable, phys_name, phys_vendor,
763 phys_attr, phys_data_size, phys_data);
764
765 return status;
766}
767
768static efi_status_t
769efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
770 u32 attr, unsigned long data_size, void *data)
771{
772 u32 phys_name, phys_vendor, phys_data;
773 efi_status_t status;
774
775 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
776 phys_vendor = virt_to_phys_or_null(vendor);
777 phys_data = virt_to_phys_or_null_size(data, data_size);
778
779 /* If data_size is > sizeof(u32) we've got problems */
780 status = efi_thunk(set_variable, phys_name, phys_vendor,
781 attr, data_size, phys_data);
782
783 return status;
784}
785
786static efi_status_t
787efi_thunk_get_next_variable(unsigned long *name_size,
788 efi_char16_t *name,
789 efi_guid_t *vendor)
790{
791 efi_status_t status;
792 u32 phys_name_size, phys_name, phys_vendor;
793
794 phys_name_size = virt_to_phys_or_null(name_size);
795 phys_vendor = virt_to_phys_or_null(vendor);
796 phys_name = virt_to_phys_or_null_size(name, *name_size);
797
798 status = efi_thunk(get_next_variable, phys_name_size,
799 phys_name, phys_vendor);
800
801 return status;
802}
803
804static efi_status_t
805efi_thunk_get_next_high_mono_count(u32 *count)
806{
807 efi_status_t status;
808 u32 phys_count;
809
810 phys_count = virt_to_phys_or_null(count);
811 status = efi_thunk(get_next_high_mono_count, phys_count);
812
813 return status;
814}
815
816static void
817efi_thunk_reset_system(int reset_type, efi_status_t status,
818 unsigned long data_size, efi_char16_t *data)
819{
820 u32 phys_data;
821
822 phys_data = virt_to_phys_or_null_size(data, data_size);
823
824 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
825}
826
827static efi_status_t
828efi_thunk_update_capsule(efi_capsule_header_t **capsules,
829 unsigned long count, unsigned long sg_list)
830{
831 /*
832 * To properly support this function we would need to repackage
833 * 'capsules' because the firmware doesn't understand 64-bit
834 * pointers.
835 */
836 return EFI_UNSUPPORTED;
837}
838
839static efi_status_t
840efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
841 u64 *remaining_space,
842 u64 *max_variable_size)
843{
844 efi_status_t status;
845 u32 phys_storage, phys_remaining, phys_max;
846
847 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
848 return EFI_UNSUPPORTED;
849
850 phys_storage = virt_to_phys_or_null(storage_space);
851 phys_remaining = virt_to_phys_or_null(remaining_space);
852 phys_max = virt_to_phys_or_null(max_variable_size);
853
854 status = efi_thunk(query_variable_info, attr, phys_storage,
855 phys_remaining, phys_max);
856
857 return status;
858}
859
860static efi_status_t
861efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
862 unsigned long count, u64 *max_size,
863 int *reset_type)
864{
865 /*
866 * To properly support this function we would need to repackage
867 * 'capsules' because the firmware doesn't understand 64-bit
868 * pointers.
869 */
870 return EFI_UNSUPPORTED;
871}
872
873void efi_thunk_runtime_setup(void)
874{
875 efi.get_time = efi_thunk_get_time;
876 efi.set_time = efi_thunk_set_time;
877 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
878 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
879 efi.get_variable = efi_thunk_get_variable;
880 efi.get_next_variable = efi_thunk_get_next_variable;
881 efi.set_variable = efi_thunk_set_variable;
882 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
883 efi.reset_system = efi_thunk_reset_system;
884 efi.query_variable_info = efi_thunk_query_variable_info;
885 efi.update_capsule = efi_thunk_update_capsule;
886 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
887}
888#endif /* CONFIG_EFI_MIXED */